Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/infiniband/hw/ipath/ipath_driver.c
15112 views
1
/*
2
* Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
3
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
4
*
5
* This software is available to you under a choice of one of two
6
* licenses. You may choose to be licensed under the terms of the GNU
7
* General Public License (GPL) Version 2, available from the file
8
* COPYING in the main directory of this source tree, or the
9
* OpenIB.org BSD license below:
10
*
11
* Redistribution and use in source and binary forms, with or
12
* without modification, are permitted provided that the following
13
* conditions are met:
14
*
15
* - Redistributions of source code must retain the above
16
* copyright notice, this list of conditions and the following
17
* disclaimer.
18
*
19
* - Redistributions in binary form must reproduce the above
20
* copyright notice, this list of conditions and the following
21
* disclaimer in the documentation and/or other materials
22
* provided with the distribution.
23
*
24
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31
* SOFTWARE.
32
*/
33
34
#include <linux/sched.h>
35
#include <linux/spinlock.h>
36
#include <linux/idr.h>
37
#include <linux/pci.h>
38
#include <linux/io.h>
39
#include <linux/delay.h>
40
#include <linux/netdevice.h>
41
#include <linux/vmalloc.h>
42
#include <linux/bitmap.h>
43
#include <linux/slab.h>
44
45
#include "ipath_kernel.h"
46
#include "ipath_verbs.h"
47
48
static void ipath_update_pio_bufs(struct ipath_devdata *);
49
50
const char *ipath_get_unit_name(int unit)
51
{
52
static char iname[16];
53
snprintf(iname, sizeof iname, "infinipath%u", unit);
54
return iname;
55
}
56
57
#define DRIVER_LOAD_MSG "QLogic " IPATH_DRV_NAME " loaded: "
58
#define PFX IPATH_DRV_NAME ": "
59
60
/*
61
* The size has to be longer than this string, so we can append
62
* board/chip information to it in the init code.
63
*/
64
const char ib_ipath_version[] = IPATH_IDSTR "\n";
65
66
static struct idr unit_table;
67
DEFINE_SPINLOCK(ipath_devs_lock);
68
LIST_HEAD(ipath_dev_list);
69
70
wait_queue_head_t ipath_state_wait;
71
72
unsigned ipath_debug = __IPATH_INFO;
73
74
module_param_named(debug, ipath_debug, uint, S_IWUSR | S_IRUGO);
75
MODULE_PARM_DESC(debug, "mask for debug prints");
76
EXPORT_SYMBOL_GPL(ipath_debug);
77
78
unsigned ipath_mtu4096 = 1; /* max 4KB IB mtu by default, if supported */
79
module_param_named(mtu4096, ipath_mtu4096, uint, S_IRUGO);
80
MODULE_PARM_DESC(mtu4096, "enable MTU of 4096 bytes, if supported");
81
82
static unsigned ipath_hol_timeout_ms = 13000;
83
module_param_named(hol_timeout_ms, ipath_hol_timeout_ms, uint, S_IRUGO);
84
MODULE_PARM_DESC(hol_timeout_ms,
85
"duration of user app suspension after link failure");
86
87
unsigned ipath_linkrecovery = 1;
88
module_param_named(linkrecovery, ipath_linkrecovery, uint, S_IWUSR | S_IRUGO);
89
MODULE_PARM_DESC(linkrecovery, "enable workaround for link recovery issue");
90
91
MODULE_LICENSE("GPL");
92
MODULE_AUTHOR("QLogic <[email protected]>");
93
MODULE_DESCRIPTION("QLogic InfiniPath driver");
94
95
/*
96
* Table to translate the LINKTRAININGSTATE portion of
97
* IBCStatus to a human-readable form.
98
*/
99
const char *ipath_ibcstatus_str[] = {
100
"Disabled",
101
"LinkUp",
102
"PollActive",
103
"PollQuiet",
104
"SleepDelay",
105
"SleepQuiet",
106
"LState6", /* unused */
107
"LState7", /* unused */
108
"CfgDebounce",
109
"CfgRcvfCfg",
110
"CfgWaitRmt",
111
"CfgIdle",
112
"RecovRetrain",
113
"CfgTxRevLane", /* unused before IBA7220 */
114
"RecovWaitRmt",
115
"RecovIdle",
116
/* below were added for IBA7220 */
117
"CfgEnhanced",
118
"CfgTest",
119
"CfgWaitRmtTest",
120
"CfgWaitCfgEnhanced",
121
"SendTS_T",
122
"SendTstIdles",
123
"RcvTS_T",
124
"SendTst_TS1s",
125
"LTState18", "LTState19", "LTState1A", "LTState1B",
126
"LTState1C", "LTState1D", "LTState1E", "LTState1F"
127
};
128
129
static void __devexit ipath_remove_one(struct pci_dev *);
130
static int __devinit ipath_init_one(struct pci_dev *,
131
const struct pci_device_id *);
132
133
/* Only needed for registration, nothing else needs this info */
134
#define PCI_VENDOR_ID_PATHSCALE 0x1fc1
135
#define PCI_DEVICE_ID_INFINIPATH_HT 0xd
136
137
/* Number of seconds before our card status check... */
138
#define STATUS_TIMEOUT 60
139
140
static const struct pci_device_id ipath_pci_tbl[] = {
141
{ PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_HT) },
142
{ 0, }
143
};
144
145
MODULE_DEVICE_TABLE(pci, ipath_pci_tbl);
146
147
static struct pci_driver ipath_driver = {
148
.name = IPATH_DRV_NAME,
149
.probe = ipath_init_one,
150
.remove = __devexit_p(ipath_remove_one),
151
.id_table = ipath_pci_tbl,
152
.driver = {
153
.groups = ipath_driver_attr_groups,
154
},
155
};
156
157
static inline void read_bars(struct ipath_devdata *dd, struct pci_dev *dev,
158
u32 *bar0, u32 *bar1)
159
{
160
int ret;
161
162
ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, bar0);
163
if (ret)
164
ipath_dev_err(dd, "failed to read bar0 before enable: "
165
"error %d\n", -ret);
166
167
ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, bar1);
168
if (ret)
169
ipath_dev_err(dd, "failed to read bar1 before enable: "
170
"error %d\n", -ret);
171
172
ipath_dbg("Read bar0 %x bar1 %x\n", *bar0, *bar1);
173
}
174
175
static void ipath_free_devdata(struct pci_dev *pdev,
176
struct ipath_devdata *dd)
177
{
178
unsigned long flags;
179
180
pci_set_drvdata(pdev, NULL);
181
182
if (dd->ipath_unit != -1) {
183
spin_lock_irqsave(&ipath_devs_lock, flags);
184
idr_remove(&unit_table, dd->ipath_unit);
185
list_del(&dd->ipath_list);
186
spin_unlock_irqrestore(&ipath_devs_lock, flags);
187
}
188
vfree(dd);
189
}
190
191
static struct ipath_devdata *ipath_alloc_devdata(struct pci_dev *pdev)
192
{
193
unsigned long flags;
194
struct ipath_devdata *dd;
195
int ret;
196
197
if (!idr_pre_get(&unit_table, GFP_KERNEL)) {
198
dd = ERR_PTR(-ENOMEM);
199
goto bail;
200
}
201
202
dd = vzalloc(sizeof(*dd));
203
if (!dd) {
204
dd = ERR_PTR(-ENOMEM);
205
goto bail;
206
}
207
dd->ipath_unit = -1;
208
209
spin_lock_irqsave(&ipath_devs_lock, flags);
210
211
ret = idr_get_new(&unit_table, dd, &dd->ipath_unit);
212
if (ret < 0) {
213
printk(KERN_ERR IPATH_DRV_NAME
214
": Could not allocate unit ID: error %d\n", -ret);
215
ipath_free_devdata(pdev, dd);
216
dd = ERR_PTR(ret);
217
goto bail_unlock;
218
}
219
220
dd->pcidev = pdev;
221
pci_set_drvdata(pdev, dd);
222
223
list_add(&dd->ipath_list, &ipath_dev_list);
224
225
bail_unlock:
226
spin_unlock_irqrestore(&ipath_devs_lock, flags);
227
228
bail:
229
return dd;
230
}
231
232
static inline struct ipath_devdata *__ipath_lookup(int unit)
233
{
234
return idr_find(&unit_table, unit);
235
}
236
237
struct ipath_devdata *ipath_lookup(int unit)
238
{
239
struct ipath_devdata *dd;
240
unsigned long flags;
241
242
spin_lock_irqsave(&ipath_devs_lock, flags);
243
dd = __ipath_lookup(unit);
244
spin_unlock_irqrestore(&ipath_devs_lock, flags);
245
246
return dd;
247
}
248
249
int ipath_count_units(int *npresentp, int *nupp, int *maxportsp)
250
{
251
int nunits, npresent, nup;
252
struct ipath_devdata *dd;
253
unsigned long flags;
254
int maxports;
255
256
nunits = npresent = nup = maxports = 0;
257
258
spin_lock_irqsave(&ipath_devs_lock, flags);
259
260
list_for_each_entry(dd, &ipath_dev_list, ipath_list) {
261
nunits++;
262
if ((dd->ipath_flags & IPATH_PRESENT) && dd->ipath_kregbase)
263
npresent++;
264
if (dd->ipath_lid &&
265
!(dd->ipath_flags & (IPATH_DISABLED | IPATH_LINKDOWN
266
| IPATH_LINKUNK)))
267
nup++;
268
if (dd->ipath_cfgports > maxports)
269
maxports = dd->ipath_cfgports;
270
}
271
272
spin_unlock_irqrestore(&ipath_devs_lock, flags);
273
274
if (npresentp)
275
*npresentp = npresent;
276
if (nupp)
277
*nupp = nup;
278
if (maxportsp)
279
*maxportsp = maxports;
280
281
return nunits;
282
}
283
284
/*
285
* These next two routines are placeholders in case we don't have per-arch
286
* code for controlling write combining. If explicit control of write
287
* combining is not available, performance will probably be awful.
288
*/
289
290
int __attribute__((weak)) ipath_enable_wc(struct ipath_devdata *dd)
291
{
292
return -EOPNOTSUPP;
293
}
294
295
void __attribute__((weak)) ipath_disable_wc(struct ipath_devdata *dd)
296
{
297
}
298
299
/*
300
* Perform a PIO buffer bandwidth write test, to verify proper system
301
* configuration. Even when all the setup calls work, occasionally
302
* BIOS or other issues can prevent write combining from working, or
303
* can cause other bandwidth problems to the chip.
304
*
305
* This test simply writes the same buffer over and over again, and
306
* measures close to the peak bandwidth to the chip (not testing
307
* data bandwidth to the wire). On chips that use an address-based
308
* trigger to send packets to the wire, this is easy. On chips that
309
* use a count to trigger, we want to make sure that the packet doesn't
310
* go out on the wire, or trigger flow control checks.
311
*/
312
static void ipath_verify_pioperf(struct ipath_devdata *dd)
313
{
314
u32 pbnum, cnt, lcnt;
315
u32 __iomem *piobuf;
316
u32 *addr;
317
u64 msecs, emsecs;
318
319
piobuf = ipath_getpiobuf(dd, 0, &pbnum);
320
if (!piobuf) {
321
dev_info(&dd->pcidev->dev,
322
"No PIObufs for checking perf, skipping\n");
323
return;
324
}
325
326
/*
327
* Enough to give us a reasonable test, less than piobuf size, and
328
* likely multiple of store buffer length.
329
*/
330
cnt = 1024;
331
332
addr = vmalloc(cnt);
333
if (!addr) {
334
dev_info(&dd->pcidev->dev,
335
"Couldn't get memory for checking PIO perf,"
336
" skipping\n");
337
goto done;
338
}
339
340
preempt_disable(); /* we want reasonably accurate elapsed time */
341
msecs = 1 + jiffies_to_msecs(jiffies);
342
for (lcnt = 0; lcnt < 10000U; lcnt++) {
343
/* wait until we cross msec boundary */
344
if (jiffies_to_msecs(jiffies) >= msecs)
345
break;
346
udelay(1);
347
}
348
349
ipath_disable_armlaunch(dd);
350
351
/*
352
* length 0, no dwords actually sent, and mark as VL15
353
* on chips where that may matter (due to IB flowcontrol)
354
*/
355
if ((dd->ipath_flags & IPATH_HAS_PBC_CNT))
356
writeq(1UL << 63, piobuf);
357
else
358
writeq(0, piobuf);
359
ipath_flush_wc();
360
361
/*
362
* this is only roughly accurate, since even with preempt we
363
* still take interrupts that could take a while. Running for
364
* >= 5 msec seems to get us "close enough" to accurate values
365
*/
366
msecs = jiffies_to_msecs(jiffies);
367
for (emsecs = lcnt = 0; emsecs <= 5UL; lcnt++) {
368
__iowrite32_copy(piobuf + 64, addr, cnt >> 2);
369
emsecs = jiffies_to_msecs(jiffies) - msecs;
370
}
371
372
/* 1 GiB/sec, slightly over IB SDR line rate */
373
if (lcnt < (emsecs * 1024U))
374
ipath_dev_err(dd,
375
"Performance problem: bandwidth to PIO buffers is "
376
"only %u MiB/sec\n",
377
lcnt / (u32) emsecs);
378
else
379
ipath_dbg("PIO buffer bandwidth %u MiB/sec is OK\n",
380
lcnt / (u32) emsecs);
381
382
preempt_enable();
383
384
vfree(addr);
385
386
done:
387
/* disarm piobuf, so it's available again */
388
ipath_disarm_piobufs(dd, pbnum, 1);
389
ipath_enable_armlaunch(dd);
390
}
391
392
static void cleanup_device(struct ipath_devdata *dd);
393
394
static int __devinit ipath_init_one(struct pci_dev *pdev,
395
const struct pci_device_id *ent)
396
{
397
int ret, len, j;
398
struct ipath_devdata *dd;
399
unsigned long long addr;
400
u32 bar0 = 0, bar1 = 0;
401
402
dd = ipath_alloc_devdata(pdev);
403
if (IS_ERR(dd)) {
404
ret = PTR_ERR(dd);
405
printk(KERN_ERR IPATH_DRV_NAME
406
": Could not allocate devdata: error %d\n", -ret);
407
goto bail;
408
}
409
410
ipath_cdbg(VERBOSE, "initializing unit #%u\n", dd->ipath_unit);
411
412
ret = pci_enable_device(pdev);
413
if (ret) {
414
/* This can happen iff:
415
*
416
* We did a chip reset, and then failed to reprogram the
417
* BAR, or the chip reset due to an internal error. We then
418
* unloaded the driver and reloaded it.
