Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/infiniband/hw/mlx4/qp.c
15112 views
1
/*
2
* Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
3
* Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4
*
5
* This software is available to you under a choice of one of two
6
* licenses. You may choose to be licensed under the terms of the GNU
7
* General Public License (GPL) Version 2, available from the file
8
* COPYING in the main directory of this source tree, or the
9
* OpenIB.org BSD license below:
10
*
11
* Redistribution and use in source and binary forms, with or
12
* without modification, are permitted provided that the following
13
* conditions are met:
14
*
15
* - Redistributions of source code must retain the above
16
* copyright notice, this list of conditions and the following
17
* disclaimer.
18
*
19
* - Redistributions in binary form must reproduce the above
20
* copyright notice, this list of conditions and the following
21
* disclaimer in the documentation and/or other materials
22
* provided with the distribution.
23
*
24
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31
* SOFTWARE.
32
*/
33
34
#include <linux/log2.h>
35
#include <linux/slab.h>
36
#include <linux/netdevice.h>
37
38
#include <rdma/ib_cache.h>
39
#include <rdma/ib_pack.h>
40
#include <rdma/ib_addr.h>
41
42
#include <linux/mlx4/qp.h>
43
44
#include "mlx4_ib.h"
45
#include "user.h"
46
47
enum {
48
MLX4_IB_ACK_REQ_FREQ = 8,
49
};
50
51
enum {
52
MLX4_IB_DEFAULT_SCHED_QUEUE = 0x83,
53
MLX4_IB_DEFAULT_QP0_SCHED_QUEUE = 0x3f,
54
MLX4_IB_LINK_TYPE_IB = 0,
55
MLX4_IB_LINK_TYPE_ETH = 1
56
};
57
58
enum {
59
/*
60
* Largest possible UD header: send with GRH and immediate
61
* data plus 18 bytes for an Ethernet header with VLAN/802.1Q
62
* tag. (LRH would only use 8 bytes, so Ethernet is the
63
* biggest case)
64
*/
65
MLX4_IB_UD_HEADER_SIZE = 82,
66
MLX4_IB_LSO_HEADER_SPARE = 128,
67
};
68
69
enum {
70
MLX4_IB_IBOE_ETHERTYPE = 0x8915
71
};
72
73
struct mlx4_ib_sqp {
74
struct mlx4_ib_qp qp;
75
int pkey_index;
76
u32 qkey;
77
u32 send_psn;
78
struct ib_ud_header ud_header;
79
u8 header_buf[MLX4_IB_UD_HEADER_SIZE];
80
};
81
82
enum {
83
MLX4_IB_MIN_SQ_STRIDE = 6,
84
MLX4_IB_CACHE_LINE_SIZE = 64,
85
};
86
87
static const __be32 mlx4_ib_opcode[] = {
88
[IB_WR_SEND] = cpu_to_be32(MLX4_OPCODE_SEND),
89
[IB_WR_LSO] = cpu_to_be32(MLX4_OPCODE_LSO),
90
[IB_WR_SEND_WITH_IMM] = cpu_to_be32(MLX4_OPCODE_SEND_IMM),
91
[IB_WR_RDMA_WRITE] = cpu_to_be32(MLX4_OPCODE_RDMA_WRITE),
92
[IB_WR_RDMA_WRITE_WITH_IMM] = cpu_to_be32(MLX4_OPCODE_RDMA_WRITE_IMM),
93
[IB_WR_RDMA_READ] = cpu_to_be32(MLX4_OPCODE_RDMA_READ),
94
[IB_WR_ATOMIC_CMP_AND_SWP] = cpu_to_be32(MLX4_OPCODE_ATOMIC_CS),
95
[IB_WR_ATOMIC_FETCH_AND_ADD] = cpu_to_be32(MLX4_OPCODE_ATOMIC_FA),
96
[IB_WR_SEND_WITH_INV] = cpu_to_be32(MLX4_OPCODE_SEND_INVAL),
97
[IB_WR_LOCAL_INV] = cpu_to_be32(MLX4_OPCODE_LOCAL_INVAL),
98
[IB_WR_FAST_REG_MR] = cpu_to_be32(MLX4_OPCODE_FMR),
99
[IB_WR_MASKED_ATOMIC_CMP_AND_SWP] = cpu_to_be32(MLX4_OPCODE_MASKED_ATOMIC_CS),
100
[IB_WR_MASKED_ATOMIC_FETCH_AND_ADD] = cpu_to_be32(MLX4_OPCODE_MASKED_ATOMIC_FA),
101
};
102
103
static struct mlx4_ib_sqp *to_msqp(struct mlx4_ib_qp *mqp)
104
{
105
return container_of(mqp, struct mlx4_ib_sqp, qp);
106
}
107
108
static int is_sqp(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp)
109
{
110
return qp->mqp.qpn >= dev->dev->caps.sqp_start &&
111
qp->mqp.qpn <= dev->dev->caps.sqp_start + 3;
112
}
113
114
static int is_qp0(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp)
115
{
116
return qp->mqp.qpn >= dev->dev->caps.sqp_start &&
117
qp->mqp.qpn <= dev->dev->caps.sqp_start + 1;
118
}
119
120
static void *get_wqe(struct mlx4_ib_qp *qp, int offset)
121
{
122
return mlx4_buf_offset(&qp->buf, offset);
123
}
124
125
static void *get_recv_wqe(struct mlx4_ib_qp *qp, int n)
126
{
127
return get_wqe(qp, qp->rq.offset + (n << qp->rq.wqe_shift));
128
}
129
130
static void *get_send_wqe(struct mlx4_ib_qp *qp, int n)
131
{
132
return get_wqe(qp, qp->sq.offset + (n << qp->sq.wqe_shift));
133
}
134
135
/*
136
* Stamp a SQ WQE so that it is invalid if prefetched by marking the
137
* first four bytes of every 64 byte chunk with
138
* 0x7FFFFFF | (invalid_ownership_value << 31).
139
*
140
* When the max work request size is less than or equal to the WQE
141
* basic block size, as an optimization, we can stamp all WQEs with
142
* 0xffffffff, and skip the very first chunk of each WQE.
143
*/
144
static void stamp_send_wqe(struct mlx4_ib_qp *qp, int n, int size)
145
{
146
__be32 *wqe;
147
int i;
148
int s;
149
int ind;
150
void *buf;
151
__be32 stamp;
152
struct mlx4_wqe_ctrl_seg *ctrl;
153
154
if (qp->sq_max_wqes_per_wr > 1) {
155
s = roundup(size, 1U << qp->sq.wqe_shift);
156
for (i = 0; i < s; i += 64) {
157
ind = (i >> qp->sq.wqe_shift) + n;
158
stamp = ind & qp->sq.wqe_cnt ? cpu_to_be32(0x7fffffff) :
159
cpu_to_be32(0xffffffff);
160
buf = get_send_wqe(qp, ind & (qp->sq.wqe_cnt - 1));
161
wqe = buf + (i & ((1 << qp->sq.wqe_shift) - 1));
162
*wqe = stamp;
163
}
164
} else {
165
ctrl = buf = get_send_wqe(qp, n & (qp->sq.wqe_cnt - 1));
166
s = (ctrl->fence_size & 0x3f) << 4;
167
for (i = 64; i < s; i += 64) {
168
wqe = buf + i;
169
*wqe = cpu_to_be32(0xffffffff);
170
}
171
}
172
}
173
174
static void post_nop_wqe(struct mlx4_ib_qp *qp, int n, int size)
175
{
176
struct mlx4_wqe_ctrl_seg *ctrl;
177
struct mlx4_wqe_inline_seg *inl;
178
void *wqe;
179
int s;
180
181
ctrl = wqe = get_send_wqe(qp, n & (qp->sq.wqe_cnt - 1));
182
s = sizeof(struct mlx4_wqe_ctrl_seg);
183
184
if (qp->ibqp.qp_type == IB_QPT_UD) {
185
struct mlx4_wqe_datagram_seg *dgram = wqe + sizeof *ctrl;
186
struct mlx4_av *av = (struct mlx4_av *)dgram->av;
187
memset(dgram, 0, sizeof *dgram);
188
av->port_pd = cpu_to_be32((qp->port << 24) | to_mpd(qp->ibqp.pd)->pdn);
189
s += sizeof(struct mlx4_wqe_datagram_seg);
190
}
191
192
/* Pad the remainder of the WQE with an inline data segment. */
193
if (size > s) {
194
inl = wqe + s;
195
inl->byte_count = cpu_to_be32(1 << 31 | (size - s - sizeof *inl));
196
}
197
ctrl->srcrb_flags = 0;
198
ctrl->fence_size = size / 16;
199
/*
200
* Make sure descriptor is fully written before setting ownership bit
201
* (because HW can start executing as soon as we do).
202
*/
203
wmb();
204
205
ctrl->owner_opcode = cpu_to_be32(MLX4_OPCODE_NOP | MLX4_WQE_CTRL_NEC) |
206
(n & qp->sq.wqe_cnt ? cpu_to_be32(1 << 31) : 0);
207
208
stamp_send_wqe(qp, n + qp->sq_spare_wqes, size);
209
}
210
211
/* Post NOP WQE to prevent wrap-around in the middle of WR */
212
static inline unsigned pad_wraparound(struct mlx4_ib_qp *qp, int ind)
213
{
214
unsigned s = qp->sq.wqe_cnt - (ind & (qp->sq.wqe_cnt - 1));
215
if (unlikely(s < qp->sq_max_wqes_per_wr)) {
216
post_nop_wqe(qp, ind, s << qp->sq.wqe_shift);
217
ind += s;
218
}
219
return ind;
220
}
221
222
static void mlx4_ib_qp_event(struct mlx4_qp *qp, enum mlx4_event type)
223
{
224
struct ib_event event;
225
struct ib_qp *ibqp = &to_mibqp(qp)->ibqp;
226
227
if (type == MLX4_EVENT_TYPE_PATH_MIG)
228
to_mibqp(qp)->port = to_mibqp(qp)->alt_port;
229
230
if (ibqp->event_handler) {
231
event.device = ibqp->device;
232
event.element.qp = ibqp;
233
switch (type) {
234
case MLX4_EVENT_TYPE_PATH_MIG:
235
event.event = IB_EVENT_PATH_MIG;
236
break;
237
case MLX4_EVENT_TYPE_COMM_EST:
238
event.event = IB_EVENT_COMM_EST;
239
break;
240
case MLX4_EVENT_TYPE_SQ_DRAINED:
241
event.event = IB_EVENT_SQ_DRAINED;
242
break;
243
case MLX4_EVENT_TYPE_SRQ_QP_LAST_WQE:
244
event.event = IB_EVENT_QP_LAST_WQE_REACHED;
245
break;
246
case MLX4_EVENT_TYPE_WQ_CATAS_ERROR:
247
event.event = IB_EVENT_QP_FATAL;
248
break;
249
case MLX4_EVENT_TYPE_PATH_MIG_FAILED:
250
event.event = IB_EVENT_PATH_MIG_ERR;
251
break;
252
case MLX4_EVENT_TYPE_WQ_INVAL_REQ_ERROR:
253
event.event = IB_EVENT_QP_REQ_ERR;
254
break;
255
case MLX4_EVENT_TYPE_WQ_ACCESS_ERROR:
256
event.event = IB_EVENT_QP_ACCESS_ERR;
257
break;
258
default:
259
printk(KERN_WARNING "mlx4_ib: Unexpected event type %d "
260
"on QP %06x\n", type, qp->qpn);
261
return;
262
}
263
264
ibqp->event_handler(&event, ibqp->qp_context);
265
}
266
}
267
268
static int send_wqe_overhead(enum ib_qp_type type, u32 flags)
269
{
270
/*
271
* UD WQEs must have a datagram segment.
272
* RC and UC WQEs might have a remote address segment.
