Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/ide/ide-io.c
15109 views
1
/*
2
* IDE I/O functions
3
*
4
* Basic PIO and command management functionality.
5
*
6
* This code was split off from ide.c. See ide.c for history and original
7
* copyrights.
8
*
9
* This program is free software; you can redistribute it and/or modify it
10
* under the terms of the GNU General Public License as published by the
11
* Free Software Foundation; either version 2, or (at your option) any
12
* later version.
13
*
14
* This program is distributed in the hope that it will be useful, but
15
* WITHOUT ANY WARRANTY; without even the implied warranty of
16
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17
* General Public License for more details.
18
*
19
* For the avoidance of doubt the "preferred form" of this code is one which
20
* is in an open non patent encumbered format. Where cryptographic key signing
21
* forms part of the process of creating an executable the information
22
* including keys needed to generate an equivalently functional executable
23
* are deemed to be part of the source code.
24
*/
25
26
27
#include <linux/module.h>
28
#include <linux/types.h>
29
#include <linux/string.h>
30
#include <linux/kernel.h>
31
#include <linux/timer.h>
32
#include <linux/mm.h>
33
#include <linux/interrupt.h>
34
#include <linux/major.h>
35
#include <linux/errno.h>
36
#include <linux/genhd.h>
37
#include <linux/blkpg.h>
38
#include <linux/slab.h>
39
#include <linux/init.h>
40
#include <linux/pci.h>
41
#include <linux/delay.h>
42
#include <linux/ide.h>
43
#include <linux/completion.h>
44
#include <linux/reboot.h>
45
#include <linux/cdrom.h>
46
#include <linux/seq_file.h>
47
#include <linux/device.h>
48
#include <linux/kmod.h>
49
#include <linux/scatterlist.h>
50
#include <linux/bitops.h>
51
52
#include <asm/byteorder.h>
53
#include <asm/irq.h>
54
#include <asm/uaccess.h>
55
#include <asm/io.h>
56
57
int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58
unsigned int nr_bytes)
59
{
60
/*
61
* decide whether to reenable DMA -- 3 is a random magic for now,
62
* if we DMA timeout more than 3 times, just stay in PIO
63
*/
64
if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65
drive->retry_pio <= 3) {
66
drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67
ide_dma_on(drive);
68
}
69
70
return blk_end_request(rq, error, nr_bytes);
71
}
72
EXPORT_SYMBOL_GPL(ide_end_rq);
73
74
void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
75
{
76
const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77
struct ide_taskfile *tf = &cmd->tf;
78
struct request *rq = cmd->rq;
79
u8 tf_cmd = tf->command;
80
81
tf->error = err;
82
tf->status = stat;
83
84
if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
85
u8 data[2];
86
87
tp_ops->input_data(drive, cmd, data, 2);
88
89
cmd->tf.data = data[0];
90
cmd->hob.data = data[1];
91
}
92
93
ide_tf_readback(drive, cmd);
94
95
if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96
tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97
if (tf->lbal != 0xc4) {
98
printk(KERN_ERR "%s: head unload failed!\n",
99
drive->name);
100
ide_tf_dump(drive->name, cmd);
101
} else
102
drive->dev_flags |= IDE_DFLAG_PARKED;
103
}
104
105
if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
106
struct ide_cmd *orig_cmd = rq->special;
107
108
if (cmd->tf_flags & IDE_TFLAG_DYN)
109
kfree(orig_cmd);
110
else
111
memcpy(orig_cmd, cmd, sizeof(*cmd));
112
}
113
}
114
115
int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
116
{
117
ide_hwif_t *hwif = drive->hwif;
118
struct request *rq = hwif->rq;
119
int rc;
120
121
/*
122
* if failfast is set on a request, override number of sectors
123
* and complete the whole request right now
124
*/
125
if (blk_noretry_request(rq) && error <= 0)
126
nr_bytes = blk_rq_sectors(rq) << 9;
127
128
rc = ide_end_rq(drive, rq, error, nr_bytes);
129
if (rc == 0)
130
hwif->rq = NULL;
131
132
return rc;
133
}
134
EXPORT_SYMBOL(ide_complete_rq);
135