419
*
420
* Both reset cases set the BAR back to initial state. For
421
* the latter case, the AER sticky error bit at offset 0x718
422
* should be set, but the Linux kernel doesn't yet know
423
* about that, it appears. If the original BAR was retained
424
* in the kernel data structures, this may be OK.
425
*/
426
ipath_dev_err(dd, "enable unit %d failed: error %d\n",
427
dd->ipath_unit, -ret);
428
goto bail_devdata;
429
}
430
addr = pci_resource_start(pdev, 0);
431
len = pci_resource_len(pdev, 0);
432
ipath_cdbg(VERBOSE, "regbase (0) %llx len %d irq %d, vend %x/%x "
433
"driver_data %lx\n", addr, len, pdev->irq, ent->vendor,
434
ent->device, ent->driver_data);
435
436
read_bars(dd, pdev, &bar0, &bar1);
437
438
if (!bar1 && !(bar0 & ~0xf)) {
439
if (addr) {
440
dev_info(&pdev->dev, "BAR is 0 (probable RESET), "
441
"rewriting as %llx\n", addr);
442
ret = pci_write_config_dword(
443
pdev, PCI_BASE_ADDRESS_0, addr);
444
if (ret) {
445
ipath_dev_err(dd, "rewrite of BAR0 "
446
"failed: err %d\n", -ret);
447
goto bail_disable;
448
}
449
ret = pci_write_config_dword(
450
pdev, PCI_BASE_ADDRESS_1, addr >> 32);
451
if (ret) {
452
ipath_dev_err(dd, "rewrite of BAR1 "
453
"failed: err %d\n", -ret);
454
goto bail_disable;
455
}
456
} else {
457
ipath_dev_err(dd, "BAR is 0 (probable RESET), "
458
"not usable until reboot\n");
459
ret = -ENODEV;
460
goto bail_disable;
461
}
462
}
463
464
ret = pci_request_regions(pdev, IPATH_DRV_NAME);
465
if (ret) {
466
dev_info(&pdev->dev, "pci_request_regions unit %u fails: "
467
"err %d\n", dd->ipath_unit, -ret);
468
goto bail_disable;
469
}
470
471
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
472
if (ret) {
473
/*
474
* if the 64 bit setup fails, try 32 bit. Some systems
475
* do not setup 64 bit maps on systems with 2GB or less
476
* memory installed.
477
*/
478
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
479
if (ret) {
480
dev_info(&pdev->dev,
481
"Unable to set DMA mask for unit %u: %d\n",
482
dd->ipath_unit, ret);
483
goto bail_regions;
484
}
485
else {
486
ipath_dbg("No 64bit DMA mask, used 32 bit mask\n");
487
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
488
if (ret)
489
dev_info(&pdev->dev,
490
"Unable to set DMA consistent mask "
491
"for unit %u: %d\n",
492
dd->ipath_unit, ret);
493
494
}
495
}
496
else {
497
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
498
if (ret)
499
dev_info(&pdev->dev,
500
"Unable to set DMA consistent mask "
501
"for unit %u: %d\n",
502
dd->ipath_unit, ret);
503
}
504
505
pci_set_master(pdev);
506
507
/*
508
* Save BARs to rewrite after device reset. Save all 64 bits of
509
* BAR, just in case.
510
*/
511
dd->ipath_pcibar0 = addr;
512
dd->ipath_pcibar1 = addr >> 32;
513
dd->ipath_deviceid = ent->device; /* save for later use */
514
dd->ipath_vendorid = ent->vendor;
515
516
/* setup the chip-specific functions, as early as possible. */
517
switch (ent->device) {
518
case PCI_DEVICE_ID_INFINIPATH_HT:
519
ipath_init_iba6110_funcs(dd);
520
break;
521
522
default:
523
ipath_dev_err(dd, "Found unknown QLogic deviceid 0x%x, "
524
"failing\n", ent->device);
525
return -ENODEV;
526
}
527
528
for (j = 0; j < 6; j++) {
529
if (!pdev->resource[j].start)
530
continue;
531
ipath_cdbg(VERBOSE, "BAR %d %pR, len %llx\n",
532
j, &pdev->resource[j],
533
(unsigned long long)pci_resource_len(pdev, j));
534
}
535
536
if (!addr) {
537
ipath_dev_err(dd, "No valid address in BAR 0!\n");
538
ret = -ENODEV;
539
goto bail_regions;
540
}
541
542
dd->ipath_pcirev = pdev->revision;
543
544
#if defined(__powerpc__)
545
/* There isn't a generic way to specify writethrough mappings */
546
dd->ipath_kregbase = __ioremap(addr, len,
547
(_PAGE_NO_CACHE|_PAGE_WRITETHRU));
548
#else
549
dd->ipath_kregbase = ioremap_nocache(addr, len);
550
#endif
551
552
if (!dd->ipath_kregbase) {
553
ipath_dbg("Unable to map io addr %llx to kvirt, failing\n",
554
addr);
555
ret = -ENOMEM;
556
goto bail_iounmap;
557
}
558
dd->ipath_kregend = (u64 __iomem *)
559
((void __iomem *)dd->ipath_kregbase + len);
560
dd->ipath_physaddr = addr; /* used for io_remap, etc. */
561
/* for user mmap */
562
ipath_cdbg(VERBOSE, "mapped io addr %llx to kregbase %p\n",
563
addr, dd->ipath_kregbase);
564
565
if (dd->ipath_f_bus(dd, pdev))
566
ipath_dev_err(dd, "Failed to setup config space; "
567
"continuing anyway\n");
568
569
/*
570
* set up our interrupt handler; IRQF_SHARED probably not needed,
571
* since MSI interrupts shouldn't be shared but won't hurt for now.
572
* check 0 irq after we return from chip-specific bus setup, since
573
* that can affect this due to setup
574
*/
575
if (!dd->ipath_irq)
576
ipath_dev_err(dd, "irq is 0, BIOS error? Interrupts won't "
577
"work\n");
578
else {
579
ret = request_irq(dd->ipath_irq, ipath_intr, IRQF_SHARED,
580
IPATH_DRV_NAME, dd);
581
if (ret) {
582
ipath_dev_err(dd, "Couldn't setup irq handler, "
583
"irq=%d: %d\n", dd->ipath_irq, ret);
584
goto bail_iounmap;
585
}
586
}
587
588
ret = ipath_init_chip(dd, 0); /* do the chip-specific init */
589
if (ret)
590
goto bail_irqsetup;
591
592
ret = ipath_enable_wc(dd);
593
594
if (ret) {
595
ipath_dev_err(dd, "Write combining not enabled "
596
"(err %d): performance may be poor\n",
597
-ret);
598
ret = 0;
599
}
600
601
ipath_verify_pioperf(dd);
602
603
ipath_device_create_group(&pdev->dev, dd);
604
ipathfs_add_device(dd);
605
ipath_user_add(dd);
606
ipath_diag_add(dd);
607
ipath_register_ib_device(dd);
608
609
goto bail;
610
611
bail_irqsetup:
612
cleanup_device(dd);
613
614
if (dd->ipath_irq)
615
dd->ipath_f_free_irq(dd);
616
617
if (dd->ipath_f_cleanup)
618
dd->ipath_f_cleanup(dd);
619
620
bail_iounmap:
621
iounmap((volatile void __iomem *) dd->ipath_kregbase);
622
623
bail_regions:
624
pci_release_regions(pdev);
625
626
bail_disable:
627
pci_disable_device(pdev);
628
629
bail_devdata:
630
ipath_free_devdata(pdev, dd);
631
632
bail:
633
return ret;
634
}
635
636
static void cleanup_device(struct ipath_devdata *dd)
637
{
638
int port;
639
struct ipath_portdata **tmp;
640
unsigned long flags;
641
642
if (*dd->ipath_statusp & IPATH_STATUS_CHIP_PRESENT) {
643
/* can't do anything more with chip; needs re-init */
644
*dd->ipath_statusp &= ~IPATH_STATUS_CHIP_PRESENT;
645
if (dd->ipath_kregbase) {
646
/*
647
* if we haven't already cleaned up before these are
648
* to ensure any register reads/writes "fail" until
649
* re-init
650
*/
651
dd->ipath_kregbase = NULL;
652
dd->ipath_uregbase = 0;
653
dd->ipath_sregbase = 0;
654
dd->ipath_cregbase = 0;
655
dd->ipath_kregsize = 0;
656
}
657
ipath_disable_wc(dd);
658
}
659
660
if (dd->ipath_spectriggerhit)
661
dev_info(&dd->pcidev->dev, "%lu special trigger hits\n",
662
dd->ipath_spectriggerhit);
663
664
if (dd->ipath_pioavailregs_dma) {
665
dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
666
(void *) dd->ipath_pioavailregs_dma,
667
dd->ipath_pioavailregs_phys);
668
dd->ipath_pioavailregs_dma = NULL;
669
}
670
if (dd->ipath_dummy_hdrq) {
671
dma_free_coherent(&dd->pcidev->dev,
672
dd->ipath_pd[0]->port_rcvhdrq_size,
673
dd->ipath_dummy_hdrq, dd->ipath_dummy_hdrq_phys);
674
dd->ipath_dummy_hdrq = NULL;
675
}
676
677
if (dd->ipath_pageshadow) {
678
struct page **tmpp = dd->ipath_pageshadow;
679
dma_addr_t *tmpd = dd->ipath_physshadow;
680
int i, cnt = 0;
681
682
ipath_cdbg(VERBOSE, "Unlocking any expTID pages still "
683
"locked\n");
684
for (port = 0; port < dd->ipath_cfgports; port++) {
685
int port_tidbase = port * dd->ipath_rcvtidcnt;
686
int maxtid = port_tidbase + dd->ipath_rcvtidcnt;
687
for (i = port_tidbase; i < maxtid; i++) {
688
if (!tmpp[i])
689
continue;
690
pci_unmap_page(dd->pcidev, tmpd[i],
691
PAGE_SIZE, PCI_DMA_FROMDEVICE);
692
ipath_release_user_pages(&tmpp[i], 1);
693
tmpp[i] = NULL;
694
cnt++;
695
}
696
}
697
if (cnt) {
698
ipath_stats.sps_pageunlocks += cnt;
699
ipath_cdbg(VERBOSE, "There were still %u expTID "
700
"entries locked\n", cnt);
701
}
702
if (ipath_stats.sps_pagelocks ||
703
ipath_stats.sps_pageunlocks)
704
ipath_cdbg(VERBOSE, "%llu pages locked, %llu "
705
"unlocked via ipath_m{un}lock\n",
706
(unsigned long long)
707
ipath_stats.sps_pagelocks,
708
(unsigned long long)
709
ipath_stats.sps_pageunlocks);
710
711
ipath_cdbg(VERBOSE, "Free shadow page tid array at %p\n",
712
dd->ipath_pageshadow);
713
tmpp = dd->ipath_pageshadow;
714
dd->ipath_pageshadow = NULL;
715
vfree(tmpp);
716
717
dd->ipath_egrtidbase = NULL;
718
}
719
720
/*
721
* free any resources still in use (usually just kernel ports)
722
* at unload; we do for portcnt, because that's what we allocate.
723
* We acquire lock to be really paranoid that ipath_pd isn't being
724
* accessed from some interrupt-related code (that should not happen,
725
* but best to be sure).
726
*/
727
spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
728
tmp = dd->ipath_pd;
729
dd->ipath_pd = NULL;
730
spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
731
for (port = 0; port < dd->ipath_portcnt; port++) {
732
struct ipath_portdata *pd = tmp[port];
733
tmp[port] = NULL; /* debugging paranoia */
734
ipath_free_pddata(dd, pd);
735
}
736
kfree(tmp);
737
}
738
739
static void __devexit ipath_remove_one(struct pci_dev *pdev)
740
{
741
struct ipath_devdata *dd = pci_get_drvdata(pdev);
742
743
ipath_cdbg(VERBOSE, "removing, pdev=%p, dd=%p\n", pdev, dd);
744
745
/*
746
* disable the IB link early, to be sure no new packets arrive, which
747
* complicates the shutdown process
748
*/
749
ipath_shutdown_device(dd);
750
751
flush_workqueue(ib_wq);
752
753
if (dd->verbs_dev)
754
ipath_unregister_ib_device(dd->verbs_dev);
755
756
ipath_diag_remove(dd);
757
ipath_user_remove(dd);
758
ipathfs_remove_device(dd);
759
ipath_device_remove_group(&pdev->dev, dd);
760
761
ipath_cdbg(VERBOSE, "Releasing pci memory regions, dd %p, "
762
"unit %u\n", dd, (u32) dd->ipath_unit);
763
764
cleanup_device(dd);
765
766
/*
767
* turn off rcv, send, and interrupts for all ports, all drivers
768
* should also hard reset the chip here?
769
* free up port 0 (kernel) rcvhdr, egr bufs, and eventually tid bufs
770
* for all versions of the driver, if they were allocated
771
*/
772
if (dd->ipath_irq) {
773
ipath_cdbg(VERBOSE, "unit %u free irq %d\n",
774
dd->ipath_unit, dd->ipath_irq);
775
dd->ipath_f_free_irq(dd);
776
} else
777
ipath_dbg("irq is 0, not doing free_irq "
778
"for unit %u\n", dd->ipath_unit);
779
/*
780
* we check for NULL here, because it's outside
781
* the kregbase check, and we need to call it
782
* after the free_irq. Thus it's possible that
783
* the function pointers were never initialized.
