Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/input/input.c
15109 views
1
/*
2
* The input core
3
*
4
* Copyright (c) 1999-2002 Vojtech Pavlik
5
*/
6
7
/*
8
* This program is free software; you can redistribute it and/or modify it
9
* under the terms of the GNU General Public License version 2 as published by
10
* the Free Software Foundation.
11
*/
12
13
#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
15
#include <linux/init.h>
16
#include <linux/types.h>
17
#include <linux/input/mt.h>
18
#include <linux/module.h>
19
#include <linux/slab.h>
20
#include <linux/random.h>
21
#include <linux/major.h>
22
#include <linux/proc_fs.h>
23
#include <linux/sched.h>
24
#include <linux/seq_file.h>
25
#include <linux/poll.h>
26
#include <linux/device.h>
27
#include <linux/mutex.h>
28
#include <linux/rcupdate.h>
29
#include "input-compat.h"
30
31
MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
32
MODULE_DESCRIPTION("Input core");
33
MODULE_LICENSE("GPL");
34
35
#define INPUT_DEVICES 256
36
37
static LIST_HEAD(input_dev_list);
38
static LIST_HEAD(input_handler_list);
39
40
/*
41
* input_mutex protects access to both input_dev_list and input_handler_list.
42
* This also causes input_[un]register_device and input_[un]register_handler
43
* be mutually exclusive which simplifies locking in drivers implementing
44
* input handlers.
45
*/
46
static DEFINE_MUTEX(input_mutex);
47
48
static struct input_handler *input_table[8];
49
50
static inline int is_event_supported(unsigned int code,
51
unsigned long *bm, unsigned int max)
52
{
53
return code <= max && test_bit(code, bm);
54
}
55
56
static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57
{
58
if (fuzz) {
59
if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60
return old_val;
61
62
if (value > old_val - fuzz && value < old_val + fuzz)
63
return (old_val * 3 + value) / 4;
64
65
if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66
return (old_val + value) / 2;
67
}
68
69
return value;
70
}
71
72
/*
73
* Pass event first through all filters and then, if event has not been
74
* filtered out, through all open handles. This function is called with
75
* dev->event_lock held and interrupts disabled.
76
*/
77
static void input_pass_event(struct input_dev *dev,
78
unsigned int type, unsigned int code, int value)
79
{
80
struct input_handler *handler;
81
struct input_handle *handle;
82
83
rcu_read_lock();
84
85
handle = rcu_dereference(dev->grab);
86
if (handle)
87
handle->handler->event(handle, type, code, value);
88
else {
89
bool filtered = false;
90
91
list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
92
if (!handle->open)
93
continue;
94
95
handler = handle->handler;
96
if (!handler->filter) {
97
if (filtered)
98
break;
99
100
handler->event(handle, type, code, value);
101
102
} else if (handler->filter(handle, type, code, value))
103
filtered = true;
104
}
105
}
106
107
rcu_read_unlock();
108
}
109
110
/*
111
* Generate software autorepeat event. Note that we take
112
* dev->event_lock here to avoid racing with input_event
113
* which may cause keys get "stuck".
114
*/
115
static void input_repeat_key(unsigned long data)
116
{
117
struct input_dev *dev = (void *) data;
118
unsigned long flags;
119
120
spin_lock_irqsave(&dev->event_lock, flags);
121
122
if (test_bit(dev->repeat_key, dev->key) &&
123
is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
124
125
input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
126
127
if (dev->sync) {
128
/*
129
* Only send SYN_REPORT if we are not in a middle
130
* of driver parsing a new hardware packet.
131
* Otherwise assume that the driver will send
132
* SYN_REPORT once it's done.
133
*/
134
input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
135
}
136
137
if (dev->rep[REP_PERIOD])
138
mod_timer(&dev->timer, jiffies +
139
msecs_to_jiffies(dev->rep[REP_PERIOD]));
140
}
141
142
spin_unlock_irqrestore(&dev->event_lock, flags);
143
}
144
145
static void input_start_autorepeat(struct input_dev *dev, int code)
146
{
147
if (test_bit(EV_REP, dev->evbit) &&
148
dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
149
dev->timer.data) {
150
dev->repeat_key = code;
151
mod_timer(&dev->timer,
152
jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
153
}
154
}
155
156
static void input_stop_autorepeat(struct input_dev *dev)
157
{
158
del_timer(&dev->timer);
159
}
160
161
#define INPUT_IGNORE_EVENT 0
162
#define INPUT_PASS_TO_HANDLERS 1
163
#define INPUT_PASS_TO_DEVICE 2
164
#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
165
166
static int input_handle_abs_event(struct input_dev *dev,
167
unsigned int code, int *pval)
168
{
169
bool is_mt_event;
170
int *pold;
171
172
if (code == ABS_MT_SLOT) {
173
/*
174
* "Stage" the event; we'll flush it later, when we
175
* get actual touch data.
176
*/
177
if (*pval >= 0 && *pval < dev->mtsize)
178
dev->slot = *pval;
179
180
return INPUT_IGNORE_EVENT;
181
}
182
183
is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
184
185
if (!is_mt_event) {
186
pold = &dev->absinfo[code].value;
187
} else if (dev->mt) {
188
struct input_mt_slot *mtslot = &dev->mt[dev->slot];
189
pold = &mtslot->abs[code - ABS_MT_FIRST];
190
} else {
191
/*
192
* Bypass filtering for multi-touch events when
193
* not employing slots.