136
void ide_kill_rq(ide_drive_t *drive, struct request *rq)
137
{
138
u8 drv_req = (rq->cmd_type == REQ_TYPE_SPECIAL) && rq->rq_disk;
139
u8 media = drive->media;
140
141
drive->failed_pc = NULL;
142
143
if ((media == ide_floppy || media == ide_tape) && drv_req) {
144
rq->errors = 0;
145
} else {
146
if (media == ide_tape)
147
rq->errors = IDE_DRV_ERROR_GENERAL;
148
else if (rq->cmd_type != REQ_TYPE_FS && rq->errors == 0)
149
rq->errors = -EIO;
150
}
151
152
ide_complete_rq(drive, -EIO, blk_rq_bytes(rq));
153
}
154
155
static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
156
{
157
tf->nsect = drive->sect;
158
tf->lbal = drive->sect;
159
tf->lbam = drive->cyl;
160
tf->lbah = drive->cyl >> 8;
161
tf->device = (drive->head - 1) | drive->select;
162
tf->command = ATA_CMD_INIT_DEV_PARAMS;
163
}
164
165
static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
166
{
167
tf->nsect = drive->sect;
168
tf->command = ATA_CMD_RESTORE;
169
}
170
171
static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
172
{
173
tf->nsect = drive->mult_req;
174
tf->command = ATA_CMD_SET_MULTI;
175
}
176
177
/**
178
* do_special - issue some special commands
179
* @drive: drive the command is for
180
*
181
* do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
182
* ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
183
*/
184
185
static ide_startstop_t do_special(ide_drive_t *drive)
186
{
187
struct ide_cmd cmd;
188
189
#ifdef DEBUG
190
printk(KERN_DEBUG "%s: %s: 0x%02x\n", drive->name, __func__,
191
drive->special_flags);
192
#endif
193
if (drive->media != ide_disk) {
194
drive->special_flags = 0;
195
drive->mult_req = 0;
196
return ide_stopped;
197
}
198
199
memset(&cmd, 0, sizeof(cmd));
200
cmd.protocol = ATA_PROT_NODATA;
201
202
if (drive->special_flags & IDE_SFLAG_SET_GEOMETRY) {
203
drive->special_flags &= ~IDE_SFLAG_SET_GEOMETRY;
204
ide_tf_set_specify_cmd(drive, &cmd.tf);
205
} else if (drive->special_flags & IDE_SFLAG_RECALIBRATE) {
206
drive->special_flags &= ~IDE_SFLAG_RECALIBRATE;
207
ide_tf_set_restore_cmd(drive, &cmd.tf);
208
} else if (drive->special_flags & IDE_SFLAG_SET_MULTMODE) {
209
drive->special_flags &= ~IDE_SFLAG_SET_MULTMODE;
210
ide_tf_set_setmult_cmd(drive, &cmd.tf);
211
} else
212
BUG();
213
214
cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
215
cmd.valid.in.tf = IDE_VALID_IN_TF | IDE_VALID_DEVICE;
216
cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
217
218
do_rw_taskfile(drive, &cmd);
219
220
return ide_started;
221
}
222
223
void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
224
{
225
ide_hwif_t *hwif = drive->hwif;
226
struct scatterlist *sg = hwif->sg_table;
227
struct request *rq = cmd->rq;
228
229
cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
230
}
231
EXPORT_SYMBOL_GPL(ide_map_sg);
232
233
void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
234
{
235
cmd->nbytes = cmd->nleft = nr_bytes;
236
cmd->cursg_ofs = 0;
237
cmd->cursg = NULL;
238
}
239
EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
240
241
/**
242
* execute_drive_command - issue special drive command
243
* @drive: the drive to issue the command on
244
* @rq: the request structure holding the command
245
*
246
* execute_drive_cmd() issues a special drive command, usually
247
* initiated by ioctl() from the external hdparm program. The
248
* command can be a drive command, drive task or taskfile
249
* operation. Weirdly you can call it with NULL to wait for
250
* all commands to finish. Don't do this as that is due to change
251
*/
252
253
static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
254
struct request *rq)
255
{
256
struct ide_cmd *cmd = rq->special;
257
258
if (cmd) {
259
if (cmd->protocol == ATA_PROT_PIO) {
260
ide_init_sg_cmd(cmd, blk_rq_sectors(rq) << 9);
261
ide_map_sg(drive, cmd);
262
}
263
264
return do_rw_taskfile(drive, cmd);
265
}
266
267
/*
268
* NULL is actually a valid way of waiting for
269
* all current requests to be flushed from the queue.
