Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/infiniband/hw/qib/qib_sd7220.c
15112 views
1
/*
2
* Copyright (c) 2006, 2007, 2008, 2009, 2010 QLogic Corporation.
3
* All rights reserved.
4
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5
*
6
* This software is available to you under a choice of one of two
7
* licenses. You may choose to be licensed under the terms of the GNU
8
* General Public License (GPL) Version 2, available from the file
9
* COPYING in the main directory of this source tree, or the
10
* OpenIB.org BSD license below:
11
*
12
* Redistribution and use in source and binary forms, with or
13
* without modification, are permitted provided that the following
14
* conditions are met:
15
*
16
* - Redistributions of source code must retain the above
17
* copyright notice, this list of conditions and the following
18
* disclaimer.
19
*
20
* - Redistributions in binary form must reproduce the above
21
* copyright notice, this list of conditions and the following
22
* disclaimer in the documentation and/or other materials
23
* provided with the distribution.
24
*
25
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32
* SOFTWARE.
33
*/
34
/*
35
* This file contains all of the code that is specific to the SerDes
36
* on the QLogic_IB 7220 chip.
37
*/
38
39
#include <linux/pci.h>
40
#include <linux/delay.h>
41
#include <linux/firmware.h>
42
43
#include "qib.h"
44
#include "qib_7220.h"
45
46
#define SD7220_FW_NAME "qlogic/sd7220.fw"
47
MODULE_FIRMWARE(SD7220_FW_NAME);
48
49
/*
50
* Same as in qib_iba7220.c, but just the registers needed here.
51
* Could move whole set to qib_7220.h, but decided better to keep
52
* local.
53
*/
54
#define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
55
#define kr_hwerrclear KREG_IDX(HwErrClear)
56
#define kr_hwerrmask KREG_IDX(HwErrMask)
57
#define kr_hwerrstatus KREG_IDX(HwErrStatus)
58
#define kr_ibcstatus KREG_IDX(IBCStatus)
59
#define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
60
#define kr_scratch KREG_IDX(Scratch)
61
#define kr_xgxs_cfg KREG_IDX(XGXSCfg)
62
/* these are used only here, not in qib_iba7220.c */
63
#define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
64
#define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
65
#define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
66
#define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
67
#define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
68
69
/*
70
* The IBSerDesMappTable is a memory that holds values to be stored in
71
* various SerDes registers by IBC.
72
*/
73
#define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
74
75
/*
76
* Below used for sdnum parameter, selecting one of the two sections
77
* used for PCIe, or the single SerDes used for IB.
78
*/
79
#define PCIE_SERDES0 0
80
#define PCIE_SERDES1 1
81
82
/*
83
* The EPB requires addressing in a particular form. EPB_LOC() is intended
84
* to make #definitions a little more readable.
85
*/
86
#define EPB_ADDR_SHF 8
87
#define EPB_LOC(chn, elt, reg) \
88
(((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
89
EPB_ADDR_SHF)
90
#define EPB_IB_QUAD0_CS_SHF (25)
91
#define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF)
92
#define EPB_IB_UC_CS_SHF (26)
93
#define EPB_PCIE_UC_CS_SHF (27)
94
#define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
95
96
/* Forward declarations. */
97
static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
98
u32 data, u32 mask);
99
static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
100
int mask);
101
static int qib_sd_trimdone_poll(struct qib_devdata *dd);
102
static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where);
103
static int qib_sd_setvals(struct qib_devdata *dd);
104
static int qib_sd_early(struct qib_devdata *dd);
105
static int qib_sd_dactrim(struct qib_devdata *dd);
106
static int qib_internal_presets(struct qib_devdata *dd);
107
/* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
108
static int qib_sd_trimself(struct qib_devdata *dd, int val);
109
static int epb_access(struct qib_devdata *dd, int sdnum, int claim);
110
static int qib_sd7220_ib_load(struct qib_devdata *dd,
111
const struct firmware *fw);
112
static int qib_sd7220_ib_vfy(struct qib_devdata *dd,
113
const struct firmware *fw);
114
115
/*
116
* Below keeps track of whether the "once per power-on" initialization has
117
* been done, because uC code Version 1.32.17 or higher allows the uC to
118
* be reset at will, and Automatic Equalization may require it. So the
119
* state of the reset "pin", is no longer valid. Instead, we check for the
120
* actual uC code having been loaded.
121
*/
122
static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd,
123
const struct firmware *fw)
124
{
125
struct qib_devdata *dd = ppd->dd;
126
127
if (!dd->cspec->serdes_first_init_done &&
128
qib_sd7220_ib_vfy(dd, fw) > 0)
129
dd->cspec->serdes_first_init_done = 1;
130
return dd->cspec->serdes_first_init_done;
131
}
132
133
/* repeat #define for local use. "Real" #define is in qib_iba7220.c */
134
#define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL
135
#define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
136
#define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
137
#define UC_PAR_CLR_D 8
138
#define UC_PAR_CLR_M 0xC
139
#define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
140
#define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
141
142
void qib_sd7220_clr_ibpar(struct qib_devdata *dd)
143
{
144
int ret;
145
146
/* clear, then re-enable parity errs */
147
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
148
UC_PAR_CLR_D, UC_PAR_CLR_M);
149
if (ret < 0) {
150
qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
151
goto bail;
152
}
153
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
154
UC_PAR_CLR_M);
155
156
qib_read_kreg32(dd, kr_scratch);
157
udelay(4);
158
qib_write_kreg(dd, kr_hwerrclear,
159
QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
160
qib_read_kreg32(dd, kr_scratch);
161
bail:
162
return;
163
}
164
165
/*
166
* After a reset or other unusual event, the epb interface may need
167
* to be re-synchronized, between the host and the uC.