194
*/
195
pold = NULL;
196
}
197
198
if (pold) {
199
*pval = input_defuzz_abs_event(*pval, *pold,
200
dev->absinfo[code].fuzz);
201
if (*pold == *pval)
202
return INPUT_IGNORE_EVENT;
203
204
*pold = *pval;
205
}
206
207
/* Flush pending "slot" event */
208
if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
209
input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
210
input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
211
}
212
213
return INPUT_PASS_TO_HANDLERS;
214
}
215
216
static void input_handle_event(struct input_dev *dev,
217
unsigned int type, unsigned int code, int value)
218
{
219
int disposition = INPUT_IGNORE_EVENT;
220
221
switch (type) {
222
223
case EV_SYN:
224
switch (code) {
225
case SYN_CONFIG:
226
disposition = INPUT_PASS_TO_ALL;
227
break;
228
229
case SYN_REPORT:
230
if (!dev->sync) {
231
dev->sync = true;
232
disposition = INPUT_PASS_TO_HANDLERS;
233
}
234
break;
235
case SYN_MT_REPORT:
236
dev->sync = false;
237
disposition = INPUT_PASS_TO_HANDLERS;
238
break;
239
}
240
break;
241
242
case EV_KEY:
243
if (is_event_supported(code, dev->keybit, KEY_MAX) &&
244
!!test_bit(code, dev->key) != value) {
245
246
if (value != 2) {
247
__change_bit(code, dev->key);
248
if (value)
249
input_start_autorepeat(dev, code);
250
else
251
input_stop_autorepeat(dev);
252
}
253
254
disposition = INPUT_PASS_TO_HANDLERS;
255
}
256
break;
257
258
case EV_SW:
259
if (is_event_supported(code, dev->swbit, SW_MAX) &&
260
!!test_bit(code, dev->sw) != value) {
261
262
__change_bit(code, dev->sw);
263
disposition = INPUT_PASS_TO_HANDLERS;
264
}
265
break;
266
267
case EV_ABS:
268
if (is_event_supported(code, dev->absbit, ABS_MAX))
269
disposition = input_handle_abs_event(dev, code, &value);
270
271
break;
272
273
case EV_REL:
274
if (is_event_supported(code, dev->relbit, REL_MAX) && value)
275
disposition = INPUT_PASS_TO_HANDLERS;
276
277
break;
278
279
case EV_MSC:
280
if (is_event_supported(code, dev->mscbit, MSC_MAX))
281
disposition = INPUT_PASS_TO_ALL;
282
283
break;
284
285
case EV_LED:
286
if (is_event_supported(code, dev->ledbit, LED_MAX) &&
287
!!test_bit(code, dev->led) != value) {
288
289
__change_bit(code, dev->led);
290
disposition = INPUT_PASS_TO_ALL;
291
}
292
break;
293
294
case EV_SND:
295
if (is_event_supported(code, dev->sndbit, SND_MAX)) {
296
297
if (!!test_bit(code, dev->snd) != !!value)
298
__change_bit(code, dev->snd);
299
disposition = INPUT_PASS_TO_ALL;
300
}
301
break;
302
303
case EV_REP:
304
if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
305
dev->rep[code] = value;
306
disposition = INPUT_PASS_TO_ALL;
307
}
308
break;
309
310
case EV_FF:
311
if (value >= 0)
312
disposition = INPUT_PASS_TO_ALL;
313
break;
314
315
case EV_PWR:
316
disposition = INPUT_PASS_TO_ALL;
317
break;
318
}
319
320
if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
321
dev->sync = false;
322
323
if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
324
dev->event(dev, type, code, value);
325
326
if (disposition & INPUT_PASS_TO_HANDLERS)
327
input_pass_event(dev, type, code, value);
328
}
329
330
/**
331
* input_event() - report new input event
332
* @dev: device that generated the event
333
* @type: type of the event
334
* @code: event code
335
* @value: value of the event
336
*
337
* This function should be used by drivers implementing various input
338
* devices to report input events. See also input_inject_event().
339
*
340
* NOTE: input_event() may be safely used right after input device was
341
* allocated with input_allocate_device(), even before it is registered
342
* with input_register_device(), but the event will not reach any of the
343
* input handlers. Such early invocation of input_event() may be used
344
* to 'seed' initial state of a switch or initial position of absolute
345
* axis, etc.
346
*/
347
void input_event(struct input_dev *dev,
348
unsigned int type, unsigned int code, int value)
349
{
350
unsigned long flags;
351
352
if (is_event_supported(type, dev->evbit, EV_MAX)) {
353
354
spin_lock_irqsave(&dev->event_lock, flags);
355
add_input_randomness(type, code, value);
356
input_handle_event(dev, type, code, value);
357
spin_unlock_irqrestore(&dev->event_lock, flags);
358
}
359
}
360
EXPORT_SYMBOL(input_event);
361
362
/**
363
* input_inject_event() - send input event from input handler
364
* @handle: input handle to send event through
365
* @type: type of the event
366
* @code: event code
367
* @value: value of the event
368
*
369
* Similar to input_event() but will ignore event if device is
370
* "grabbed" and handle injecting event is not the one that owns
371
* the device.
372
*/
373
void input_inject_event(struct input_handle *handle,
374
unsigned int type, unsigned int code, int value)
375
{
376
struct input_dev *dev = handle->dev;
377
struct input_handle *grab;
378
unsigned long flags;
379
380
if (is_event_supported(type, dev->evbit, EV_MAX)) {
381
spin_lock_irqsave(&dev->event_lock, flags);
382
383
rcu_read_lock();
384
grab = rcu_dereference(dev->grab);
385
if (!grab || grab == handle)
386
input_handle_event(dev, type, code, value);
387
rcu_read_unlock();
388
389
spin_unlock_irqrestore(&dev->event_lock, flags);
390
}
391
}
392
EXPORT_SYMBOL(input_inject_event);
393
394
/**
395
* input_alloc_absinfo - allocates array of input_absinfo structs
396
* @dev: the input device emitting absolute events
397
*
398
* If the absinfo struct the caller asked for is already allocated, this
399
* functions will not do anything.