273
* MLX WQEs need two extra inline data segments (for the UD
274
* header and space for the ICRC).
275
*/
276
switch (type) {
277
case IB_QPT_UD:
278
return sizeof (struct mlx4_wqe_ctrl_seg) +
279
sizeof (struct mlx4_wqe_datagram_seg) +
280
((flags & MLX4_IB_QP_LSO) ? MLX4_IB_LSO_HEADER_SPARE : 0);
281
case IB_QPT_UC:
282
return sizeof (struct mlx4_wqe_ctrl_seg) +
283
sizeof (struct mlx4_wqe_raddr_seg);
284
case IB_QPT_RC:
285
return sizeof (struct mlx4_wqe_ctrl_seg) +
286
sizeof (struct mlx4_wqe_atomic_seg) +
287
sizeof (struct mlx4_wqe_raddr_seg);
288
case IB_QPT_SMI:
289
case IB_QPT_GSI:
290
return sizeof (struct mlx4_wqe_ctrl_seg) +
291
ALIGN(MLX4_IB_UD_HEADER_SIZE +
292
DIV_ROUND_UP(MLX4_IB_UD_HEADER_SIZE,
293
MLX4_INLINE_ALIGN) *
294
sizeof (struct mlx4_wqe_inline_seg),
295
sizeof (struct mlx4_wqe_data_seg)) +
296
ALIGN(4 +
297
sizeof (struct mlx4_wqe_inline_seg),
298
sizeof (struct mlx4_wqe_data_seg));
299
default:
300
return sizeof (struct mlx4_wqe_ctrl_seg);
301
}
302
}
303
304
static int set_rq_size(struct mlx4_ib_dev *dev, struct ib_qp_cap *cap,
305
int is_user, int has_srq, struct mlx4_ib_qp *qp)
306
{
307
/* Sanity check RQ size before proceeding */
308
if (cap->max_recv_wr > dev->dev->caps.max_wqes ||
309
cap->max_recv_sge > dev->dev->caps.max_rq_sg)
310
return -EINVAL;
311
312
if (has_srq) {
313
/* QPs attached to an SRQ should have no RQ */
314
if (cap->max_recv_wr)
315
return -EINVAL;
316
317
qp->rq.wqe_cnt = qp->rq.max_gs = 0;
318
} else {
319
/* HW requires >= 1 RQ entry with >= 1 gather entry */
320
if (is_user && (!cap->max_recv_wr || !cap->max_recv_sge))
321
return -EINVAL;
322
323
qp->rq.wqe_cnt = roundup_pow_of_two(max(1U, cap->max_recv_wr));
324
qp->rq.max_gs = roundup_pow_of_two(max(1U, cap->max_recv_sge));
325
qp->rq.wqe_shift = ilog2(qp->rq.max_gs * sizeof (struct mlx4_wqe_data_seg));
326
}
327
328
cap->max_recv_wr = qp->rq.max_post = qp->rq.wqe_cnt;
329
cap->max_recv_sge = qp->rq.max_gs;
330
331
return 0;
332
}
333
334
static int set_kernel_sq_size(struct mlx4_ib_dev *dev, struct ib_qp_cap *cap,
335
enum ib_qp_type type, struct mlx4_ib_qp *qp)
336
{
337
int s;
338
339
/* Sanity check SQ size before proceeding */
340
if (cap->max_send_wr > dev->dev->caps.max_wqes ||
341
cap->max_send_sge > dev->dev->caps.max_sq_sg ||
342
cap->max_inline_data + send_wqe_overhead(type, qp->flags) +
343
sizeof (struct mlx4_wqe_inline_seg) > dev->dev->caps.max_sq_desc_sz)
344
return -EINVAL;
345
346
/*
347
* For MLX transport we need 2 extra S/G entries:
348
* one for the header and one for the checksum at the end
349
*/
350
if ((type == IB_QPT_SMI || type == IB_QPT_GSI) &&
351
cap->max_send_sge + 2 > dev->dev->caps.max_sq_sg)
352
return -EINVAL;
353
354
s = max(cap->max_send_sge * sizeof (struct mlx4_wqe_data_seg),
355
cap->max_inline_data + sizeof (struct mlx4_wqe_inline_seg)) +
356
send_wqe_overhead(type, qp->flags);
357
358
if (s > dev->dev->caps.max_sq_desc_sz)
359
return -EINVAL;
360
361
/*
362
* Hermon supports shrinking WQEs, such that a single work
363
* request can include multiple units of 1 << wqe_shift. This
364
* way, work requests can differ in size, and do not have to
365
* be a power of 2 in size, saving memory and speeding up send
366
* WR posting. Unfortunately, if we do this then the
367
* wqe_index field in CQEs can't be used to look up the WR ID
368
* anymore, so we do this only if selective signaling is off.
369
*
370
* Further, on 32-bit platforms, we can't use vmap() to make
371
* the QP buffer virtually contiguous. Thus we have to use
372
* constant-sized WRs to make sure a WR is always fully within
373
* a single page-sized chunk.
374
*
375
* Finally, we use NOP work requests to pad the end of the
376
* work queue, to avoid wrap-around in the middle of WR. We
377
* set NEC bit to avoid getting completions with error for
378
* these NOP WRs, but since NEC is only supported starting
379
* with firmware 2.2.232, we use constant-sized WRs for older
380
* firmware.
381
*
382
* And, since MLX QPs only support SEND, we use constant-sized
383
* WRs in this case.
384
*
385
* We look for the smallest value of wqe_shift such that the
386
* resulting number of wqes does not exceed device
387
* capabilities.
388
*
389
* We set WQE size to at least 64 bytes, this way stamping
390
* invalidates each WQE.
391
*/
392
if (dev->dev->caps.fw_ver >= MLX4_FW_VER_WQE_CTRL_NEC &&
393
qp->sq_signal_bits && BITS_PER_LONG == 64 &&
394
type != IB_QPT_SMI && type != IB_QPT_GSI)
395
qp->sq.wqe_shift = ilog2(64);
396
else
397
qp->sq.wqe_shift = ilog2(roundup_pow_of_two(s));
398
399
for (;;) {
400
qp->sq_max_wqes_per_wr = DIV_ROUND_UP(s, 1U << qp->sq.wqe_shift);
401
402
/*
403
* We need to leave 2 KB + 1 WR of headroom in the SQ to
404
* allow HW to prefetch.
405
*/
406
qp->sq_spare_wqes = (2048 >> qp->sq.wqe_shift) + qp->sq_max_wqes_per_wr;
407
qp->sq.wqe_cnt = roundup_pow_of_two(cap->max_send_wr *
408
qp->sq_max_wqes_per_wr +
409
qp->sq_spare_wqes);
410
411
if (qp->sq.wqe_cnt <= dev->dev->caps.max_wqes)
412
break;
413
414
if (qp->sq_max_wqes_per_wr <= 1)
415
return -EINVAL;
416
417
++qp->sq.wqe_shift;
418
}
419
420
qp->sq.max_gs = (min(dev->dev->caps.max_sq_desc_sz,
421
(qp->sq_max_wqes_per_wr << qp->sq.wqe_shift)) -
422
send_wqe_overhead(type, qp->flags)) /
423
sizeof (struct mlx4_wqe_data_seg);
424
425
qp->buf_size = (qp->rq.wqe_cnt << qp->rq.wqe_shift) +
426
(qp->sq.wqe_cnt << qp->sq.wqe_shift);
427
if (qp->rq.wqe_shift > qp->sq.wqe_shift) {
428
qp->rq.offset = 0;
429
qp->sq.offset = qp->rq.wqe_cnt << qp->rq.wqe_shift;
430
} else {
431
qp->rq.offset = qp->sq.wqe_cnt << qp->sq.wqe_shift;
432
qp->sq.offset = 0;
433
}
434
435
cap->max_send_wr = qp->sq.max_post =
436
(qp->sq.wqe_cnt - qp->sq_spare_wqes) / qp->sq_max_wqes_per_wr;
437
cap->max_send_sge = min(qp->sq.max_gs,
438
min(dev->dev->caps.max_sq_sg,
439
dev->dev->caps.max_rq_sg));
440
/* We don't support inline sends for kernel QPs (yet) */
441
cap->max_inline_data = 0;
442
443
return 0;
444
}
445
446
static int set_user_sq_size(struct mlx4_ib_dev *dev,
447
struct mlx4_ib_qp *qp,
448
struct mlx4_ib_create_qp *ucmd)
449
{
450
/* Sanity check SQ size before proceeding */
451
if ((1 << ucmd->log_sq_bb_count) > dev->dev->caps.max_wqes ||
452
ucmd->log_sq_stride >
453
ilog2(roundup_pow_of_two(dev->dev->caps.max_sq_desc_sz)) ||
454
ucmd->log_sq_stride < MLX4_IB_MIN_SQ_STRIDE)
455
return -EINVAL;
456
457
qp->sq.wqe_cnt = 1 << ucmd->log_sq_bb_count;
458
qp->sq.wqe_shift = ucmd->log_sq_stride;
459
460
qp->buf_size = (qp->rq.wqe_cnt << qp->rq.wqe_shift) +
461
(qp->sq.wqe_cnt << qp->sq.wqe_shift);
462
463
return 0;
464
}
465
466
static int create_qp_common(struct mlx4_ib_dev *dev, struct ib_pd *pd,
467
struct ib_qp_init_attr *init_attr,
468
struct ib_udata *udata, int sqpn, struct mlx4_ib_qp *qp)
469
{
470
int qpn;
471
int err;
472
473
mutex_init(&qp->mutex);
474
spin_lock_init(&qp->sq.lock);
475
spin_lock_init(&qp->rq.lock);
476
INIT_LIST_HEAD(&qp->gid_list);
477
478
qp->state = IB_QPS_RESET;
479
if (init_attr->sq_sig_type == IB_SIGNAL_ALL_WR)
480
qp->sq_signal_bits = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE);
481
482
err = set_rq_size(dev, &init_attr->cap, !!pd->uobject, !!init_attr->srq, qp);
483
if (err)
484
goto err;
485
486
if (pd->uobject) {
487
struct mlx4_ib_create_qp ucmd;
488
489
if (ib_copy_from_udata(&ucmd, udata, sizeof ucmd)) {
490
err = -EFAULT;
491
goto err;
492
}
493
494
qp->sq_no_prefetch = ucmd.sq_no_prefetch;
495
496
err = set_user_sq_size(dev, qp, &ucmd);
497
if (err)
498
goto err;
499
500
qp->umem = ib_umem_get(pd->uobject->context, ucmd.buf_addr,
501
qp->buf_size, 0, 0);
502
if (IS_ERR(qp->umem)) {
503
err = PTR_ERR(qp->umem);
504
goto err;
505
}
506
507
err = mlx4_mtt_init(dev->dev, ib_umem_page_count(qp->umem),
508
ilog2(qp->umem->page_size), &qp->mtt);
509
if (err)
510
goto err_buf;
511
512
err = mlx4_ib_umem_write_mtt(dev, &qp->mtt, qp->umem);
513
if (err)
514
goto err_mtt;
515
516
if (!init_attr->srq) {
517
err = mlx4_ib_db_map_user(to_mucontext(pd->uobject->context),
518
ucmd.db_addr, &qp->db);
519
if (err)
520
goto err_mtt;
521
}
522
} else {
523
qp->sq_no_prefetch = 0;
524
525
if (init_attr->create_flags & IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK)
526
qp->flags |= MLX4_IB_QP_BLOCK_MULTICAST_LOOPBACK;
527
528
if (init_attr->create_flags & IB_QP_CREATE_IPOIB_UD_LSO)
529
qp->flags |= MLX4_IB_QP_LSO;
530
531
err = set_kernel_sq_size(dev, &init_attr->cap, init_attr->qp_type, qp);
532
if (err)
533
goto err;
534
535
if (!init_attr->srq) {
536
err = mlx4_db_alloc(dev->dev, &qp->db, 0);
537
if (err)
538
goto err;
539
540
*qp->db.db = 0;
541
}
542
543
if (mlx4_buf_alloc(dev->dev, qp->buf_size, PAGE_SIZE * 2, &qp->buf)) {
544
err = -ENOMEM;
545
goto err_db;
546
}
547
548
err = mlx4_mtt_init(dev->dev, qp->buf.npages, qp->buf.page_shift,
549
&qp->mtt);
550
if (err)
551
goto err_buf;
552
553
err = mlx4_buf_write_mtt(dev->dev, &qp->mtt, &qp->buf);
554
if (err)
555
goto err_mtt;
556
557
qp->sq.wrid = kmalloc(qp->sq.wqe_cnt * sizeof (u64), GFP_KERNEL);
558
qp->rq.wrid = kmalloc(qp->rq.wqe_cnt * sizeof (u64), GFP_KERNEL);
559
560
if (!qp->sq.wrid || !qp->rq.wrid) {
561
err = -ENOMEM;
562
goto err_wrid;
563
}
564
}
565
566
if (sqpn) {
567
qpn = sqpn;
568
} else {
569
err = mlx4_qp_reserve_range(dev->dev, 1, 1, &qpn);
570
if (err)
571
goto err_wrid;
572
}
573
574
err = mlx4_qp_alloc(dev->dev, qpn, &qp->mqp);
575
if (err)
576
goto err_qpn;
577
578
/*
579
* Hardware wants QPN written in big-endian order (after
580
* shifting) for send doorbell. Precompute this value to save
581
* a little bit when posting sends.