168
* returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
169
*/
170
#define IBSD_RESYNC_TRIES 3
171
#define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
172
#define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
173
174
static int qib_resync_ibepb(struct qib_devdata *dd)
175
{
176
int ret, pat, tries, chn;
177
u32 loc;
178
179
ret = -1;
180
chn = 0;
181
for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
182
loc = IB_PGUDP(chn);
183
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
184
if (ret < 0) {
185
qib_dev_err(dd, "Failed read in resync\n");
186
continue;
187
}
188
if (ret != 0xF0 && ret != 0x55 && tries == 0)
189
qib_dev_err(dd, "unexpected pattern in resync\n");
190
pat = ret ^ 0xA5; /* alternate F0 and 55 */
191
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
192
if (ret < 0) {
193
qib_dev_err(dd, "Failed write in resync\n");
194
continue;
195
}
196
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
197
if (ret < 0) {
198
qib_dev_err(dd, "Failed re-read in resync\n");
199
continue;
200
}
201
if (ret != pat) {
202
qib_dev_err(dd, "Failed compare1 in resync\n");
203
continue;
204
}
205
loc = IB_CMUDONE(chn);
206
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
207
if (ret < 0) {
208
qib_dev_err(dd, "Failed CMUDONE rd in resync\n");
209
continue;
210
}
211
if ((ret & 0x70) != ((chn << 4) | 0x40)) {
212
qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
213
ret, chn);
214
continue;
215
}
216
if (++chn == 4)
217
break; /* Success */
218
}
219
return (ret > 0) ? 0 : ret;
220
}
221
222
/*
223
* Localize the stuff that should be done to change IB uC reset
224
* returns <0 for errors.
225
*/
226
static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst)
227
{
228
u64 rst_val;
229
int ret = 0;
230
unsigned long flags;
231
232
rst_val = qib_read_kreg64(dd, kr_ibserdesctrl);
233
if (assert_rst) {
234
/*
235
* Vendor recommends "interrupting" uC before reset, to
236
* minimize possible glitches.
237
*/
238
spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
239
epb_access(dd, IB_7220_SERDES, 1);
240
rst_val |= 1ULL;
241
/* Squelch possible parity error from _asserting_ reset */
242
qib_write_kreg(dd, kr_hwerrmask,
243
dd->cspec->hwerrmask &
244
~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
245
qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
246
/* flush write, delay to ensure it took effect */
247
qib_read_kreg32(dd, kr_scratch);
248
udelay(2);
249
/* once it's reset, can remove interrupt */
250
epb_access(dd, IB_7220_SERDES, -1);
251
spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
252
} else {
253
/*
254
* Before we de-assert reset, we need to deal with
255
* possible glitch on the Parity-error line.
256
* Suppress it around the reset, both in chip-level
257
* hwerrmask and in IB uC control reg. uC will allow
258
* it again during startup.
259
*/
260
u64 val;
261
rst_val &= ~(1ULL);
262
qib_write_kreg(dd, kr_hwerrmask,
263
dd->cspec->hwerrmask &
264
~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
265
266
ret = qib_resync_ibepb(dd);
267
if (ret < 0)
268
qib_dev_err(dd, "unable to re-sync IB EPB\n");
269
270
/* set uC control regs to suppress parity errs */
271
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
272
if (ret < 0)
273
goto bail;
274
/* IB uC code past Version 1.32.17 allow suppression of wdog */
275
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
276
0x80);
277
if (ret < 0) {
278
qib_dev_err(dd, "Failed to set WDOG disable\n");
279
goto bail;
280
}
281
qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
282
/* flush write, delay for startup */
283
qib_read_kreg32(dd, kr_scratch);
284
udelay(1);
285
/* clear, then re-enable parity errs */
286
qib_sd7220_clr_ibpar(dd);
287
val = qib_read_kreg64(dd, kr_hwerrstatus);
288
if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) {
289
qib_dev_err(dd, "IBUC Parity still set after RST\n");
290
dd->cspec->hwerrmask &=
291
~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR;
292
}
293
qib_write_kreg(dd, kr_hwerrmask,
294
dd->cspec->hwerrmask);
295
}
296
297
bail:
298
return ret;
299
}
300
301
static void qib_sd_trimdone_monitor(struct qib_devdata *dd,
302
const char *where)
303
{
304
int ret, chn, baduns;
305
u64 val;
306
307
if (!where)
308
where = "?";
309
310
/* give time for reset to settle out in EPB */
311
udelay(2);
312
313
ret = qib_resync_ibepb(dd);
314
if (ret < 0)
315
qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
316
317
/* Do "sacrificial read" to get EPB in sane state after reset */
318
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
319
if (ret < 0)
320
qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
321
322
/* Check/show "summary" Trim-done bit in IBCStatus */
323
val = qib_read_kreg64(dd, kr_ibcstatus);
324
if (!(val & (1ULL << 11)))
325
qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
326
/*
327
* Do "dummy read/mod/wr" to get EPB in sane state after reset
328
* The default value for MPREG6 is 0.
329
*/
330
udelay(2);
331
332
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
333
if (ret < 0)
334
qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
335
udelay(10);
336
337
baduns = 0;
338
339
for (chn = 3; chn >= 0; --chn) {
340
/* Read CTRL reg for each channel to check TRIMDONE */
341
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
342
IB_CTRL2(chn), 0, 0);
343
if (ret < 0)
344
qib_dev_err(dd, "Failed checking TRIMDONE, chn %d"
345
" (%s)\n", chn, where);
346
347
if (!(ret & 0x10)) {
348
int probe;
349
350
baduns |= (1 << chn);
351
qib_dev_err(dd, "TRIMDONE cleared on chn %d (%02X)."
