Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/infiniband/hw/ipath/ipath_eeprom.c
15112 views
1
/*
2
* Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
3
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
4
*
5
* This software is available to you under a choice of one of two
6
* licenses. You may choose to be licensed under the terms of the GNU
7
* General Public License (GPL) Version 2, available from the file
8
* COPYING in the main directory of this source tree, or the
9
* OpenIB.org BSD license below:
10
*
11
* Redistribution and use in source and binary forms, with or
12
* without modification, are permitted provided that the following
13
* conditions are met:
14
*
15
* - Redistributions of source code must retain the above
16
* copyright notice, this list of conditions and the following
17
* disclaimer.
18
*
19
* - Redistributions in binary form must reproduce the above
20
* copyright notice, this list of conditions and the following
21
* disclaimer in the documentation and/or other materials
22
* provided with the distribution.
23
*
24
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31
* SOFTWARE.
32
*/
33
34
#include <linux/delay.h>
35
#include <linux/pci.h>
36
#include <linux/vmalloc.h>
37
38
#include "ipath_kernel.h"
39
40
/*
41
* InfiniPath I2C driver for a serial eeprom. This is not a generic
42
* I2C interface. For a start, the device we're using (Atmel AT24C11)
43
* doesn't work like a regular I2C device. It looks like one
44
* electrically, but not logically. Normal I2C devices have a single
45
* 7-bit or 10-bit I2C address that they respond to. Valid 7-bit
46
* addresses range from 0x03 to 0x77. Addresses 0x00 to 0x02 and 0x78
47
* to 0x7F are special reserved addresses (e.g. 0x00 is the "general
48
* call" address.) The Atmel device, on the other hand, responds to ALL
49
* 7-bit addresses. It's designed to be the only device on a given I2C
50
* bus. A 7-bit address corresponds to the memory address within the
51
* Atmel device itself.
52
*
53
* Also, the timing requirements mean more than simple software
54
* bitbanging, with readbacks from chip to ensure timing (simple udelay
55
* is not enough).
56
*
57
* This all means that accessing the device is specialized enough
58
* that using the standard kernel I2C bitbanging interface would be
59
* impossible. For example, the core I2C eeprom driver expects to find
60
* a device at one or more of a limited set of addresses only. It doesn't
61
* allow writing to an eeprom. It also doesn't provide any means of
62
* accessing eeprom contents from within the kernel, only via sysfs.
63
*/
64
65
/* Added functionality for IBA7220-based cards */
66
#define IPATH_EEPROM_DEV_V1 0xA0
67
#define IPATH_EEPROM_DEV_V2 0xA2
68
#define IPATH_TEMP_DEV 0x98
69
#define IPATH_BAD_DEV (IPATH_EEPROM_DEV_V2+2)
70
#define IPATH_NO_DEV (0xFF)
71
72
/*
73
* The number of I2C chains is proliferating. Table below brings
74
* some order to the madness. The basic principle is that the
75
* table is scanned from the top, and a "probe" is made to the
76
* device probe_dev. If that succeeds, the chain is considered
77
* to be of that type, and dd->i2c_chain_type is set to the index+1
78
* of the entry.
79
* The +1 is so static initialization can mean "unknown, do probe."
80
*/
81
static struct i2c_chain_desc {
82
u8 probe_dev; /* If seen at probe, chain is this type */
83
u8 eeprom_dev; /* Dev addr (if any) for EEPROM */
84
u8 temp_dev; /* Dev Addr (if any) for Temp-sense */
85
} i2c_chains[] = {
86
{ IPATH_BAD_DEV, IPATH_NO_DEV, IPATH_NO_DEV }, /* pre-iba7220 bds */
87
{ IPATH_EEPROM_DEV_V1, IPATH_EEPROM_DEV_V1, IPATH_TEMP_DEV}, /* V1 */
88
{ IPATH_EEPROM_DEV_V2, IPATH_EEPROM_DEV_V2, IPATH_TEMP_DEV}, /* V2 */
89
{ IPATH_NO_DEV }
90
};
91
92
enum i2c_type {
93
i2c_line_scl = 0,
94
i2c_line_sda
95
};
96
97
enum i2c_state {
98
i2c_line_low = 0,
99
i2c_line_high
100
};
101
102
#define READ_CMD 1
103
#define WRITE_CMD 0
104
105
/**
106
* i2c_gpio_set - set a GPIO line
107
* @dd: the infinipath device
108
* @line: the line to set
109
* @new_line_state: the state to set
110
*
111
* Returns 0 if the line was set to the new state successfully, non-zero
112
* on error.