784
*/
785
if (dd->ipath_f_cleanup)
786
/* clean up chip-specific stuff */
787
dd->ipath_f_cleanup(dd);
788
789
ipath_cdbg(VERBOSE, "Unmapping kregbase %p\n", dd->ipath_kregbase);
790
iounmap((volatile void __iomem *) dd->ipath_kregbase);
791
pci_release_regions(pdev);
792
ipath_cdbg(VERBOSE, "calling pci_disable_device\n");
793
pci_disable_device(pdev);
794
795
ipath_free_devdata(pdev, dd);
796
}
797
798
/* general driver use */
799
DEFINE_MUTEX(ipath_mutex);
800
801
static DEFINE_SPINLOCK(ipath_pioavail_lock);
802
803
/**
804
* ipath_disarm_piobufs - cancel a range of PIO buffers
805
* @dd: the infinipath device
806
* @first: the first PIO buffer to cancel
807
* @cnt: the number of PIO buffers to cancel
808
*
809
* cancel a range of PIO buffers, used when they might be armed, but
810
* not triggered. Used at init to ensure buffer state, and also user
811
* process close, in case it died while writing to a PIO buffer
812
* Also after errors.
813
*/
814
void ipath_disarm_piobufs(struct ipath_devdata *dd, unsigned first,
815
unsigned cnt)
816
{
817
unsigned i, last = first + cnt;
818
unsigned long flags;
819
820
ipath_cdbg(PKT, "disarm %u PIObufs first=%u\n", cnt, first);
821
for (i = first; i < last; i++) {
822
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
823
/*
824
* The disarm-related bits are write-only, so it
825
* is ok to OR them in with our copy of sendctrl
826
* while we hold the lock.
827
*/
828
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
829
dd->ipath_sendctrl | INFINIPATH_S_DISARM |
830
(i << INFINIPATH_S_DISARMPIOBUF_SHIFT));
831
/* can't disarm bufs back-to-back per iba7220 spec */
832
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
833
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
834
}
835
/* on some older chips, update may not happen after cancel */
836
ipath_force_pio_avail_update(dd);
837
}
838
839
/**
840
* ipath_wait_linkstate - wait for an IB link state change to occur
841
* @dd: the infinipath device
842
* @state: the state to wait for
843
* @msecs: the number of milliseconds to wait
844
*
845
* wait up to msecs milliseconds for IB link state change to occur for
846
* now, take the easy polling route. Currently used only by
847
* ipath_set_linkstate. Returns 0 if state reached, otherwise
848
* -ETIMEDOUT state can have multiple states set, for any of several
849
* transitions.
850
*/
851
int ipath_wait_linkstate(struct ipath_devdata *dd, u32 state, int msecs)
852
{
853
dd->ipath_state_wanted = state;
854
wait_event_interruptible_timeout(ipath_state_wait,
855
(dd->ipath_flags & state),
856
msecs_to_jiffies(msecs));
857
dd->ipath_state_wanted = 0;
858
859
if (!(dd->ipath_flags & state)) {
860
u64 val;
861
ipath_cdbg(VERBOSE, "Didn't reach linkstate %s within %u"
862
" ms\n",
863
/* test INIT ahead of DOWN, both can be set */
864
(state & IPATH_LINKINIT) ? "INIT" :
865
((state & IPATH_LINKDOWN) ? "DOWN" :
866
((state & IPATH_LINKARMED) ? "ARM" : "ACTIVE")),
867
msecs);
868
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
869
ipath_cdbg(VERBOSE, "ibcc=%llx ibcstatus=%llx (%s)\n",
870
(unsigned long long) ipath_read_kreg64(
871
dd, dd->ipath_kregs->kr_ibcctrl),
872
(unsigned long long) val,
873
ipath_ibcstatus_str[val & dd->ibcs_lts_mask]);
874
}
875
return (dd->ipath_flags & state) ? 0 : -ETIMEDOUT;
876
}
877
878
static void decode_sdma_errs(struct ipath_devdata *dd, ipath_err_t err,
879
char *buf, size_t blen)
880
{
881
static const struct {
882
ipath_err_t err;
883
const char *msg;
884
} errs[] = {
885
{ INFINIPATH_E_SDMAGENMISMATCH, "SDmaGenMismatch" },
886
{ INFINIPATH_E_SDMAOUTOFBOUND, "SDmaOutOfBound" },
887
{ INFINIPATH_E_SDMATAILOUTOFBOUND, "SDmaTailOutOfBound" },
888
{ INFINIPATH_E_SDMABASE, "SDmaBase" },
889
{ INFINIPATH_E_SDMA1STDESC, "SDma1stDesc" },
890
{ INFINIPATH_E_SDMARPYTAG, "SDmaRpyTag" },
891
{ INFINIPATH_E_SDMADWEN, "SDmaDwEn" },
892
{ INFINIPATH_E_SDMAMISSINGDW, "SDmaMissingDw" },
893
{ INFINIPATH_E_SDMAUNEXPDATA, "SDmaUnexpData" },
894
{ INFINIPATH_E_SDMADESCADDRMISALIGN, "SDmaDescAddrMisalign" },
895
{ INFINIPATH_E_SENDBUFMISUSE, "SendBufMisuse" },
896
{ INFINIPATH_E_SDMADISABLED, "SDmaDisabled" },
897
};
898
int i;
899
int expected;
900
size_t bidx = 0;
901
902
for (i = 0; i < ARRAY_SIZE(errs); i++) {
903
expected = (errs[i].err != INFINIPATH_E_SDMADISABLED) ? 0 :
904
test_bit(IPATH_SDMA_ABORTING, &dd->ipath_sdma_status);
905
if ((err & errs[i].err) && !expected)
906
bidx += snprintf(buf + bidx, blen - bidx,
907
"%s ", errs[i].msg);
908
}
909
}
910
911
/*
912
* Decode the error status into strings, deciding whether to always
913
* print * it or not depending on "normal packet errors" vs everything
914
* else. Return 1 if "real" errors, otherwise 0 if only packet
915
* errors, so caller can decide what to print with the string.
916
*/
917
int ipath_decode_err(struct ipath_devdata *dd, char *buf, size_t blen,
918
ipath_err_t err)
919
{
920
int iserr = 1;
921
*buf = '\0';
922
if (err & INFINIPATH_E_PKTERRS) {
923
if (!(err & ~INFINIPATH_E_PKTERRS))
924
iserr = 0; // if only packet errors.
925
if (ipath_debug & __IPATH_ERRPKTDBG) {
926
if (err & INFINIPATH_E_REBP)
927
strlcat(buf, "EBP ", blen);
928
if (err & INFINIPATH_E_RVCRC)
929
strlcat(buf, "VCRC ", blen);
930
if (err & INFINIPATH_E_RICRC) {
931
strlcat(buf, "CRC ", blen);
932
// clear for check below, so only once
933
err &= INFINIPATH_E_RICRC;
934
}
935
if (err & INFINIPATH_E_RSHORTPKTLEN)
936
strlcat(buf, "rshortpktlen ", blen);
937
if (err & INFINIPATH_E_SDROPPEDDATAPKT)
938
strlcat(buf, "sdroppeddatapkt ", blen);
939
if (err & INFINIPATH_E_SPKTLEN)
940
strlcat(buf, "spktlen ", blen);
941
}
942
if ((err & INFINIPATH_E_RICRC) &&
943
!(err&(INFINIPATH_E_RVCRC|INFINIPATH_E_REBP)))
944
strlcat(buf, "CRC ", blen);
945
if (!iserr)
946
goto done;
947
}
948
if (err & INFINIPATH_E_RHDRLEN)
949
strlcat(buf, "rhdrlen ", blen);
950
if (err & INFINIPATH_E_RBADTID)
951
strlcat(buf, "rbadtid ", blen);
952
if (err & INFINIPATH_E_RBADVERSION)
953
strlcat(buf, "rbadversion ", blen);
954
if (err & INFINIPATH_E_RHDR)
955
strlcat(buf, "rhdr ", blen);
956
if (err & INFINIPATH_E_SENDSPECIALTRIGGER)
957
strlcat(buf, "sendspecialtrigger ", blen);
958
if (err & INFINIPATH_E_RLONGPKTLEN)
959
strlcat(buf, "rlongpktlen ", blen);
960
if (err & INFINIPATH_E_RMAXPKTLEN)
961
strlcat(buf, "rmaxpktlen ", blen);
962
if (err & INFINIPATH_E_RMINPKTLEN)
963
strlcat(buf, "rminpktlen ", blen);
964
if (err & INFINIPATH_E_SMINPKTLEN)
965
strlcat(buf, "sminpktlen ", blen);
966
if (err & INFINIPATH_E_RFORMATERR)
967
strlcat(buf, "rformaterr ", blen);
968
if (err & INFINIPATH_E_RUNSUPVL)
969
strlcat(buf, "runsupvl ", blen);
970
if (err & INFINIPATH_E_RUNEXPCHAR)
971
strlcat(buf, "runexpchar ", blen);
972
if (err & INFINIPATH_E_RIBFLOW)
973
strlcat(buf, "ribflow ", blen);
974
if (err & INFINIPATH_E_SUNDERRUN)
975
strlcat(buf, "sunderrun ", blen);
976
if (err & INFINIPATH_E_SPIOARMLAUNCH)
977
strlcat(buf, "spioarmlaunch ", blen);
978
if (err & INFINIPATH_E_SUNEXPERRPKTNUM)
979
strlcat(buf, "sunexperrpktnum ", blen);
980
if (err & INFINIPATH_E_SDROPPEDSMPPKT)
981
strlcat(buf, "sdroppedsmppkt ", blen);
982
if (err & INFINIPATH_E_SMAXPKTLEN)
983
strlcat(buf, "smaxpktlen ", blen);
984
if (err & INFINIPATH_E_SUNSUPVL)
985
strlcat(buf, "sunsupVL ", blen);
986
if (err & INFINIPATH_E_INVALIDADDR)
987
strlcat(buf, "invalidaddr ", blen);
988
if (err & INFINIPATH_E_RRCVEGRFULL)
989
strlcat(buf, "rcvegrfull ", blen);
990
if (err & INFINIPATH_E_RRCVHDRFULL)
991
strlcat(buf, "rcvhdrfull ", blen);
992
if (err & INFINIPATH_E_IBSTATUSCHANGED)
993
strlcat(buf, "ibcstatuschg ", blen);
994
if (err & INFINIPATH_E_RIBLOSTLINK)
995
strlcat(buf, "riblostlink ", blen);
996
if (err & INFINIPATH_E_HARDWARE)
997
strlcat(buf, "hardware ", blen);
998
if (err & INFINIPATH_E_RESET)
999
strlcat(buf, "reset ", blen);
1000
if (err & INFINIPATH_E_SDMAERRS)
1001
decode_sdma_errs(dd, err, buf, blen);
1002
if (err & INFINIPATH_E_INVALIDEEPCMD)
1003
strlcat(buf, "invalideepromcmd ", blen);
1004
done:
1005
return iserr;
1006
}
1007
1008
/**
1009
* get_rhf_errstring - decode RHF errors
1010
* @err: the err number
1011
* @msg: the output buffer
1012
* @len: the length of the output buffer
1013
*
1014
* only used one place now, may want more later
1015
*/
1016
static void get_rhf_errstring(u32 err, char *msg, size_t len)
1017
{
1018
/* if no errors, and so don't need to check what's first */
1019
*msg = '\0';
1020
1021
if (err & INFINIPATH_RHF_H_ICRCERR)
1022
strlcat(msg, "icrcerr ", len);
1023
if (err & INFINIPATH_RHF_H_VCRCERR)
1024
strlcat(msg, "vcrcerr ", len);
1025
if (err & INFINIPATH_RHF_H_PARITYERR)
1026
strlcat(msg, "parityerr ", len);
1027
if (err & INFINIPATH_RHF_H_LENERR)
1028
strlcat(msg, "lenerr ", len);
1029
if (err & INFINIPATH_RHF_H_MTUERR)
1030
strlcat(msg, "mtuerr ", len);
1031
if (err & INFINIPATH_RHF_H_IHDRERR)
1032
/* infinipath hdr checksum error */
1033
strlcat(msg, "ipathhdrerr ", len);
1034
if (err & INFINIPATH_RHF_H_TIDERR)
1035
strlcat(msg, "tiderr ", len);
1036
if (err & INFINIPATH_RHF_H_MKERR)
1037
/* bad port, offset, etc. */
1038
strlcat(msg, "invalid ipathhdr ", len);
1039
if (err & INFINIPATH_RHF_H_IBERR)
1040
strlcat(msg, "iberr ", len);
1041
if (err & INFINIPATH_RHF_L_SWA)
1042
strlcat(msg, "swA ", len);
1043
if (err & INFINIPATH_RHF_L_SWB)
1044
strlcat(msg, "swB ", len);
1045
}
1046
1047
/**
1048
* ipath_get_egrbuf - get an eager buffer
1049
* @dd: the infinipath device
1050
* @bufnum: the eager buffer to get
1051
*
1052
* must only be called if ipath_pd[port] is known to be allocated
1053
*/
1054
static inline void *ipath_get_egrbuf(struct ipath_devdata *dd, u32 bufnum)
1055
{
1056
return dd->ipath_port0_skbinfo ?
1057
(void *) dd->ipath_port0_skbinfo[bufnum].skb->data : NULL;
1058
}
1059
1060
/**
1061
* ipath_alloc_skb - allocate an skb and buffer with possible constraints
1062
* @dd: the infinipath device
1063
* @gfp_mask: the sk_buff SFP mask
1064
*/
1065
struct sk_buff *ipath_alloc_skb(struct ipath_devdata *dd,
1066
gfp_t gfp_mask)
1067
{
1068
struct sk_buff *skb;
1069
u32 len;
1070
1071
/*
1072
* Only fully supported way to handle this is to allocate lots
1073
* extra, align as needed, and then do skb_reserve(). That wastes
1074
* a lot of memory... I'll have to hack this into infinipath_copy
1075
* also.
1076
*/
1077
1078
/*
1079
* We need 2 extra bytes for ipath_ether data sent in the
1080
* key header. In order to keep everything dword aligned,
1081
* we'll reserve 4 bytes.