352
" (%s)\n", chn, ret, where);
353
probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
354
IB_PGUDP(0), 0, 0);
355
qib_dev_err(dd, "probe is %d (%02X)\n",
356
probe, probe);
357
probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
358
IB_CTRL2(chn), 0, 0);
359
qib_dev_err(dd, "re-read: %d (%02X)\n",
360
probe, probe);
361
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
362
IB_CTRL2(chn), 0x10, 0x10);
363
if (ret < 0)
364
qib_dev_err(dd,
365
"Err on TRIMDONE rewrite1\n");
366
}
367
}
368
for (chn = 3; chn >= 0; --chn) {
369
/* Read CTRL reg for each channel to check TRIMDONE */
370
if (baduns & (1 << chn)) {
371
qib_dev_err(dd,
372
"Reseting TRIMDONE on chn %d (%s)\n",
373
chn, where);
374
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
375
IB_CTRL2(chn), 0x10, 0x10);
376
if (ret < 0)
377
qib_dev_err(dd, "Failed re-setting "
378
"TRIMDONE, chn %d (%s)\n",
379
chn, where);
380
}
381
}
382
}
383
384
/*
385
* Below is portion of IBA7220-specific bringup_serdes() that actually
386
* deals with registers and memory within the SerDes itself.
387
* Post IB uC code version 1.32.17, was_reset being 1 is not really
388
* informative, so we double-check.
389
*/
390
int qib_sd7220_init(struct qib_devdata *dd)
391
{
392
const struct firmware *fw;
393
int ret = 1; /* default to failure */
394
int first_reset, was_reset;
395
396
/* SERDES MPU reset recorded in D0 */
397
was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1);
398
if (!was_reset) {
399
/* entered with reset not asserted, we need to do it */
400
qib_ibsd_reset(dd, 1);
401
qib_sd_trimdone_monitor(dd, "Driver-reload");
402
}
403
404
ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev);
405
if (ret) {
406
qib_dev_err(dd, "Failed to load IB SERDES image\n");
407
goto done;
408
}
409
410
/* Substitute our deduced value for was_reset */
411
ret = qib_ibsd_ucode_loaded(dd->pport, fw);
412
if (ret < 0)
413
goto bail;
414
415
first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
416
/*
417
* Alter some regs per vendor latest doc, reset-defaults
418
* are not right for IB.
419
*/
420
ret = qib_sd_early(dd);
421
if (ret < 0) {
422
qib_dev_err(dd, "Failed to set IB SERDES early defaults\n");
423
goto bail;
424
}
425
/*
426
* Set DAC manual trim IB.
427
* We only do this once after chip has been reset (usually
428
* same as once per system boot).
429
*/
430
if (first_reset) {
431
ret = qib_sd_dactrim(dd);
432
if (ret < 0) {
433
qib_dev_err(dd, "Failed IB SERDES DAC trim\n");
434
goto bail;
435
}
436
}
437
/*
438
* Set various registers (DDS and RXEQ) that will be
439
* controlled by IBC (in 1.2 mode) to reasonable preset values
440
* Calling the "internal" version avoids the "check for needed"
441
* and "trimdone monitor" that might be counter-productive.
442
*/
443
ret = qib_internal_presets(dd);
444
if (ret < 0) {
445
qib_dev_err(dd, "Failed to set IB SERDES presets\n");
446
goto bail;
447
}
448
ret = qib_sd_trimself(dd, 0x80);
449
if (ret < 0) {
450
qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
451
goto bail;
452
}
453
454
/* Load image, then try to verify */
455
ret = 0; /* Assume success */
456
if (first_reset) {
457
int vfy;
458
int trim_done;
459
460
ret = qib_sd7220_ib_load(dd, fw);
461
if (ret < 0) {
462
qib_dev_err(dd, "Failed to load IB SERDES image\n");
463
goto bail;
464
} else {
465
/* Loaded image, try to verify */
466
vfy = qib_sd7220_ib_vfy(dd, fw);
467
if (vfy != ret) {
468
qib_dev_err(dd, "SERDES PRAM VFY failed\n");
469
goto bail;
470
} /* end if verified */
471
} /* end if loaded */
472
473
/*
474
* Loaded and verified. Almost good...
475
* hold "success" in ret
476
*/
477
ret = 0;
478
/*
479
* Prev steps all worked, continue bringup
480
* De-assert RESET to uC, only in first reset, to allow
481
* trimming.
482
*
483
* Since our default setup sets START_EQ1 to
484
* PRESET, we need to clear that for this very first run.
485
*/
486
ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
487
if (ret < 0) {
488
qib_dev_err(dd, "Failed clearing START_EQ1\n");
489
goto bail;
490
}
491
492
qib_ibsd_reset(dd, 0);
493
/*
494
* If this is not the first reset, trimdone should be set
495
* already. We may need to check about this.
496
*/
497
trim_done = qib_sd_trimdone_poll(dd);
498
/*
499
* Whether or not trimdone succeeded, we need to put the
500
* uC back into reset to avoid a possible fight with the
501
* IBC state-machine.
502
*/
503
qib_ibsd_reset(dd, 1);
504
505
if (!trim_done) {
506
qib_dev_err(dd, "No TRIMDONE seen\n");
507
goto bail;
508
}
509
/*
510
* DEBUG: check each time we reset if trimdone bits have
511
* gotten cleared, and re-set them.
512
*/
513
qib_sd_trimdone_monitor(dd, "First-reset");
514
/* Remember so we do not re-do the load, dactrim, etc. */
515
dd->cspec->serdes_first_init_done = 1;
516
}
517
/*
518
* setup for channel training and load values for
519
* RxEq and DDS in tables used by IBC in IB1.2 mode
520
*/
521
ret = 0;
522
if (qib_sd_setvals(dd) >= 0)
523
goto done;
524
bail:
525
ret = 1;
526
done:
527
/* start relock timer regardless, but start at 1 second */
528
set_7220_relock_poll(dd, -1);
529
530
release_firmware(fw);
531
return ret;
532
}
533
534
#define EPB_ACC_REQ 1
535
#define EPB_ACC_GNT 0x100
536
#define EPB_DATA_MASK 0xFF
537
#define EPB_RD (1ULL << 24)
538
#define EPB_TRANS_RDY (1ULL << 31)
539
#define EPB_TRANS_ERR (1ULL << 30)
540
#define EPB_TRANS_TRIES 5
541
542
/*
543
* query, claim, release ownership of the EPB (External Parallel Bus)
544
* for a specified SERDES.