113
*/
114
static int i2c_gpio_set(struct ipath_devdata *dd,
115
enum i2c_type line,
116
enum i2c_state new_line_state)
117
{
118
u64 out_mask, dir_mask, *gpioval;
119
unsigned long flags = 0;
120
121
gpioval = &dd->ipath_gpio_out;
122
123
if (line == i2c_line_scl) {
124
dir_mask = dd->ipath_gpio_scl;
125
out_mask = (1UL << dd->ipath_gpio_scl_num);
126
} else {
127
dir_mask = dd->ipath_gpio_sda;
128
out_mask = (1UL << dd->ipath_gpio_sda_num);
129
}
130
131
spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
132
if (new_line_state == i2c_line_high) {
133
/* tri-state the output rather than force high */
134
dd->ipath_extctrl &= ~dir_mask;
135
} else {
136
/* config line to be an output */
137
dd->ipath_extctrl |= dir_mask;
138
}
139
ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);
140
141
/* set output as well (no real verify) */
142
if (new_line_state == i2c_line_high)
143
*gpioval |= out_mask;
144
else
145
*gpioval &= ~out_mask;
146
147
ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_out, *gpioval);
148
spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
149
150
return 0;
151
}
152
153
/**
154
* i2c_gpio_get - get a GPIO line state
155
* @dd: the infinipath device
156
* @line: the line to get
157
* @curr_statep: where to put the line state
158
*
159
* Returns 0 if the line was set to the new state successfully, non-zero
160
* on error. curr_state is not set on error.
161
*/
162
static int i2c_gpio_get(struct ipath_devdata *dd,
163
enum i2c_type line,
164
enum i2c_state *curr_statep)
165
{
166
u64 read_val, mask;
167
int ret;
168
unsigned long flags = 0;
169
170
/* check args */
171
if (curr_statep == NULL) {
172
ret = 1;
173
goto bail;
174
}
175
176
/* config line to be an input */
177
if (line == i2c_line_scl)
178
mask = dd->ipath_gpio_scl;
179
else
180
mask = dd->ipath_gpio_sda;
181
182
spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
183
dd->ipath_extctrl &= ~mask;
184
ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);
185
/*
186
* Below is very unlikely to reflect true input state if Output
187
* Enable actually changed.
188
*/
189
read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus);
190
spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
191
192
if (read_val & mask)
193
*curr_statep = i2c_line_high;
194
else
195
*curr_statep = i2c_line_low;
196
197
ret = 0;
198
199
bail:
200
return ret;
201
}
202
203
/**
204
* i2c_wait_for_writes - wait for a write
205
* @dd: the infinipath device
206
*
207
* We use this instead of udelay directly, so we can make sure
208
* that previous register writes have been flushed all the way
209
* to the chip. Since we are delaying anyway, the cost doesn't
210
* hurt, and makes the bit twiddling more regular
211
*/
212
static void i2c_wait_for_writes(struct ipath_devdata *dd)
213
{
214
(void)ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
215
rmb();
216
}
217
218
static void scl_out(struct ipath_devdata *dd, u8 bit)
219
{
220
udelay(1);
221
i2c_gpio_set(dd, i2c_line_scl, bit ? i2c_line_high : i2c_line_low);
222
223
i2c_wait_for_writes(dd);
224
}
225
226
static void sda_out(struct ipath_devdata *dd, u8 bit)
227
{
228
i2c_gpio_set(dd, i2c_line_sda, bit ? i2c_line_high : i2c_line_low);
229
230
i2c_wait_for_writes(dd);
231
}
232
233
static u8 sda_in(struct ipath_devdata *dd, int wait)
234
{
235
enum i2c_state bit;
236
237
if (i2c_gpio_get(dd, i2c_line_sda, &bit))
238
ipath_dbg("get bit failed!\n");
239
240
if (wait)
241
i2c_wait_for_writes(dd);
242
243
return bit == i2c_line_high ? 1U : 0;
244
}
245
246
/**
247
* i2c_ackrcv - see if ack following write is true
248
* @dd: the infinipath device
249
*/
250
static int i2c_ackrcv(struct ipath_devdata *dd)
251
{
252
u8 ack_received;
253
254
/* AT ENTRY SCL = LOW */
255
/* change direction, ignore data */
256
ack_received = sda_in(dd, 1);
257
scl_out(dd, i2c_line_high);
258
ack_received = sda_in(dd, 1) == 0;
259
scl_out(dd, i2c_line_low);
260
return ack_received;
261
}
262
263
/**
264
* rd_byte - read a byte, leaving ACK, STOP, etc up to caller
265
* @dd: the infinipath device
266
*
267
* Returns byte shifted out of device
268
*/
269
static int rd_byte(struct ipath_devdata *dd)
270
{
271
int bit_cntr, data;
272
273
data = 0;
274
275
for (bit_cntr = 7; bit_cntr >= 0; --bit_cntr) {
276
data <<= 1;
277
scl_out(dd, i2c_line_high);
278
data |= sda_in(dd, 0);
279
scl_out(dd, i2c_line_low);
280
}
281
return data;
282
}
283
284
/**
285
* wr_byte - write a byte, one bit at a time
286
* @dd: the infinipath device
287
* @data: the byte to write
288
*
289