400
*/
401
void input_alloc_absinfo(struct input_dev *dev)
402
{
403
if (!dev->absinfo)
404
dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
405
GFP_KERNEL);
406
407
WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
408
}
409
EXPORT_SYMBOL(input_alloc_absinfo);
410
411
void input_set_abs_params(struct input_dev *dev, unsigned int axis,
412
int min, int max, int fuzz, int flat)
413
{
414
struct input_absinfo *absinfo;
415
416
input_alloc_absinfo(dev);
417
if (!dev->absinfo)
418
return;
419
420
absinfo = &dev->absinfo[axis];
421
absinfo->minimum = min;
422
absinfo->maximum = max;
423
absinfo->fuzz = fuzz;
424
absinfo->flat = flat;
425
426
dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
427
}
428
EXPORT_SYMBOL(input_set_abs_params);
429
430
431
/**
432
* input_grab_device - grabs device for exclusive use
433
* @handle: input handle that wants to own the device
434
*
435
* When a device is grabbed by an input handle all events generated by
436
* the device are delivered only to this handle. Also events injected
437
* by other input handles are ignored while device is grabbed.
438
*/
439
int input_grab_device(struct input_handle *handle)
440
{
441
struct input_dev *dev = handle->dev;
442
int retval;
443
444
retval = mutex_lock_interruptible(&dev->mutex);
445
if (retval)
446
return retval;
447
448
if (dev->grab) {
449
retval = -EBUSY;
450
goto out;
451
}
452
453
rcu_assign_pointer(dev->grab, handle);
454
455
out:
456
mutex_unlock(&dev->mutex);
457
return retval;
458
}
459
EXPORT_SYMBOL(input_grab_device);
460
461
static void __input_release_device(struct input_handle *handle)
462
{
463
struct input_dev *dev = handle->dev;
464
465
if (dev->grab == handle) {
466
rcu_assign_pointer(dev->grab, NULL);
467
/* Make sure input_pass_event() notices that grab is gone */
468
synchronize_rcu();
469
470
list_for_each_entry(handle, &dev->h_list, d_node)
471
if (handle->open && handle->handler->start)
472
handle->handler->start(handle);
473
}
474
}
475
476
/**
477
* input_release_device - release previously grabbed device
478
* @handle: input handle that owns the device
479
*
480
* Releases previously grabbed device so that other input handles can
481
* start receiving input events. Upon release all handlers attached
482
* to the device have their start() method called so they have a change
483
* to synchronize device state with the rest of the system.
484
*/
485
void input_release_device(struct input_handle *handle)
486
{
487
struct input_dev *dev = handle->dev;
488
489
mutex_lock(&dev->mutex);
490
__input_release_device(handle);
491
mutex_unlock(&dev->mutex);
492
}
493
EXPORT_SYMBOL(input_release_device);
494
495
/**
496
* input_open_device - open input device
497
* @handle: handle through which device is being accessed
498
*
499
* This function should be called by input handlers when they
500
* want to start receive events from given input device.
501
*/
502
int input_open_device(struct input_handle *handle)
503
{
504
struct input_dev *dev = handle->dev;
505
int retval;
506
507
retval = mutex_lock_interruptible(&dev->mutex);
508
if (retval)
509
return retval;
510
511
if (dev->going_away) {
512
retval = -ENODEV;
513
goto out;
514
}
515
516
handle->open++;
517
518
if (!dev->users++ && dev->open)
519
retval = dev->open(dev);
520
521
if (retval) {
522
dev->users--;
523
if (!--handle->open) {
524
/*
525
* Make sure we are not delivering any more events
526
* through this handle
527
*/
528
synchronize_rcu();
529
}
530
}
531
532
out:
533
mutex_unlock(&dev->mutex);
534
return retval;
535
}
536
EXPORT_SYMBOL(input_open_device);
537
538
int input_flush_device(struct input_handle *handle, struct file *file)
539
{
540
struct input_dev *dev = handle->dev;
541
int retval;
542
543
retval = mutex_lock_interruptible(&dev->mutex);
544
if (retval)
545
return retval;
546
547
if (dev->flush)
548
retval = dev->flush(dev, file);
549
550
mutex_unlock(&dev->mutex);
551
return retval;
552
}
553
EXPORT_SYMBOL(input_flush_device);
554
555
/**
556
* input_close_device - close input device
557
* @handle: handle through which device is being accessed
558
*
559
* This function should be called by input handlers when they
560
* want to stop receive events from given input device.
561
*/
562
void input_close_device(struct input_handle *handle)
563
{
564
struct input_dev *dev = handle->dev;
565
566
mutex_lock(&dev->mutex);
567
568
__input_release_device(handle);
569
570
if (!--dev->users && dev->close)
571
dev->close(dev);
572
573
if (!--handle->open) {
574
/*
575
* synchronize_rcu() makes sure that input_pass_event()
576
* completed and that no more input events are delivered
577
* through this handle
578
*/
579
synchronize_rcu();
580
}
581
582
mutex_unlock(&dev->mutex);
583
}
584
EXPORT_SYMBOL(input_close_device);
585
586
/*
587
* Simulate keyup events for all keys that are marked as pressed.
588
* The function must be called with dev->event_lock held.
589
*/
590
static void input_dev_release_keys(struct input_dev *dev)
591
{
592
int code;
593
594
if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
595
for (code = 0; code <= KEY_MAX; code++) {
596
if (is_event_supported(code, dev->keybit, KEY_MAX) &&
597
__test_and_clear_bit(code, dev->key)) {
598
input_pass_event(dev, EV_KEY, code, 0);
599
}
600
}
601
input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
602
}
603
}
604
605
/*
606
* Prepare device for unregistering
607
*/
608
static void input_disconnect_device(struct input_dev *dev)
609
{
610
struct input_handle *handle;
611
612
/*
613
* Mark device as going away. Note that we take dev->mutex here
614
* not to protect access to dev->going_away but rather to ensure
615
* that there are no threads in the middle of input_open_device()
616
*/
617
mutex_lock(&dev->mutex);
618
dev->going_away = true;
619
mutex_unlock(&dev->mutex);
620
621
spin_lock_irq(&dev->event_lock);
622
623
/*
624
* Simulate keyup events for all pressed keys so that handlers
625
* are not left with "stuck" keys. The driver may continue
626
* generate events even after we done here but they will not
627
* reach any handlers.