582
*/
583
qp->doorbell_qpn = swab32(qp->mqp.qpn << 8);
584
585
qp->mqp.event = mlx4_ib_qp_event;
586
587
return 0;
588
589
err_qpn:
590
if (!sqpn)
591
mlx4_qp_release_range(dev->dev, qpn, 1);
592
593
err_wrid:
594
if (pd->uobject) {
595
if (!init_attr->srq)
596
mlx4_ib_db_unmap_user(to_mucontext(pd->uobject->context),
597
&qp->db);
598
} else {
599
kfree(qp->sq.wrid);
600
kfree(qp->rq.wrid);
601
}
602
603
err_mtt:
604
mlx4_mtt_cleanup(dev->dev, &qp->mtt);
605
606
err_buf:
607
if (pd->uobject)
608
ib_umem_release(qp->umem);
609
else
610
mlx4_buf_free(dev->dev, qp->buf_size, &qp->buf);
611
612
err_db:
613
if (!pd->uobject && !init_attr->srq)
614
mlx4_db_free(dev->dev, &qp->db);
615
616
err:
617
return err;
618
}
619
620
static enum mlx4_qp_state to_mlx4_state(enum ib_qp_state state)
621
{
622
switch (state) {
623
case IB_QPS_RESET: return MLX4_QP_STATE_RST;
624
case IB_QPS_INIT: return MLX4_QP_STATE_INIT;
625
case IB_QPS_RTR: return MLX4_QP_STATE_RTR;
626
case IB_QPS_RTS: return MLX4_QP_STATE_RTS;
627
case IB_QPS_SQD: return MLX4_QP_STATE_SQD;
628
case IB_QPS_SQE: return MLX4_QP_STATE_SQER;
629
case IB_QPS_ERR: return MLX4_QP_STATE_ERR;
630
default: return -1;
631
}
632
}
633
634
static void mlx4_ib_lock_cqs(struct mlx4_ib_cq *send_cq, struct mlx4_ib_cq *recv_cq)
635
__acquires(&send_cq->lock) __acquires(&recv_cq->lock)
636
{
637
if (send_cq == recv_cq) {
638
spin_lock_irq(&send_cq->lock);
639
__acquire(&recv_cq->lock);
640
} else if (send_cq->mcq.cqn < recv_cq->mcq.cqn) {
641
spin_lock_irq(&send_cq->lock);
642
spin_lock_nested(&recv_cq->lock, SINGLE_DEPTH_NESTING);
643
} else {
644
spin_lock_irq(&recv_cq->lock);
645
spin_lock_nested(&send_cq->lock, SINGLE_DEPTH_NESTING);
646
}
647
}
648
649
static void mlx4_ib_unlock_cqs(struct mlx4_ib_cq *send_cq, struct mlx4_ib_cq *recv_cq)
650
__releases(&send_cq->lock) __releases(&recv_cq->lock)
651
{
652
if (send_cq == recv_cq) {
653
__release(&recv_cq->lock);
654
spin_unlock_irq(&send_cq->lock);
655
} else if (send_cq->mcq.cqn < recv_cq->mcq.cqn) {
656
spin_unlock(&recv_cq->lock);
657
spin_unlock_irq(&send_cq->lock);
658
} else {
659
spin_unlock(&send_cq->lock);
660
spin_unlock_irq(&recv_cq->lock);
661
}
662
}
663
664
static void del_gid_entries(struct mlx4_ib_qp *qp)
665
{
666
struct mlx4_ib_gid_entry *ge, *tmp;
667
668
list_for_each_entry_safe(ge, tmp, &qp->gid_list, list) {
669
list_del(&ge->list);
670
kfree(ge);
671
}
672
}
673
674
static void destroy_qp_common(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp,
675
int is_user)
676
{
677
struct mlx4_ib_cq *send_cq, *recv_cq;
678
679
if (qp->state != IB_QPS_RESET)
680
if (mlx4_qp_modify(dev->dev, NULL, to_mlx4_state(qp->state),
681
MLX4_QP_STATE_RST, NULL, 0, 0, &qp->mqp))
682
printk(KERN_WARNING "mlx4_ib: modify QP %06x to RESET failed.\n",
683
qp->mqp.qpn);
684
685
send_cq = to_mcq(qp->ibqp.send_cq);
686
recv_cq = to_mcq(qp->ibqp.recv_cq);
687
688
mlx4_ib_lock_cqs(send_cq, recv_cq);
689
690
if (!is_user) {
691
__mlx4_ib_cq_clean(recv_cq, qp->mqp.qpn,
692
qp->ibqp.srq ? to_msrq(qp->ibqp.srq): NULL);
693
if (send_cq != recv_cq)
694
__mlx4_ib_cq_clean(send_cq, qp->mqp.qpn, NULL);
695
}
696
697
mlx4_qp_remove(dev->dev, &qp->mqp);
698
699
mlx4_ib_unlock_cqs(send_cq, recv_cq);
700
701
mlx4_qp_free(dev->dev, &qp->mqp);
702
703
if (!is_sqp(dev, qp))
704
mlx4_qp_release_range(dev->dev, qp->mqp.qpn, 1);
705
706
mlx4_mtt_cleanup(dev->dev, &qp->mtt);
707
708
if (is_user) {
709
if (!qp->ibqp.srq)
710
mlx4_ib_db_unmap_user(to_mucontext(qp->ibqp.uobject->context),
711
&qp->db);
712
ib_umem_release(qp->umem);
713
} else {
714
kfree(qp->sq.wrid);
715
kfree(qp->rq.wrid);
716
mlx4_buf_free(dev->dev, qp->buf_size, &qp->buf);
717
if (!qp->ibqp.srq)
718
mlx4_db_free(dev->dev, &qp->db);
719
}
720
721
del_gid_entries(qp);
722
}
723
724
struct ib_qp *mlx4_ib_create_qp(struct ib_pd *pd,
725
struct ib_qp_init_attr *init_attr,
726
struct ib_udata *udata)
727
{
728
struct mlx4_ib_dev *dev = to_mdev(pd->device);
729
struct mlx4_ib_sqp *sqp;
730
struct mlx4_ib_qp *qp;
731
int err;
732
733
/*
734
* We only support LSO and multicast loopback blocking, and
735
* only for kernel UD QPs.
736
*/
737
if (init_attr->create_flags & ~(IB_QP_CREATE_IPOIB_UD_LSO |
738
IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK))
739
return ERR_PTR(-EINVAL);
740
741
if (init_attr->create_flags &&
742
(pd->uobject || init_attr->qp_type != IB_QPT_UD))
743
return ERR_PTR(-EINVAL);
744
745
switch (init_attr->qp_type) {
746
case IB_QPT_RC:
747
case IB_QPT_UC:
748
case IB_QPT_UD:
749
{
750
qp = kzalloc(sizeof *qp, GFP_KERNEL);
751
if (!qp)
752
return ERR_PTR(-ENOMEM);
753
754
err = create_qp_common(dev, pd, init_attr, udata, 0, qp);
755
if (err) {
756
kfree(qp);
757
return ERR_PTR(err);
758
}
759
760
qp->ibqp.qp_num = qp->mqp.qpn;
761
762
break;
763
}
764
case IB_QPT_SMI:
765
case IB_QPT_GSI:
766
{
767
/* Userspace is not allowed to create special QPs: */
768
if (pd->uobject)
769
return ERR_PTR(-EINVAL);
770
771
sqp = kzalloc(sizeof *sqp, GFP_KERNEL);
772
if (!sqp)
773
return ERR_PTR(-ENOMEM);
774
775
qp = &sqp->qp;
776
777
err = create_qp_common(dev, pd, init_attr, udata,
778
dev->dev->caps.sqp_start +
779
(init_attr->qp_type == IB_QPT_SMI ? 0 : 2) +
780
init_attr->port_num - 1,
781
qp);
782
if (err) {
783
kfree(sqp);
784
return ERR_PTR(err);
785
}
786
787
qp->port = init_attr->port_num;
788
qp->ibqp.qp_num = init_attr->qp_type == IB_QPT_SMI ? 0 : 1;
789
790
break;
791
}
792
default:
793
/* Don't support raw QPs */
794
return ERR_PTR(-EINVAL);
795
}
796
797
return &qp->ibqp;
798
}
799
800
int mlx4_ib_destroy_qp(struct ib_qp *qp)
801
{
802
struct mlx4_ib_dev *dev = to_mdev(qp->device);
803
struct mlx4_ib_qp *mqp = to_mqp(qp);
804
805
if (is_qp0(dev, mqp))
806
mlx4_CLOSE_PORT(dev->dev, mqp->port);
807
808
destroy_qp_common(dev, mqp, !!qp->pd->uobject);
809
810
if (is_sqp(dev, mqp))
811
kfree(to_msqp(mqp));
812
else
813
kfree(mqp);
814
815
return 0;
816
}
817
818
static int to_mlx4_st(enum ib_qp_type type)
819
{
820
switch (type) {
821
case IB_QPT_RC: return MLX4_QP_ST_RC;
822
case IB_QPT_UC: return MLX4_QP_ST_UC;
823
case IB_QPT_UD: return MLX4_QP_ST_UD;
824
case IB_QPT_SMI:
825
case IB_QPT_GSI: return MLX4_QP_ST_MLX;
826
default: return -1;
827
}
828
}
829
830
static __be32 to_mlx4_access_flags(struct mlx4_ib_qp *qp, const struct ib_qp_attr *attr,
831
int attr_mask)
832
{
833
u8 dest_rd_atomic;
834
u32 access_flags;
835
u32 hw_access_flags = 0;
836
837
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
838
dest_rd_atomic = attr->max_dest_rd_atomic;
839
else
840
dest_rd_atomic = qp->resp_depth;
841
842
if (attr_mask & IB_QP_ACCESS_FLAGS)
843
access_flags = attr->qp_access_flags;
844
else
845
access_flags = qp->atomic_rd_en;
846
847
if (!dest_rd_atomic)
848
access_flags &= IB_ACCESS_REMOTE_WRITE;
849
850
if (access_flags & IB_ACCESS_REMOTE_READ)
851
hw_access_flags |= MLX4_QP_BIT_RRE;
852
if (access_flags & IB_ACCESS_REMOTE_ATOMIC)
853
hw_access_flags |= MLX4_QP_BIT_RAE;
854
if (access_flags & IB_ACCESS_REMOTE_WRITE)
855
hw_access_flags |= MLX4_QP_BIT_RWE;
856
857
return cpu_to_be32(hw_access_flags);
858
}
859
860
static void store_sqp_attrs(struct mlx4_ib_sqp *sqp, const struct ib_qp_attr *attr,
861
int attr_mask)
862
{
863
if (attr_mask & IB_QP_PKEY_INDEX)
864
sqp->pkey_index = attr->pkey_index;
865
if (attr_mask & IB_QP_QKEY)
866
sqp->qkey = attr->qkey;
867
if (attr_mask & IB_QP_SQ_PSN)
868
sqp->send_psn = attr->sq_psn;
869
}
870
871
static void mlx4_set_sched(struct mlx4_qp_path *path, u8 port)
872
{
873
path->sched_queue = (path->sched_queue & 0xbf) | ((port - 1) << 6);
874
}
875
876
static int mlx4_set_path(struct mlx4_ib_dev *dev, const struct ib_ah_attr *ah,
877
struct mlx4_qp_path *path, u8 port)
878
{
879
int err;
880
int is_eth = rdma_port_get_link_layer(&dev->ib_dev, port) ==
881
IB_LINK_LAYER_ETHERNET;
882
u8 mac[6];
883
int is_mcast;
884
u16 vlan_tag;
885
int vidx;
886
887
path->grh_mylmc = ah->src_path_bits & 0x7f;
888
path->rlid = cpu_to_be16(ah->dlid);
889
if (ah->static_rate) {
890
path->static_rate = ah->static_rate + MLX4_STAT_RATE_OFFSET;
891
while (path->static_rate > IB_RATE_2_5_GBPS + MLX4_STAT_RATE_OFFSET &&
892
!(1 << path->static_rate & dev->dev->caps.stat_rate_support))
893
--path->static_rate;
894
} else
895
path->static_rate = 0;
896
path->counter_index = 0xff;
897
898
if (ah->ah_flags & IB_AH_GRH) {
899
if (ah->grh.sgid_index >= dev->dev->caps.gid_table_len[port]) {
900
printk(KERN_ERR "sgid_index (%u) too large. max is %d\n",
901