270
*/
271
#ifdef DEBUG
272
printk("%s: DRIVE_CMD (null)\n", drive->name);
273
#endif
274
rq->errors = 0;
275
ide_complete_rq(drive, 0, blk_rq_bytes(rq));
276
277
return ide_stopped;
278
}
279
280
static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
281
{
282
u8 cmd = rq->cmd[0];
283
284
switch (cmd) {
285
case REQ_PARK_HEADS:
286
case REQ_UNPARK_HEADS:
287
return ide_do_park_unpark(drive, rq);
288
case REQ_DEVSET_EXEC:
289
return ide_do_devset(drive, rq);
290
case REQ_DRIVE_RESET:
291
return ide_do_reset(drive);
292
default:
293
BUG();
294
}
295
}
296
297
/**
298
* start_request - start of I/O and command issuing for IDE
299
*
300
* start_request() initiates handling of a new I/O request. It
301
* accepts commands and I/O (read/write) requests.
302
*
303
* FIXME: this function needs a rename
304
*/
305
306
static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
307
{
308
ide_startstop_t startstop;
309
310
BUG_ON(!(rq->cmd_flags & REQ_STARTED));
311
312
#ifdef DEBUG
313
printk("%s: start_request: current=0x%08lx\n",
314
drive->hwif->name, (unsigned long) rq);
315
#endif
316
317
/* bail early if we've exceeded max_failures */
318
if (drive->max_failures && (drive->failures > drive->max_failures)) {
319
rq->cmd_flags |= REQ_FAILED;
320
goto kill_rq;
321
}
322
323
if (blk_pm_request(rq))
324
ide_check_pm_state(drive, rq);
325
326
drive->hwif->tp_ops->dev_select(drive);
327
if (ide_wait_stat(&startstop, drive, drive->ready_stat,
328
ATA_BUSY | ATA_DRQ, WAIT_READY)) {
329
printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
330
return startstop;
331
}
332
333
if (drive->special_flags == 0) {
334
struct ide_driver *drv;
335
336
/*
337
* We reset the drive so we need to issue a SETFEATURES.
338
* Do it _after_ do_special() restored device parameters.
339
*/
340
if (drive->current_speed == 0xff)
341
ide_config_drive_speed(drive, drive->desired_speed);
342
343
if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
344
return execute_drive_cmd(drive, rq);
345
else if (blk_pm_request(rq)) {
346
struct request_pm_state *pm = rq->special;
347
#ifdef DEBUG_PM
348
printk("%s: start_power_step(step: %d)\n",
349
drive->name, pm->pm_step);
350
#endif
351
startstop = ide_start_power_step(drive, rq);
352
if (startstop == ide_stopped &&
353
pm->pm_step == IDE_PM_COMPLETED)
354
ide_complete_pm_rq(drive, rq);
355
return startstop;
356
} else if (!rq->rq_disk && rq->cmd_type == REQ_TYPE_SPECIAL)
357
/*
358
* TODO: Once all ULDs have been modified to
359
* check for specific op codes rather than
360
* blindly accepting any special request, the
361
* check for ->rq_disk above may be replaced
362
* by a more suitable mechanism or even
363
* dropped entirely.
364
*/
365
return ide_special_rq(drive, rq);
366
367
drv = *(struct ide_driver **)rq->rq_disk->private_data;
368
369
return drv->do_request(drive, rq, blk_rq_pos(rq));
370
}
371
return do_special(drive);
372
kill_rq:
373
ide_kill_rq(drive, rq);
374
return ide_stopped;
375
}
376
377
/**
378
* ide_stall_queue - pause an IDE device
379
* @drive: drive to stall
380
* @timeout: time to stall for (jiffies)
381
*
382
* ide_stall_queue() can be used by a drive to give excess bandwidth back
383
* to the port by sleeping for timeout jiffies.