1082
*/
1083
len = dd->ipath_ibmaxlen + 4;
1084
1085
if (dd->ipath_flags & IPATH_4BYTE_TID) {
1086
/* We need a 2KB multiple alignment, and there is no way
1087
* to do it except to allocate extra and then skb_reserve
1088
* enough to bring it up to the right alignment.
1089
*/
1090
len += 2047;
1091
}
1092
1093
skb = __dev_alloc_skb(len, gfp_mask);
1094
if (!skb) {
1095
ipath_dev_err(dd, "Failed to allocate skbuff, length %u\n",
1096
len);
1097
goto bail;
1098
}
1099
1100
skb_reserve(skb, 4);
1101
1102
if (dd->ipath_flags & IPATH_4BYTE_TID) {
1103
u32 una = (unsigned long)skb->data & 2047;
1104
if (una)
1105
skb_reserve(skb, 2048 - una);
1106
}
1107
1108
bail:
1109
return skb;
1110
}
1111
1112
static void ipath_rcv_hdrerr(struct ipath_devdata *dd,
1113
u32 eflags,
1114
u32 l,
1115
u32 etail,
1116
__le32 *rhf_addr,
1117
struct ipath_message_header *hdr)
1118
{
1119
char emsg[128];
1120
1121
get_rhf_errstring(eflags, emsg, sizeof emsg);
1122
ipath_cdbg(PKT, "RHFerrs %x hdrqtail=%x typ=%u "
1123
"tlen=%x opcode=%x egridx=%x: %s\n",
1124
eflags, l,
1125
ipath_hdrget_rcv_type(rhf_addr),
1126
ipath_hdrget_length_in_bytes(rhf_addr),
1127
be32_to_cpu(hdr->bth[0]) >> 24,
1128
etail, emsg);
1129
1130
/* Count local link integrity errors. */
1131
if (eflags & (INFINIPATH_RHF_H_ICRCERR | INFINIPATH_RHF_H_VCRCERR)) {
1132
u8 n = (dd->ipath_ibcctrl >>
1133
INFINIPATH_IBCC_PHYERRTHRESHOLD_SHIFT) &
1134
INFINIPATH_IBCC_PHYERRTHRESHOLD_MASK;
1135
1136
if (++dd->ipath_lli_counter > n) {
1137
dd->ipath_lli_counter = 0;
1138
dd->ipath_lli_errors++;
1139
}
1140
}
1141
}
1142
1143
/*
1144
* ipath_kreceive - receive a packet
1145
* @pd: the infinipath port
1146
*
1147
* called from interrupt handler for errors or receive interrupt
1148
*/
1149
void ipath_kreceive(struct ipath_portdata *pd)
1150
{
1151
struct ipath_devdata *dd = pd->port_dd;
1152
__le32 *rhf_addr;
1153
void *ebuf;
1154
const u32 rsize = dd->ipath_rcvhdrentsize; /* words */
1155
const u32 maxcnt = dd->ipath_rcvhdrcnt * rsize; /* words */
1156
u32 etail = -1, l, hdrqtail;
1157
struct ipath_message_header *hdr;
1158
u32 eflags, i, etype, tlen, pkttot = 0, updegr = 0, reloop = 0;
1159
static u64 totcalls; /* stats, may eventually remove */
1160
int last;
1161
1162
l = pd->port_head;
1163
rhf_addr = (__le32 *) pd->port_rcvhdrq + l + dd->ipath_rhf_offset;
1164
if (dd->ipath_flags & IPATH_NODMA_RTAIL) {
1165
u32 seq = ipath_hdrget_seq(rhf_addr);
1166
1167
if (seq != pd->port_seq_cnt)
1168
goto bail;
1169
hdrqtail = 0;
1170
} else {
1171
hdrqtail = ipath_get_rcvhdrtail(pd);
1172
if (l == hdrqtail)
1173
goto bail;
1174
smp_rmb();
1175
}
1176
1177
reloop:
1178
for (last = 0, i = 1; !last; i += !last) {
1179
hdr = dd->ipath_f_get_msgheader(dd, rhf_addr);
1180
eflags = ipath_hdrget_err_flags(rhf_addr);
1181
etype = ipath_hdrget_rcv_type(rhf_addr);
1182
/* total length */
1183
tlen = ipath_hdrget_length_in_bytes(rhf_addr);
1184
ebuf = NULL;
1185
if ((dd->ipath_flags & IPATH_NODMA_RTAIL) ?
1186
ipath_hdrget_use_egr_buf(rhf_addr) :
1187
(etype != RCVHQ_RCV_TYPE_EXPECTED)) {
1188
/*
1189
* It turns out that the chip uses an eager buffer
1190
* for all non-expected packets, whether it "needs"
1191
* one or not. So always get the index, but don't
1192
* set ebuf (so we try to copy data) unless the
1193
* length requires it.
1194
*/
1195
etail = ipath_hdrget_index(rhf_addr);
1196
updegr = 1;
1197
if (tlen > sizeof(*hdr) ||
1198
etype == RCVHQ_RCV_TYPE_NON_KD)
1199
ebuf = ipath_get_egrbuf(dd, etail);
1200
}
1201
1202
/*
1203
* both tiderr and ipathhdrerr are set for all plain IB
1204
* packets; only ipathhdrerr should be set.
1205
*/
1206
1207
if (etype != RCVHQ_RCV_TYPE_NON_KD &&
1208
etype != RCVHQ_RCV_TYPE_ERROR &&
1209
ipath_hdrget_ipath_ver(hdr->iph.ver_port_tid_offset) !=
1210
IPS_PROTO_VERSION)
1211
ipath_cdbg(PKT, "Bad InfiniPath protocol version "
1212
"%x\n", etype);
1213
1214
if (unlikely(eflags))
1215
ipath_rcv_hdrerr(dd, eflags, l, etail, rhf_addr, hdr);
1216
else if (etype == RCVHQ_RCV_TYPE_NON_KD) {
1217
ipath_ib_rcv(dd->verbs_dev, (u32 *)hdr, ebuf, tlen);
1218
if (dd->ipath_lli_counter)
1219
dd->ipath_lli_counter--;
1220
} else if (etype == RCVHQ_RCV_TYPE_EAGER) {
1221
u8 opcode = be32_to_cpu(hdr->bth[0]) >> 24;
1222
u32 qp = be32_to_cpu(hdr->bth[1]) & 0xffffff;
1223
ipath_cdbg(PKT, "typ %x, opcode %x (eager, "
1224
"qp=%x), len %x; ignored\n",
1225
etype, opcode, qp, tlen);
1226
}
1227
else if (etype == RCVHQ_RCV_TYPE_EXPECTED)
1228
ipath_dbg("Bug: Expected TID, opcode %x; ignored\n",
1229
be32_to_cpu(hdr->bth[0]) >> 24);
1230
else {
1231
/*
1232
* error packet, type of error unknown.
1233
* Probably type 3, but we don't know, so don't
1234
* even try to print the opcode, etc.
1235
* Usually caused by a "bad packet", that has no
1236
* BTH, when the LRH says it should.
1237
*/
1238
ipath_cdbg(ERRPKT, "Error Pkt, but no eflags! egrbuf"
1239
" %x, len %x hdrq+%x rhf: %Lx\n",
1240
etail, tlen, l, (unsigned long long)
1241
le64_to_cpu(*(__le64 *) rhf_addr));
1242
if (ipath_debug & __IPATH_ERRPKTDBG) {
1243
u32 j, *d, dw = rsize-2;
1244
if (rsize > (tlen>>2))
1245
dw = tlen>>2;
1246
d = (u32 *)hdr;
1247
printk(KERN_DEBUG "EPkt rcvhdr(%x dw):\n",
1248
dw);
1249
for (j = 0; j < dw; j++)
1250
printk(KERN_DEBUG "%8x%s", d[j],
1251
(j%8) == 7 ? "\n" : " ");
1252
printk(KERN_DEBUG ".\n");
1253
}
1254
}
1255
l += rsize;
1256
if (l >= maxcnt)
1257
l = 0;
1258
rhf_addr = (__le32 *) pd->port_rcvhdrq +
1259
l + dd->ipath_rhf_offset;
1260
if (dd->ipath_flags & IPATH_NODMA_RTAIL) {
1261
u32 seq = ipath_hdrget_seq(rhf_addr);
1262
1263
if (++pd->port_seq_cnt > 13)
1264
pd->port_seq_cnt = 1;
1265
if (seq != pd->port_seq_cnt)
1266
last = 1;
1267
} else if (l == hdrqtail)
1268
last = 1;
1269
/*
1270
* update head regs on last packet, and every 16 packets.
1271
* Reduce bus traffic, while still trying to prevent
1272
* rcvhdrq overflows, for when the queue is nearly full
1273
*/
1274
if (last || !(i & 0xf)) {
1275
u64 lval = l;
1276
1277
/* request IBA6120 and 7220 interrupt only on last */
1278
if (last)
1279
lval |= dd->ipath_rhdrhead_intr_off;
1280
ipath_write_ureg(dd, ur_rcvhdrhead, lval,
1281
pd->port_port);
1282
if (updegr) {
1283
ipath_write_ureg(dd, ur_rcvegrindexhead,
1284
etail, pd->port_port);
1285
updegr = 0;
1286
}
1287
}
1288
}
1289
1290
if (!dd->ipath_rhdrhead_intr_off && !reloop &&
1291
!(dd->ipath_flags & IPATH_NODMA_RTAIL)) {
1292
/* IBA6110 workaround; we can have a race clearing chip
1293
* interrupt with another interrupt about to be delivered,
1294
* and can clear it before it is delivered on the GPIO
1295
* workaround. By doing the extra check here for the
1296
* in-memory tail register updating while we were doing
1297
* earlier packets, we "almost" guarantee we have covered
1298
* that case.
1299
*/
1300
u32 hqtail = ipath_get_rcvhdrtail(pd);
1301
if (hqtail != hdrqtail) {
1302
hdrqtail = hqtail;
1303
reloop = 1; /* loop 1 extra time at most */
1304
goto reloop;
1305
}
1306
}
1307
1308
pkttot += i;
1309
1310
pd->port_head = l;
1311
1312
if (pkttot > ipath_stats.sps_maxpkts_call)
1313
ipath_stats.sps_maxpkts_call = pkttot;
1314
ipath_stats.sps_port0pkts += pkttot;
1315
ipath_stats.sps_avgpkts_call =
1316
ipath_stats.sps_port0pkts / ++totcalls;
1317
1318
bail:;
1319
}
1320
1321
/**
1322
* ipath_update_pio_bufs - update shadow copy of the PIO availability map
1323
* @dd: the infinipath device
1324
*
1325
* called whenever our local copy indicates we have run out of send buffers
1326
* NOTE: This can be called from interrupt context by some code
1327
* and from non-interrupt context by ipath_getpiobuf().
1328
*/
1329
1330
static void ipath_update_pio_bufs(struct ipath_devdata *dd)
1331
{
1332
unsigned long flags;
1333
int i;
1334
const unsigned piobregs = (unsigned)dd->ipath_pioavregs;
1335
1336
/* If the generation (check) bits have changed, then we update the
1337
* busy bit for the corresponding PIO buffer. This algorithm will
1338
* modify positions to the value they already have in some cases
1339
* (i.e., no change), but it's faster than changing only the bits
1340
* that have changed.
1341
*
1342
* We would like to do this atomicly, to avoid spinlocks in the
1343
* critical send path, but that's not really possible, given the
1344
* type of changes, and that this routine could be called on
1345
* multiple cpu's simultaneously, so we lock in this routine only,
1346
* to avoid conflicting updates; all we change is the shadow, and
1347
* it's a single 64 bit memory location, so by definition the update
1348
* is atomic in terms of what other cpu's can see in testing the
1349
* bits. The spin_lock overhead isn't too bad, since it only
1350
* happens when all buffers are in use, so only cpu overhead, not
1351
* latency or bandwidth is affected.
1352
*/
1353
if (!dd->ipath_pioavailregs_dma) {
1354
ipath_dbg("Update shadow pioavail, but regs_dma NULL!\n");
1355
return;
1356
}
1357
if (ipath_debug & __IPATH_VERBDBG) {
1358
/* only if packet debug and verbose */
1359
volatile __le64 *dma = dd->ipath_pioavailregs_dma;
1360
unsigned long *shadow = dd->ipath_pioavailshadow;
1361
1362
ipath_cdbg(PKT, "Refill avail, dma0=%llx shad0=%lx, "
1363
"d1=%llx s1=%lx, d2=%llx s2=%lx, d3=%llx "
1364
"s3=%lx\n",
1365
(unsigned long long) le64_to_cpu(dma[0]),
1366
shadow[0],
1367
(unsigned long long) le64_to_cpu(dma[1]),
1368
shadow[1],
1369
(unsigned long long) le64_to_cpu(dma[2]),
1370
shadow[2],
1371
(unsigned long long) le64_to_cpu(dma[3]),
1372
shadow[3]);
1373
if (piobregs > 4)
1374
ipath_cdbg(
1375
PKT, "2nd group, dma4=%llx shad4=%lx, "
1376
"d5=%llx s5=%lx, d6=%llx s6=%lx, "
1377
"d7=%llx s7=%lx\n",
1378
(unsigned long long) le64_to_cpu(dma[4]),
1379
shadow[4],
1380
(unsigned long long) le64_to_cpu(dma[5]),
1381
shadow[5],
1382
(unsigned long long) le64_to_cpu(dma[6]),
1383
shadow[6],
1384
(unsigned long long) le64_to_cpu(dma[7]),
1385
shadow[7]);
1386
}
1387
spin_lock_irqsave(&ipath_pioavail_lock, flags);
1388
for (i = 0; i < piobregs; i++) {
1389
u64 pchbusy, pchg, piov, pnew;
1390
/*
1391
* Chip Errata: bug 6641; even and odd qwords>3 are swapped
1392
*/
1393
if (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS))
1394
piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i ^ 1]);
1395
else
1396
piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i]);
1397
pchg = dd->ipath_pioavailkernel[i] &
1398
~(dd->ipath_pioavailshadow[i] ^ piov);
1399
pchbusy = pchg << INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT;
1400
if (pchg && (pchbusy & dd->ipath_pioavailshadow[i])) {
1401
pnew = dd->ipath_pioavailshadow[i] & ~pchbusy;
1402
pnew |= piov & pchbusy;
1403
dd->ipath_pioavailshadow[i] = pnew;
1404
}
1405
}
1406
spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1407
}
1408
1409
/*
1410
* used to force update of pioavailshadow if we can't get a pio buffer.