ah->grh.sgid_index, dev->dev->caps.gid_table_len[port] - 1);
902
return -1;
903
}
904
905
path->grh_mylmc |= 1 << 7;
906
path->mgid_index = ah->grh.sgid_index;
907
path->hop_limit = ah->grh.hop_limit;
908
path->tclass_flowlabel =
909
cpu_to_be32((ah->grh.traffic_class << 20) |
910
(ah->grh.flow_label));
911
memcpy(path->rgid, ah->grh.dgid.raw, 16);
912
}
913
914
if (is_eth) {
915
path->sched_queue = MLX4_IB_DEFAULT_SCHED_QUEUE |
916
((port - 1) << 6) | ((ah->sl & 7) << 3) | ((ah->sl & 8) >> 1);
917
918
if (!(ah->ah_flags & IB_AH_GRH))
919
return -1;
920
921
err = mlx4_ib_resolve_grh(dev, ah, mac, &is_mcast, port);
922
if (err)
923
return err;
924
925
memcpy(path->dmac, mac, 6);
926
path->ackto = MLX4_IB_LINK_TYPE_ETH;
927
/* use index 0 into MAC table for IBoE */
928
path->grh_mylmc &= 0x80;
929
930
vlan_tag = rdma_get_vlan_id(&dev->iboe.gid_table[port - 1][ah->grh.sgid_index]);
931
if (vlan_tag < 0x1000) {
932
if (mlx4_find_cached_vlan(dev->dev, port, vlan_tag, &vidx))
933
return -ENOENT;
934
935
path->vlan_index = vidx;
936
path->fl = 1 << 6;
937
}
938
} else
939
path->sched_queue = MLX4_IB_DEFAULT_SCHED_QUEUE |
940
((port - 1) << 6) | ((ah->sl & 0xf) << 2);
941
942
return 0;
943
}
944
945
static void update_mcg_macs(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp)
946
{
947
struct mlx4_ib_gid_entry *ge, *tmp;
948
949
list_for_each_entry_safe(ge, tmp, &qp->gid_list, list) {
950
if (!ge->added && mlx4_ib_add_mc(dev, qp, &ge->gid)) {
951
ge->added = 1;
952
ge->port = qp->port;
953
}
954
}
955
}
956
957
static int __mlx4_ib_modify_qp(struct ib_qp *ibqp,
958
const struct ib_qp_attr *attr, int attr_mask,
959
enum ib_qp_state cur_state, enum ib_qp_state new_state)
960
{
961
struct mlx4_ib_dev *dev = to_mdev(ibqp->device);
962
struct mlx4_ib_qp *qp = to_mqp(ibqp);
963
struct mlx4_qp_context *context;
964
enum mlx4_qp_optpar optpar = 0;
965
int sqd_event;
966
int err = -EINVAL;
967
968
context = kzalloc(sizeof *context, GFP_KERNEL);
969
if (!context)
970
return -ENOMEM;
971
972
context->flags = cpu_to_be32((to_mlx4_state(new_state) << 28) |
973
(to_mlx4_st(ibqp->qp_type) << 16));
974
975
if (!(attr_mask & IB_QP_PATH_MIG_STATE))
976
context->flags |= cpu_to_be32(MLX4_QP_PM_MIGRATED << 11);
977
else {
978
optpar |= MLX4_QP_OPTPAR_PM_STATE;
979
switch (attr->path_mig_state) {
980
case IB_MIG_MIGRATED:
981
context->flags |= cpu_to_be32(MLX4_QP_PM_MIGRATED << 11);
982
break;
983
case IB_MIG_REARM:
984
context->flags |= cpu_to_be32(MLX4_QP_PM_REARM << 11);
985
break;
986
case IB_MIG_ARMED:
987
context->flags |= cpu_to_be32(MLX4_QP_PM_ARMED << 11);
988
break;
989
}
990
}
991
992
if (ibqp->qp_type == IB_QPT_GSI || ibqp->qp_type == IB_QPT_SMI)
993
context->mtu_msgmax = (IB_MTU_4096 << 5) | 11;
994
else if (ibqp->qp_type == IB_QPT_UD) {
995
if (qp->flags & MLX4_IB_QP_LSO)
996
context->mtu_msgmax = (IB_MTU_4096 << 5) |
997
ilog2(dev->dev->caps.max_gso_sz);
998
else
999
context->mtu_msgmax = (IB_MTU_4096 << 5) | 12;
1000
} else if (attr_mask & IB_QP_PATH_MTU) {
1001
if (attr->path_mtu < IB_MTU_256 || attr->path_mtu > IB_MTU_4096) {
1002
printk(KERN_ERR "path MTU (%u) is invalid\n",
1003
attr->path_mtu);
1004
goto out;
1005
}
1006
context->mtu_msgmax = (attr->path_mtu << 5) |
1007
ilog2(dev->dev->caps.max_msg_sz);
1008
}
1009
1010
if (qp->rq.wqe_cnt)
1011
context->rq_size_stride = ilog2(qp->rq.wqe_cnt) << 3;
1012
context->rq_size_stride |= qp->rq.wqe_shift - 4;
1013
1014
if (qp->sq.wqe_cnt)
1015
context->sq_size_stride = ilog2(qp->sq.wqe_cnt) << 3;
1016
context->sq_size_stride |= qp->sq.wqe_shift - 4;
1017
1018
if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1019
context->sq_size_stride |= !!qp->sq_no_prefetch << 7;
1020
1021
if (qp->ibqp.uobject)
1022
context->usr_page = cpu_to_be32(to_mucontext(ibqp->uobject->context)->uar.index);
1023
else
1024
context->usr_page = cpu_to_be32(dev->priv_uar.index);
1025
1026
if (attr_mask & IB_QP_DEST_QPN)
1027
context->remote_qpn = cpu_to_be32(attr->dest_qp_num);
1028
1029
if (attr_mask & IB_QP_PORT) {
1030
if (cur_state == IB_QPS_SQD && new_state == IB_QPS_SQD &&
1031
!(attr_mask & IB_QP_AV)) {
1032
mlx4_set_sched(&context->pri_path, attr->port_num);
1033
optpar |= MLX4_QP_OPTPAR_SCHED_QUEUE;
1034
}
1035
}
1036
1037
if (attr_mask & IB_QP_PKEY_INDEX) {
1038
context->pri_path.pkey_index = attr->pkey_index;
1039
optpar |= MLX4_QP_OPTPAR_PKEY_INDEX;
1040
}
1041
1042
if (attr_mask & IB_QP_AV) {
1043
if (mlx4_set_path(dev, &attr->ah_attr, &context->pri_path,
1044
attr_mask & IB_QP_PORT ? attr->port_num : qp->port))
1045
goto out;
1046
1047
optpar |= (MLX4_QP_OPTPAR_PRIMARY_ADDR_PATH |
1048
MLX4_QP_OPTPAR_SCHED_QUEUE);
1049
}
1050
1051
if (attr_mask & IB_QP_TIMEOUT) {
1052
context->pri_path.ackto |= attr->timeout << 3;
1053
optpar |= MLX4_QP_OPTPAR_ACK_TIMEOUT;
1054
}
1055
1056
if (attr_mask & IB_QP_ALT_PATH) {
1057
if (attr->alt_port_num == 0 ||
1058
attr->alt_port_num > dev->dev->caps.num_ports)
1059
goto out;
1060
1061
if (attr->alt_pkey_index >=
1062
dev->dev->caps.pkey_table_len[attr->alt_port_num])
1063
goto out;
1064
1065
if (mlx4_set_path(dev, &attr->alt_ah_attr, &context->alt_path,
1066
attr->alt_port_num))
1067
goto out;
1068
1069
context->alt_path.pkey_index = attr->alt_pkey_index;
1070
context->alt_path.ackto = attr->alt_timeout << 3;
1071
optpar |= MLX4_QP_OPTPAR_ALT_ADDR_PATH;
1072
}
1073
1074
context->pd = cpu_to_be32(to_mpd(ibqp->pd)->pdn);
1075
context->params1 = cpu_to_be32(MLX4_IB_ACK_REQ_FREQ << 28);
1076
1077
/* Set "fast registration enabled" for all kernel QPs */
1078
if (!qp->ibqp.uobject)
1079
context->params1 |= cpu_to_be32(1 << 11);
1080
1081
if (attr_mask & IB_QP_RNR_RETRY) {
1082
context->params1 |= cpu_to_be32(attr->rnr_retry << 13);
1083
optpar |= MLX4_QP_OPTPAR_RNR_RETRY;
1084
}
1085
1086
if (attr_mask & IB_QP_RETRY_CNT) {
1087
context->params1 |= cpu_to_be32(attr->retry_cnt << 16);
1088
optpar |= MLX4_QP_OPTPAR_RETRY_COUNT;
1089
}
1090
1091
if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) {
1092
if (attr->max_rd_atomic)
1093
context->params1 |=
1094
cpu_to_be32(fls(attr->max_rd_atomic - 1) << 21);
1095
optpar |= MLX4_QP_OPTPAR_SRA_MAX;
1096
}
1097
1098
if (attr_mask & IB_QP_SQ_PSN)
1099
context->next_send_psn = cpu_to_be32(attr->sq_psn);
1100
1101
context->cqn_send = cpu_to_be32(to_mcq(ibqp->send_cq)->mcq.cqn);
1102
1103
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) {
1104
if (attr->max_dest_rd_atomic)
1105
context->params2 |=
1106
cpu_to_be32(fls(attr->max_dest_rd_atomic - 1) << 21);
1107
optpar |= MLX4_QP_OPTPAR_RRA_MAX;
1108
}
1109
1110
if (attr_mask & (IB_QP_ACCESS_FLAGS | IB_QP_MAX_DEST_RD_ATOMIC)) {
1111
context->params2 |= to_mlx4_access_flags(qp, attr, attr_mask);
1112
optpar |= MLX4_QP_OPTPAR_RWE | MLX4_QP_OPTPAR_RRE | MLX4_QP_OPTPAR_RAE;
1113
}
1114
1115
if (ibqp->srq)
1116
context->params2 |= cpu_to_be32(MLX4_QP_BIT_RIC);
1117
1118
if (attr_mask & IB_QP_MIN_RNR_TIMER) {
1119
context->rnr_nextrecvpsn |= cpu_to_be32(attr->min_rnr_timer << 24);
1120
optpar |= MLX4_QP_OPTPAR_RNR_TIMEOUT;
1121
}
1122
if (attr_mask & IB_QP_RQ_PSN)
1123
context->rnr_nextrecvpsn |= cpu_to_be32(attr->rq_psn);
1124
1125
context->cqn_recv = cpu_to_be32(to_mcq(ibqp->recv_cq)->mcq.cqn);
1126
1127
if (attr_mask & IB_QP_QKEY) {
1128
context->qkey = cpu_to_be32(attr->qkey);
1129
optpar |= MLX4_QP_OPTPAR_Q_KEY;
1130
}
1131
1132
if (ibqp->srq)
1133
context->srqn = cpu_to_be32(1 << 24 | to_msrq(ibqp->srq)->msrq.srqn);
1134
1135
if (!ibqp->srq && cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1136
context->db_rec_addr = cpu_to_be64(qp->db.dma);
1137
1138
if (cur_state == IB_QPS_INIT &&
1139
new_state == IB_QPS_RTR &&
1140
(ibqp->qp_type == IB_QPT_GSI || ibqp->qp_type == IB_QPT_SMI ||
1141
ibqp->qp_type == IB_QPT_UD)) {
1142
context->pri_path.sched_queue = (qp->port - 1) << 6;
1143
if (is_qp0(dev, qp))
1144
context->pri_path.sched_queue |= MLX4_IB_DEFAULT_QP0_SCHED_QUEUE;
1145
else
1146
context->pri_path.sched_queue |= MLX4_IB_DEFAULT_SCHED_QUEUE;
1147
}
1148
1149
if (cur_state == IB_QPS_RTS && new_state == IB_QPS_SQD &&
1150
attr_mask & IB_QP_EN_SQD_ASYNC_NOTIFY && attr->en_sqd_async_notify)
1151
sqd_event = 1;
1152
else
1153
sqd_event = 0;
1154
1155
if (!ibqp->uobject && cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1156
context->rlkey |= (1 << 4);
1157
1158
/*
1159
* Before passing a kernel QP to the HW, make sure that the
1160
* ownership bits of the send queue are set and the SQ
1161
* headroom is stamped so that the hardware doesn't start
1162
* processing stale work requests.