628
*/
629
input_dev_release_keys(dev);
630
631
list_for_each_entry(handle, &dev->h_list, d_node)
632
handle->open = 0;
633
634
spin_unlock_irq(&dev->event_lock);
635
}
636
637
/**
638
* input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
639
* @ke: keymap entry containing scancode to be converted.
640
* @scancode: pointer to the location where converted scancode should
641
* be stored.
642
*
643
* This function is used to convert scancode stored in &struct keymap_entry
644
* into scalar form understood by legacy keymap handling methods. These
645
* methods expect scancodes to be represented as 'unsigned int'.
646
*/
647
int input_scancode_to_scalar(const struct input_keymap_entry *ke,
648
unsigned int *scancode)
649
{
650
switch (ke->len) {
651
case 1:
652
*scancode = *((u8 *)ke->scancode);
653
break;
654
655
case 2:
656
*scancode = *((u16 *)ke->scancode);
657
break;
658
659
case 4:
660
*scancode = *((u32 *)ke->scancode);
661
break;
662
663
default:
664
return -EINVAL;
665
}
666
667
return 0;
668
}
669
EXPORT_SYMBOL(input_scancode_to_scalar);
670
671
/*
672
* Those routines handle the default case where no [gs]etkeycode() is
673
* defined. In this case, an array indexed by the scancode is used.
674
*/
675
676
static unsigned int input_fetch_keycode(struct input_dev *dev,
677
unsigned int index)
678
{
679
switch (dev->keycodesize) {
680
case 1:
681
return ((u8 *)dev->keycode)[index];
682
683
case 2:
684
return ((u16 *)dev->keycode)[index];
685
686
default:
687
return ((u32 *)dev->keycode)[index];
688
}
689
}
690
691
static int input_default_getkeycode(struct input_dev *dev,
692
struct input_keymap_entry *ke)
693
{
694
unsigned int index;
695
int error;
696
697
if (!dev->keycodesize)
698
return -EINVAL;
699
700
if (ke->flags & INPUT_KEYMAP_BY_INDEX)
701
index = ke->index;
702
else {
703
error = input_scancode_to_scalar(ke, &index);
704
if (error)
705
return error;
706
}
707
708
if (index >= dev->keycodemax)
709
return -EINVAL;
710
711
ke->keycode = input_fetch_keycode(dev, index);
712
ke->index = index;
713
ke->len = sizeof(index);
714
memcpy(ke->scancode, &index, sizeof(index));
715
716
return 0;
717
}
718
719
static int input_default_setkeycode(struct input_dev *dev,
720
const struct input_keymap_entry *ke,
721
unsigned int *old_keycode)
722
{
723
unsigned int index;
724
int error;
725
int i;
726
727
if (!dev->keycodesize)
728
return -EINVAL;
729
730
if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
731
index = ke->index;
732
} else {
733
error = input_scancode_to_scalar(ke, &index);
734
if (error)
735
return error;
736
}
737
738
if (index >= dev->keycodemax)
739
return -EINVAL;
740
741
if (dev->keycodesize < sizeof(ke->keycode) &&
742
(ke->keycode >> (dev->keycodesize * 8)))
743
return -EINVAL;
744
745
switch (dev->keycodesize) {
746
case 1: {
747
u8 *k = (u8 *)dev->keycode;
748
*old_keycode = k[index];
749
k[index] = ke->keycode;
750
break;
751
}
752
case 2: {
753
u16 *k = (u16 *)dev->keycode;
754
*old_keycode = k[index];
755
k[index] = ke->keycode;
756
break;
757
}
758
default: {
759
u32 *k = (u32 *)dev->keycode;
760
*old_keycode = k[index];
761
k[index] = ke->keycode;
762
break;
763
}
764
}
765
766
__clear_bit(*old_keycode, dev->keybit);
767
__set_bit(ke->keycode, dev->keybit);
768
769
for (i = 0; i < dev->keycodemax; i++) {
770
if (input_fetch_keycode(dev, i) == *old_keycode) {
771
__set_bit(*old_keycode, dev->keybit);
772
break; /* Setting the bit twice is useless, so break */
773
}
774
}
775
776
return 0;
777
}
778
779
/**
780
* input_get_keycode - retrieve keycode currently mapped to a given scancode
781
* @dev: input device which keymap is being queried
782
* @ke: keymap entry
783
*
784
* This function should be called by anyone interested in retrieving current
785
* keymap. Presently evdev handlers use it.
786
*/
787
int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
788
{
789
unsigned long flags;
790
int retval;
791
792
spin_lock_irqsave(&dev->event_lock, flags);
793
retval = dev->getkeycode(dev, ke);
794
spin_unlock_irqrestore(&dev->event_lock, flags);
795
796
return retval;
797
}
798
EXPORT_SYMBOL(input_get_keycode);
799
800
/**
801
* input_set_keycode - attribute a keycode to a given scancode
802
* @dev: input device which keymap is being updated
803
* @ke: new keymap entry
804
*
805
* This function should be called by anyone needing to update current
806
* keymap. Presently keyboard and evdev handlers use it.