1411
* Needed primarily due to exitting freeze mode after recovering
1412
* from errors. Done lazily, because it's safer (known to not
1413
* be writing pio buffers).
1414
*/
1415
static void ipath_reset_availshadow(struct ipath_devdata *dd)
1416
{
1417
int i, im;
1418
unsigned long flags;
1419
1420
spin_lock_irqsave(&ipath_pioavail_lock, flags);
1421
for (i = 0; i < dd->ipath_pioavregs; i++) {
1422
u64 val, oldval;
1423
/* deal with 6110 chip bug on high register #s */
1424
im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ?
1425
i ^ 1 : i;
1426
val = le64_to_cpu(dd->ipath_pioavailregs_dma[im]);
1427
/*
1428
* busy out the buffers not in the kernel avail list,
1429
* without changing the generation bits.
1430
*/
1431
oldval = dd->ipath_pioavailshadow[i];
1432
dd->ipath_pioavailshadow[i] = val |
1433
((~dd->ipath_pioavailkernel[i] <<
1434
INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT) &
1435
0xaaaaaaaaaaaaaaaaULL); /* All BUSY bits in qword */
1436
if (oldval != dd->ipath_pioavailshadow[i])
1437
ipath_dbg("shadow[%d] was %Lx, now %lx\n",
1438
i, (unsigned long long) oldval,
1439
dd->ipath_pioavailshadow[i]);
1440
}
1441
spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1442
}
1443
1444
/**
1445
* ipath_setrcvhdrsize - set the receive header size
1446
* @dd: the infinipath device
1447
* @rhdrsize: the receive header size
1448
*
1449
* called from user init code, and also layered driver init
1450
*/
1451
int ipath_setrcvhdrsize(struct ipath_devdata *dd, unsigned rhdrsize)
1452
{
1453
int ret = 0;
1454
1455
if (dd->ipath_flags & IPATH_RCVHDRSZ_SET) {
1456
if (dd->ipath_rcvhdrsize != rhdrsize) {
1457
dev_info(&dd->pcidev->dev,
1458
"Error: can't set protocol header "
1459
"size %u, already %u\n",
1460
rhdrsize, dd->ipath_rcvhdrsize);
1461
ret = -EAGAIN;
1462
} else
1463
ipath_cdbg(VERBOSE, "Reuse same protocol header "
1464
"size %u\n", dd->ipath_rcvhdrsize);
1465
} else if (rhdrsize > (dd->ipath_rcvhdrentsize -
1466
(sizeof(u64) / sizeof(u32)))) {
1467
ipath_dbg("Error: can't set protocol header size %u "
1468
"(> max %u)\n", rhdrsize,
1469
dd->ipath_rcvhdrentsize -
1470
(u32) (sizeof(u64) / sizeof(u32)));
1471
ret = -EOVERFLOW;
1472
} else {
1473
dd->ipath_flags |= IPATH_RCVHDRSZ_SET;
1474
dd->ipath_rcvhdrsize = rhdrsize;
1475
ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvhdrsize,
1476
dd->ipath_rcvhdrsize);
1477
ipath_cdbg(VERBOSE, "Set protocol header size to %u\n",
1478
dd->ipath_rcvhdrsize);
1479
}
1480
return ret;
1481
}
1482
1483
/*
1484
* debugging code and stats updates if no pio buffers available.
1485
*/
1486
static noinline void no_pio_bufs(struct ipath_devdata *dd)
1487
{
1488
unsigned long *shadow = dd->ipath_pioavailshadow;
1489
__le64 *dma = (__le64 *)dd->ipath_pioavailregs_dma;
1490
1491
dd->ipath_upd_pio_shadow = 1;
1492
1493
/*
1494
* not atomic, but if we lose a stat count in a while, that's OK
1495
*/
1496
ipath_stats.sps_nopiobufs++;
1497
if (!(++dd->ipath_consec_nopiobuf % 100000)) {
1498
ipath_force_pio_avail_update(dd); /* at start */
1499
ipath_dbg("%u tries no piobufavail ts%lx; dmacopy: "
1500
"%llx %llx %llx %llx\n"
1501
"ipath shadow: %lx %lx %lx %lx\n",
1502
dd->ipath_consec_nopiobuf,
1503
(unsigned long)get_cycles(),
1504
(unsigned long long) le64_to_cpu(dma[0]),
1505
(unsigned long long) le64_to_cpu(dma[1]),
1506
(unsigned long long) le64_to_cpu(dma[2]),
1507
(unsigned long long) le64_to_cpu(dma[3]),
1508
shadow[0], shadow[1], shadow[2], shadow[3]);
1509
/*
1510
* 4 buffers per byte, 4 registers above, cover rest
1511
* below
1512
*/
1513
if ((dd->ipath_piobcnt2k + dd->ipath_piobcnt4k) >
1514
(sizeof(shadow[0]) * 4 * 4))
1515
ipath_dbg("2nd group: dmacopy: "
1516
"%llx %llx %llx %llx\n"
1517
"ipath shadow: %lx %lx %lx %lx\n",
1518
(unsigned long long)le64_to_cpu(dma[4]),
1519
(unsigned long long)le64_to_cpu(dma[5]),
1520
(unsigned long long)le64_to_cpu(dma[6]),
1521
(unsigned long long)le64_to_cpu(dma[7]),
1522
shadow[4], shadow[5], shadow[6], shadow[7]);
1523
1524
/* at end, so update likely happened */
1525
ipath_reset_availshadow(dd);
1526
}
1527
}
1528
1529
/*
1530
* common code for normal driver pio buffer allocation, and reserved
1531
* allocation.
1532
*
1533
* do appropriate marking as busy, etc.
1534
* returns buffer number if one found (>=0), negative number is error.
1535
*/
1536
static u32 __iomem *ipath_getpiobuf_range(struct ipath_devdata *dd,
1537
u32 *pbufnum, u32 first, u32 last, u32 firsti)
1538
{
1539
int i, j, updated = 0;
1540
unsigned piobcnt;
1541
unsigned long flags;
1542
unsigned long *shadow = dd->ipath_pioavailshadow;
1543
u32 __iomem *buf;
1544
1545
piobcnt = last - first;
1546
if (dd->ipath_upd_pio_shadow) {
1547
/*
1548
* Minor optimization. If we had no buffers on last call,
1549
* start out by doing the update; continue and do scan even
1550
* if no buffers were updated, to be paranoid
1551
*/
1552
ipath_update_pio_bufs(dd);
1553
updated++;
1554
i = first;
1555
} else
1556
i = firsti;
1557
rescan:
1558
/*
1559
* while test_and_set_bit() is atomic, we do that and then the
1560
* change_bit(), and the pair is not. See if this is the cause
1561
* of the remaining armlaunch errors.
1562
*/
1563
spin_lock_irqsave(&ipath_pioavail_lock, flags);
1564
for (j = 0; j < piobcnt; j++, i++) {
1565
if (i >= last)
1566
i = first;
1567
if (__test_and_set_bit((2 * i) + 1, shadow))
1568
continue;
1569
/* flip generation bit */
1570
__change_bit(2 * i, shadow);
1571
break;
1572
}
1573
spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1574
1575
if (j == piobcnt) {
1576
if (!updated) {
1577
/*
1578
* first time through; shadow exhausted, but may be
1579
* buffers available, try an update and then rescan.
1580
*/
1581
ipath_update_pio_bufs(dd);
1582
updated++;
1583
i = first;
1584
goto rescan;
1585
} else if (updated == 1 && piobcnt <=
1586
((dd->ipath_sendctrl
1587
>> INFINIPATH_S_UPDTHRESH_SHIFT) &
1588
INFINIPATH_S_UPDTHRESH_MASK)) {
1589
/*
1590
* for chips supporting and using the update
1591
* threshold we need to force an update of the
1592
* in-memory copy if the count is less than the
1593
* thershold, then check one more time.
1594
*/
1595
ipath_force_pio_avail_update(dd);
1596
ipath_update_pio_bufs(dd);
1597
updated++;
1598
i = first;
1599
goto rescan;
1600
}
1601
1602
no_pio_bufs(dd);
1603
buf = NULL;
1604
} else {
1605
if (i < dd->ipath_piobcnt2k)
1606
buf = (u32 __iomem *) (dd->ipath_pio2kbase +
1607
i * dd->ipath_palign);
1608
else
1609
buf = (u32 __iomem *)
1610
(dd->ipath_pio4kbase +
1611
(i - dd->ipath_piobcnt2k) * dd->ipath_4kalign);
1612
if (pbufnum)
1613
*pbufnum = i;
1614
}
1615
1616
return buf;
1617
}
1618
1619
/**
1620
* ipath_getpiobuf - find an available pio buffer
1621
* @dd: the infinipath device
1622
* @plen: the size of the PIO buffer needed in 32-bit words
1623
* @pbufnum: the buffer number is placed here
1624
*/
1625
u32 __iomem *ipath_getpiobuf(struct ipath_devdata *dd, u32 plen, u32 *pbufnum)
1626
{
1627
u32 __iomem *buf;
1628
u32 pnum, nbufs;
1629
u32 first, lasti;
1630
1631
if (plen + 1 >= IPATH_SMALLBUF_DWORDS) {
1632
first = dd->ipath_piobcnt2k;
1633
lasti = dd->ipath_lastpioindexl;
1634
} else {
1635
first = 0;
1636
lasti = dd->ipath_lastpioindex;
1637
}
1638
nbufs = dd->ipath_piobcnt2k + dd->ipath_piobcnt4k;
1639
buf = ipath_getpiobuf_range(dd, &pnum, first, nbufs, lasti);
1640
1641
if (buf) {
1642
/*
1643
* Set next starting place. It's just an optimization,
1644
* it doesn't matter who wins on this, so no locking
1645
*/
1646
if (plen + 1 >= IPATH_SMALLBUF_DWORDS)
1647
dd->ipath_lastpioindexl = pnum + 1;
1648
else
1649
dd->ipath_lastpioindex = pnum + 1;
1650
if (dd->ipath_upd_pio_shadow)
1651
dd->ipath_upd_pio_shadow = 0;
1652
if (dd->ipath_consec_nopiobuf)
1653
dd->ipath_consec_nopiobuf = 0;
1654
ipath_cdbg(VERBOSE, "Return piobuf%u %uk @ %p\n",
1655
pnum, (pnum < dd->ipath_piobcnt2k) ? 2 : 4, buf);
1656
if (pbufnum)
1657
*pbufnum = pnum;
1658
1659
}
1660
return buf;
1661
}
1662
1663
/**
1664
* ipath_chg_pioavailkernel - change which send buffers are available for kernel
1665
* @dd: the infinipath device
1666
* @start: the starting send buffer number
1667
* @len: the number of send buffers
1668
* @avail: true if the buffers are available for kernel use, false otherwise
1669
*/
1670
void ipath_chg_pioavailkernel(struct ipath_devdata *dd, unsigned start,
1671
unsigned len, int avail)
1672
{
1673
unsigned long flags;
1674
unsigned end, cnt = 0;
1675
1676
/* There are two bits per send buffer (busy and generation) */
1677
start *= 2;
1678
end = start + len * 2;
1679
1680
spin_lock_irqsave(&ipath_pioavail_lock, flags);
1681
/* Set or clear the busy bit in the shadow. */
1682
while (start < end) {
1683
if (avail) {
1684
unsigned long dma;
1685
int i, im;
1686
/*
1687
* the BUSY bit will never be set, because we disarm
1688
* the user buffers before we hand them back to the
1689
* kernel. We do have to make sure the generation
1690
* bit is set correctly in shadow, since it could
1691
* have changed many times while allocated to user.
1692
* We can't use the bitmap functions on the full
1693
* dma array because it is always little-endian, so
1694
* we have to flip to host-order first.
1695
* BITS_PER_LONG is slightly wrong, since it's
1696
* always 64 bits per register in chip...
1697
* We only work on 64 bit kernels, so that's OK.
1698
*/
1699
/* deal with 6110 chip bug on high register #s */
1700
i = start / BITS_PER_LONG;
1701
im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ?
1702
i ^ 1 : i;
1703
__clear_bit(INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT
1704
+ start, dd->ipath_pioavailshadow);
1705
dma = (unsigned long) le64_to_cpu(
1706
dd->ipath_pioavailregs_dma[im]);
1707
if (test_bit((INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1708
+ start) % BITS_PER_LONG, &dma))
1709
__set_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1710
+ start, dd->ipath_pioavailshadow);
1711
else
1712
__clear_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1713
+ start, dd->ipath_pioavailshadow);
1714
__set_bit(start, dd->ipath_pioavailkernel);
1715
} else {
1716
__set_bit(start + INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT,
1717
dd->ipath_pioavailshadow);
1718
__clear_bit(start, dd->ipath_pioavailkernel);
1719
}
1720
start += 2;
1721
}
1722
1723
if (dd->ipath_pioupd_thresh) {
1724
end = 2 * (dd->ipath_piobcnt2k + dd->ipath_piobcnt4k);
1725
cnt = bitmap_weight(dd->ipath_pioavailkernel, end);
1726
}
1727
spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1728
1729
/*
1730
* When moving buffers from kernel to user, if number assigned to
1731
* the user is less than the pio update threshold, and threshold
1732
* is supported (cnt was computed > 0), drop the update threshold
1733
* so we update at least once per allocated number of buffers.
1734
* In any case, if the kernel buffers are less than the threshold,
1735
* drop the threshold. We don't bother increasing it, having once
1736
* decreased it, since it would typically just cycle back and forth.
1737
* If we don't decrease below buffers in use, we can wait a long
1738
* time for an update, until some other context uses PIO buffers.