* Returns 0 if we got the following ack, otherwise 1
290
*/
291
static int wr_byte(struct ipath_devdata *dd, u8 data)
292
{
293
int bit_cntr;
294
u8 bit;
295
296
for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) {
297
bit = (data >> bit_cntr) & 1;
298
sda_out(dd, bit);
299
scl_out(dd, i2c_line_high);
300
scl_out(dd, i2c_line_low);
301
}
302
return (!i2c_ackrcv(dd)) ? 1 : 0;
303
}
304
305
static void send_ack(struct ipath_devdata *dd)
306
{
307
sda_out(dd, i2c_line_low);
308
scl_out(dd, i2c_line_high);
309
scl_out(dd, i2c_line_low);
310
sda_out(dd, i2c_line_high);
311
}
312
313
/**
314
* i2c_startcmd - transmit the start condition, followed by address/cmd
315
* @dd: the infinipath device
316
* @offset_dir: direction byte
317
*
318
* (both clock/data high, clock high, data low while clock is high)
319
*/
320
static int i2c_startcmd(struct ipath_devdata *dd, u8 offset_dir)
321
{
322
int res;
323
324
/* issue start sequence */
325
sda_out(dd, i2c_line_high);
326
scl_out(dd, i2c_line_high);
327
sda_out(dd, i2c_line_low);
328
scl_out(dd, i2c_line_low);
329
330
/* issue length and direction byte */
331
res = wr_byte(dd, offset_dir);
332
333
if (res)
334
ipath_cdbg(VERBOSE, "No ack to complete start\n");
335
336
return res;
337
}
338
339
/**
340
* stop_cmd - transmit the stop condition
341
* @dd: the infinipath device
342
*
343
* (both clock/data low, clock high, data high while clock is high)
344
*/
345
static void stop_cmd(struct ipath_devdata *dd)
346
{
347
scl_out(dd, i2c_line_low);
348
sda_out(dd, i2c_line_low);
349
scl_out(dd, i2c_line_high);
350
sda_out(dd, i2c_line_high);
351
udelay(2);
352
}
353
354
/**
355
* eeprom_reset - reset I2C communication
356
* @dd: the infinipath device
357
*/
358
359
static int eeprom_reset(struct ipath_devdata *dd)
360
{
361
int clock_cycles_left = 9;
362
u64 *gpioval = &dd->ipath_gpio_out;
363
int ret;
364
unsigned long flags;
365
366
spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
367
/* Make sure shadows are consistent */
368
dd->ipath_extctrl = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl);
369
*gpioval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_gpio_out);
370
spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
371
372
ipath_cdbg(VERBOSE, "Resetting i2c eeprom; initial gpioout reg "
373
"is %llx\n", (unsigned long long) *gpioval);
374
375
/*
376
* This is to get the i2c into a known state, by first going low,
377
* then tristate sda (and then tristate scl as first thing
378
* in loop)
379
*/
380
scl_out(dd, i2c_line_low);
381
sda_out(dd, i2c_line_high);
382
383
/* Clock up to 9 cycles looking for SDA hi, then issue START and STOP */
384
while (clock_cycles_left--) {
385
scl_out(dd, i2c_line_high);
386
387
/* SDA seen high, issue START by dropping it while SCL high */
388
if (sda_in(dd, 0)) {
389
sda_out(dd, i2c_line_low);
390
scl_out(dd, i2c_line_low);
391
/* ATMEL spec says must be followed by STOP. */
392
scl_out(dd, i2c_line_high);
393
sda_out(dd, i2c_line_high);
394
ret = 0;
395
goto bail;
396
}
397
398
scl_out(dd, i2c_line_low);
399
}
400
401
ret = 1;
402
403
bail:
404
return ret;
405
}
406
407
/*
408
* Probe for I2C device at specified address. Returns 0 for "success"
409
* to match rest of this file.
410
* Leave bus in "reasonable" state for further commands.
411
*/
412
static int i2c_probe(struct ipath_devdata *dd, int devaddr)
413
{
414
int ret = 0;
415
416
ret = eeprom_reset(dd);
417
if (ret) {
418
ipath_dev_err(dd, "Failed reset probing device 0x%02X\n",
419
devaddr);
420
return ret;
421
}
422
/*
423
* Reset no longer leaves bus in start condition, so normal
424
* i2c_startcmd() will do.
425
*/
426
ret = i2c_startcmd(dd, devaddr | READ_CMD);
427
if (ret)
428
ipath_cdbg(VERBOSE, "Failed startcmd for device 0x%02X\n",
429
devaddr);
430
else {
431
/*
432
* Device did respond. Complete a single-byte read, because some
433
* devices apparently cannot handle STOP immediately after they
434
* ACK the start-cmd.
435
*/
436
int data;
437
data = rd_byte(dd);
438
stop_cmd(dd);
439
ipath_cdbg(VERBOSE, "Response from device 0x%02X\n", devaddr);
440
}
441
return ret;
442
}
443
444
/*
445
* Returns the "i2c type". This is a pointer to a struct that describes
446
* the I2C chain on this board. To minimize impact on struct ipath_devdata,
447
* the (small integer) index into the table is actually memoized, rather
448
* then the pointer.
449
* Memoization is because the type is determined on the first call per chip.
450
* An alternative would be to move type determination to early
451
* init code.