545
* the "claim" parameter is >0 to claim, <0 to release, 0 to query.
546
* Returns <0 for errors, >0 if we had ownership, else 0.
547
*/
548
static int epb_access(struct qib_devdata *dd, int sdnum, int claim)
549
{
550
u16 acc;
551
u64 accval;
552
int owned = 0;
553
u64 oct_sel = 0;
554
555
switch (sdnum) {
556
case IB_7220_SERDES:
557
/*
558
* The IB SERDES "ownership" is fairly simple. A single each
559
* request/grant.
560
*/
561
acc = kr_ibsd_epb_access_ctrl;
562
break;
563
564
case PCIE_SERDES0:
565
case PCIE_SERDES1:
566
/* PCIe SERDES has two "octants", need to select which */
567
acc = kr_pciesd_epb_access_ctrl;
568
oct_sel = (2 << (sdnum - PCIE_SERDES0));
569
break;
570
571
default:
572
return 0;
573
}
574
575
/* Make sure any outstanding transaction was seen */
576
qib_read_kreg32(dd, kr_scratch);
577
udelay(15);
578
579
accval = qib_read_kreg32(dd, acc);
580
581
owned = !!(accval & EPB_ACC_GNT);
582
if (claim < 0) {
583
/* Need to release */
584
u64 pollval;
585
/*
586
* The only writeable bits are the request and CS.
587
* Both should be clear
588
*/
589
u64 newval = 0;
590
qib_write_kreg(dd, acc, newval);
591
/* First read after write is not trustworthy */
592
pollval = qib_read_kreg32(dd, acc);
593
udelay(5);
594
pollval = qib_read_kreg32(dd, acc);
595
if (pollval & EPB_ACC_GNT)
596
owned = -1;
597
} else if (claim > 0) {
598
/* Need to claim */
599
u64 pollval;
600
u64 newval = EPB_ACC_REQ | oct_sel;
601
qib_write_kreg(dd, acc, newval);
602
/* First read after write is not trustworthy */
603
pollval = qib_read_kreg32(dd, acc);
604
udelay(5);
605
pollval = qib_read_kreg32(dd, acc);
606
if (!(pollval & EPB_ACC_GNT))
607
owned = -1;
608
}
609
return owned;
610
}
611
612
/*
613
* Lemma to deal with race condition of write..read to epb regs
614
*/
615
static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
616
{
617
int tries;
618
u64 transval;
619
620
qib_write_kreg(dd, reg, i_val);
621
/* Throw away first read, as RDY bit may be stale */
622
transval = qib_read_kreg64(dd, reg);
623
624
for (tries = EPB_TRANS_TRIES; tries; --tries) {
625
transval = qib_read_kreg32(dd, reg);
626
if (transval & EPB_TRANS_RDY)
627
break;
628
udelay(5);
629
}
630
if (transval & EPB_TRANS_ERR)
631
return -1;
632
if (tries > 0 && o_vp)
633
*o_vp = transval;
634
return tries;
635
}
636
637
/**
638
* qib_sd7220_reg_mod - modify SERDES register
639
* @dd: the qlogic_ib device
640
* @sdnum: which SERDES to access
641
* @loc: location - channel, element, register, as packed by EPB_LOC() macro.
642
* @wd: Write Data - value to set in register
643
* @mask: ones where data should be spliced into reg.
644
*
645
* Basic register read/modify/write, with un-needed acesses elided. That is,
646
* a mask of zero will prevent write, while a mask of 0xFF will prevent read.
647
* returns current (presumed, if a write was done) contents of selected
648
* register, or <0 if errors.
649
*/
650
static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
651
u32 wd, u32 mask)
652
{
653
u16 trans;
654
u64 transval;
655
int owned;
656
int tries, ret;
657
unsigned long flags;
658
659
switch (sdnum) {
660
case IB_7220_SERDES:
661
trans = kr_ibsd_epb_transaction_reg;
662
break;
663
664
case PCIE_SERDES0:
665
case PCIE_SERDES1:
666
trans = kr_pciesd_epb_transaction_reg;
667
break;
668
669
default:
670
return -1;
671
}
672
673
/*
674
* All access is locked in software (vs other host threads) and
675
* hardware (vs uC access).
676
*/
677
spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
678
679
owned = epb_access(dd, sdnum, 1);
680
if (owned < 0) {
681
spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
682
return -1;
683
}
684
ret = 0;
685
for (tries = EPB_TRANS_TRIES; tries; --tries) {
686
transval = qib_read_kreg32(dd, trans);
687
if (transval & EPB_TRANS_RDY)
688
break;
689
udelay(5);
690
}
691
692
if (tries > 0) {
693
tries = 1; /* to make read-skip work */
694
if (mask != 0xFF) {
695
/*
696
* Not a pure write, so need to read.
697
* loc encodes chip-select as well as address
698
*/
699
transval = loc | EPB_RD;
700
tries = epb_trans(dd, trans, transval, &transval);
701
}
702
if (tries > 0 && mask != 0) {
703
/*
704
* Not a pure read, so need to write.
705
*/
706
wd = (wd & mask) | (transval & ~mask);
707
transval = loc | (wd & EPB_DATA_MASK);
708
tries = epb_trans(dd, trans, transval, &transval);
709
}
710
}
711
/* else, failed to see ready, what error-handling? */
712
713
/*
714
* Release bus. Failure is an error.