1163
*/
1164
if (!ibqp->uobject && cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) {
1165
struct mlx4_wqe_ctrl_seg *ctrl;
1166
int i;
1167
1168
for (i = 0; i < qp->sq.wqe_cnt; ++i) {
1169
ctrl = get_send_wqe(qp, i);
1170
ctrl->owner_opcode = cpu_to_be32(1 << 31);
1171
if (qp->sq_max_wqes_per_wr == 1)
1172
ctrl->fence_size = 1 << (qp->sq.wqe_shift - 4);
1173
1174
stamp_send_wqe(qp, i, 1 << qp->sq.wqe_shift);
1175
}
1176
}
1177
1178
err = mlx4_qp_modify(dev->dev, &qp->mtt, to_mlx4_state(cur_state),
1179
to_mlx4_state(new_state), context, optpar,
1180
sqd_event, &qp->mqp);
1181
if (err)
1182
goto out;
1183
1184
qp->state = new_state;
1185
1186
if (attr_mask & IB_QP_ACCESS_FLAGS)
1187
qp->atomic_rd_en = attr->qp_access_flags;
1188
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1189
qp->resp_depth = attr->max_dest_rd_atomic;
1190
if (attr_mask & IB_QP_PORT) {
1191
qp->port = attr->port_num;
1192
update_mcg_macs(dev, qp);
1193
}
1194
if (attr_mask & IB_QP_ALT_PATH)
1195
qp->alt_port = attr->alt_port_num;
1196
1197
if (is_sqp(dev, qp))
1198
store_sqp_attrs(to_msqp(qp), attr, attr_mask);
1199
1200
/*
1201
* If we moved QP0 to RTR, bring the IB link up; if we moved
1202
* QP0 to RESET or ERROR, bring the link back down.
1203
*/
1204
if (is_qp0(dev, qp)) {
1205
if (cur_state != IB_QPS_RTR && new_state == IB_QPS_RTR)
1206
if (mlx4_INIT_PORT(dev->dev, qp->port))
1207
printk(KERN_WARNING "INIT_PORT failed for port %d\n",
1208
qp->port);
1209
1210
if (cur_state != IB_QPS_RESET && cur_state != IB_QPS_ERR &&
1211
(new_state == IB_QPS_RESET || new_state == IB_QPS_ERR))
1212
mlx4_CLOSE_PORT(dev->dev, qp->port);
1213
}
1214
1215
/*
1216
* If we moved a kernel QP to RESET, clean up all old CQ
1217
* entries and reinitialize the QP.
1218
*/
1219
if (new_state == IB_QPS_RESET && !ibqp->uobject) {
1220
mlx4_ib_cq_clean(to_mcq(ibqp->recv_cq), qp->mqp.qpn,
1221
ibqp->srq ? to_msrq(ibqp->srq): NULL);
1222
if (ibqp->send_cq != ibqp->recv_cq)
1223
mlx4_ib_cq_clean(to_mcq(ibqp->send_cq), qp->mqp.qpn, NULL);
1224
1225
qp->rq.head = 0;
1226
qp->rq.tail = 0;
1227
qp->sq.head = 0;
1228
qp->sq.tail = 0;
1229
qp->sq_next_wqe = 0;
1230
if (!ibqp->srq)
1231
*qp->db.db = 0;
1232
}
1233
1234
out:
1235
kfree(context);
1236
return err;
1237
}
1238
1239
int mlx4_ib_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1240
int attr_mask, struct ib_udata *udata)
1241
{
1242
struct mlx4_ib_dev *dev = to_mdev(ibqp->device);
1243
struct mlx4_ib_qp *qp = to_mqp(ibqp);
1244
enum ib_qp_state cur_state, new_state;
1245
int err = -EINVAL;
1246
1247
mutex_lock(&qp->mutex);
1248
1249
cur_state = attr_mask & IB_QP_CUR_STATE ? attr->cur_qp_state : qp->state;
1250
new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1251
1252
if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, attr_mask))
1253
goto out;
1254
1255
if ((attr_mask & IB_QP_PORT) &&
1256
(attr->port_num == 0 || attr->port_num > dev->dev->caps.num_ports)) {
1257
goto out;
1258
}
1259
1260
if (attr_mask & IB_QP_PKEY_INDEX) {
1261
int p = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1262
if (attr->pkey_index >= dev->dev->caps.pkey_table_len[p])
1263
goto out;
1264
}
1265
1266
if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC &&
1267
attr->max_rd_atomic > dev->dev->caps.max_qp_init_rdma) {
1268
goto out;
1269
}
1270
1271
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC &&
1272
attr->max_dest_rd_atomic > dev->dev->caps.max_qp_dest_rdma) {
1273
goto out;
1274
}
1275
1276
if (cur_state == new_state && cur_state == IB_QPS_RESET) {
1277
err = 0;
1278
goto out;
1279
}
1280
1281
err = __mlx4_ib_modify_qp(ibqp, attr, attr_mask, cur_state, new_state);
1282
1283
out:
1284
mutex_unlock(&qp->mutex);
1285
return err;
1286
}
1287
1288
static int build_mlx_header(struct mlx4_ib_sqp *sqp, struct ib_send_wr *wr,
1289
void *wqe, unsigned *mlx_seg_len)
1290
{
1291
struct ib_device *ib_dev = sqp->qp.ibqp.device;
1292
struct mlx4_wqe_mlx_seg *mlx = wqe;
1293
struct mlx4_wqe_inline_seg *inl = wqe + sizeof *mlx;
1294
struct mlx4_ib_ah *ah = to_mah(wr->wr.ud.ah);
1295
union ib_gid sgid;
1296
u16 pkey;
1297
int send_size;
1298
int header_size;
1299
int spc;
1300
int i;
1301
int is_eth;
1302
int is_vlan = 0;
1303
int is_grh;
1304
u16 vlan;
1305
1306
send_size = 0;
1307
for (i = 0; i < wr->num_sge; ++i)
1308
send_size += wr->sg_list[i].length;
1309
1310
is_eth = rdma_port_get_link_layer(sqp->qp.ibqp.device, sqp->qp.port) == IB_LINK_LAYER_ETHERNET;
1311
is_grh = mlx4_ib_ah_grh_present(ah);
1312
if (is_eth) {
1313
ib_get_cached_gid(ib_dev, be32_to_cpu(ah->av.ib.port_pd) >> 24,
1314
ah->av.ib.gid_index, &sgid);
1315
vlan = rdma_get_vlan_id(&sgid);
1316
is_vlan = vlan < 0x1000;
1317
}
1318
ib_ud_header_init(send_size, !is_eth, is_eth, is_vlan, is_grh, 0, &sqp->ud_header);
1319
1320
if (!is_eth) {
1321
sqp->ud_header.lrh.service_level =
1322
be32_to_cpu(ah->av.ib.sl_tclass_flowlabel) >> 28;
1323
sqp->ud_header.lrh.destination_lid = ah->av.ib.dlid;
1324
sqp->ud_header.lrh.source_lid = cpu_to_be16(ah->av.ib.g_slid & 0x7f);
1325
}
1326
1327
if (is_grh) {
1328
sqp->ud_header.grh.traffic_class =
1329
(be32_to_cpu(ah->av.ib.sl_tclass_flowlabel) >> 20) & 0xff;
1330
sqp->ud_header.grh.flow_label =
1331
ah->av.ib.sl_tclass_flowlabel & cpu_to_be32(0xfffff);
1332
sqp->ud_header.grh.hop_limit = ah->av.ib.hop_limit;
1333
ib_get_cached_gid(ib_dev, be32_to_cpu(ah->av.ib.port_pd) >> 24,
1334
ah->av.ib.gid_index, &sqp->ud_header.grh.source_gid);
1335
memcpy(sqp->ud_header.grh.destination_gid.raw,
1336
ah->av.ib.dgid, 16);
1337
}
1338
1339
mlx->flags &= cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE);
1340
1341
if (!is_eth) {
1342
mlx->flags |= cpu_to_be32((!sqp->qp.ibqp.qp_num ? MLX4_WQE_MLX_VL15 : 0) |
1343
(sqp->ud_header.lrh.destination_lid ==
1344
IB_LID_PERMISSIVE ? MLX4_WQE_MLX_SLR : 0) |
1345
(sqp->ud_header.lrh.service_level << 8));
1346
mlx->rlid = sqp->ud_header.lrh.destination_lid;
1347
}
1348
1349
switch (wr->opcode) {
1350
case IB_WR_SEND:
1351
sqp->ud_header.bth.opcode = IB_OPCODE_UD_SEND_ONLY;
1352
sqp->ud_header.immediate_present = 0;
1353
break;
1354
case IB_WR_SEND_WITH_IMM:
1355
sqp->ud_header.bth.opcode = IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE;
1356
sqp->ud_header.immediate_present = 1;
1357
sqp->ud_header.immediate_data = wr->ex.imm_data;
1358
break;
1359
default:
1360
return -EINVAL;
1361
}
1362
1363
if (is_eth) {
1364
u8 *smac;
1365
1366
memcpy(sqp->ud_header.eth.dmac_h, ah->av.eth.mac, 6);
1367
/* FIXME: cache smac value? */
1368
smac = to_mdev(sqp->qp.ibqp.device)->iboe.netdevs[sqp->qp.port - 1]->dev_addr;
1369
memcpy(sqp->ud_header.eth.smac_h, smac, 6);
1370
if (!memcmp(sqp->ud_header.eth.smac_h, sqp->ud_header.eth.dmac_h, 6))
1371
mlx->flags |= cpu_to_be32(MLX4_WQE_CTRL_FORCE_LOOPBACK);
1372
if (!is_vlan) {
1373
sqp->ud_header.eth.type = cpu_to_be16(MLX4_IB_IBOE_ETHERTYPE);
1374
} else {
1375
u16 pcp;
1376
1377
sqp->ud_header.vlan.type = cpu_to_be16(MLX4_IB_IBOE_ETHERTYPE);
1378
pcp = (be32_to_cpu(ah->av.ib.sl_tclass_flowlabel) >> 27 & 3) << 13;
1379
sqp->ud_header.vlan.tag = cpu_to_be16(vlan | pcp);
1380
}
1381
} else {
1382
sqp->ud_header.lrh.virtual_lane = !sqp->qp.ibqp.qp_num ? 15 : 0;
1383
if (sqp->ud_header.lrh.destination_lid == IB_LID_PERMISSIVE)
1384
sqp->ud_header.lrh.source_lid = IB_LID_PERMISSIVE;
1385
}
1386
sqp->ud_header.bth.solicited_event = !!(wr->send_flags & IB_SEND_SOLICITED);
1387
if (!sqp->qp.ibqp.qp_num)
1388
ib_get_cached_pkey(ib_dev, sqp->qp.port, sqp->pkey_index, &pkey);
1389
else
1390
ib_get_cached_pkey(ib_dev, sqp->qp.port, wr->wr.ud.pkey_index, &pkey);
1391
sqp->ud_header.bth.pkey = cpu_to_be16(pkey);
1392
sqp->ud_header.bth.destination_qpn = cpu_to_be32(wr->wr.ud.remote_qpn);
1393
sqp->ud_header.bth.psn = cpu_to_be32((sqp->send_psn++) & ((1 << 24) - 1));
1394
sqp->ud_header.deth.qkey = cpu_to_be32(wr->wr.ud.remote_qkey & 0x80000000 ?