452
*/
453
static struct i2c_chain_desc *ipath_i2c_type(struct ipath_devdata *dd)
454
{
455
int idx;
456
457
/* Get memoized index, from previous successful probes */
458
idx = dd->ipath_i2c_chain_type - 1;
459
if (idx >= 0 && idx < (ARRAY_SIZE(i2c_chains) - 1))
460
goto done;
461
462
idx = 0;
463
while (i2c_chains[idx].probe_dev != IPATH_NO_DEV) {
464
/* if probe succeeds, this is type */
465
if (!i2c_probe(dd, i2c_chains[idx].probe_dev))
466
break;
467
++idx;
468
}
469
470
/*
471
* Old EEPROM (first entry) may require a reset after probe,
472
* rather than being able to "start" after "stop"
473
*/
474
if (idx == 0)
475
eeprom_reset(dd);
476
477
if (i2c_chains[idx].probe_dev == IPATH_NO_DEV)
478
idx = -1;
479
else
480
dd->ipath_i2c_chain_type = idx + 1;
481
done:
482
return (idx >= 0) ? i2c_chains + idx : NULL;
483
}
484
485
static int ipath_eeprom_internal_read(struct ipath_devdata *dd,
486
u8 eeprom_offset, void *buffer, int len)
487
{
488
int ret;
489
struct i2c_chain_desc *icd;
490
u8 *bp = buffer;
491
492
ret = 1;
493
icd = ipath_i2c_type(dd);
494
if (!icd)
495
goto bail;
496
497
if (icd->eeprom_dev == IPATH_NO_DEV) {
498
/* legacy not-really-I2C */
499
ipath_cdbg(VERBOSE, "Start command only address\n");
500
eeprom_offset = (eeprom_offset << 1) | READ_CMD;
501
ret = i2c_startcmd(dd, eeprom_offset);
502
} else {
503
/* Actual I2C */
504
ipath_cdbg(VERBOSE, "Start command uses devaddr\n");
505
if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) {
506
ipath_dbg("Failed EEPROM startcmd\n");
507
stop_cmd(dd);
508
ret = 1;
509
goto bail;
510
}
511
ret = wr_byte(dd, eeprom_offset);
512
stop_cmd(dd);
513
if (ret) {
514
ipath_dev_err(dd, "Failed to write EEPROM address\n");
515
ret = 1;
516
goto bail;
517
}
518
ret = i2c_startcmd(dd, icd->eeprom_dev | READ_CMD);
519
}
520
if (ret) {
521
ipath_dbg("Failed startcmd for dev %02X\n", icd->eeprom_dev);
522
stop_cmd(dd);
523
ret = 1;
524
goto bail;
525
}
526
527
/*
528
* eeprom keeps clocking data out as long as we ack, automatically
529
* incrementing the address.
530
*/
531
while (len-- > 0) {
532
/* get and store data */
533
*bp++ = rd_byte(dd);
534
/* send ack if not the last byte */
535
if (len)
536
send_ack(dd);
537
}
538
539
stop_cmd(dd);
540
541
ret = 0;
542
543
bail:
544
return ret;
545
}
546
547
static int ipath_eeprom_internal_write(struct ipath_devdata *dd, u8 eeprom_offset,
548
const void *buffer, int len)
549
{
550
int sub_len;
551
const u8 *bp = buffer;
552
int max_wait_time, i;
553
int ret;
554
struct i2c_chain_desc *icd;
555
556
ret = 1;
557
icd = ipath_i2c_type(dd);
558
if (!icd)
559
goto bail;
560
561
while (len > 0) {
562
if (icd->eeprom_dev == IPATH_NO_DEV) {
563
if (i2c_startcmd(dd,
564
(eeprom_offset << 1) | WRITE_CMD)) {
565
ipath_dbg("Failed to start cmd offset %u\n",
566
eeprom_offset);
567
goto failed_write;
568
}
569
} else {
570
/* Real I2C */
571
if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) {
572
ipath_dbg("Failed EEPROM startcmd\n");
573
goto failed_write;
574
}
575
ret = wr_byte(dd, eeprom_offset);
576
if (ret) {
577
ipath_dev_err(dd, "Failed to write EEPROM "
578
"address\n");
579
goto failed_write;
580
}
581
}
582
583
sub_len = min(len, 4);
584
eeprom_offset += sub_len;
585
len -= sub_len;
586
587
for (i = 0; i < sub_len; i++) {
588
if (wr_byte(dd, *bp++)) {
589
ipath_dbg("no ack after byte %u/%u (%u "
590
"total remain)\n", i, sub_len,
591
len + sub_len - i);
592
goto failed_write;
593
}
594
}
595
596
stop_cmd(dd);
597
598
/*
599
* wait for write complete by waiting for a successful
600
* read (the chip replies with a zero after the write
601
* cmd completes, and before it writes to the eeprom.
602
* The startcmd for the read will fail the ack until
603
* the writes have completed. We do this inline to avoid
604
* the debug prints that are in the real read routine
605
* if the startcmd fails.
606
* We also use the proper device address, so it doesn't matter
607
* whether we have real eeprom_dev. legacy likes any address.