1739
*/
1740
if (!avail && len < cnt)
1741
cnt = len;
1742
if (cnt < dd->ipath_pioupd_thresh) {
1743
dd->ipath_pioupd_thresh = cnt;
1744
ipath_dbg("Decreased pio update threshold to %u\n",
1745
dd->ipath_pioupd_thresh);
1746
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1747
dd->ipath_sendctrl &= ~(INFINIPATH_S_UPDTHRESH_MASK
1748
<< INFINIPATH_S_UPDTHRESH_SHIFT);
1749
dd->ipath_sendctrl |= dd->ipath_pioupd_thresh
1750
<< INFINIPATH_S_UPDTHRESH_SHIFT;
1751
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1752
dd->ipath_sendctrl);
1753
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1754
}
1755
}
1756
1757
/**
1758
* ipath_create_rcvhdrq - create a receive header queue
1759
* @dd: the infinipath device
1760
* @pd: the port data
1761
*
1762
* this must be contiguous memory (from an i/o perspective), and must be
1763
* DMA'able (which means for some systems, it will go through an IOMMU,
1764
* or be forced into a low address range).
1765
*/
1766
int ipath_create_rcvhdrq(struct ipath_devdata *dd,
1767
struct ipath_portdata *pd)
1768
{
1769
int ret = 0;
1770
1771
if (!pd->port_rcvhdrq) {
1772
dma_addr_t phys_hdrqtail;
1773
gfp_t gfp_flags = GFP_USER | __GFP_COMP;
1774
int amt = ALIGN(dd->ipath_rcvhdrcnt * dd->ipath_rcvhdrentsize *
1775
sizeof(u32), PAGE_SIZE);
1776
1777
pd->port_rcvhdrq = dma_alloc_coherent(
1778
&dd->pcidev->dev, amt, &pd->port_rcvhdrq_phys,
1779
gfp_flags);
1780
1781
if (!pd->port_rcvhdrq) {
1782
ipath_dev_err(dd, "attempt to allocate %d bytes "
1783
"for port %u rcvhdrq failed\n",
1784
amt, pd->port_port);
1785
ret = -ENOMEM;
1786
goto bail;
1787
}
1788
1789
if (!(dd->ipath_flags & IPATH_NODMA_RTAIL)) {
1790
pd->port_rcvhdrtail_kvaddr = dma_alloc_coherent(
1791
&dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1792
GFP_KERNEL);
1793
if (!pd->port_rcvhdrtail_kvaddr) {
1794
ipath_dev_err(dd, "attempt to allocate 1 page "
1795
"for port %u rcvhdrqtailaddr "
1796
"failed\n", pd->port_port);
1797
ret = -ENOMEM;
1798
dma_free_coherent(&dd->pcidev->dev, amt,
1799
pd->port_rcvhdrq,
1800
pd->port_rcvhdrq_phys);
1801
pd->port_rcvhdrq = NULL;
1802
goto bail;
1803
}
1804
pd->port_rcvhdrqtailaddr_phys = phys_hdrqtail;
1805
ipath_cdbg(VERBOSE, "port %d hdrtailaddr, %llx "
1806
"physical\n", pd->port_port,
1807
(unsigned long long) phys_hdrqtail);
1808
}
1809
1810
pd->port_rcvhdrq_size = amt;
1811
1812
ipath_cdbg(VERBOSE, "%d pages at %p (phys %lx) size=%lu "
1813
"for port %u rcvhdr Q\n",
1814
amt >> PAGE_SHIFT, pd->port_rcvhdrq,
1815
(unsigned long) pd->port_rcvhdrq_phys,
1816
(unsigned long) pd->port_rcvhdrq_size,
1817
pd->port_port);
1818
}
1819
else
1820
ipath_cdbg(VERBOSE, "reuse port %d rcvhdrq @%p %llx phys; "
1821
"hdrtailaddr@%p %llx physical\n",
1822
pd->port_port, pd->port_rcvhdrq,
1823
(unsigned long long) pd->port_rcvhdrq_phys,
1824
pd->port_rcvhdrtail_kvaddr, (unsigned long long)
1825
pd->port_rcvhdrqtailaddr_phys);
1826
1827
/* clear for security and sanity on each use */
1828
memset(pd->port_rcvhdrq, 0, pd->port_rcvhdrq_size);
1829
if (pd->port_rcvhdrtail_kvaddr)
1830
memset(pd->port_rcvhdrtail_kvaddr, 0, PAGE_SIZE);
1831
1832
/*
1833
* tell chip each time we init it, even if we are re-using previous
1834
* memory (we zero the register at process close)
1835
*/
1836
ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdrtailaddr,
1837
pd->port_port, pd->port_rcvhdrqtailaddr_phys);
1838
ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdraddr,
1839
pd->port_port, pd->port_rcvhdrq_phys);
1840
1841
bail:
1842
return ret;
1843
}
1844
1845
1846
/*
1847
* Flush all sends that might be in the ready to send state, as well as any
1848
* that are in the process of being sent. Used whenever we need to be
1849
* sure the send side is idle. Cleans up all buffer state by canceling
1850
* all pio buffers, and issuing an abort, which cleans up anything in the
1851
* launch fifo. The cancel is superfluous on some chip versions, but
1852
* it's safer to always do it.
1853
* PIOAvail bits are updated by the chip as if normal send had happened.
1854
*/
1855
void ipath_cancel_sends(struct ipath_devdata *dd, int restore_sendctrl)
1856
{
1857
unsigned long flags;
1858
1859
if (dd->ipath_flags & IPATH_IB_AUTONEG_INPROG) {
1860
ipath_cdbg(VERBOSE, "Ignore while in autonegotiation\n");
1861
goto bail;
1862
}
1863
/*
1864
* If we have SDMA, and it's not disabled, we have to kick off the
1865
* abort state machine, provided we aren't already aborting.
1866
* If we are in the process of aborting SDMA (!DISABLED, but ABORTING),
1867
* we skip the rest of this routine. It is already "in progress"
1868
*/
1869
if (dd->ipath_flags & IPATH_HAS_SEND_DMA) {
1870
int skip_cancel;
1871
unsigned long *statp = &dd->ipath_sdma_status;
1872
1873
spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
1874
skip_cancel =
1875
test_and_set_bit(IPATH_SDMA_ABORTING, statp)
1876
&& !test_bit(IPATH_SDMA_DISABLED, statp);
1877
spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
1878
if (skip_cancel)
1879
goto bail;
1880
}
1881
1882
ipath_dbg("Cancelling all in-progress send buffers\n");
1883
1884
/* skip armlaunch errs for a while */
1885
dd->ipath_lastcancel = jiffies + HZ / 2;
1886
1887
/*
1888
* The abort bit is auto-clearing. We also don't want pioavail
1889
* update happening during this, and we don't want any other
1890
* sends going out, so turn those off for the duration. We read
1891
* the scratch register to be sure that cancels and the abort
1892
* have taken effect in the chip. Otherwise two parts are same
1893
* as ipath_force_pio_avail_update()
1894
*/
1895
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1896
dd->ipath_sendctrl &= ~(INFINIPATH_S_PIOBUFAVAILUPD
1897
| INFINIPATH_S_PIOENABLE);
1898
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1899
dd->ipath_sendctrl | INFINIPATH_S_ABORT);
1900
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1901
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1902
1903
/* disarm all send buffers */
1904
ipath_disarm_piobufs(dd, 0,
1905
dd->ipath_piobcnt2k + dd->ipath_piobcnt4k);
1906
1907
if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
1908
set_bit(IPATH_SDMA_DISARMED, &dd->ipath_sdma_status);
1909
1910
if (restore_sendctrl) {
1911
/* else done by caller later if needed */
1912
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1913
dd->ipath_sendctrl |= INFINIPATH_S_PIOBUFAVAILUPD |
1914
INFINIPATH_S_PIOENABLE;
1915
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1916
dd->ipath_sendctrl);
1917
/* and again, be sure all have hit the chip */
1918
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1919
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1920
}
1921
1922
if ((dd->ipath_flags & IPATH_HAS_SEND_DMA) &&
1923
!test_bit(IPATH_SDMA_DISABLED, &dd->ipath_sdma_status) &&
1924
test_bit(IPATH_SDMA_RUNNING, &dd->ipath_sdma_status)) {
1925
spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
1926
/* only wait so long for intr */
1927
dd->ipath_sdma_abort_intr_timeout = jiffies + HZ;
1928
dd->ipath_sdma_reset_wait = 200;
1929
if (!test_bit(IPATH_SDMA_SHUTDOWN, &dd->ipath_sdma_status))
1930
tasklet_hi_schedule(&dd->ipath_sdma_abort_task);
1931
spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
1932
}
1933
bail:;
1934
}
1935
1936
/*
1937
* Force an update of in-memory copy of the pioavail registers, when
1938
* needed for any of a variety of reasons. We read the scratch register
1939
* to make it highly likely that the update will have happened by the
1940
* time we return. If already off (as in cancel_sends above), this
1941
* routine is a nop, on the assumption that the caller will "do the
1942
* right thing".
1943
*/
1944
void ipath_force_pio_avail_update(struct ipath_devdata *dd)
1945
{
1946
unsigned long flags;
1947
1948
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1949
if (dd->ipath_sendctrl & INFINIPATH_S_PIOBUFAVAILUPD) {
1950
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1951
dd->ipath_sendctrl & ~INFINIPATH_S_PIOBUFAVAILUPD);
1952
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1953
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1954
dd->ipath_sendctrl);
1955
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1956
}
1957
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1958
}
1959
1960
static void ipath_set_ib_lstate(struct ipath_devdata *dd, int linkcmd,
1961
int linitcmd)
1962
{
1963
u64 mod_wd;
1964
static const char *what[4] = {
1965
[0] = "NOP",
1966
[INFINIPATH_IBCC_LINKCMD_DOWN] = "DOWN",
1967
[INFINIPATH_IBCC_LINKCMD_ARMED] = "ARMED",
1968
[INFINIPATH_IBCC_LINKCMD_ACTIVE] = "ACTIVE"
1969
};
1970
1971
if (linitcmd == INFINIPATH_IBCC_LINKINITCMD_DISABLE) {
1972
/*
1973
* If we are told to disable, note that so link-recovery
1974
* code does not attempt to bring us back up.
1975
*/
1976
preempt_disable();
1977
dd->ipath_flags |= IPATH_IB_LINK_DISABLED;
1978
preempt_enable();
1979
} else if (linitcmd) {
1980
/*
1981
* Any other linkinitcmd will lead to LINKDOWN and then
1982
* to INIT (if all is well), so clear flag to let
1983
* link-recovery code attempt to bring us back up.
1984
*/
1985
preempt_disable();
1986
dd->ipath_flags &= ~IPATH_IB_LINK_DISABLED;
1987
preempt_enable();
1988
}
1989
1990
mod_wd = (linkcmd << dd->ibcc_lc_shift) |
1991
(linitcmd << INFINIPATH_IBCC_LINKINITCMD_SHIFT);
1992
ipath_cdbg(VERBOSE,
1993
"Moving unit %u to %s (initcmd=0x%x), current ltstate is %s\n",
1994
dd->ipath_unit, what[linkcmd], linitcmd,
1995
ipath_ibcstatus_str[ipath_ib_linktrstate(dd,
1996
ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus))]);
1997
1998
ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
1999
dd->ipath_ibcctrl | mod_wd);
2000
/* read from chip so write is flushed */
2001
(void) ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
2002
}
2003
2004
int ipath_set_linkstate(struct ipath_devdata *dd, u8 newstate)
2005
{
2006
u32 lstate;
2007
int ret;
2008
2009
switch (newstate) {
2010
case IPATH_IB_LINKDOWN_ONLY:
2011
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, 0);
2012
/* don't wait */
2013
ret = 0;
2014
goto bail;
2015
2016
case IPATH_IB_LINKDOWN:
2017
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2018
INFINIPATH_IBCC_LINKINITCMD_POLL);
2019
/* don't wait */
2020
ret = 0;
2021
goto bail;
2022
2023
case IPATH_IB_LINKDOWN_SLEEP:
2024
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2025
INFINIPATH_IBCC_LINKINITCMD_SLEEP);
2026
/* don't wait */
2027
ret = 0;
2028
goto bail;
2029
2030
case IPATH_IB_LINKDOWN_DISABLE:
2031
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2032
INFINIPATH_IBCC_LINKINITCMD_DISABLE);
2033
/* don't wait */
2034
ret = 0;
2035
goto bail;
2036
2037
case IPATH_IB_LINKARM:
2038
if (dd->ipath_flags & IPATH_LINKARMED) {
2039
ret = 0;
2040
goto bail;
2041
}
2042
if (!(dd->ipath_flags &
2043
(IPATH_LINKINIT | IPATH_LINKACTIVE))) {
2044
ret = -EINVAL;
2045
goto bail;
2046
}
2047
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ARMED, 0);
2048
2049
/*
2050
* Since the port can transition to ACTIVE by receiving
2051
* a non VL 15 packet, wait for either state.
2052
*/
2053
lstate = IPATH_LINKARMED | IPATH_LINKACTIVE;
2054
break;
2055
2056
case IPATH_IB_LINKACTIVE:
2057
if (dd->ipath_flags & IPATH_LINKACTIVE) {
2058
ret = 0;
2059
goto bail;
2060
}
2061
if (!(dd->ipath_flags & IPATH_LINKARMED)) {
2062
ret = -EINVAL;
2063
goto bail;
2064
}
2065
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ACTIVE, 0);
2066
lstate = IPATH_LINKACTIVE;
2067
break;
2068
2069
case IPATH_IB_LINK_LOOPBACK:
2070
dev_info(&dd->pcidev->dev, "Enabling IB local loopback\n");
2071
dd->ipath_ibcctrl |= INFINIPATH_IBCC_LOOPBACK;
2072
ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2073
dd->ipath_ibcctrl);
2074
2075
/* turn heartbeat off, as it causes loopback to fail */
2076
dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2077
IPATH_IB_HRTBT_OFF);
2078
/* don't wait */
2079
ret = 0;
2080
goto bail;
2081
2082
case IPATH_IB_LINK_EXTERNAL:
2083
dev_info(&dd->pcidev->dev,
2084
"Disabling IB local loopback (normal)\n");
2085
dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2086
IPATH_IB_HRTBT_ON);
2087
dd->ipath_ibcctrl &= ~INFINIPATH_IBCC_LOOPBACK;
2088
ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2089
dd->ipath_ibcctrl);
2090
/* don't wait */
2091
ret = 0;
2092
goto bail;
2093
2094
/*
2095
* Heartbeat can be explicitly enabled by the user via
2096
* "hrtbt_enable" "file", and if disabled, trying to enable here
2097
* will have no effect. Implicit changes (heartbeat off when
2098
* loopback on, and vice versa) are included to ease testing.