715
*/
716
if (epb_access(dd, sdnum, -1) < 0)
717
ret = -1;
718
else
719
ret = transval & EPB_DATA_MASK;
720
721
spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
722
if (tries <= 0)
723
ret = -1;
724
return ret;
725
}
726
727
#define EPB_ROM_R (2)
728
#define EPB_ROM_W (1)
729
/*
730
* Below, all uC-related, use appropriate UC_CS, depending
731
* on which SerDes is used.
732
*/
733
#define EPB_UC_CTL EPB_LOC(6, 0, 0)
734
#define EPB_MADDRL EPB_LOC(6, 0, 2)
735
#define EPB_MADDRH EPB_LOC(6, 0, 3)
736
#define EPB_ROMDATA EPB_LOC(6, 0, 4)
737
#define EPB_RAMDATA EPB_LOC(6, 0, 5)
738
739
/* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
740
static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc,
741
u8 *buf, int cnt, int rd_notwr)
742
{
743
u16 trans;
744
u64 transval;
745
u64 csbit;
746
int owned;
747
int tries;
748
int sofar;
749
int addr;
750
int ret;
751
unsigned long flags;
752
const char *op;
753
754
/* Pick appropriate transaction reg and "Chip select" for this serdes */
755
switch (sdnum) {
756
case IB_7220_SERDES:
757
csbit = 1ULL << EPB_IB_UC_CS_SHF;
758
trans = kr_ibsd_epb_transaction_reg;
759
break;
760
761
case PCIE_SERDES0:
762
case PCIE_SERDES1:
763
/* PCIe SERDES has uC "chip select" in different bit, too */
764
csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
765
trans = kr_pciesd_epb_transaction_reg;
766
break;
767
768
default:
769
return -1;
770
}
771
772
op = rd_notwr ? "Rd" : "Wr";
773
spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
774
775
owned = epb_access(dd, sdnum, 1);
776
if (owned < 0) {
777
spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
778
return -1;
779
}
780
781
/*
782
* In future code, we may need to distinguish several address ranges,
783
* and select various memories based on this. For now, just trim
784
* "loc" (location including address and memory select) to
785
* "addr" (address within memory). we will only support PRAM
786
* The memory is 8KB.
787
*/
788
addr = loc & 0x1FFF;
789
for (tries = EPB_TRANS_TRIES; tries; --tries) {
790
transval = qib_read_kreg32(dd, trans);
791
if (transval & EPB_TRANS_RDY)
792
break;
793
udelay(5);
794
}
795
796
sofar = 0;
797
if (tries > 0) {
798
/*
799
* Every "memory" access is doubly-indirect.
800
* We set two bytes of address, then read/write
801
* one or mores bytes of data.
802
*/
803
804
/* First, we set control to "Read" or "Write" */
805
transval = csbit | EPB_UC_CTL |
806
(rd_notwr ? EPB_ROM_R : EPB_ROM_W);
807
tries = epb_trans(dd, trans, transval, &transval);
808
while (tries > 0 && sofar < cnt) {
809
if (!sofar) {
810
/* Only set address at start of chunk */
811
int addrbyte = (addr + sofar) >> 8;
812
transval = csbit | EPB_MADDRH | addrbyte;
813
tries = epb_trans(dd, trans, transval,
814
&transval);
815
if (tries <= 0)
816
break;
817
addrbyte = (addr + sofar) & 0xFF;
818
transval = csbit | EPB_MADDRL | addrbyte;
819
tries = epb_trans(dd, trans, transval,
820
&transval);
821
if (tries <= 0)
822
break;
823
}
824
825
if (rd_notwr)
826
transval = csbit | EPB_ROMDATA | EPB_RD;
827
else
828
transval = csbit | EPB_ROMDATA | buf[sofar];
829
tries = epb_trans(dd, trans, transval, &transval);
830
if (tries <= 0)
831
break;
832
if (rd_notwr)
833
buf[sofar] = transval & EPB_DATA_MASK;
834
++sofar;
835
}
836
/* Finally, clear control-bit for Read or Write */
837
transval = csbit | EPB_UC_CTL;
838
tries = epb_trans(dd, trans, transval, &transval);
839
}
840
841
ret = sofar;
842
/* Release bus. Failure is an error */
843
if (epb_access(dd, sdnum, -1) < 0)
844
ret = -1;
845
846
spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
847
if (tries <= 0)
848
ret = -1;
849
return ret;
850
}
851
852
#define PROG_CHUNK 64
853
854
static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum,
855
const u8 *img, int len, int offset)
856
{
857
int cnt, sofar, req;
858
859
sofar = 0;
860
while (sofar < len) {
861
req = len - sofar;
862
if (req > PROG_CHUNK)
863
req = PROG_CHUNK;
864
cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar,
865
(u8 *)img + sofar, req, 0);
866
if (cnt < req) {
867
sofar = -1;
868
break;
869
}
870
sofar += req;
871
}
872
return sofar;
873
}
874
875
#define VFY_CHUNK 64
876
#define SD_PRAM_ERROR_LIMIT 42
877
878
static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum,
879
const u8 *img, int len, int offset)
880
{
881
int cnt, sofar, req, idx, errors;
882
unsigned char readback[VFY_CHUNK];
883
884
errors = 0;
885
sofar = 0;
886
while (sofar < len) {
887
req = len - sofar;
888
if (req > VFY_CHUNK)
889
req = VFY_CHUNK;
890
cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset,
891
readback, req, 1);
892
if (cnt < req) {
893
/* failed in read itself */
894
sofar = -1;
895
break;
896
}
897
for (idx = 0; idx < cnt; ++idx) {
898
if (readback[idx] != img[idx+sofar])
899
++errors;
900
}
901
sofar += cnt;
902
}
903
return errors ? -errors : sofar;
904
}
905
906
static int
907
qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw)
908
{
909
return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0);
910
}
911
912
static int
913
qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw)
914
{
915
return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0);
916
}
917
918
/*
919
* IRQ not set up at this point in init, so we poll.