1395
sqp->qkey : wr->wr.ud.remote_qkey);
1396
sqp->ud_header.deth.source_qpn = cpu_to_be32(sqp->qp.ibqp.qp_num);
1397
1398
header_size = ib_ud_header_pack(&sqp->ud_header, sqp->header_buf);
1399
1400
if (0) {
1401
printk(KERN_ERR "built UD header of size %d:\n", header_size);
1402
for (i = 0; i < header_size / 4; ++i) {
1403
if (i % 8 == 0)
1404
printk(" [%02x] ", i * 4);
1405
printk(" %08x",
1406
be32_to_cpu(((__be32 *) sqp->header_buf)[i]));
1407
if ((i + 1) % 8 == 0)
1408
printk("\n");
1409
}
1410
printk("\n");
1411
}
1412
1413
/*
1414
* Inline data segments may not cross a 64 byte boundary. If
1415
* our UD header is bigger than the space available up to the
1416
* next 64 byte boundary in the WQE, use two inline data
1417
* segments to hold the UD header.
1418
*/
1419
spc = MLX4_INLINE_ALIGN -
1420
((unsigned long) (inl + 1) & (MLX4_INLINE_ALIGN - 1));
1421
if (header_size <= spc) {
1422
inl->byte_count = cpu_to_be32(1 << 31 | header_size);
1423
memcpy(inl + 1, sqp->header_buf, header_size);
1424
i = 1;
1425
} else {
1426
inl->byte_count = cpu_to_be32(1 << 31 | spc);
1427
memcpy(inl + 1, sqp->header_buf, spc);
1428
1429
inl = (void *) (inl + 1) + spc;
1430
memcpy(inl + 1, sqp->header_buf + spc, header_size - spc);
1431
/*
1432
* Need a barrier here to make sure all the data is
1433
* visible before the byte_count field is set.
1434
* Otherwise the HCA prefetcher could grab the 64-byte
1435
* chunk with this inline segment and get a valid (!=
1436
* 0xffffffff) byte count but stale data, and end up
1437
* generating a packet with bad headers.
1438
*
1439
* The first inline segment's byte_count field doesn't
1440
* need a barrier, because it comes after a
1441
* control/MLX segment and therefore is at an offset
1442
* of 16 mod 64.
1443
*/
1444
wmb();
1445
inl->byte_count = cpu_to_be32(1 << 31 | (header_size - spc));
1446
i = 2;
1447
}
1448
1449
*mlx_seg_len =
1450
ALIGN(i * sizeof (struct mlx4_wqe_inline_seg) + header_size, 16);
1451
return 0;
1452
}
1453
1454
static int mlx4_wq_overflow(struct mlx4_ib_wq *wq, int nreq, struct ib_cq *ib_cq)
1455
{
1456
unsigned cur;
1457
struct mlx4_ib_cq *cq;
1458
1459
cur = wq->head - wq->tail;
1460
if (likely(cur + nreq < wq->max_post))
1461
return 0;
1462
1463
cq = to_mcq(ib_cq);
1464
spin_lock(&cq->lock);
1465
cur = wq->head - wq->tail;
1466
spin_unlock(&cq->lock);
1467
1468
return cur + nreq >= wq->max_post;
1469
}
1470
1471
static __be32 convert_access(int acc)
1472
{
1473
return (acc & IB_ACCESS_REMOTE_ATOMIC ? cpu_to_be32(MLX4_WQE_FMR_PERM_ATOMIC) : 0) |
1474
(acc & IB_ACCESS_REMOTE_WRITE ? cpu_to_be32(MLX4_WQE_FMR_PERM_REMOTE_WRITE) : 0) |
1475
(acc & IB_ACCESS_REMOTE_READ ? cpu_to_be32(MLX4_WQE_FMR_PERM_REMOTE_READ) : 0) |
1476
(acc & IB_ACCESS_LOCAL_WRITE ? cpu_to_be32(MLX4_WQE_FMR_PERM_LOCAL_WRITE) : 0) |
1477
cpu_to_be32(MLX4_WQE_FMR_PERM_LOCAL_READ);
1478
}
1479
1480
static void set_fmr_seg(struct mlx4_wqe_fmr_seg *fseg, struct ib_send_wr *wr)
1481
{
1482
struct mlx4_ib_fast_reg_page_list *mfrpl = to_mfrpl(wr->wr.fast_reg.page_list);
1483
int i;
1484
1485
for (i = 0; i < wr->wr.fast_reg.page_list_len; ++i)
1486
mfrpl->mapped_page_list[i] =
1487
cpu_to_be64(wr->wr.fast_reg.page_list->page_list[i] |
1488
MLX4_MTT_FLAG_PRESENT);
1489
1490
fseg->flags = convert_access(wr->wr.fast_reg.access_flags);
1491
fseg->mem_key = cpu_to_be32(wr->wr.fast_reg.rkey);
1492
fseg->buf_list = cpu_to_be64(mfrpl->map);
1493
fseg->start_addr = cpu_to_be64(wr->wr.fast_reg.iova_start);
1494
fseg->reg_len = cpu_to_be64(wr->wr.fast_reg.length);
1495
fseg->offset = 0; /* XXX -- is this just for ZBVA? */
1496
fseg->page_size = cpu_to_be32(wr->wr.fast_reg.page_shift);
1497
fseg->reserved[0] = 0;
1498
fseg->reserved[1] = 0;
1499
}
1500
1501
static void set_local_inv_seg(struct mlx4_wqe_local_inval_seg *iseg, u32 rkey)
1502
{
1503
iseg->flags = 0;
1504
iseg->mem_key = cpu_to_be32(rkey);
1505
iseg->guest_id = 0;
1506
iseg->pa = 0;
1507
}
1508
1509
static __always_inline void set_raddr_seg(struct mlx4_wqe_raddr_seg *rseg,
1510
u64 remote_addr, u32 rkey)
1511
{
1512
rseg->raddr = cpu_to_be64(remote_addr);
1513
rseg->rkey = cpu_to_be32(rkey);
1514
rseg->reserved = 0;
1515
}
1516
1517
static void set_atomic_seg(struct mlx4_wqe_atomic_seg *aseg, struct ib_send_wr *wr)
1518
{
1519
if (wr->opcode == IB_WR_ATOMIC_CMP_AND_SWP) {
1520
aseg->swap_add = cpu_to_be64(wr->wr.atomic.swap);
1521
aseg->compare = cpu_to_be64(wr->wr.atomic.compare_add);
1522
} else if (wr->opcode == IB_WR_MASKED_ATOMIC_FETCH_AND_ADD) {
1523
aseg->swap_add = cpu_to_be64(wr->wr.atomic.compare_add);
1524
aseg->compare = cpu_to_be64(wr->wr.atomic.compare_add_mask);
1525
} else {
1526
aseg->swap_add = cpu_to_be64(wr->wr.atomic.compare_add);
1527
aseg->compare = 0;
1528
}
1529
1530
}
1531
1532
static void set_masked_atomic_seg(struct mlx4_wqe_masked_atomic_seg *aseg,
1533
struct ib_send_wr *wr)
1534
{
1535
aseg->swap_add = cpu_to_be64(wr->wr.atomic.swap);
1536
aseg->swap_add_mask = cpu_to_be64(wr->wr.atomic.swap_mask);
1537
aseg->compare = cpu_to_be64(wr->wr.atomic.compare_add);
1538
aseg->compare_mask = cpu_to_be64(wr->wr.atomic.compare_add_mask);
1539
}
1540
1541
static void set_datagram_seg(struct mlx4_wqe_datagram_seg *dseg,
1542
struct ib_send_wr *wr, __be16 *vlan)
1543
{
1544
memcpy(dseg->av, &to_mah(wr->wr.ud.ah)->av, sizeof (struct mlx4_av));
1545
dseg->dqpn = cpu_to_be32(wr->wr.ud.remote_qpn);
1546
dseg->qkey = cpu_to_be32(wr->wr.ud.remote_qkey);
1547
dseg->vlan = to_mah(wr->wr.ud.ah)->av.eth.vlan;
1548
memcpy(dseg->mac, to_mah(wr->wr.ud.ah)->av.eth.mac, 6);
1549
*vlan = dseg->vlan;
1550
}
1551
1552
static void set_mlx_icrc_seg(void *dseg)
1553
{
1554
u32 *t = dseg;
1555
struct mlx4_wqe_inline_seg *iseg = dseg;
1556
1557
t[1] = 0;
1558
1559
/*
1560
* Need a barrier here before writing the byte_count field to
1561
* make sure that all the data is visible before the
1562
* byte_count field is set. Otherwise, if the segment begins
1563
* a new cacheline, the HCA prefetcher could grab the 64-byte
1564
* chunk and get a valid (!= * 0xffffffff) byte count but
1565
* stale data, and end up sending the wrong data.
1566
*/
1567
wmb();
1568
1569
iseg->byte_count = cpu_to_be32((1 << 31) | 4);
1570
}
1571
1572
static void set_data_seg(struct mlx4_wqe_data_seg *dseg, struct ib_sge *sg)
1573
{
1574
dseg->lkey = cpu_to_be32(sg->lkey);
1575
dseg->addr = cpu_to_be64(sg->addr);
1576
1577
/*
1578
* Need a barrier here before writing the byte_count field to
1579
* make sure that all the data is visible before the
1580
* byte_count field is set. Otherwise, if the segment begins
1581
* a new cacheline, the HCA prefetcher could grab the 64-byte
1582
* chunk and get a valid (!= * 0xffffffff) byte count but
1583
* stale data, and end up sending the wrong data.