608
*/
609
max_wait_time = 100;
610
while (i2c_startcmd(dd, icd->eeprom_dev | READ_CMD)) {
611
stop_cmd(dd);
612
if (!--max_wait_time) {
613
ipath_dbg("Did not get successful read to "
614
"complete write\n");
615
goto failed_write;
616
}
617
}
618
/* now read (and ignore) the resulting byte */
619
rd_byte(dd);
620
stop_cmd(dd);
621
}
622
623
ret = 0;
624
goto bail;
625
626
failed_write:
627
stop_cmd(dd);
628
ret = 1;
629
630
bail:
631
return ret;
632
}
633
634
/**
635
* ipath_eeprom_read - receives bytes from the eeprom via I2C
636
* @dd: the infinipath device
637
* @eeprom_offset: address to read from
638
* @buffer: where to store result
639
* @len: number of bytes to receive
640
*/
641
int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset,
642
void *buff, int len)
643
{
644
int ret;
645
646
ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
647
if (!ret) {
648
ret = ipath_eeprom_internal_read(dd, eeprom_offset, buff, len);
649
mutex_unlock(&dd->ipath_eep_lock);
650
}
651
652
return ret;
653
}
654
655
/**
656
* ipath_eeprom_write - writes data to the eeprom via I2C
657
* @dd: the infinipath device
658
* @eeprom_offset: where to place data
659
* @buffer: data to write
660
* @len: number of bytes to write
661
*/
662
int ipath_eeprom_write(struct ipath_devdata *dd, u8 eeprom_offset,
663
const void *buff, int len)
664
{
665
int ret;
666
667
ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
668
if (!ret) {
669
ret = ipath_eeprom_internal_write(dd, eeprom_offset, buff, len);
670
mutex_unlock(&dd->ipath_eep_lock);
671
}
672
673
return ret;
674
}
675
676
static u8 flash_csum(struct ipath_flash *ifp, int adjust)
677
{
678
u8 *ip = (u8 *) ifp;
679
u8 csum = 0, len;
680
681
/*
682
* Limit length checksummed to max length of actual data.
683
* Checksum of erased eeprom will still be bad, but we avoid
684
* reading past the end of the buffer we were passed.
685
*/
686
len = ifp->if_length;
687
if (len > sizeof(struct ipath_flash))
688
len = sizeof(struct ipath_flash);
689
while (len--)
690
csum += *ip++;
691
csum -= ifp->if_csum;
692
csum = ~csum;
693
if (adjust)
694
ifp->if_csum = csum;
695
696
return csum;
697
}
698
699
/**
700
* ipath_get_guid - get the GUID from the i2c device
701
* @dd: the infinipath device
702
*
703
* We have the capability to use the ipath_nguid field, and get
704
* the guid from the first chip's flash, to use for all of them.
705
*/
706
void ipath_get_eeprom_info(struct ipath_devdata *dd)
707
{
708
void *buf;
709
struct ipath_flash *ifp;
710
__be64 guid;
711
int len, eep_stat;
712
u8 csum, *bguid;
713
int t = dd->ipath_unit;
714
struct ipath_devdata *dd0 = ipath_lookup(0);
715
716
if (t && dd0->ipath_nguid > 1 && t <= dd0->ipath_nguid) {
717
u8 oguid;
718
dd->ipath_guid = dd0->ipath_guid;
719
bguid = (u8 *) & dd->ipath_guid;
720
721
oguid = bguid[7];
722
bguid[7] += t;
723
if (oguid > bguid[7]) {
724
if (bguid[6] == 0xff) {
725
if (bguid[5] == 0xff) {
726
ipath_dev_err(
727
dd,
728
"Can't set %s GUID from "
729
"base, wraps to OUI!\n",
730
ipath_get_unit_name(t));
731
dd->ipath_guid = 0;
732
goto bail;
733
}
734
bguid[5]++;
735
}
736
bguid[6]++;
737
}
738
dd->ipath_nguid = 1;
739
740
ipath_dbg("nguid %u, so adding %u to device 0 guid, "
741
"for %llx\n",
742
dd0->ipath_nguid, t,
743
(unsigned long long) be64_to_cpu(dd->ipath_guid));
744
goto bail;
745
}
746
747
/*
748
* read full flash, not just currently used part, since it may have
749
* been written with a newer definition
750
* */
751
len = sizeof(struct ipath_flash);
752
buf = vmalloc(len);
753
if (!buf) {
754
ipath_dev_err(dd, "Couldn't allocate memory to read %u "
755
"bytes from eeprom for GUID\n", len);
756
goto bail;
757
}
758
759
mutex_lock(&dd->ipath_eep_lock);
760
eep_stat = ipath_eeprom_internal_read(dd, 0, buf, len);
761
mutex_unlock(&dd->ipath_eep_lock);
762
763
if (eep_stat) {
764
ipath_dev_err(dd, "Failed reading GUID from eeprom\n");
765
goto done;
766
}
767
ifp = (struct ipath_flash *)buf;
768
769
csum = flash_csum(ifp, 0);
770
if (csum != ifp->if_csum) {
771
dev_info(&dd->pcidev->dev, "Bad I2C flash checksum: "
772
"0x%x, not 0x%x\n", csum, ifp->if_csum);
773
goto done;
774
}
775
if (*(__be64 *) ifp->if_guid == cpu_to_be64(0) ||
776
*(__be64 *) ifp->if_guid == ~cpu_to_be64(0)) {