807
*/
808
int input_set_keycode(struct input_dev *dev,
809
const struct input_keymap_entry *ke)
810
{
811
unsigned long flags;
812
unsigned int old_keycode;
813
int retval;
814
815
if (ke->keycode > KEY_MAX)
816
return -EINVAL;
817
818
spin_lock_irqsave(&dev->event_lock, flags);
819
820
retval = dev->setkeycode(dev, ke, &old_keycode);
821
if (retval)
822
goto out;
823
824
/* Make sure KEY_RESERVED did not get enabled. */
825
__clear_bit(KEY_RESERVED, dev->keybit);
826
827
/*
828
* Simulate keyup event if keycode is not present
829
* in the keymap anymore
830
*/
831
if (test_bit(EV_KEY, dev->evbit) &&
832
!is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
833
__test_and_clear_bit(old_keycode, dev->key)) {
834
835
input_pass_event(dev, EV_KEY, old_keycode, 0);
836
if (dev->sync)
837
input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
838
}
839
840
out:
841
spin_unlock_irqrestore(&dev->event_lock, flags);
842
843
return retval;
844
}
845
EXPORT_SYMBOL(input_set_keycode);
846
847
#define MATCH_BIT(bit, max) \
848
for (i = 0; i < BITS_TO_LONGS(max); i++) \
849
if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
850
break; \
851
if (i != BITS_TO_LONGS(max)) \
852
continue;
853
854
static const struct input_device_id *input_match_device(struct input_handler *handler,
855
struct input_dev *dev)
856
{
857
const struct input_device_id *id;
858
int i;
859
860
for (id = handler->id_table; id->flags || id->driver_info; id++) {
861
862
if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
863
if (id->bustype != dev->id.bustype)
864
continue;
865
866
if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
867
if (id->vendor != dev->id.vendor)
868
continue;
869
870
if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
871
if (id->product != dev->id.product)
872
continue;
873
874
if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
875
if (id->version != dev->id.version)
876
continue;
877
878
MATCH_BIT(evbit, EV_MAX);
879
MATCH_BIT(keybit, KEY_MAX);
880
MATCH_BIT(relbit, REL_MAX);
881
MATCH_BIT(absbit, ABS_MAX);
882
MATCH_BIT(mscbit, MSC_MAX);
883
MATCH_BIT(ledbit, LED_MAX);
884
MATCH_BIT(sndbit, SND_MAX);
885
MATCH_BIT(ffbit, FF_MAX);
886
MATCH_BIT(swbit, SW_MAX);
887
888
if (!handler->match || handler->match(handler, dev))
889
return id;
890
}
891
892
return NULL;
893
}
894
895
static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
896
{
897
const struct input_device_id *id;
898
int error;
899
900
id = input_match_device(handler, dev);
901
if (!id)
902
return -ENODEV;
903
904
error = handler->connect(handler, dev, id);
905
if (error && error != -ENODEV)
906
pr_err("failed to attach handler %s to device %s, error: %d\n",
907
handler->name, kobject_name(&dev->dev.kobj), error);
908
909
return error;
910
}
911
912
#ifdef CONFIG_COMPAT
913
914
static int input_bits_to_string(char *buf, int buf_size,
915
unsigned long bits, bool skip_empty)
916
{
917
int len = 0;
918
919
if (INPUT_COMPAT_TEST) {
920
u32 dword = bits >> 32;
921
if (dword || !skip_empty)
922
len += snprintf(buf, buf_size, "%x ", dword);
923
924
dword = bits & 0xffffffffUL;
925
if (dword || !skip_empty || len)
926
len += snprintf(buf + len, max(buf_size - len, 0),
927
"%x", dword);
928
} else {
929
if (bits || !skip_empty)
930
len += snprintf(buf, buf_size, "%lx", bits);
931
}
932
933
return len;
934
}
935
936
#else /* !CONFIG_COMPAT */
937
938
static int input_bits_to_string(char *buf, int buf_size,
939
unsigned long bits, bool skip_empty)
940
{
941
return bits || !skip_empty ?
942
snprintf(buf, buf_size, "%lx", bits) : 0;
943
}
944
945
#endif
946
947
#ifdef CONFIG_PROC_FS
948
949
static struct proc_dir_entry *proc_bus_input_dir;
950
static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
951
static int input_devices_state;
952
953
static inline void input_wakeup_procfs_readers(void)
954
{
955
input_devices_state++;
956
wake_up(&input_devices_poll_wait);
957
}
958
959
static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
960
{
961
poll_wait(file, &input_devices_poll_wait, wait);
962
if (file->f_version != input_devices_state) {
963
file->f_version = input_devices_state;
964
return POLLIN | POLLRDNORM;
965
}
966
967
return 0;
968
}
969
970
union input_seq_state {
971
struct {
972
unsigned short pos;
973
bool mutex_acquired;
974
};
975
void *p;
976
};
977
978
static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
979
{
980
union input_seq_state *state = (union input_seq_state *)&seq->private;
981
int error;
982
983
/* We need to fit into seq->private pointer */
984
BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
985
986
error = mutex_lock_interruptible(&input_mutex);
987
if (error) {
988
state->mutex_acquired = false;
989
return ERR_PTR(error);
990
}
991
992
state->mutex_acquired = true;
993
994
return seq_list_start(&input_dev_list, *pos);
995
}
996
997
static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
998
{
999
return seq_list_next(v, &input_dev_list, pos);
1000
}
1001
1002
static void input_seq_stop(struct seq_file *seq, void *v)
1003
{
1004
union input_seq_state *state = (union input_seq_state *)&seq->private;
1005
1006
if (state->mutex_acquired)
1007
mutex_unlock(&input_mutex);
1008
}
1009
1010
static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1011
unsigned long *bitmap, int max)
1012
{
1013
int i;
1014
bool skip_empty = true;
1015
char buf[18];
1016
1017
seq_printf(seq, "B: %s=", name);
1018
1019
for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1020
if (input_bits_to_string(buf, sizeof(buf),
1021
bitmap[i], skip_empty)) {
1022
skip_empty = false;
1023
seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1024
}
1025
}
1026
1027
/*
1028
* If no output was produced print a single 0.