384
*/
385
386
void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
387
{
388
if (timeout > WAIT_WORSTCASE)
389
timeout = WAIT_WORSTCASE;
390
drive->sleep = timeout + jiffies;
391
drive->dev_flags |= IDE_DFLAG_SLEEPING;
392
}
393
EXPORT_SYMBOL(ide_stall_queue);
394
395
static inline int ide_lock_port(ide_hwif_t *hwif)
396
{
397
if (hwif->busy)
398
return 1;
399
400
hwif->busy = 1;
401
402
return 0;
403
}
404
405
static inline void ide_unlock_port(ide_hwif_t *hwif)
406
{
407
hwif->busy = 0;
408
}
409
410
static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
411
{
412
int rc = 0;
413
414
if (host->host_flags & IDE_HFLAG_SERIALIZE) {
415
rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
416
if (rc == 0) {
417
if (host->get_lock)
418
host->get_lock(ide_intr, hwif);
419
}
420
}
421
return rc;
422
}
423
424
static inline void ide_unlock_host(struct ide_host *host)
425
{
426
if (host->host_flags & IDE_HFLAG_SERIALIZE) {
427
if (host->release_lock)
428
host->release_lock();
429
clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
430
}
431
}
432
433
static void __ide_requeue_and_plug(struct request_queue *q, struct request *rq)
434
{
435
if (rq)
436
blk_requeue_request(q, rq);
437
if (rq || blk_peek_request(q)) {
438
/* Use 3ms as that was the old plug delay */
439
blk_delay_queue(q, 3);
440
}
441
}
442
443
void ide_requeue_and_plug(ide_drive_t *drive, struct request *rq)
444
{
445
struct request_queue *q = drive->queue;
446
unsigned long flags;
447
448
spin_lock_irqsave(q->queue_lock, flags);
449
__ide_requeue_and_plug(q, rq);
450
spin_unlock_irqrestore(q->queue_lock, flags);
451
}
452
453
/*
454
* Issue a new request to a device.
455
*/
456
void do_ide_request(struct request_queue *q)
457
{
458
ide_drive_t *drive = q->queuedata;
459
ide_hwif_t *hwif = drive->hwif;
460
struct ide_host *host = hwif->host;
461
struct request *rq = NULL;
462
ide_startstop_t startstop;
463
unsigned long queue_run_ms = 3; /* old plug delay */
464
465
spin_unlock_irq(q->queue_lock);
466
467
/* HLD do_request() callback might sleep, make sure it's okay */
468
might_sleep();
469
470
if (ide_lock_host(host, hwif))
471
goto plug_device_2;
472
473
spin_lock_irq(&hwif->lock);
474
475
if (!ide_lock_port(hwif)) {
476
ide_hwif_t *prev_port;
477
478
WARN_ON_ONCE(hwif->rq);
479
repeat:
480
prev_port = hwif->host->cur_port;
481
if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
482
time_after(drive->sleep, jiffies)) {
483
unsigned long left = jiffies - drive->sleep;
484
485
queue_run_ms = jiffies_to_msecs(left + 1);
486
ide_unlock_port(hwif);
487
goto plug_device;
488
}
489
490
if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
491
hwif != prev_port) {
492
ide_drive_t *cur_dev =
493
prev_port ? prev_port->cur_dev : NULL;
494
495
/*
496
* set nIEN for previous port, drives in the
497
* quirk list may not like intr setups/cleanups
498
*/
499
if (cur_dev &&
500
(cur_dev->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
501
prev_port->tp_ops->write_devctl(prev_port,
502
ATA_NIEN |
503
ATA_DEVCTL_OBS);
504
505
hwif->host->cur_port = hwif;
506
}
507
hwif->cur_dev = drive;
508
drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
509
510
spin_unlock_irq(&hwif->lock);
511
spin_lock_irq(q->queue_lock);
512
/*
513
* we know that the queue isn't empty, but this can happen
514
* if the q->prep_rq_fn() decides to kill a request
515
*/
516
if (!rq)
517
rq = blk_fetch_request(drive->queue);
518
519
spin_unlock_irq(q->queue_lock);
520
spin_lock_irq(&hwif->lock);
521
522
if (!rq) {
523
ide_unlock_port(hwif);
524
goto out;
525
}
526
527
/*
528
* Sanity: don't accept a request that isn't a PM request
529
* if we are currently power managed. This is very important as
530
* blk_stop_queue() doesn't prevent the blk_fetch_request()
531
* above to return us whatever is in the queue. Since we call
532
* ide_do_request() ourselves, we end up taking requests while
533
* the queue is blocked...