777
ipath_dev_err(dd, "Invalid GUID %llx from flash; "
778
"ignoring\n",
779
*(unsigned long long *) ifp->if_guid);
780
/* don't allow GUID if all 0 or all 1's */
781
goto done;
782
}
783
784
/* complain, but allow it */
785
if (*(u64 *) ifp->if_guid == 0x100007511000000ULL)
786
dev_info(&dd->pcidev->dev, "Warning, GUID %llx is "
787
"default, probably not correct!\n",
788
*(unsigned long long *) ifp->if_guid);
789
790
bguid = ifp->if_guid;
791
if (!bguid[0] && !bguid[1] && !bguid[2]) {
792
/* original incorrect GUID format in flash; fix in
793
* core copy, by shifting up 2 octets; don't need to
794
* change top octet, since both it and shifted are
795
* 0.. */
796
bguid[1] = bguid[3];
797
bguid[2] = bguid[4];
798
bguid[3] = bguid[4] = 0;
799
guid = *(__be64 *) ifp->if_guid;
800
ipath_cdbg(VERBOSE, "Old GUID format in flash, top 3 zero, "
801
"shifting 2 octets\n");
802
} else
803
guid = *(__be64 *) ifp->if_guid;
804
dd->ipath_guid = guid;
805
dd->ipath_nguid = ifp->if_numguid;
806
/*
807
* Things are slightly complicated by the desire to transparently
808
* support both the Pathscale 10-digit serial number and the QLogic
809
* 13-character version.
810
*/
811
if ((ifp->if_fversion > 1) && ifp->if_sprefix[0]
812
&& ((u8 *)ifp->if_sprefix)[0] != 0xFF) {
813
/* This board has a Serial-prefix, which is stored
814
* elsewhere for backward-compatibility.
815
*/
816
char *snp = dd->ipath_serial;
817
memcpy(snp, ifp->if_sprefix, sizeof ifp->if_sprefix);
818
snp[sizeof ifp->if_sprefix] = '\0';
819
len = strlen(snp);
820
snp += len;
821
len = (sizeof dd->ipath_serial) - len;
822
if (len > sizeof ifp->if_serial) {
823
len = sizeof ifp->if_serial;
824
}
825
memcpy(snp, ifp->if_serial, len);
826
} else
827
memcpy(dd->ipath_serial, ifp->if_serial,
828
sizeof ifp->if_serial);
829
if (!strstr(ifp->if_comment, "Tested successfully"))
830
ipath_dev_err(dd, "Board SN %s did not pass functional "
831
"test: %s\n", dd->ipath_serial,
832
ifp->if_comment);
833
834
ipath_cdbg(VERBOSE, "Initted GUID to %llx from eeprom\n",
835
(unsigned long long) be64_to_cpu(dd->ipath_guid));
836
837
memcpy(&dd->ipath_eep_st_errs, &ifp->if_errcntp, IPATH_EEP_LOG_CNT);
838
/*
839
* Power-on (actually "active") hours are kept as little-endian value
840
* in EEPROM, but as seconds in a (possibly as small as 24-bit)
841
* atomic_t while running.
842
*/
843
atomic_set(&dd->ipath_active_time, 0);
844
dd->ipath_eep_hrs = ifp->if_powerhour[0] | (ifp->if_powerhour[1] << 8);
845
846
done:
847
vfree(buf);
848
849
bail:;
850
}
851
852
/**
853
* ipath_update_eeprom_log - copy active-time and error counters to eeprom
854
* @dd: the infinipath device
855
*
856
* Although the time is kept as seconds in the ipath_devdata struct, it is
857
* rounded to hours for re-write, as we have only 16 bits in EEPROM.
858
* First-cut code reads whole (expected) struct ipath_flash, modifies,
859
* re-writes. Future direction: read/write only what we need, assuming
860
* that the EEPROM had to have been "good enough" for driver init, and
861
* if not, we aren't making it worse.
862
*
863
*/
864
865
int ipath_update_eeprom_log(struct ipath_devdata *dd)
866
{
867
void *buf;
868
struct ipath_flash *ifp;
869
int len, hi_water;
870
uint32_t new_time, new_hrs;
871
u8 csum;
872
int ret, idx;
873
unsigned long flags;
874
875
/* first, check if we actually need to do anything. */
876
ret = 0;
877
for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
878
if (dd->ipath_eep_st_new_errs[idx]) {
879
ret = 1;
880
break;
881
}
882
}
883
new_time = atomic_read(&dd->ipath_active_time);
884
885
if (ret == 0 && new_time < 3600)
886
return 0;
887
888
/*
889
* The quick-check above determined that there is something worthy
890
* of logging, so get current contents and do a more detailed idea.
891
* read full flash, not just currently used part, since it may have
892
* been written with a newer definition
893
*/
894
len = sizeof(struct ipath_flash);
895
buf = vmalloc(len);
896
ret = 1;
897
if (!buf) {
898
ipath_dev_err(dd, "Couldn't allocate memory to read %u "
899
"bytes from eeprom for logging\n", len);
900
goto bail;
901
}
902
903
/* Grab semaphore and read current EEPROM. If we get an
904
* error, let go, but if not, keep it until we finish write.