920
*/
921
#define IB_SERDES_TRIM_DONE (1ULL << 11)
922
#define TRIM_TMO (30)
923
924
static int qib_sd_trimdone_poll(struct qib_devdata *dd)
925
{
926
int trim_tmo, ret;
927
uint64_t val;
928
929
/*
930
* Default to failure, so IBC will not start
931
* without IB_SERDES_TRIM_DONE.
932
*/
933
ret = 0;
934
for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
935
val = qib_read_kreg64(dd, kr_ibcstatus);
936
if (val & IB_SERDES_TRIM_DONE) {
937
ret = 1;
938
break;
939
}
940
msleep(10);
941
}
942
if (trim_tmo >= TRIM_TMO) {
943
qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
944
ret = 0;
945
}
946
return ret;
947
}
948
949
#define TX_FAST_ELT (9)
950
951
/*
952
* Set the "negotiation" values for SERDES. These are used by the IB1.2
953
* link negotiation. Macros below are attempt to keep the values a
954
* little more human-editable.
955
* First, values related to Drive De-emphasis Settings.
956
*/
957
958
#define NUM_DDS_REGS 6
959
#define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
960
961
#define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
962
{ { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
963
(main_d << 3) | 4 | (ipre_d >> 2), \
964
(main_s << 3) | 4 | (ipre_s >> 2), \
965
((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
966
((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
967
968
static struct dds_init {
969
uint8_t reg_vals[NUM_DDS_REGS];
970
} dds_init_vals[] = {
971
/* DDR(FDR) SDR(HDR) */
972
/* Vendor recommends below for 3m cable */
973
#define DDS_3M 0
974
DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0),
975
DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
976
DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
977
DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
978
DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
979
DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
980
DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
981
DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
982
DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0),
983
DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0),
984
DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0),
985
DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0),
986
DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0),
987
/* Vendor recommends below for 1m cable */
988
#define DDS_1M 13
989
DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0),
990
DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0),
991
DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0)
992
};
993
994
/*
995
* Now the RXEQ section of the table.
996
*/
997
/* Hardware packs an element number and register address thus: */
998
#define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
999
#define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
1000
{RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
1001
1002
#define RXEQ_VAL_ALL(elt, adr, val) \
1003
{RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
1004
1005
#define RXEQ_SDR_DFELTH 0
1006
#define RXEQ_SDR_TLTH 0
1007
#define RXEQ_SDR_G1CNT_Z1CNT 0x11
1008
#define RXEQ_SDR_ZCNT 23
1009
1010
static struct rxeq_init {
1011
u16 rdesc; /* in form used in SerDesDDSRXEQ */
1012
u8 rdata[4];
1013
} rxeq_init_vals[] = {
1014
/* Set Rcv Eq. to Preset node */
1015
RXEQ_VAL_ALL(7, 0x27, 0x10),
1016
/* Set DFELTHFDR/HDR thresholds */
1017
RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
1018
RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
1019
/* Set TLTHFDR/HDR theshold */
1020
RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
1021
RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was 0, 1, 2, 3 */
1022
/* Set Preamp setting 2 (ZFR/ZCNT) */
1023
RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
1024
RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
1025
/* Set Preamp DC gain and Setting 1 (GFR/GHR) */
1026
RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
1027
RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
1028
/* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1029
RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1030
RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1031
};
1032
1033
/* There are 17 values from vendor, but IBC only accesses the first 16 */
1034
#define DDS_ROWS (16)
1035
#define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1036
1037
static int qib_sd_setvals(struct qib_devdata *dd)
1038
{
1039
int idx, midx;
1040
int min_idx; /* Minimum index for this portion of table */
1041
uint32_t dds_reg_map;
1042
u64 __iomem *taddr, *iaddr;
1043
uint64_t data;
1044
uint64_t sdctl;
1045
1046
taddr = dd->kregbase + kr_serdes_maptable;
1047
iaddr = dd->kregbase + kr_serdes_ddsrxeq0;
1048
1049
/*
1050
* Init the DDS section of the table.
1051
* Each "row" of the table provokes NUM_DDS_REG writes, to the
1052
* registers indicated in DDS_REG_MAP.
1053
*/
1054
sdctl = qib_read_kreg64(dd, kr_ibserdesctrl);
1055
sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1056
sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1057
qib_write_kreg(dd, kr_ibserdesctrl, sdctl);
1058
1059
/*
1060
* Iterate down table within loop for each register to store.
1061
*/
1062
dds_reg_map = DDS_REG_MAP;
1063
for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1064
data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1065
writeq(data, iaddr + idx);
1066
mmiowb();
1067
qib_read_kreg32(dd, kr_scratch);
1068
dds_reg_map >>= 4;
1069
for (midx = 0; midx < DDS_ROWS; ++midx) {
1070
u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1071
data = dds_init_vals[midx].reg_vals[idx];
1072
writeq(data, daddr);
1073
mmiowb();
1074
qib_read_kreg32(dd, kr_scratch);
1075
} /* End inner for (vals for this reg, each row) */
1076
} /* end outer for (regs to be stored) */
1077
1078
/*
1079
* Init the RXEQ section of the table.
1080
* This runs in a different order, as the pattern of
1081
* register references is more complex, but there are only
1082
* four "data" values per register.