1029
*/
1030
if (skip_empty)
1031
seq_puts(seq, "0");
1032
1033
seq_putc(seq, '\n');
1034
}
1035
1036
static int input_devices_seq_show(struct seq_file *seq, void *v)
1037
{
1038
struct input_dev *dev = container_of(v, struct input_dev, node);
1039
const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1040
struct input_handle *handle;
1041
1042
seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1043
dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1044
1045
seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1046
seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1047
seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1048
seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1049
seq_printf(seq, "H: Handlers=");
1050
1051
list_for_each_entry(handle, &dev->h_list, d_node)
1052
seq_printf(seq, "%s ", handle->name);
1053
seq_putc(seq, '\n');
1054
1055
input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1056
1057
input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1058
if (test_bit(EV_KEY, dev->evbit))
1059
input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1060
if (test_bit(EV_REL, dev->evbit))
1061
input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1062
if (test_bit(EV_ABS, dev->evbit))
1063
input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1064
if (test_bit(EV_MSC, dev->evbit))
1065
input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1066
if (test_bit(EV_LED, dev->evbit))
1067
input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1068
if (test_bit(EV_SND, dev->evbit))
1069
input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1070
if (test_bit(EV_FF, dev->evbit))
1071
input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1072
if (test_bit(EV_SW, dev->evbit))
1073
input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1074
1075
seq_putc(seq, '\n');
1076
1077
kfree(path);
1078
return 0;
1079
}
1080
1081
static const struct seq_operations input_devices_seq_ops = {
1082
.start = input_devices_seq_start,
1083
.next = input_devices_seq_next,
1084
.stop = input_seq_stop,
1085
.show = input_devices_seq_show,
1086
};
1087
1088
static int input_proc_devices_open(struct inode *inode, struct file *file)
1089
{
1090
return seq_open(file, &input_devices_seq_ops);
1091
}
1092
1093
static const struct file_operations input_devices_fileops = {
1094
.owner = THIS_MODULE,
1095
.open = input_proc_devices_open,
1096
.poll = input_proc_devices_poll,
1097
.read = seq_read,
1098
.llseek = seq_lseek,
1099
.release = seq_release,
1100
};
1101
1102
static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1103
{
1104
union input_seq_state *state = (union input_seq_state *)&seq->private;
1105
int error;
1106
1107
/* We need to fit into seq->private pointer */
1108
BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1109
1110
error = mutex_lock_interruptible(&input_mutex);
1111
if (error) {
1112
state->mutex_acquired = false;
1113
return ERR_PTR(error);
1114
}
1115
1116
state->mutex_acquired = true;
1117
state->pos = *pos;
1118
1119
return seq_list_start(&input_handler_list, *pos);
1120
}
1121
1122
static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1123
{
1124
union input_seq_state *state = (union input_seq_state *)&seq->private;
1125
1126
state->pos = *pos + 1;
1127
return seq_list_next(v, &input_handler_list, pos);
1128
}
1129
1130
static int input_handlers_seq_show(struct seq_file *seq, void *v)
1131
{
1132
struct input_handler *handler = container_of(v, struct input_handler, node);
1133
union input_seq_state *state = (union input_seq_state *)&seq->private;
1134
1135
seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1136
if (handler->filter)
1137
seq_puts(seq, " (filter)");
1138
if (handler->fops)
1139
seq_printf(seq, " Minor=%d", handler->minor);
1140
seq_putc(seq, '\n');
1141
1142
return 0;
1143
}
1144
1145
static const struct seq_operations input_handlers_seq_ops = {
1146
.start = input_handlers_seq_start,
1147
.next = input_handlers_seq_next,
1148
.stop = input_seq_stop,
1149
.show = input_handlers_seq_show,
1150
};
1151
1152
static int input_proc_handlers_open(struct inode *inode, struct file *file)
1153
{
1154
return seq_open(file, &input_handlers_seq_ops);
1155
}
1156
1157
static const struct file_operations input_handlers_fileops = {
1158
.owner = THIS_MODULE,
1159
.open = input_proc_handlers_open,
1160
.read = seq_read,
1161
.llseek = seq_lseek,
1162
.release = seq_release,
1163
};
1164
1165
static int __init input_proc_init(void)
1166
{
1167
struct proc_dir_entry *entry;
1168
1169
proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1170
if (!proc_bus_input_dir)
1171
return -ENOMEM;
1172
1173
entry = proc_create("devices", 0, proc_bus_input_dir,
1174
&input_devices_fileops);
1175
if (!entry)
1176
goto fail1;
1177
1178
entry = proc_create("handlers", 0, proc_bus_input_dir,
1179
&input_handlers_fileops);
1180
if (!entry)
1181
goto fail2;
1182
1183
return 0;
1184
1185
fail2: remove_proc_entry("devices", proc_bus_input_dir);
1186
fail1: remove_proc_entry("bus/input", NULL);
1187
return -ENOMEM;
1188
}
1189
1190
static void input_proc_exit(void)
1191
{
1192
remove_proc_entry("devices", proc_bus_input_dir);
1193
remove_proc_entry("handlers", proc_bus_input_dir);
1194
remove_proc_entry("bus/input", NULL);
1195
}
1196
1197
#else /* !CONFIG_PROC_FS */
1198
static inline void input_wakeup_procfs_readers(void) { }
1199
static inline int input_proc_init(void) { return 0; }
1200
static inline void input_proc_exit(void) { }
1201
#endif
1202
1203
#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1204
static ssize_t input_dev_show_##name(struct device *dev, \
1205
struct device_attribute *attr, \
1206
char *buf) \
1207
{ \
1208
struct input_dev *input_dev = to_input_dev(dev); \
1209
\
1210
return scnprintf(buf, PAGE_SIZE, "%s\n", \
1211
input_dev->name ? input_dev->name : ""); \
1212
} \
1213
static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1214
1215
INPUT_DEV_STRING_ATTR_SHOW(name);
1216
INPUT_DEV_STRING_ATTR_SHOW(phys);
1217
INPUT_DEV_STRING_ATTR_SHOW(uniq);
1218
1219
static int input_print_modalias_bits(char *buf, int size,