905
*/
906
ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
907
if (ret) {
908
ipath_dev_err(dd, "Unable to acquire EEPROM for logging\n");
909
goto free_bail;
910
}
911
ret = ipath_eeprom_internal_read(dd, 0, buf, len);
912
if (ret) {
913
mutex_unlock(&dd->ipath_eep_lock);
914
ipath_dev_err(dd, "Unable read EEPROM for logging\n");
915
goto free_bail;
916
}
917
ifp = (struct ipath_flash *)buf;
918
919
csum = flash_csum(ifp, 0);
920
if (csum != ifp->if_csum) {
921
mutex_unlock(&dd->ipath_eep_lock);
922
ipath_dev_err(dd, "EEPROM cks err (0x%02X, S/B 0x%02X)\n",
923
csum, ifp->if_csum);
924
ret = 1;
925
goto free_bail;
926
}
927
hi_water = 0;
928
spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
929
for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
930
int new_val = dd->ipath_eep_st_new_errs[idx];
931
if (new_val) {
932
/*
933
* If we have seen any errors, add to EEPROM values
934
* We need to saturate at 0xFF (255) and we also
935
* would need to adjust the checksum if we were
936
* trying to minimize EEPROM traffic
937
* Note that we add to actual current count in EEPROM,
938
* in case it was altered while we were running.
939
*/
940
new_val += ifp->if_errcntp[idx];
941
if (new_val > 0xFF)
942
new_val = 0xFF;
943
if (ifp->if_errcntp[idx] != new_val) {
944
ifp->if_errcntp[idx] = new_val;
945
hi_water = offsetof(struct ipath_flash,
946
if_errcntp) + idx;
947
}
948
/*
949
* update our shadow (used to minimize EEPROM
950
* traffic), to match what we are about to write.
951
*/
952
dd->ipath_eep_st_errs[idx] = new_val;
953
dd->ipath_eep_st_new_errs[idx] = 0;
954
}
955
}
956
/*
957
* now update active-time. We would like to round to the nearest hour
958
* but unless atomic_t are sure to be proper signed ints we cannot,
959
* because we need to account for what we "transfer" to EEPROM and
960
* if we log an hour at 31 minutes, then we would need to set
961
* active_time to -29 to accurately count the _next_ hour.
962
*/
963
if (new_time >= 3600) {
964
new_hrs = new_time / 3600;
965
atomic_sub((new_hrs * 3600), &dd->ipath_active_time);
966
new_hrs += dd->ipath_eep_hrs;
967
if (new_hrs > 0xFFFF)
968
new_hrs = 0xFFFF;
969
dd->ipath_eep_hrs = new_hrs;
970
if ((new_hrs & 0xFF) != ifp->if_powerhour[0]) {
971
ifp->if_powerhour[0] = new_hrs & 0xFF;
972
hi_water = offsetof(struct ipath_flash, if_powerhour);
973
}
974
if ((new_hrs >> 8) != ifp->if_powerhour[1]) {
975
ifp->if_powerhour[1] = new_hrs >> 8;
976
hi_water = offsetof(struct ipath_flash, if_powerhour)
977
+ 1;
978
}
979
}
980
/*
981
* There is a tiny possibility that we could somehow fail to write
982
* the EEPROM after updating our shadows, but problems from holding
983
* the spinlock too long are a much bigger issue.
984
*/
985
spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
986
if (hi_water) {
987
/* we made some change to the data, uopdate cksum and write */
988
csum = flash_csum(ifp, 1);
989
ret = ipath_eeprom_internal_write(dd, 0, buf, hi_water + 1);
990
}
991
mutex_unlock(&dd->ipath_eep_lock);
992
if (ret)
993
ipath_dev_err(dd, "Failed updating EEPROM\n");
994
995
free_bail:
996
vfree(buf);
997
bail:
998
return ret;
999
1000
}
1001
1002
/**
1003
* ipath_inc_eeprom_err - increment one of the four error counters
1004
* that are logged to EEPROM.
1005
* @dd: the infinipath device
1006
* @eidx: 0..3, the counter to increment
1007
* @incr: how much to add
1008
*
1009
* Each counter is 8-bits, and saturates at 255 (0xFF). They
1010
* are copied to the EEPROM (aka flash) whenever ipath_update_eeprom_log()
1011
* is called, but it can only be called in a context that allows sleep.
1012
* This function can be called even at interrupt level.