2099
*/
2100
case IPATH_IB_LINK_HRTBT:
2101
ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2102
IPATH_IB_HRTBT_ON);
2103
goto bail;
2104
2105
case IPATH_IB_LINK_NO_HRTBT:
2106
ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2107
IPATH_IB_HRTBT_OFF);
2108
goto bail;
2109
2110
default:
2111
ipath_dbg("Invalid linkstate 0x%x requested\n", newstate);
2112
ret = -EINVAL;
2113
goto bail;
2114
}
2115
ret = ipath_wait_linkstate(dd, lstate, 2000);
2116
2117
bail:
2118
return ret;
2119
}
2120
2121
/**
2122
* ipath_set_mtu - set the MTU
2123
* @dd: the infinipath device
2124
* @arg: the new MTU
2125
*
2126
* we can handle "any" incoming size, the issue here is whether we
2127
* need to restrict our outgoing size. For now, we don't do any
2128
* sanity checking on this, and we don't deal with what happens to
2129
* programs that are already running when the size changes.
2130
* NOTE: changing the MTU will usually cause the IBC to go back to
2131
* link INIT state...
2132
*/
2133
int ipath_set_mtu(struct ipath_devdata *dd, u16 arg)
2134
{
2135
u32 piosize;
2136
int changed = 0;
2137
int ret;
2138
2139
/*
2140
* mtu is IB data payload max. It's the largest power of 2 less
2141
* than piosize (or even larger, since it only really controls the
2142
* largest we can receive; we can send the max of the mtu and
2143
* piosize). We check that it's one of the valid IB sizes.
2144
*/
2145
if (arg != 256 && arg != 512 && arg != 1024 && arg != 2048 &&
2146
(arg != 4096 || !ipath_mtu4096)) {
2147
ipath_dbg("Trying to set invalid mtu %u, failing\n", arg);
2148
ret = -EINVAL;
2149
goto bail;
2150
}
2151
if (dd->ipath_ibmtu == arg) {
2152
ret = 0; /* same as current */
2153
goto bail;
2154
}
2155
2156
piosize = dd->ipath_ibmaxlen;
2157
dd->ipath_ibmtu = arg;
2158
2159
if (arg >= (piosize - IPATH_PIO_MAXIBHDR)) {
2160
/* Only if it's not the initial value (or reset to it) */
2161
if (piosize != dd->ipath_init_ibmaxlen) {
2162
if (arg > piosize && arg <= dd->ipath_init_ibmaxlen)
2163
piosize = dd->ipath_init_ibmaxlen;
2164
dd->ipath_ibmaxlen = piosize;
2165
changed = 1;
2166
}
2167
} else if ((arg + IPATH_PIO_MAXIBHDR) != dd->ipath_ibmaxlen) {
2168
piosize = arg + IPATH_PIO_MAXIBHDR;
2169
ipath_cdbg(VERBOSE, "ibmaxlen was 0x%x, setting to 0x%x "
2170
"(mtu 0x%x)\n", dd->ipath_ibmaxlen, piosize,
2171
arg);
2172
dd->ipath_ibmaxlen = piosize;
2173
changed = 1;
2174
}
2175
2176
if (changed) {
2177
u64 ibc = dd->ipath_ibcctrl, ibdw;
2178
/*
2179
* update our housekeeping variables, and set IBC max
2180
* size, same as init code; max IBC is max we allow in
2181
* buffer, less the qword pbc, plus 1 for ICRC, in dwords
2182
*/
2183
dd->ipath_ibmaxlen = piosize - 2 * sizeof(u32);
2184
ibdw = (dd->ipath_ibmaxlen >> 2) + 1;
2185
ibc &= ~(INFINIPATH_IBCC_MAXPKTLEN_MASK <<
2186
dd->ibcc_mpl_shift);
2187
ibc |= ibdw << dd->ibcc_mpl_shift;
2188
dd->ipath_ibcctrl = ibc;
2189
ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2190
dd->ipath_ibcctrl);
2191
dd->ipath_f_tidtemplate(dd);
2192
}
2193
2194
ret = 0;
2195
2196
bail:
2197
return ret;
2198
}
2199
2200
int ipath_set_lid(struct ipath_devdata *dd, u32 lid, u8 lmc)
2201
{
2202
dd->ipath_lid = lid;
2203
dd->ipath_lmc = lmc;
2204
2205
dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_LIDLMC, lid |
2206
(~((1U << lmc) - 1)) << 16);
2207
2208
dev_info(&dd->pcidev->dev, "We got a lid: 0x%x\n", lid);
2209
2210
return 0;
2211
}
2212
2213
2214
/**
2215
* ipath_write_kreg_port - write a device's per-port 64-bit kernel register
2216
* @dd: the infinipath device
2217
* @regno: the register number to write
2218
* @port: the port containing the register
2219
* @value: the value to write
2220
*
2221
* Registers that vary with the chip implementation constants (port)
2222
* use this routine.
2223
*/
2224
void ipath_write_kreg_port(const struct ipath_devdata *dd, ipath_kreg regno,
2225
unsigned port, u64 value)
2226
{
2227
u16 where;
2228
2229
if (port < dd->ipath_portcnt &&
2230
(regno == dd->ipath_kregs->kr_rcvhdraddr ||
2231
regno == dd->ipath_kregs->kr_rcvhdrtailaddr))
2232
where = regno + port;
2233
else
2234
where = -1;
2235
2236
ipath_write_kreg(dd, where, value);
2237
}
2238
2239
/*
2240
* Following deal with the "obviously simple" task of overriding the state
2241
* of the LEDS, which normally indicate link physical and logical status.
2242
* The complications arise in dealing with different hardware mappings
2243
* and the board-dependent routine being called from interrupts.
2244
* and then there's the requirement to _flash_ them.
2245
*/
2246
#define LED_OVER_FREQ_SHIFT 8
2247
#define LED_OVER_FREQ_MASK (0xFF<<LED_OVER_FREQ_SHIFT)
2248
/* Below is "non-zero" to force override, but both actual LEDs are off */
2249
#define LED_OVER_BOTH_OFF (8)
2250
2251
static void ipath_run_led_override(unsigned long opaque)
2252
{
2253
struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
2254
int timeoff;
2255
int pidx;
2256
u64 lstate, ltstate, val;
2257
2258
if (!(dd->ipath_flags & IPATH_INITTED))
2259
return;
2260
2261
pidx = dd->ipath_led_override_phase++ & 1;
2262
dd->ipath_led_override = dd->ipath_led_override_vals[pidx];
2263
timeoff = dd->ipath_led_override_timeoff;
2264
2265
/*
2266
* below potentially restores the LED values per current status,
2267
* should also possibly setup the traffic-blink register,
2268
* but leave that to per-chip functions.
2269
*/
2270
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
2271
ltstate = ipath_ib_linktrstate(dd, val);
2272
lstate = ipath_ib_linkstate(dd, val);
2273
2274
dd->ipath_f_setextled(dd, lstate, ltstate);
2275
mod_timer(&dd->ipath_led_override_timer, jiffies + timeoff);
2276
}
2277
2278
void ipath_set_led_override(struct ipath_devdata *dd, unsigned int val)
2279
{
2280
int timeoff, freq;
2281
2282
if (!(dd->ipath_flags & IPATH_INITTED))
2283
return;
2284
2285
/* First check if we are blinking. If not, use 1HZ polling */
2286
timeoff = HZ;
2287
freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT;
2288
2289
if (freq) {
2290
/* For blink, set each phase from one nybble of val */
2291
dd->ipath_led_override_vals[0] = val & 0xF;
2292
dd->ipath_led_override_vals[1] = (val >> 4) & 0xF;
2293
timeoff = (HZ << 4)/freq;
2294
} else {
2295
/* Non-blink set both phases the same. */
2296
dd->ipath_led_override_vals[0] = val & 0xF;
2297
dd->ipath_led_override_vals[1] = val & 0xF;
2298
}
2299
dd->ipath_led_override_timeoff = timeoff;
2300
2301
/*
2302
* If the timer has not already been started, do so. Use a "quick"
2303
* timeout so the function will be called soon, to look at our request.
2304
*/
2305
if (atomic_inc_return(&dd->ipath_led_override_timer_active) == 1) {
2306
/* Need to start timer */
2307
init_timer(&dd->ipath_led_override_timer);
2308
dd->ipath_led_override_timer.function =
2309
ipath_run_led_override;
2310
dd->ipath_led_override_timer.data = (unsigned long) dd;
2311
dd->ipath_led_override_timer.expires = jiffies + 1;
2312
add_timer(&dd->ipath_led_override_timer);
2313
} else
2314
atomic_dec(&dd->ipath_led_override_timer_active);
2315
}
2316
2317
/**
2318
* ipath_shutdown_device - shut down a device
2319
* @dd: the infinipath device
2320
*
2321
* This is called to make the device quiet when we are about to
2322
* unload the driver, and also when the device is administratively
2323
* disabled. It does not free any data structures.
2324
* Everything it does has to be setup again by ipath_init_chip(dd,1)
2325
*/
2326
void ipath_shutdown_device(struct ipath_devdata *dd)
2327
{
2328
unsigned long flags;
2329
2330
ipath_dbg("Shutting down the device\n");
2331
2332
ipath_hol_up(dd); /* make sure user processes aren't suspended */
2333
2334
dd->ipath_flags |= IPATH_LINKUNK;
2335
dd->ipath_flags &= ~(IPATH_INITTED | IPATH_LINKDOWN |
2336
IPATH_LINKINIT | IPATH_LINKARMED |
2337
IPATH_LINKACTIVE);
2338
*dd->ipath_statusp &= ~(IPATH_STATUS_IB_CONF |
2339
IPATH_STATUS_IB_READY);
2340
2341
/* mask interrupts, but not errors */
2342
ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
2343
2344
dd->ipath_rcvctrl = 0;
2345
ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl,
2346
dd->ipath_rcvctrl);
2347
2348
if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
2349
teardown_sdma(dd);
2350
2351
/*
2352
* gracefully stop all sends allowing any in progress to trickle out
2353
* first.
2354
*/
2355
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
2356
dd->ipath_sendctrl = 0;
2357
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl);
2358
/* flush it */
2359
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
2360
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
2361
2362
/*
2363
* enough for anything that's going to trickle out to have actually
2364
* done so.
2365
*/
2366
udelay(5);
2367
2368
dd->ipath_f_setextled(dd, 0, 0); /* make sure LEDs are off */
2369
2370
ipath_set_ib_lstate(dd, 0, INFINIPATH_IBCC_LINKINITCMD_DISABLE);
2371
ipath_cancel_sends(dd, 0);
2372
2373
/*
2374
* we are shutting down, so tell components that care. We don't do
2375
* this on just a link state change, much like ethernet, a cable
2376
* unplug, etc. doesn't change driver state
2377
*/
2378
signal_ib_event(dd, IB_EVENT_PORT_ERR);
2379
2380
/* disable IBC */
2381
dd->ipath_control &= ~INFINIPATH_C_LINKENABLE;
2382
ipath_write_kreg(dd, dd->ipath_kregs->kr_control,
2383
dd->ipath_control | INFINIPATH_C_FREEZEMODE);
2384
2385
/*
2386
* clear SerdesEnable and turn the leds off; do this here because
2387
* we are unloading, so don't count on interrupts to move along
2388
* Turn the LEDs off explicitly for the same reason.
2389
*/
2390
dd->ipath_f_quiet_serdes(dd);
2391
2392
/* stop all the timers that might still be running */
2393
del_timer_sync(&dd->ipath_hol_timer);
2394
if (dd->ipath_stats_timer_active) {
2395
del_timer_sync(&dd->ipath_stats_timer);
2396
dd->ipath_stats_timer_active = 0;
2397
}
2398
if (dd->ipath_intrchk_timer.data) {
2399
del_timer_sync(&dd->ipath_intrchk_timer);
2400
dd->ipath_intrchk_timer.data = 0;
2401
}
2402
if (atomic_read(&dd->ipath_led_override_timer_active)) {
2403
del_timer_sync(&dd->ipath_led_override_timer);
2404
atomic_set(&dd->ipath_led_override_timer_active, 0);
2405
}
2406
2407
/*
2408
* clear all interrupts and errors, so that the next time the driver
2409
* is loaded or device is enabled, we know that whatever is set
2410
* happened while we were unloaded
2411
*/
2412
ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear,
2413
~0ULL & ~INFINIPATH_HWE_MEMBISTFAILED);
2414
ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear, -1LL);
2415
ipath_write_kreg(dd, dd->ipath_kregs->kr_intclear, -1LL);
2416
2417
ipath_cdbg(VERBOSE, "Flush time and errors to EEPROM\n");
2418
ipath_update_eeprom_log(dd);
2419
}
2420
2421
/**
2422
* ipath_free_pddata - free a port's allocated data
2423
* @dd: the infinipath device
2424
* @pd: the portdata structure
2425
*
2426
* free up any allocated data for a port
2427
* This should not touch anything that would affect a simultaneous
2428
* re-allocation of port data, because it is called after ipath_mutex
2429
* is released (and can be called from reinit as well).
2430
* It should never change any chip state, or global driver state.
2431
* (The only exception to global state is freeing the port0 port0_skbs.)