534
*
535
* We let requests forced at head of queue with ide-preempt
536
* though. I hope that doesn't happen too much, hopefully not
537
* unless the subdriver triggers such a thing in its own PM
538
* state machine.
539
*/
540
if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
541
blk_pm_request(rq) == 0 &&
542
(rq->cmd_flags & REQ_PREEMPT) == 0) {
543
/* there should be no pending command at this point */
544
ide_unlock_port(hwif);
545
goto plug_device;
546
}
547
548
hwif->rq = rq;
549
550
spin_unlock_irq(&hwif->lock);
551
startstop = start_request(drive, rq);
552
spin_lock_irq(&hwif->lock);
553
554
if (startstop == ide_stopped) {
555
rq = hwif->rq;
556
hwif->rq = NULL;
557
goto repeat;
558
}
559
} else
560
goto plug_device;
561
out:
562
spin_unlock_irq(&hwif->lock);
563
if (rq == NULL)
564
ide_unlock_host(host);
565
spin_lock_irq(q->queue_lock);
566
return;
567
568
plug_device:
569
spin_unlock_irq(&hwif->lock);
570
ide_unlock_host(host);
571
plug_device_2:
572
spin_lock_irq(q->queue_lock);
573
__ide_requeue_and_plug(q, rq);
574
}
575
576
static int drive_is_ready(ide_drive_t *drive)
577
{
578
ide_hwif_t *hwif = drive->hwif;
579
u8 stat = 0;
580
581
if (drive->waiting_for_dma)
582
return hwif->dma_ops->dma_test_irq(drive);
583
584
if (hwif->io_ports.ctl_addr &&
585
(hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
586
stat = hwif->tp_ops->read_altstatus(hwif);
587
else
588
/* Note: this may clear a pending IRQ!! */
589
stat = hwif->tp_ops->read_status(hwif);
590
591
if (stat & ATA_BUSY)
592
/* drive busy: definitely not interrupting */
593
return 0;
594
595
/* drive ready: *might* be interrupting */
596
return 1;
597
}
598
599
/**
600
* ide_timer_expiry - handle lack of an IDE interrupt
601
* @data: timer callback magic (hwif)
602
*
603
* An IDE command has timed out before the expected drive return
604
* occurred. At this point we attempt to clean up the current
605
* mess. If the current handler includes an expiry handler then
606
* we invoke the expiry handler, and providing it is happy the
607
* work is done. If that fails we apply generic recovery rules
608
* invoking the handler and checking the drive DMA status. We
609
* have an excessively incestuous relationship with the DMA
610
* logic that wants cleaning up.
611
*/
612
613
void ide_timer_expiry (unsigned long data)
614
{
615
ide_hwif_t *hwif = (ide_hwif_t *)data;
616
ide_drive_t *uninitialized_var(drive);
617
ide_handler_t *handler;
618
unsigned long flags;
619
int wait = -1;
620
int plug_device = 0;
621
struct request *uninitialized_var(rq_in_flight);
622
623
spin_lock_irqsave(&hwif->lock, flags);
624
625
handler = hwif->handler;
626
627
if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
628
/*
629
* Either a marginal timeout occurred
630
* (got the interrupt just as timer expired),
631
* or we were "sleeping" to give other devices a chance.
632
* Either way, we don't really want to complain about anything.