1013
*/
1014
1015
void ipath_inc_eeprom_err(struct ipath_devdata *dd, u32 eidx, u32 incr)
1016
{
1017
uint new_val;
1018
unsigned long flags;
1019
1020
spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
1021
new_val = dd->ipath_eep_st_new_errs[eidx] + incr;
1022
if (new_val > 255)
1023
new_val = 255;
1024
dd->ipath_eep_st_new_errs[eidx] = new_val;
1025
spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
1026
return;
1027
}
1028
1029
static int ipath_tempsense_internal_read(struct ipath_devdata *dd, u8 regnum)
1030
{
1031
int ret;
1032
struct i2c_chain_desc *icd;
1033
1034
ret = -ENOENT;
1035
1036
icd = ipath_i2c_type(dd);
1037
if (!icd)
1038
goto bail;
1039
1040
if (icd->temp_dev == IPATH_NO_DEV) {
1041
/* tempsense only exists on new, real-I2C boards */
1042
ret = -ENXIO;
1043
goto bail;
1044
}
1045
1046
if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) {
1047
ipath_dbg("Failed tempsense startcmd\n");
1048
stop_cmd(dd);
1049
ret = -ENXIO;
1050
goto bail;
1051
}
1052
ret = wr_byte(dd, regnum);
1053
stop_cmd(dd);
1054
if (ret) {
1055
ipath_dev_err(dd, "Failed tempsense WR command %02X\n",
1056
regnum);
1057
ret = -ENXIO;
1058
goto bail;
1059
}
1060
if (i2c_startcmd(dd, icd->temp_dev | READ_CMD)) {
1061
ipath_dbg("Failed tempsense RD startcmd\n");
1062
stop_cmd(dd);
1063
ret = -ENXIO;
1064
goto bail;
1065
}
1066
/*
1067
* We can only clock out one byte per command, sensibly
1068
*/
1069
ret = rd_byte(dd);
1070
stop_cmd(dd);
1071
1072
bail:
1073
return ret;
1074
}
1075
1076
#define VALID_TS_RD_REG_MASK 0xBF
1077
1078
/**
1079
* ipath_tempsense_read - read register of temp sensor via I2C
1080
* @dd: the infinipath device
1081
* @regnum: register to read from
1082
*
1083
* returns reg contents (0..255) or < 0 for error
1084
*/
1085
int ipath_tempsense_read(struct ipath_devdata *dd, u8 regnum)
1086
{
1087
int ret;
1088
1089
if (regnum > 7)
1090
return -EINVAL;
1091
1092
/* return a bogus value for (the one) register we do not have */
1093
if (!((1 << regnum) & VALID_TS_RD_REG_MASK))
1094
return 0;
1095
1096
ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
1097
if (!ret) {
1098
ret = ipath_tempsense_internal_read(dd, regnum);
1099
mutex_unlock(&dd->ipath_eep_lock);
1100
}
1101
1102
/*
1103
* There are three possibilities here:
1104
* ret is actual value (0..255)
1105
* ret is -ENXIO or -EINVAL from code in this file
1106
* ret is -EINTR from mutex_lock_interruptible.
1107
*/
1108
return ret;
1109
}
1110
1111
static int ipath_tempsense_internal_write(struct ipath_devdata *dd,
1112
u8 regnum, u8 data)
1113
{
1114
int ret = -ENOENT;
1115
struct i2c_chain_desc *icd;
1116
1117
icd = ipath_i2c_type(dd);
1118
if (!icd)
1119
goto bail;
1120
1121
if (icd->temp_dev == IPATH_NO_DEV) {
1122
/* tempsense only exists on new, real-I2C boards */
1123
ret = -ENXIO;
1124
goto bail;
1125
}
1126
if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) {
1127
ipath_dbg("Failed tempsense startcmd\n");
1128
stop_cmd(dd);
1129
ret = -ENXIO;
1130
goto bail;
1131
}
1132
ret = wr_byte(dd, regnum);
1133
if (ret) {
1134
stop_cmd(dd);
1135
ipath_dev_err(dd, "Failed to write tempsense command %02X\n",
1136
regnum);
1137
ret = -ENXIO;
1138
goto bail;
1139
}
1140
ret = wr_byte(dd, data);
1141
stop_cmd(dd);
1142
ret = i2c_startcmd(dd, icd->temp_dev | READ_CMD);
1143
if (ret) {
1144
ipath_dev_err(dd, "Failed tempsense data wrt to %02X\n",
1145
regnum);
1146
ret = -ENXIO;
1147
}
1148
1149
bail:
1150
return ret;
1151
}
1152
1153
#define VALID_TS_WR_REG_MASK ((1 << 9) | (1 << 0xB) | (1 << 0xD))
1154
1155
/**
1156
* ipath_tempsense_write - write register of temp sensor via I2C
1157
* @dd: the infinipath device
1158
* @regnum: register to write
1159
* @data: data to write
1160
*
1161
* returns 0 for success or < 0 for error
1162
*/
1163
int ipath_tempsense_write(struct ipath_devdata *dd, u8 regnum, u8 data)
1164
{
1165
int ret;
1166
1167
if (regnum > 15 || !((1 << regnum) & VALID_TS_WR_REG_MASK))
1168
return -EINVAL;
1169
1170
ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
1171
if (!ret) {
1172
ret = ipath_tempsense_internal_write(dd, regnum, data);
1173
mutex_unlock(&dd->ipath_eep_lock);
1174
}
1175
1176
/*
1177
* There are three possibilities here:
1178
* ret is 0 for success
1179
* ret is -ENXIO or -EINVAL from code in this file
1180
* ret is -EINTR from mutex_lock_interruptible.
1181
*/
1182
return ret;
1183
}
1184
1185