2432
*/
2433
void ipath_free_pddata(struct ipath_devdata *dd, struct ipath_portdata *pd)
2434
{
2435
if (!pd)
2436
return;
2437
2438
if (pd->port_rcvhdrq) {
2439
ipath_cdbg(VERBOSE, "free closed port %d rcvhdrq @ %p "
2440
"(size=%lu)\n", pd->port_port, pd->port_rcvhdrq,
2441
(unsigned long) pd->port_rcvhdrq_size);
2442
dma_free_coherent(&dd->pcidev->dev, pd->port_rcvhdrq_size,
2443
pd->port_rcvhdrq, pd->port_rcvhdrq_phys);
2444
pd->port_rcvhdrq = NULL;
2445
if (pd->port_rcvhdrtail_kvaddr) {
2446
dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
2447
pd->port_rcvhdrtail_kvaddr,
2448
pd->port_rcvhdrqtailaddr_phys);
2449
pd->port_rcvhdrtail_kvaddr = NULL;
2450
}
2451
}
2452
if (pd->port_port && pd->port_rcvegrbuf) {
2453
unsigned e;
2454
2455
for (e = 0; e < pd->port_rcvegrbuf_chunks; e++) {
2456
void *base = pd->port_rcvegrbuf[e];
2457
size_t size = pd->port_rcvegrbuf_size;
2458
2459
ipath_cdbg(VERBOSE, "egrbuf free(%p, %lu), "
2460
"chunk %u/%u\n", base,
2461
(unsigned long) size,
2462
e, pd->port_rcvegrbuf_chunks);
2463
dma_free_coherent(&dd->pcidev->dev, size,
2464
base, pd->port_rcvegrbuf_phys[e]);
2465
}
2466
kfree(pd->port_rcvegrbuf);
2467
pd->port_rcvegrbuf = NULL;
2468
kfree(pd->port_rcvegrbuf_phys);
2469
pd->port_rcvegrbuf_phys = NULL;
2470
pd->port_rcvegrbuf_chunks = 0;
2471
} else if (pd->port_port == 0 && dd->ipath_port0_skbinfo) {
2472
unsigned e;
2473
struct ipath_skbinfo *skbinfo = dd->ipath_port0_skbinfo;
2474
2475
dd->ipath_port0_skbinfo = NULL;
2476
ipath_cdbg(VERBOSE, "free closed port %d "
2477
"ipath_port0_skbinfo @ %p\n", pd->port_port,
2478
skbinfo);
2479
for (e = 0; e < dd->ipath_p0_rcvegrcnt; e++)
2480
if (skbinfo[e].skb) {
2481
pci_unmap_single(dd->pcidev, skbinfo[e].phys,
2482
dd->ipath_ibmaxlen,
2483
PCI_DMA_FROMDEVICE);
2484
dev_kfree_skb(skbinfo[e].skb);
2485
}
2486
vfree(skbinfo);
2487
}
2488
kfree(pd->port_tid_pg_list);
2489
vfree(pd->subport_uregbase);
2490
vfree(pd->subport_rcvegrbuf);
2491
vfree(pd->subport_rcvhdr_base);
2492
kfree(pd);
2493
}
2494
2495
static int __init infinipath_init(void)
2496
{
2497
int ret;
2498
2499
if (ipath_debug & __IPATH_DBG)
2500
printk(KERN_INFO DRIVER_LOAD_MSG "%s", ib_ipath_version);
2501
2502
/*
2503
* These must be called before the driver is registered with
2504
* the PCI subsystem.
2505
*/
2506
idr_init(&unit_table);
2507
if (!idr_pre_get(&unit_table, GFP_KERNEL)) {
2508
printk(KERN_ERR IPATH_DRV_NAME ": idr_pre_get() failed\n");
2509
ret = -ENOMEM;
2510
goto bail;
2511
}
2512
2513
ret = pci_register_driver(&ipath_driver);
2514
if (ret < 0) {
2515
printk(KERN_ERR IPATH_DRV_NAME
2516
": Unable to register driver: error %d\n", -ret);
2517
goto bail_unit;
2518
}
2519
2520
ret = ipath_init_ipathfs();
2521
if (ret < 0) {
2522
printk(KERN_ERR IPATH_DRV_NAME ": Unable to create "
2523
"ipathfs: error %d\n", -ret);
2524
goto bail_pci;
2525
}
2526
2527
goto bail;
2528
2529
bail_pci:
2530
pci_unregister_driver(&ipath_driver);
2531
2532
bail_unit:
2533
idr_destroy(&unit_table);
2534
2535
bail:
2536
return ret;
2537
}
2538
2539
static void __exit infinipath_cleanup(void)
2540
{
2541
ipath_exit_ipathfs();
2542
2543
ipath_cdbg(VERBOSE, "Unregistering pci driver\n");
2544
pci_unregister_driver(&ipath_driver);
2545
2546
idr_destroy(&unit_table);
2547
}
2548
2549
/**
2550
* ipath_reset_device - reset the chip if possible
2551
* @unit: the device to reset
2552
*
2553
* Whether or not reset is successful, we attempt to re-initialize the chip
2554
* (that is, much like a driver unload/reload). We clear the INITTED flag
2555
* so that the various entry points will fail until we reinitialize. For
2556
* now, we only allow this if no user ports are open that use chip resources
2557
*/
2558
int ipath_reset_device(int unit)
2559
{
2560
int ret, i;
2561
struct ipath_devdata *dd = ipath_lookup(unit);
2562
unsigned long flags;
2563
2564
if (!dd) {
2565
ret = -ENODEV;
2566
goto bail;
2567
}
2568
2569
if (atomic_read(&dd->ipath_led_override_timer_active)) {
2570
/* Need to stop LED timer, _then_ shut off LEDs */
2571
del_timer_sync(&dd->ipath_led_override_timer);
2572
atomic_set(&dd->ipath_led_override_timer_active, 0);
2573
}
2574
2575
/* Shut off LEDs after we are sure timer is not running */
2576
dd->ipath_led_override = LED_OVER_BOTH_OFF;
2577
dd->ipath_f_setextled(dd, 0, 0);
2578
2579
dev_info(&dd->pcidev->dev, "Reset on unit %u requested\n", unit);
2580
2581
if (!dd->ipath_kregbase || !(dd->ipath_flags & IPATH_PRESENT)) {
2582
dev_info(&dd->pcidev->dev, "Invalid unit number %u or "
2583
"not initialized or not present\n", unit);
2584
ret = -ENXIO;
2585
goto bail;
2586
}
2587
2588
spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
2589
if (dd->ipath_pd)
2590
for (i = 1; i < dd->ipath_cfgports; i++) {
2591
if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt)
2592
continue;
2593
spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
2594
ipath_dbg("unit %u port %d is in use "
2595
"(PID %u cmd %s), can't reset\n",
2596
unit, i,
2597
pid_nr(dd->ipath_pd[i]->port_pid),
2598
dd->ipath_pd[i]->port_comm);
2599
ret = -EBUSY;
2600
goto bail;
2601
}
2602
spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
2603
2604
if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
2605
teardown_sdma(dd);
2606
2607
dd->ipath_flags &= ~IPATH_INITTED;
2608
ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
2609
ret = dd->ipath_f_reset(dd);
2610
if (ret == 1) {
2611
ipath_dbg("Reinitializing unit %u after reset attempt\n",
2612
unit);
2613
ret = ipath_init_chip(dd, 1);
2614
} else
2615
ret = -EAGAIN;
2616
if (ret)
2617
ipath_dev_err(dd, "Reinitialize unit %u after "
2618
"reset failed with %d\n", unit, ret);
2619
else
2620
dev_info(&dd->pcidev->dev, "Reinitialized unit %u after "
2621
"resetting\n", unit);
2622
2623
bail:
2624
return ret;
2625
}
2626
2627
/*
2628
* send a signal to all the processes that have the driver open
2629
* through the normal interfaces (i.e., everything other than diags
2630
* interface). Returns number of signalled processes.
2631
*/
2632
static int ipath_signal_procs(struct ipath_devdata *dd, int sig)
2633
{
2634
int i, sub, any = 0;
2635
struct pid *pid;
2636
unsigned long flags;
2637
2638
if (!dd->ipath_pd)
2639
return 0;
2640
2641
spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
2642
for (i = 1; i < dd->ipath_cfgports; i++) {
2643
if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt)
2644
continue;
2645
pid = dd->ipath_pd[i]->port_pid;
2646
if (!pid)
2647
continue;
2648
2649
dev_info(&dd->pcidev->dev, "context %d in use "
2650
"(PID %u), sending signal %d\n",
2651
i, pid_nr(pid), sig);
2652
kill_pid(pid, sig, 1);
2653
any++;
2654
for (sub = 0; sub < INFINIPATH_MAX_SUBPORT; sub++) {
2655
pid = dd->ipath_pd[i]->port_subpid[sub];
2656
if (!pid)
2657
continue;
2658
dev_info(&dd->pcidev->dev, "sub-context "
2659
"%d:%d in use (PID %u), sending "
2660
"signal %d\n", i, sub, pid_nr(pid), sig);
2661
kill_pid(pid, sig, 1);
2662
any++;
2663
}
2664
}
2665
spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
2666
return any;
2667
}
2668
2669
static void ipath_hol_signal_down(struct ipath_devdata *dd)
2670
{
2671
if (ipath_signal_procs(dd, SIGSTOP))
2672
ipath_dbg("Stopped some processes\n");
2673
ipath_cancel_sends(dd, 1);
2674
}
2675
2676
2677
static void ipath_hol_signal_up(struct ipath_devdata *dd)
2678
{
2679
if (ipath_signal_procs(dd, SIGCONT))
2680
ipath_dbg("Continued some processes\n");
2681
}
2682
2683
/*
2684
* link is down, stop any users processes, and flush pending sends
2685
* to prevent HoL blocking, then start the HoL timer that
2686
* periodically continues, then stop procs, so they can detect
2687
* link down if they want, and do something about it.
2688
* Timer may already be running, so use mod_timer, not add_timer.
2689
*/
2690
void ipath_hol_down(struct ipath_devdata *dd)
2691
{
2692
dd->ipath_hol_state = IPATH_HOL_DOWN;
2693
ipath_hol_signal_down(dd);
2694
dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
2695
dd->ipath_hol_timer.expires = jiffies +
2696
msecs_to_jiffies(ipath_hol_timeout_ms);
2697
mod_timer(&dd->ipath_hol_timer, dd->ipath_hol_timer.expires);
2698
}
2699
2700
/*
2701
* link is up, continue any user processes, and ensure timer
2702
* is a nop, if running. Let timer keep running, if set; it
2703
* will nop when it sees the link is up
2704
*/
2705
void ipath_hol_up(struct ipath_devdata *dd)
2706
{
2707
ipath_hol_signal_up(dd);
2708
dd->ipath_hol_state = IPATH_HOL_UP;
2709
}
2710
2711
/*
2712
* toggle the running/not running state of user proceses
2713
* to prevent HoL blocking on chip resources, but still allow
2714
* user processes to do link down special case handling.
2715
* Should only be called via the timer
2716
*/
2717
void ipath_hol_event(unsigned long opaque)
2718
{
2719
struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
2720
2721
if (dd->ipath_hol_next == IPATH_HOL_DOWNSTOP
2722
&& dd->ipath_hol_state != IPATH_HOL_UP) {
2723
dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
2724
ipath_dbg("Stopping processes\n");
2725
ipath_hol_signal_down(dd);
2726
} else { /* may do "extra" if also in ipath_hol_up() */
2727
dd->ipath_hol_next = IPATH_HOL_DOWNSTOP;
2728
ipath_dbg("Continuing processes\n");
2729
ipath_hol_signal_up(dd);
2730
}
2731
if (dd->ipath_hol_state == IPATH_HOL_UP)
2732
ipath_dbg("link's up, don't resched timer\n");
2733
else {
2734
dd->ipath_hol_timer.expires = jiffies +
2735
msecs_to_jiffies(ipath_hol_timeout_ms);
2736
mod_timer(&dd->ipath_hol_timer,
2737
dd->ipath_hol_timer.expires);
2738
}
2739
}
2740
2741
int ipath_set_rx_pol_inv(struct ipath_devdata *dd, u8 new_pol_inv)
2742
{
2743
u64 val;
2744
2745
if (new_pol_inv > INFINIPATH_XGXS_RX_POL_MASK)
2746
return -1;
2747
if (dd->ipath_rx_pol_inv != new_pol_inv) {
2748
dd->ipath_rx_pol_inv = new_pol_inv;
2749
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig);
2750
val &= ~(INFINIPATH_XGXS_RX_POL_MASK <<
2751
INFINIPATH_XGXS_RX_POL_SHIFT);
2752
val |= ((u64)dd->ipath_rx_pol_inv) <<
2753
INFINIPATH_XGXS_RX_POL_SHIFT;
2754
ipath_write_kreg(dd, dd->ipath_kregs->kr_xgxsconfig, val);
2755
}
2756
return 0;
2757
}
2758
2759
/*
2760
* Disable and enable the armlaunch error. Used for PIO bandwidth testing on
2761
* the 7220, which is count-based, rather than trigger-based. Safe for the
2762
* driver check, since it's at init. Not completely safe when used for
2763
* user-mode checking, since some error checking can be lost, but not
2764
* particularly risky, and only has problematic side-effects in the face of
2765
* very buggy user code. There is no reference counting, but that's also
2766
* fine, given the intended use.
2767
*/
2768
void ipath_enable_armlaunch(struct ipath_devdata *dd)
2769
{
2770
dd->ipath_lasterror &= ~INFINIPATH_E_SPIOARMLAUNCH;
2771
ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear,
2772
INFINIPATH_E_SPIOARMLAUNCH);
2773
dd->ipath_errormask |= INFINIPATH_E_SPIOARMLAUNCH;
2774
ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
2775
dd->ipath_errormask);
2776
}
2777
2778
void ipath_disable_armlaunch(struct ipath_devdata *dd)
2779
{
2780
/* so don't re-enable if already set */
2781
dd->ipath_maskederrs &= ~INFINIPATH_E_SPIOARMLAUNCH;
2782
dd->ipath_errormask &= ~INFINIPATH_E_SPIOARMLAUNCH;
2783
ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
2784
dd->ipath_errormask);
2785
}
2786
2787
module_init(infinipath_init);
2788
module_exit(infinipath_cleanup);
2789
2790