633
*/
634
} else {
635
ide_expiry_t *expiry = hwif->expiry;
636
ide_startstop_t startstop = ide_stopped;
637
638
drive = hwif->cur_dev;
639
640
if (expiry) {
641
wait = expiry(drive);
642
if (wait > 0) { /* continue */
643
/* reset timer */
644
hwif->timer.expires = jiffies + wait;
645
hwif->req_gen_timer = hwif->req_gen;
646
add_timer(&hwif->timer);
647
spin_unlock_irqrestore(&hwif->lock, flags);
648
return;
649
}
650
}
651
hwif->handler = NULL;
652
hwif->expiry = NULL;
653
/*
654
* We need to simulate a real interrupt when invoking
655
* the handler() function, which means we need to
656
* globally mask the specific IRQ:
657
*/
658
spin_unlock(&hwif->lock);
659
/* disable_irq_nosync ?? */
660
disable_irq(hwif->irq);
661
/* local CPU only, as if we were handling an interrupt */
662
local_irq_disable();
663
if (hwif->polling) {
664
startstop = handler(drive);
665
} else if (drive_is_ready(drive)) {
666
if (drive->waiting_for_dma)
667
hwif->dma_ops->dma_lost_irq(drive);
668
if (hwif->port_ops && hwif->port_ops->clear_irq)
669
hwif->port_ops->clear_irq(drive);
670
671
printk(KERN_WARNING "%s: lost interrupt\n",
672
drive->name);
673
startstop = handler(drive);
674
} else {
675
if (drive->waiting_for_dma)
676
startstop = ide_dma_timeout_retry(drive, wait);
677
else
678
startstop = ide_error(drive, "irq timeout",
679
hwif->tp_ops->read_status(hwif));
680
}
681
spin_lock_irq(&hwif->lock);
682
enable_irq(hwif->irq);
683
if (startstop == ide_stopped && hwif->polling == 0) {
684
rq_in_flight = hwif->rq;
685
hwif->rq = NULL;
686
ide_unlock_port(hwif);
687
plug_device = 1;
688
}
689
}
690
spin_unlock_irqrestore(&hwif->lock, flags);
691
692
if (plug_device) {
693
ide_unlock_host(hwif->host);
694
ide_requeue_and_plug(drive, rq_in_flight);
695
}
696
}
697
698
/**
699
* unexpected_intr - handle an unexpected IDE interrupt
700
* @irq: interrupt line
701
* @hwif: port being processed
702
*
703
* There's nothing really useful we can do with an unexpected interrupt,
704
* other than reading the status register (to clear it), and logging it.
705
* There should be no way that an irq can happen before we're ready for it,
706
* so we needn't worry much about losing an "important" interrupt here.
707
*
708
* On laptops (and "green" PCs), an unexpected interrupt occurs whenever
709
* the drive enters "idle", "standby", or "sleep" mode, so if the status
710
* looks "good", we just ignore the interrupt completely.
711
*
712
* This routine assumes __cli() is in effect when called.
713
*
714
* If an unexpected interrupt happens on irq15 while we are handling irq14
715
* and if the two interfaces are "serialized" (CMD640), then it looks like
716
* we could screw up by interfering with a new request being set up for
717
* irq15.
718
*
719
* In reality, this is a non-issue. The new command is not sent unless
720
* the drive is ready to accept one, in which case we know the drive is
721
* not trying to interrupt us. And ide_set_handler() is always invoked
722
* before completing the issuance of any new drive command, so we will not
723
* be accidentally invoked as a result of any valid command completion
724
* interrupt.
725
*/
726
727
static void unexpected_intr(int irq, ide_hwif_t *hwif)
728
{
729
u8 stat = hwif->tp_ops->read_status(hwif);
730
731
if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
732
/* Try to not flood the console with msgs */
733
static unsigned long last_msgtime, count;
734
++count;
735
736
if (time_after(jiffies, last_msgtime + HZ)) {
737
last_msgtime = jiffies;
738
printk(KERN_ERR "%s: unexpected interrupt, "
739
"status=0x%02x, count=%ld\n",
740
hwif->name, stat, count);
741
}
742
}
743
}
744
745
/**
746
* ide_intr - default IDE interrupt handler
747
* @irq: interrupt number
748
* @dev_id: hwif
749
* @regs: unused weirdness from the kernel irq layer
750
*
751
* This is the default IRQ handler for the IDE layer. You should
752
* not need to override it. If you do be aware it is subtle in
753
* places
754
*
755
* hwif is the interface in the group currently performing
756
* a command. hwif->cur_dev is the drive and hwif->handler is
757
* the IRQ handler to call. As we issue a command the handlers
758
* step through multiple states, reassigning the handler to the
759
* next step in the process. Unlike a smart SCSI controller IDE
760
* expects the main processor to sequence the various transfer
761
* stages. We also manage a poll timer to catch up with most
762
* timeout situations. There are still a few where the handlers
763
* don't ever decide to give up.
764
*
765
* The handler eventually returns ide_stopped to indicate the
766
* request completed. At this point we issue the next request
767
* on the port and the process begins again.