1584
*/
1585
wmb();
1586
1587
dseg->byte_count = cpu_to_be32(sg->length);
1588
}
1589
1590
static void __set_data_seg(struct mlx4_wqe_data_seg *dseg, struct ib_sge *sg)
1591
{
1592
dseg->byte_count = cpu_to_be32(sg->length);
1593
dseg->lkey = cpu_to_be32(sg->lkey);
1594
dseg->addr = cpu_to_be64(sg->addr);
1595
}
1596
1597
static int build_lso_seg(struct mlx4_wqe_lso_seg *wqe, struct ib_send_wr *wr,
1598
struct mlx4_ib_qp *qp, unsigned *lso_seg_len,
1599
__be32 *lso_hdr_sz, __be32 *blh)
1600
{
1601
unsigned halign = ALIGN(sizeof *wqe + wr->wr.ud.hlen, 16);
1602
1603
if (unlikely(halign > MLX4_IB_CACHE_LINE_SIZE))
1604
*blh = cpu_to_be32(1 << 6);
1605
1606
if (unlikely(!(qp->flags & MLX4_IB_QP_LSO) &&
1607
wr->num_sge > qp->sq.max_gs - (halign >> 4)))
1608
return -EINVAL;
1609
1610
memcpy(wqe->header, wr->wr.ud.header, wr->wr.ud.hlen);
1611
1612
*lso_hdr_sz = cpu_to_be32((wr->wr.ud.mss - wr->wr.ud.hlen) << 16 |
1613
wr->wr.ud.hlen);
1614
*lso_seg_len = halign;
1615
return 0;
1616
}
1617
1618
static __be32 send_ieth(struct ib_send_wr *wr)
1619
{
1620
switch (wr->opcode) {
1621
case IB_WR_SEND_WITH_IMM:
1622
case IB_WR_RDMA_WRITE_WITH_IMM:
1623
return wr->ex.imm_data;
1624
1625
case IB_WR_SEND_WITH_INV:
1626
return cpu_to_be32(wr->ex.invalidate_rkey);
1627
1628
default:
1629
return 0;
1630
}
1631
}
1632
1633
int mlx4_ib_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
1634
struct ib_send_wr **bad_wr)
1635
{
1636
struct mlx4_ib_qp *qp = to_mqp(ibqp);
1637
void *wqe;
1638
struct mlx4_wqe_ctrl_seg *ctrl;
1639
struct mlx4_wqe_data_seg *dseg;
1640
unsigned long flags;
1641
int nreq;
1642
int err = 0;
1643
unsigned ind;
1644
int uninitialized_var(stamp);
1645
int uninitialized_var(size);
1646
unsigned uninitialized_var(seglen);
1647
__be32 dummy;
1648
__be32 *lso_wqe;
1649
__be32 uninitialized_var(lso_hdr_sz);
1650
__be32 blh;
1651
int i;
1652
__be16 vlan = cpu_to_be16(0xffff);
1653
1654
spin_lock_irqsave(&qp->sq.lock, flags);
1655
1656
ind = qp->sq_next_wqe;
1657
1658
for (nreq = 0; wr; ++nreq, wr = wr->next) {
1659
lso_wqe = &dummy;
1660
blh = 0;
1661
1662
if (mlx4_wq_overflow(&qp->sq, nreq, qp->ibqp.send_cq)) {
1663
err = -ENOMEM;
1664
*bad_wr = wr;
1665
goto out;
1666
}
1667
1668
if (unlikely(wr->num_sge > qp->sq.max_gs)) {
1669
err = -EINVAL;
1670
*bad_wr = wr;
1671
goto out;
1672
}
1673
1674
ctrl = wqe = get_send_wqe(qp, ind & (qp->sq.wqe_cnt - 1));
1675
qp->sq.wrid[(qp->sq.head + nreq) & (qp->sq.wqe_cnt - 1)] = wr->wr_id;
1676
1677
ctrl->srcrb_flags =
1678
(wr->send_flags & IB_SEND_SIGNALED ?
1679
cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE) : 0) |
1680
(wr->send_flags & IB_SEND_SOLICITED ?
1681
cpu_to_be32(MLX4_WQE_CTRL_SOLICITED) : 0) |
1682
((wr->send_flags & IB_SEND_IP_CSUM) ?
1683
cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM |
1684
MLX4_WQE_CTRL_TCP_UDP_CSUM) : 0) |
1685
qp->sq_signal_bits;
1686
1687
ctrl->imm = send_ieth(wr);
1688
1689
wqe += sizeof *ctrl;
1690
size = sizeof *ctrl / 16;
1691
1692
switch (ibqp->qp_type) {
1693
case IB_QPT_RC:
1694
case IB_QPT_UC:
1695
switch (wr->opcode) {
1696
case IB_WR_ATOMIC_CMP_AND_SWP:
1697
case IB_WR_ATOMIC_FETCH_AND_ADD:
1698
case IB_WR_MASKED_ATOMIC_FETCH_AND_ADD:
1699
set_raddr_seg(wqe, wr->wr.atomic.remote_addr,
1700
wr->wr.atomic.rkey);
1701
wqe += sizeof (struct mlx4_wqe_raddr_seg);
1702
1703
set_atomic_seg(wqe, wr);
1704
wqe += sizeof (struct mlx4_wqe_atomic_seg);
1705
1706
size += (sizeof (struct mlx4_wqe_raddr_seg) +
1707
sizeof (struct mlx4_wqe_atomic_seg)) / 16;
1708
1709
break;
1710
1711
case IB_WR_MASKED_ATOMIC_CMP_AND_SWP:
1712
set_raddr_seg(wqe, wr->wr.atomic.remote_addr,
1713
wr->wr.atomic.rkey);
1714
wqe += sizeof (struct mlx4_wqe_raddr_seg);
1715
1716
set_masked_atomic_seg(wqe, wr);
1717
wqe += sizeof (struct mlx4_wqe_masked_atomic_seg);
1718
1719
size += (sizeof (struct mlx4_wqe_raddr_seg) +
1720
sizeof (struct mlx4_wqe_masked_atomic_seg)) / 16;
1721
1722
break;
1723
1724
case IB_WR_RDMA_READ:
1725
case IB_WR_RDMA_WRITE:
1726
case IB_WR_RDMA_WRITE_WITH_IMM:
1727
set_raddr_seg(wqe, wr->wr.rdma.remote_addr,
1728
wr->wr.rdma.rkey);
1729
wqe += sizeof (struct mlx4_wqe_raddr_seg);
1730
size += sizeof (struct mlx4_wqe_raddr_seg) / 16;
1731
break;
1732
1733
case IB_WR_LOCAL_INV:
1734
ctrl->srcrb_flags |=
1735
cpu_to_be32(MLX4_WQE_CTRL_STRONG_ORDER);
1736
set_local_inv_seg(wqe, wr->ex.invalidate_rkey);
1737
wqe += sizeof (struct mlx4_wqe_local_inval_seg);
1738
size += sizeof (struct mlx4_wqe_local_inval_seg) / 16;
1739
break;
1740
1741
case IB_WR_FAST_REG_MR:
1742
ctrl->srcrb_flags |=
1743
cpu_to_be32(MLX4_WQE_CTRL_STRONG_ORDER);
1744
set_fmr_seg(wqe, wr);
1745
wqe += sizeof (struct mlx4_wqe_fmr_seg);
1746
size += sizeof (struct mlx4_wqe_fmr_seg) / 16;
1747
break;
1748
1749
default:
1750
/* No extra segments required for sends */
1751
break;
1752
}
1753
break;
1754
1755
case IB_QPT_UD:
1756
set_datagram_seg(wqe, wr, &vlan);
1757
wqe += sizeof (struct mlx4_wqe_datagram_seg);
1758
size += sizeof (struct mlx4_wqe_datagram_seg) / 16;
1759
1760
if (wr->opcode == IB_WR_LSO) {
1761
err = build_lso_seg(wqe, wr, qp, &seglen, &lso_hdr_sz, &blh);
1762
if (unlikely(err)) {
1763
*bad_wr = wr;
1764
goto out;
1765
}
1766
lso_wqe = (__be32 *) wqe;
1767
wqe += seglen;
1768
size += seglen / 16;
1769
}
1770
break;
1771
1772
case IB_QPT_SMI:
1773
case IB_QPT_GSI:
1774
err = build_mlx_header(to_msqp(qp), wr, ctrl, &seglen);
1775
if (unlikely(err)) {
1776
*bad_wr = wr;
1777
goto out;
1778
}
1779
wqe += seglen;
1780
size += seglen / 16;
1781
break;
1782
1783
default:
1784
break;
1785
}
1786
1787
/*
1788
* Write data segments in reverse order, so as to
1789
* overwrite cacheline stamp last within each
1790
* cacheline. This avoids issues with WQE
1791
* prefetching.
1792
*/
1793
1794
dseg = wqe;
1795
dseg += wr->num_sge - 1;
1796
size += wr->num_sge * (sizeof (struct mlx4_wqe_data_seg) / 16);
1797
1798
/* Add one more inline data segment for ICRC for MLX sends */
1799
if (unlikely(qp->ibqp.qp_type == IB_QPT_SMI ||
1800
qp->ibqp.qp_type == IB_QPT_GSI)) {
1801
set_mlx_icrc_seg(dseg + 1);
1802
size += sizeof (struct mlx4_wqe_data_seg) / 16;
1803
}
1804
1805
for (i = wr->num_sge - 1; i >= 0; --i, --dseg)
1806
set_data_seg(dseg, wr->sg_list + i);
1807
1808
/*
1809
* Possibly overwrite stamping in cacheline with LSO
1810
* segment only after making sure all data segments
1811
* are written.
1812
*/
1813
wmb();
1814
*lso_wqe = lso_hdr_sz;
1815
1816
ctrl->fence_size = (wr->send_flags & IB_SEND_FENCE ?
1817
MLX4_WQE_CTRL_FENCE : 0) | size;
1818
1819
if (be16_to_cpu(vlan) < 0x1000) {
1820
ctrl->ins_vlan = 1 << 6;
1821
ctrl->vlan_tag = vlan;
1822
}
1823
1824
/*
1825
* Make sure descriptor is fully written before
1826
* setting ownership bit (because HW can start
1827
* executing as soon as we do).
1828
*/
1829
wmb();
1830
1831
if (wr->opcode < 0 || wr->opcode >= ARRAY_SIZE(mlx4_ib_opcode)) {
1832
err = -EINVAL;
1833
goto out;
1834
}
1835
1836
ctrl->owner_opcode = mlx4_ib_opcode[wr->opcode] |
1837
(ind & qp->sq.wqe_cnt ? cpu_to_be32(1 << 31) : 0) | blh;
1838
1839
stamp = ind + qp->sq_spare_wqes;
1840
ind += DIV_ROUND_UP(size * 16, 1U << qp->sq.wqe_shift);
1841
1842
/*
1843
* We can improve latency by not stamping the last
1844
* send queue WQE until after ringing the doorbell, so
1845
* only stamp here if there are still more WQEs to post.
1846
*
1847
* Same optimization applies to padding with NOP wqe
1848
* in case of WQE shrinking (used to prevent wrap-around
1849
* in the middle of WR).
1850
*/
1851
if (wr->next) {
1852
stamp_send_wqe(qp, stamp, size * 16);
1853
ind = pad_wraparound(qp, ind);
1854
}
1855
}
1856
1857
out:
1858
if (likely(nreq)) {
1859
qp->sq.head += nreq;
1860
1861
/*
1862
* Make sure that descriptors are written before
1863
* doorbell record.