1083
*/
1084
min_idx = idx; /* RXEQ indices pick up where DDS left off */
1085
taddr += 0x100; /* RXEQ data is in second half of table */
1086
/* Iterate through RXEQ register addresses */
1087
for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1088
int didx; /* "destination" */
1089
int vidx;
1090
1091
/* didx is offset by min_idx to address RXEQ range of regs */
1092
didx = idx + min_idx;
1093
/* Store the next RXEQ register address */
1094
writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1095
mmiowb();
1096
qib_read_kreg32(dd, kr_scratch);
1097
/* Iterate through RXEQ values */
1098
for (vidx = 0; vidx < 4; vidx++) {
1099
data = rxeq_init_vals[idx].rdata[vidx];
1100
writeq(data, taddr + (vidx << 6) + idx);
1101
mmiowb();
1102
qib_read_kreg32(dd, kr_scratch);
1103
}
1104
} /* end outer for (Reg-writes for RXEQ) */
1105
return 0;
1106
}
1107
1108
#define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1109
#define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1110
#define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1111
#define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1112
#define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1113
#define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1114
1115
/*
1116
* Repeat a "store" across all channels of the IB SerDes.
1117
* Although nominally it inherits the "read value" of the last
1118
* channel it modified, the only really useful return is <0 for
1119
* failure, >= 0 for success. The parameter 'loc' is assumed to
1120
* be the location in some channel of the register to be modified
1121
* The caller can specify use of the "gang write" option of EPB,
1122
* in which case we use the specified channel data for any fields
1123
* not explicitely written.
1124
*/
1125
static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
1126
int mask)
1127
{
1128
int ret = -1;
1129
int chnl;
1130
1131
if (loc & EPB_GLOBAL_WR) {
1132
/*
1133
* Our caller has assured us that we can set all four
1134
* channels at once. Trust that. If mask is not 0xFF,
1135
* we will read the _specified_ channel for our starting
1136
* value.
1137
*/
1138
loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1139
chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1140
if (mask != 0xFF) {
1141
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
1142
loc & ~EPB_GLOBAL_WR, 0, 0);
1143
if (ret < 0) {
1144
int sloc = loc >> EPB_ADDR_SHF;
1145
1146
qib_dev_err(dd, "pre-read failed: elt %d,"
1147
" addr 0x%X, chnl %d\n",
1148
(sloc & 0xF),
1149
(sloc >> 9) & 0x3f, chnl);
1150
return ret;
1151
}
1152
val = (ret & ~mask) | (val & mask);
1153
}
1154
loc &= ~(7 << (4+EPB_ADDR_SHF));
1155
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1156
if (ret < 0) {
1157
int sloc = loc >> EPB_ADDR_SHF;
1158
1159
qib_dev_err(dd, "Global WR failed: elt %d,"
1160
" addr 0x%X, val %02X\n",
1161
(sloc & 0xF), (sloc >> 9) & 0x3f, val);
1162
}
1163
return ret;
1164
}
1165
/* Clear "channel" and set CS so we can simply iterate */
1166
loc &= ~(7 << (4+EPB_ADDR_SHF));
1167
loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1168
for (chnl = 0; chnl < 4; ++chnl) {
1169
int cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1170
1171
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1172
if (ret < 0) {
1173
int sloc = loc >> EPB_ADDR_SHF;
1174
1175
qib_dev_err(dd, "Write failed: elt %d,"
1176
" addr 0x%X, chnl %d, val 0x%02X,"
1177
" mask 0x%02X\n",
1178
(sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1179
val & 0xFF, mask & 0xFF);
1180
break;
1181
}
1182
}
1183
return ret;
1184
}
1185
1186
/*
1187
* Set the Tx values normally modified by IBC in IB1.2 mode to default
1188
* values, as gotten from first row of init table.
1189
*/
1190
static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi)
1191
{
1192
int ret;
1193
int idx, reg, data;
1194
uint32_t regmap;
1195
1196
regmap = DDS_REG_MAP;
1197
for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1198
reg = (regmap & 0xF);
1199
regmap >>= 4;
1200
data = ddi->reg_vals[idx];
1201
/* Vendor says RMW not needed for these regs, use 0xFF mask */
1202
ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1203
if (ret < 0)
1204
break;
1205
}
1206
return ret;
1207
}
1208
1209
/*
1210
* Set the Rx values normally modified by IBC in IB1.2 mode to default
1211
* values, as gotten from selected column of init table.
1212
*/
1213
static int set_rxeq_vals(struct qib_devdata *dd, int vsel)
1214
{
1215
int ret;
1216
int ridx;
1217
int cnt = ARRAY_SIZE(rxeq_init_vals);
1218
1219
for (ridx = 0; ridx < cnt; ++ridx) {
1220
int elt, reg, val, loc;
1221
1222
elt = rxeq_init_vals[ridx].rdesc & 0xF;
1223
reg = rxeq_init_vals[ridx].rdesc >> 4;
1224
loc = EPB_LOC(0, elt, reg);
1225
val = rxeq_init_vals[ridx].rdata[vsel];
1226
/* mask of 0xFF, because hardware does full-byte store. */
1227
ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1228
if (ret < 0)
1229
break;
1230
}
1231
return ret;
1232
}
1233
1234
/*
1235
* Set the default values (row 0) for DDR Driver Demphasis.
1236
* we do this initially and whenever we turn off IB-1.2
1237
*
1238
* The "default" values for Rx equalization are also stored to
1239
* SerDes registers. Formerly (and still default), we used set 2.
1240
* For experimenting with cables and link-partners, we allow changing
1241
* that via a module parameter.