1220
char name, unsigned long *bm,
1221
unsigned int min_bit, unsigned int max_bit)
1222
{
1223
int len = 0, i;
1224
1225
len += snprintf(buf, max(size, 0), "%c", name);
1226
for (i = min_bit; i < max_bit; i++)
1227
if (bm[BIT_WORD(i)] & BIT_MASK(i))
1228
len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1229
return len;
1230
}
1231
1232
static int input_print_modalias(char *buf, int size, struct input_dev *id,
1233
int add_cr)
1234
{
1235
int len;
1236
1237
len = snprintf(buf, max(size, 0),
1238
"input:b%04Xv%04Xp%04Xe%04X-",
1239
id->id.bustype, id->id.vendor,
1240
id->id.product, id->id.version);
1241
1242
len += input_print_modalias_bits(buf + len, size - len,
1243
'e', id->evbit, 0, EV_MAX);
1244
len += input_print_modalias_bits(buf + len, size - len,
1245
'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1246
len += input_print_modalias_bits(buf + len, size - len,
1247
'r', id->relbit, 0, REL_MAX);
1248
len += input_print_modalias_bits(buf + len, size - len,
1249
'a', id->absbit, 0, ABS_MAX);
1250
len += input_print_modalias_bits(buf + len, size - len,
1251
'm', id->mscbit, 0, MSC_MAX);
1252
len += input_print_modalias_bits(buf + len, size - len,
1253
'l', id->ledbit, 0, LED_MAX);
1254
len += input_print_modalias_bits(buf + len, size - len,
1255
's', id->sndbit, 0, SND_MAX);
1256
len += input_print_modalias_bits(buf + len, size - len,
1257
'f', id->ffbit, 0, FF_MAX);
1258
len += input_print_modalias_bits(buf + len, size - len,
1259
'w', id->swbit, 0, SW_MAX);
1260
1261
if (add_cr)
1262
len += snprintf(buf + len, max(size - len, 0), "\n");
1263
1264
return len;
1265
}
1266
1267
static ssize_t input_dev_show_modalias(struct device *dev,
1268
struct device_attribute *attr,
1269
char *buf)
1270
{
1271
struct input_dev *id = to_input_dev(dev);
1272
ssize_t len;
1273
1274
len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1275
1276
return min_t(int, len, PAGE_SIZE);
1277
}
1278
static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1279
1280
static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1281
int max, int add_cr);
1282
1283
static ssize_t input_dev_show_properties(struct device *dev,
1284
struct device_attribute *attr,
1285
char *buf)
1286
{
1287
struct input_dev *input_dev = to_input_dev(dev);
1288
int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1289
INPUT_PROP_MAX, true);
1290
return min_t(int, len, PAGE_SIZE);
1291
}
1292
static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1293
1294
static struct attribute *input_dev_attrs[] = {
1295
&dev_attr_name.attr,
1296
&dev_attr_phys.attr,
1297
&dev_attr_uniq.attr,
1298
&dev_attr_modalias.attr,
1299
&dev_attr_properties.attr,
1300
NULL
1301
};
1302
1303
static struct attribute_group input_dev_attr_group = {
1304
.attrs = input_dev_attrs,
1305
};
1306
1307
#define INPUT_DEV_ID_ATTR(name) \
1308
static ssize_t input_dev_show_id_##name(struct device *dev, \
1309
struct device_attribute *attr, \
1310
char *buf) \
1311
{ \
1312
struct input_dev *input_dev = to_input_dev(dev); \
1313
return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1314
} \
1315
static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1316
1317
INPUT_DEV_ID_ATTR(bustype);
1318
INPUT_DEV_ID_ATTR(vendor);
1319
INPUT_DEV_ID_ATTR(product);
1320
INPUT_DEV_ID_ATTR(version);
1321
1322
static struct attribute *input_dev_id_attrs[] = {
1323
&dev_attr_bustype.attr,
1324
&dev_attr_vendor.attr,
1325
&dev_attr_product.attr,
1326
&dev_attr_version.attr,
1327
NULL
1328
};
1329
1330
static struct attribute_group input_dev_id_attr_group = {
1331
.name = "id",
1332
.attrs = input_dev_id_attrs,
1333
};
1334
1335
static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1336
int max, int add_cr)
1337
{
1338
int i;
1339
int len = 0;
1340
bool skip_empty = true;
1341
1342
for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1343
len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1344
bitmap[i], skip_empty);
1345
if (len) {
1346
skip_empty = false;
1347
if (i > 0)
1348
len += snprintf(buf + len, max(buf_size - len, 0), " ");
1349
}
1350
}
1351
1352
/*
1353
* If no output was produced print a single 0.
1354
*/
1355
if (len == 0)
1356
len = snprintf(buf, buf_size, "%d", 0);
1357
1358
if (add_cr)
1359
len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1360
1361
return len;
1362
}
1363
1364
#define INPUT_DEV_CAP_ATTR(ev, bm) \
1365
static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1366
struct device_attribute *attr, \
1367
char *buf) \
1368
{ \
1369
struct input_dev *input_dev = to_input_dev(dev); \
1370
int len = input_print_bitmap(buf, PAGE_SIZE, \
1371
input_dev->bm##bit, ev##_MAX, \
1372
true); \
1373
return min_t(int, len, PAGE_SIZE); \
1374
} \
1375
static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1376
1377
INPUT_DEV_CAP_ATTR(EV, ev);
1378
INPUT_DEV_CAP_ATTR(KEY, key);
1379
INPUT_DEV_CAP_ATTR(REL, rel);
1380
INPUT_DEV_CAP_ATTR(ABS, abs);
1381
INPUT_DEV_CAP_ATTR(MSC, msc);
1382
INPUT_DEV_CAP_ATTR(LED, led);
1383
INPUT_DEV_CAP_ATTR(SND, snd);
1384
INPUT_DEV_CAP_ATTR(FF, ff);
1385
INPUT_DEV_CAP_ATTR(SW, sw);
1386
1387
static struct attribute *input_dev_caps_attrs[] = {
1388
&dev_attr_ev.attr,
1389
&dev_attr_key.attr,
1390
&dev_attr_rel.attr,
1391
&dev_attr_abs.attr,
1392
&dev_attr_msc.attr,
1393
&dev_attr_led.attr,
1394
&dev_attr_snd.attr,
1395
&dev_attr_ff.attr,
1396
&dev_attr_sw.attr,
1397
NULL
1398
};
1399
1400
static struct attribute_group input_dev_caps_attr_group = {
1401
.name = "capabilities",
1402
.attrs = input_dev_caps_attrs,
1403
};
1404
1405
static const struct attribute_group *input_dev_attr_groups[] = {
1406
&input_dev_attr_group,
1407
&input_dev_id_attr_group,
1408
&input_dev_caps_attr_group,
1409
NULL
1410
};
1411
1412
static void input_dev_release(struct device *device)
1413
{
1414
struct input_dev *dev = to_input_dev(device);
1415
1416
input_ff_destroy(dev);
1417
input_mt_destroy_slots(dev);
1418
kfree(dev->absinfo);
1419
kfree(dev);
1420
1421
module_put(THIS_MODULE);
1422
}
1423
1424
/*
1425
* Input uevent interface - loading event handlers based on
1426
* device bitfields.