768
*/
769
770
irqreturn_t ide_intr (int irq, void *dev_id)
771
{
772
ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
773
struct ide_host *host = hwif->host;
774
ide_drive_t *uninitialized_var(drive);
775
ide_handler_t *handler;
776
unsigned long flags;
777
ide_startstop_t startstop;
778
irqreturn_t irq_ret = IRQ_NONE;
779
int plug_device = 0;
780
struct request *uninitialized_var(rq_in_flight);
781
782
if (host->host_flags & IDE_HFLAG_SERIALIZE) {
783
if (hwif != host->cur_port)
784
goto out_early;
785
}
786
787
spin_lock_irqsave(&hwif->lock, flags);
788
789
if (hwif->port_ops && hwif->port_ops->test_irq &&
790
hwif->port_ops->test_irq(hwif) == 0)
791
goto out;
792
793
handler = hwif->handler;
794
795
if (handler == NULL || hwif->polling) {
796
/*
797
* Not expecting an interrupt from this drive.
798
* That means this could be:
799
* (1) an interrupt from another PCI device
800
* sharing the same PCI INT# as us.
801
* or (2) a drive just entered sleep or standby mode,
802
* and is interrupting to let us know.
803
* or (3) a spurious interrupt of unknown origin.
804
*
805
* For PCI, we cannot tell the difference,
806
* so in that case we just ignore it and hope it goes away.
807
*/
808
if ((host->irq_flags & IRQF_SHARED) == 0) {
809
/*
810
* Probably not a shared PCI interrupt,
811
* so we can safely try to do something about it:
812
*/
813
unexpected_intr(irq, hwif);
814
} else {
815
/*
816
* Whack the status register, just in case
817
* we have a leftover pending IRQ.
818
*/
819
(void)hwif->tp_ops->read_status(hwif);
820
}
821
goto out;
822
}
823
824
drive = hwif->cur_dev;
825
826
if (!drive_is_ready(drive))
827
/*
828
* This happens regularly when we share a PCI IRQ with
829
* another device. Unfortunately, it can also happen
830
* with some buggy drives that trigger the IRQ before
831
* their status register is up to date. Hopefully we have
832
* enough advance overhead that the latter isn't a problem.
833
*/
834
goto out;
835
836
hwif->handler = NULL;
837
hwif->expiry = NULL;
838
hwif->req_gen++;
839
del_timer(&hwif->timer);
840
spin_unlock(&hwif->lock);
841
842
if (hwif->port_ops && hwif->port_ops->clear_irq)
843
hwif->port_ops->clear_irq(drive);
844
845
if (drive->dev_flags & IDE_DFLAG_UNMASK)
846
local_irq_enable_in_hardirq();
847
848
/* service this interrupt, may set handler for next interrupt */
849
startstop = handler(drive);
850
851
spin_lock_irq(&hwif->lock);
852
/*
853
* Note that handler() may have set things up for another
854
* interrupt to occur soon, but it cannot happen until
855
* we exit from this routine, because it will be the
856
* same irq as is currently being serviced here, and Linux
857
* won't allow another of the same (on any CPU) until we return.
858
*/
859
if (startstop == ide_stopped && hwif->polling == 0) {
860
BUG_ON(hwif->handler);
861
rq_in_flight = hwif->rq;
862
hwif->rq = NULL;
863
ide_unlock_port(hwif);
864
plug_device = 1;
865
}
866
irq_ret = IRQ_HANDLED;
867
out:
868
spin_unlock_irqrestore(&hwif->lock, flags);
869
out_early:
870
if (plug_device) {
871
ide_unlock_host(hwif->host);
872
ide_requeue_and_plug(drive, rq_in_flight);
873
}
874
875
return irq_ret;
876
}
877
EXPORT_SYMBOL_GPL(ide_intr);
878
879
void ide_pad_transfer(ide_drive_t *drive, int write, int len)
880
{
881
ide_hwif_t *hwif = drive->hwif;
882
u8 buf[4] = { 0 };
883
884
while (len > 0) {
885
if (write)
886
hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
887
else
888
hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
889
len -= 4;
890
}
891
}
892
EXPORT_SYMBOL_GPL(ide_pad_transfer);
893
894