1242
*/
1243
static unsigned qib_rxeq_set = 2;
1244
module_param_named(rxeq_default_set, qib_rxeq_set, uint,
1245
S_IWUSR | S_IRUGO);
1246
MODULE_PARM_DESC(rxeq_default_set,
1247
"Which set [0..3] of Rx Equalization values is default");
1248
1249
static int qib_internal_presets(struct qib_devdata *dd)
1250
{
1251
int ret = 0;
1252
1253
ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1254
1255
if (ret < 0)
1256
qib_dev_err(dd, "Failed to set default DDS values\n");
1257
ret = set_rxeq_vals(dd, qib_rxeq_set & 3);
1258
if (ret < 0)
1259
qib_dev_err(dd, "Failed to set default RXEQ values\n");
1260
return ret;
1261
}
1262
1263
int qib_sd7220_presets(struct qib_devdata *dd)
1264
{
1265
int ret = 0;
1266
1267
if (!dd->cspec->presets_needed)
1268
return ret;
1269
dd->cspec->presets_needed = 0;
1270
/* Assert uC reset, so we don't clash with it. */
1271
qib_ibsd_reset(dd, 1);
1272
udelay(2);
1273
qib_sd_trimdone_monitor(dd, "link-down");
1274
1275
ret = qib_internal_presets(dd);
1276
return ret;
1277
}
1278
1279
static int qib_sd_trimself(struct qib_devdata *dd, int val)
1280
{
1281
int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF);
1282
1283
return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1284
}
1285
1286
static int qib_sd_early(struct qib_devdata *dd)
1287
{
1288
int ret;
1289
1290
ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF);
1291
if (ret < 0)
1292
goto bail;
1293
ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF);
1294
if (ret < 0)
1295
goto bail;
1296
ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF);
1297
bail:
1298
return ret;
1299
}
1300
1301
#define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1302
#define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1303
#define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1304
1305
static int qib_sd_dactrim(struct qib_devdata *dd)
1306
{
1307
int ret;
1308
1309
ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF);
1310
if (ret < 0)
1311
goto bail;
1312
1313
/* more fine-tuning of what will be default */
1314
ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF);
1315
if (ret < 0)
1316
goto bail;
1317
1318
ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF);
1319
if (ret < 0)
1320
goto bail;
1321
1322
ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1323
if (ret < 0)
1324
goto bail;
1325
1326
ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1327
if (ret < 0)
1328
goto bail;
1329
1330
/*
1331
* Delay for max possible number of steps, with slop.
1332
* Each step is about 4usec.
1333
*/
1334
udelay(415);
1335
1336
ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF);
1337
1338
bail:
1339
return ret;
1340
}
1341
1342
#define RELOCK_FIRST_MS 3
1343
#define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
1344
void toggle_7220_rclkrls(struct qib_devdata *dd)
1345
{
1346
int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1347
int ret;
1348
1349
ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1350
if (ret < 0)
1351
qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1352
else {
1353
udelay(1);
1354
ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1355
}
1356
/* And again for good measure */
1357
udelay(1);
1358
ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1359
if (ret < 0)
1360
qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1361
else {
1362
udelay(1);
1363
ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1364
}
1365
/* Now reset xgxs and IBC to complete the recovery */
1366
dd->f_xgxs_reset(dd->pport);
1367
}
1368
1369
/*
1370
* Shut down the timer that polls for relock occasions, if needed
1371
* this is "hooked" from qib_7220_quiet_serdes(), which is called
1372
* just before qib_shutdown_device() in qib_driver.c shuts down all
1373
* the other timers
1374
*/
1375
void shutdown_7220_relock_poll(struct qib_devdata *dd)
1376
{
1377
if (dd->cspec->relock_timer_active)
1378
del_timer_sync(&dd->cspec->relock_timer);
1379
}
1380
1381
static unsigned qib_relock_by_timer = 1;
1382
module_param_named(relock_by_timer, qib_relock_by_timer, uint,
1383
S_IWUSR | S_IRUGO);
1384
MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1385
1386
static void qib_run_relock(unsigned long opaque)
1387
{
1388
struct qib_devdata *dd = (struct qib_devdata *)opaque;
1389
struct qib_pportdata *ppd = dd->pport;
1390
struct qib_chip_specific *cs = dd->cspec;
1391
int timeoff;
1392
1393
/*
1394
* Check link-training state for "stuck" state, when down.
1395
* if found, try relock and schedule another try at
1396
* exponentially growing delay, maxed at one second.
1397
* if not stuck, our work is done.
1398
*/
1399
if ((dd->flags & QIB_INITTED) && !(ppd->lflags &
1400
(QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED |
1401
QIBL_LINKACTIVE))) {
1402
if (qib_relock_by_timer) {
1403
if (!(ppd->lflags & QIBL_IB_LINK_DISABLED))
1404
toggle_7220_rclkrls(dd);
1405
}
1406
/* re-set timer for next check */
1407
timeoff = cs->relock_interval << 1;
1408
if (timeoff > HZ)
1409
timeoff = HZ;
1410
cs->relock_interval = timeoff;
1411
} else
1412
timeoff = HZ;
1413
mod_timer(&cs->relock_timer, jiffies + timeoff);
1414
}
1415
1416
void set_7220_relock_poll(struct qib_devdata *dd, int ibup)
1417
{
1418
struct qib_chip_specific *cs = dd->cspec;
1419
1420
if (ibup) {
1421
/* We are now up, relax timer to 1 second interval */
1422
if (cs->relock_timer_active) {
1423
cs->relock_interval = HZ;
1424
mod_timer(&cs->relock_timer, jiffies + HZ);
1425
}
1426
} else {
1427
/* Transition to down, (re-)set timer to short interval. */
1428
unsigned int timeout;
1429
1430
timeout = msecs_to_jiffies(RELOCK_FIRST_MS);
1431
if (timeout == 0)
1432
timeout = 1;
1433
/* If timer has not yet been started, do so. */
1434
if (!cs->relock_timer_active) {
1435
cs->relock_timer_active = 1;
1436
init_timer(&cs->relock_timer);
1437
cs->relock_timer.function = qib_run_relock;
1438
cs->relock_timer.data = (unsigned long) dd;
1439
cs->relock_interval = timeout;
1440
cs->relock_timer.expires = jiffies + timeout;
1441
add_timer(&cs->relock_timer);
1442
} else {
1443
cs->relock_interval = timeout;
1444
mod_timer(&cs->relock_timer, jiffies + timeout);
1445
}
1446
}
1447
}
1448
1449