1864
*/
1865
wmb();
1866
1867
writel(qp->doorbell_qpn,
1868
to_mdev(ibqp->device)->uar_map + MLX4_SEND_DOORBELL);
1869
1870
/*
1871
* Make sure doorbells don't leak out of SQ spinlock
1872
* and reach the HCA out of order.
1873
*/
1874
mmiowb();
1875
1876
stamp_send_wqe(qp, stamp, size * 16);
1877
1878
ind = pad_wraparound(qp, ind);
1879
qp->sq_next_wqe = ind;
1880
}
1881
1882
spin_unlock_irqrestore(&qp->sq.lock, flags);
1883
1884
return err;
1885
}
1886
1887
int mlx4_ib_post_recv(struct ib_qp *ibqp, struct ib_recv_wr *wr,
1888
struct ib_recv_wr **bad_wr)
1889
{
1890
struct mlx4_ib_qp *qp = to_mqp(ibqp);
1891
struct mlx4_wqe_data_seg *scat;
1892
unsigned long flags;
1893
int err = 0;
1894
int nreq;
1895
int ind;
1896
int i;
1897
1898
spin_lock_irqsave(&qp->rq.lock, flags);
1899
1900
ind = qp->rq.head & (qp->rq.wqe_cnt - 1);
1901
1902
for (nreq = 0; wr; ++nreq, wr = wr->next) {
1903
if (mlx4_wq_overflow(&qp->rq, nreq, qp->ibqp.recv_cq)) {
1904
err = -ENOMEM;
1905
*bad_wr = wr;
1906
goto out;
1907
}
1908
1909
if (unlikely(wr->num_sge > qp->rq.max_gs)) {
1910
err = -EINVAL;
1911
*bad_wr = wr;
1912
goto out;
1913
}
1914
1915
scat = get_recv_wqe(qp, ind);
1916
1917
for (i = 0; i < wr->num_sge; ++i)
1918
__set_data_seg(scat + i, wr->sg_list + i);
1919
1920
if (i < qp->rq.max_gs) {
1921
scat[i].byte_count = 0;
1922
scat[i].lkey = cpu_to_be32(MLX4_INVALID_LKEY);
1923
scat[i].addr = 0;
1924
}
1925
1926
qp->rq.wrid[ind] = wr->wr_id;
1927
1928
ind = (ind + 1) & (qp->rq.wqe_cnt - 1);
1929
}
1930
1931
out:
1932
if (likely(nreq)) {
1933
qp->rq.head += nreq;
1934
1935
/*
1936
* Make sure that descriptors are written before
1937
* doorbell record.
1938
*/
1939
wmb();
1940
1941
*qp->db.db = cpu_to_be32(qp->rq.head & 0xffff);
1942
}
1943
1944
spin_unlock_irqrestore(&qp->rq.lock, flags);
1945
1946
return err;
1947
}
1948
1949
static inline enum ib_qp_state to_ib_qp_state(enum mlx4_qp_state mlx4_state)
1950
{
1951
switch (mlx4_state) {
1952
case MLX4_QP_STATE_RST: return IB_QPS_RESET;
1953
case MLX4_QP_STATE_INIT: return IB_QPS_INIT;
1954
case MLX4_QP_STATE_RTR: return IB_QPS_RTR;
1955
case MLX4_QP_STATE_RTS: return IB_QPS_RTS;
1956
case MLX4_QP_STATE_SQ_DRAINING:
1957
case MLX4_QP_STATE_SQD: return IB_QPS_SQD;
1958
case MLX4_QP_STATE_SQER: return IB_QPS_SQE;
1959
case MLX4_QP_STATE_ERR: return IB_QPS_ERR;
1960
default: return -1;
1961
}
1962
}
1963
1964
static inline enum ib_mig_state to_ib_mig_state(int mlx4_mig_state)
1965
{
1966
switch (mlx4_mig_state) {
1967
case MLX4_QP_PM_ARMED: return IB_MIG_ARMED;
1968
case MLX4_QP_PM_REARM: return IB_MIG_REARM;
1969
case MLX4_QP_PM_MIGRATED: return IB_MIG_MIGRATED;
1970
default: return -1;
1971
}
1972
}
1973
1974
static int to_ib_qp_access_flags(int mlx4_flags)
1975
{
1976
int ib_flags = 0;
1977
1978
if (mlx4_flags & MLX4_QP_BIT_RRE)
1979
ib_flags |= IB_ACCESS_REMOTE_READ;
1980
if (mlx4_flags & MLX4_QP_BIT_RWE)
1981
ib_flags |= IB_ACCESS_REMOTE_WRITE;
1982
if (mlx4_flags & MLX4_QP_BIT_RAE)
1983
ib_flags |= IB_ACCESS_REMOTE_ATOMIC;
1984
1985
return ib_flags;
1986
}
1987
1988
static void to_ib_ah_attr(struct mlx4_ib_dev *ibdev, struct ib_ah_attr *ib_ah_attr,
1989
struct mlx4_qp_path *path)
1990
{
1991
struct mlx4_dev *dev = ibdev->dev;
1992
int is_eth;
1993
1994
memset(ib_ah_attr, 0, sizeof *ib_ah_attr);
1995
ib_ah_attr->port_num = path->sched_queue & 0x40 ? 2 : 1;
1996
1997
if (ib_ah_attr->port_num == 0 || ib_ah_attr->port_num > dev->caps.num_ports)
1998
return;
1999
2000
is_eth = rdma_port_get_link_layer(&ibdev->ib_dev, ib_ah_attr->port_num) ==
2001
IB_LINK_LAYER_ETHERNET;
2002
if (is_eth)
2003
ib_ah_attr->sl = ((path->sched_queue >> 3) & 0x7) |
2004
((path->sched_queue & 4) << 1);
2005
else
2006
ib_ah_attr->sl = (path->sched_queue >> 2) & 0xf;
2007
2008
ib_ah_attr->dlid = be16_to_cpu(path->rlid);
2009
ib_ah_attr->src_path_bits = path->grh_mylmc & 0x7f;
2010
ib_ah_attr->static_rate = path->static_rate ? path->static_rate - 5 : 0;
2011
ib_ah_attr->ah_flags = (path->grh_mylmc & (1 << 7)) ? IB_AH_GRH : 0;
2012
if (ib_ah_attr->ah_flags) {
2013
ib_ah_attr->grh.sgid_index = path->mgid_index;
2014
ib_ah_attr->grh.hop_limit = path->hop_limit;
2015
ib_ah_attr->grh.traffic_class =
2016
(be32_to_cpu(path->tclass_flowlabel) >> 20) & 0xff;
2017
ib_ah_attr->grh.flow_label =
2018
be32_to_cpu(path->tclass_flowlabel) & 0xfffff;
2019
memcpy(ib_ah_attr->grh.dgid.raw,
2020
path->rgid, sizeof ib_ah_attr->grh.dgid.raw);
2021
}
2022
}
2023
2024
int mlx4_ib_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *qp_attr, int qp_attr_mask,
2025
struct ib_qp_init_attr *qp_init_attr)
2026
{
2027
struct mlx4_ib_dev *dev = to_mdev(ibqp->device);
2028
struct mlx4_ib_qp *qp = to_mqp(ibqp);
2029
struct mlx4_qp_context context;
2030
int mlx4_state;
2031
int err = 0;
2032
2033
mutex_lock(&qp->mutex);
2034
2035
if (qp->state == IB_QPS_RESET) {
2036
qp_attr->qp_state = IB_QPS_RESET;
2037
goto done;
2038
}
2039
2040
err = mlx4_qp_query(dev->dev, &qp->mqp, &context);
2041
if (err) {
2042
err = -EINVAL;
2043
goto out;
2044
}
2045
2046
mlx4_state = be32_to_cpu(context.flags) >> 28;
2047
2048
qp->state = to_ib_qp_state(mlx4_state);
2049
qp_attr->qp_state = qp->state;
2050
qp_attr->path_mtu = context.mtu_msgmax >> 5;
2051
qp_attr->path_mig_state =
2052
to_ib_mig_state((be32_to_cpu(context.flags) >> 11) & 0x3);
2053
qp_attr->qkey = be32_to_cpu(context.qkey);
2054
qp_attr->rq_psn = be32_to_cpu(context.rnr_nextrecvpsn) & 0xffffff;
2055
qp_attr->sq_psn = be32_to_cpu(context.next_send_psn) & 0xffffff;
2056
qp_attr->dest_qp_num = be32_to_cpu(context.remote_qpn) & 0xffffff;
2057
qp_attr->qp_access_flags =
2058
to_ib_qp_access_flags(be32_to_cpu(context.params2));
2059
2060
if (qp->ibqp.qp_type == IB_QPT_RC || qp->ibqp.qp_type == IB_QPT_UC) {
2061
to_ib_ah_attr(dev, &qp_attr->ah_attr, &context.pri_path);
2062
to_ib_ah_attr(dev, &qp_attr->alt_ah_attr, &context.alt_path);
2063
qp_attr->alt_pkey_index = context.alt_path.pkey_index & 0x7f;
2064
qp_attr->alt_port_num = qp_attr->alt_ah_attr.port_num;
2065
}
2066
2067
qp_attr->pkey_index = context.pri_path.pkey_index & 0x7f;
2068
if (qp_attr->qp_state == IB_QPS_INIT)
2069
qp_attr->port_num = qp->port;
2070
else
2071
qp_attr->port_num = context.pri_path.sched_queue & 0x40 ? 2 : 1;
2072
2073
/* qp_attr->en_sqd_async_notify is only applicable in modify qp */
2074
qp_attr->sq_draining = mlx4_state == MLX4_QP_STATE_SQ_DRAINING;
2075
2076
qp_attr->max_rd_atomic = 1 << ((be32_to_cpu(context.params1) >> 21) & 0x7);
2077
2078
qp_attr->max_dest_rd_atomic =
2079
1 << ((be32_to_cpu(context.params2) >> 21) & 0x7);
2080
qp_attr->min_rnr_timer =
2081
(be32_to_cpu(context.rnr_nextrecvpsn) >> 24) & 0x1f;
2082
qp_attr->timeout = context.pri_path.ackto >> 3;
2083
qp_attr->retry_cnt = (be32_to_cpu(context.params1) >> 16) & 0x7;
2084
qp_attr->rnr_retry = (be32_to_cpu(context.params1) >> 13) & 0x7;
2085
qp_attr->alt_timeout = context.alt_path.ackto >> 3;
2086
2087
done:
2088
qp_attr->cur_qp_state = qp_attr->qp_state;
2089
qp_attr->cap.max_recv_wr = qp->rq.wqe_cnt;
2090
qp_attr->cap.max_recv_sge = qp->rq.max_gs;
2091
2092
if (!ibqp->uobject) {
2093
qp_attr->cap.max_send_wr = qp->sq.wqe_cnt;
2094
qp_attr->cap.max_send_sge = qp->sq.max_gs;
2095
} else {
2096
qp_attr->cap.max_send_wr = 0;
2097
qp_attr->cap.max_send_sge = 0;
2098
}
2099
2100
/*
2101
* We don't support inline sends for kernel QPs (yet), and we
2102
* don't know what userspace's value should be.
2103
*/
2104
qp_attr->cap.max_inline_data = 0;
2105
2106
qp_init_attr->cap = qp_attr->cap;
2107
2108
qp_init_attr->create_flags = 0;
2109
if (qp->flags & MLX4_IB_QP_BLOCK_MULTICAST_LOOPBACK)
2110
qp_init_attr->create_flags |= IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK;
2111
2112
if (qp->flags & MLX4_IB_QP_LSO)
2113
qp_init_attr->create_flags |= IB_QP_CREATE_IPOIB_UD_LSO;
2114
2115
out:
2116
mutex_unlock(&qp->mutex);
2117
return err;
2118
}
2119
2120
2121