1427
*/
1428
static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1429
const char *name, unsigned long *bitmap, int max)
1430
{
1431
int len;
1432
1433
if (add_uevent_var(env, "%s", name))
1434
return -ENOMEM;
1435
1436
len = input_print_bitmap(&env->buf[env->buflen - 1],
1437
sizeof(env->buf) - env->buflen,
1438
bitmap, max, false);
1439
if (len >= (sizeof(env->buf) - env->buflen))
1440
return -ENOMEM;
1441
1442
env->buflen += len;
1443
return 0;
1444
}
1445
1446
static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1447
struct input_dev *dev)
1448
{
1449
int len;
1450
1451
if (add_uevent_var(env, "MODALIAS="))
1452
return -ENOMEM;
1453
1454
len = input_print_modalias(&env->buf[env->buflen - 1],
1455
sizeof(env->buf) - env->buflen,
1456
dev, 0);
1457
if (len >= (sizeof(env->buf) - env->buflen))
1458
return -ENOMEM;
1459
1460
env->buflen += len;
1461
return 0;
1462
}
1463
1464
#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1465
do { \
1466
int err = add_uevent_var(env, fmt, val); \
1467
if (err) \
1468
return err; \
1469
} while (0)
1470
1471
#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1472
do { \
1473
int err = input_add_uevent_bm_var(env, name, bm, max); \
1474
if (err) \
1475
return err; \
1476
} while (0)
1477
1478
#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1479
do { \
1480
int err = input_add_uevent_modalias_var(env, dev); \
1481
if (err) \
1482
return err; \
1483
} while (0)
1484
1485
static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1486
{
1487
struct input_dev *dev = to_input_dev(device);
1488
1489
INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1490
dev->id.bustype, dev->id.vendor,
1491
dev->id.product, dev->id.version);
1492
if (dev->name)
1493
INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1494
if (dev->phys)
1495
INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1496
if (dev->uniq)
1497
INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1498
1499
INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1500
1501
INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1502
if (test_bit(EV_KEY, dev->evbit))
1503
INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1504
if (test_bit(EV_REL, dev->evbit))
1505
INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1506
if (test_bit(EV_ABS, dev->evbit))
1507
INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1508
if (test_bit(EV_MSC, dev->evbit))
1509
INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1510
if (test_bit(EV_LED, dev->evbit))
1511
INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1512
if (test_bit(EV_SND, dev->evbit))
1513
INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1514
if (test_bit(EV_FF, dev->evbit))
1515
INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1516
if (test_bit(EV_SW, dev->evbit))
1517
INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1518
1519
INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1520
1521
return 0;
1522
}
1523
1524
#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1525
do { \
1526
int i; \
1527
bool active; \
1528
\
1529
if (!test_bit(EV_##type, dev->evbit)) \
1530
break; \
1531
\
1532
for (i = 0; i < type##_MAX; i++) { \
1533
if (!test_bit(i, dev->bits##bit)) \
1534
continue; \
1535
\
1536
active = test_bit(i, dev->bits); \
1537
if (!active && !on) \
1538
continue; \
1539
\
1540
dev->event(dev, EV_##type, i, on ? active : 0); \
1541
} \
1542
} while (0)
1543
1544
static void input_dev_toggle(struct input_dev *dev, bool activate)
1545
{
1546
if (!dev->event)
1547
return;
1548
1549
INPUT_DO_TOGGLE(dev, LED, led, activate);
1550
INPUT_DO_TOGGLE(dev, SND, snd, activate);
1551
1552
if (activate && test_bit(EV_REP, dev->evbit)) {
1553
dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1554
dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1555
}
1556
}
1557
1558
/**
1559
* input_reset_device() - reset/restore the state of input device
1560
* @dev: input device whose state needs to be reset
1561
*
1562
* This function tries to reset the state of an opened input device and
1563
* bring internal state and state if the hardware in sync with each other.
1564
* We mark all keys as released, restore LED state, repeat rate, etc.
1565
*/
1566
void input_reset_device(struct input_dev *dev)
1567
{
1568
mutex_lock(&dev->mutex);
1569
1570
if (dev->users) {
1571
input_dev_toggle(dev, true);
1572
1573
/*
1574
* Keys that have been pressed at suspend time are unlikely
1575
* to be still pressed when we resume.
1576
*/
1577
spin_lock_irq(&dev->event_lock);
1578
input_dev_release_keys(dev);
1579
spin_unlock_irq(&dev->event_lock);
1580
}
1581
1582
mutex_unlock(&dev->mutex);
1583
}
1584
EXPORT_SYMBOL(input_reset_device);
1585
1586
#ifdef CONFIG_PM
1587
static int input_dev_suspend(struct device *dev)
1588
{
1589
struct input_dev *input_dev = to_input_dev(dev);
1590
1591
mutex_lock(&input_dev->mutex);
1592
1593
if (input_dev->users)
1594
input_dev_toggle(input_dev, false);
1595
1596
mutex_unlock(&input_dev->mutex);
1597
1598
return 0;
1599
}
1600
1601
static int input_dev_resume(struct device *dev)
1602
{
1603
struct input_dev *input_dev = to_input_dev(dev);
1604
1605
input_reset_device(input_dev);
1606
1607
return 0;
1608
}
1609
1610
static const struct dev_pm_ops input_dev_pm_ops = {
1611
.suspend = input_dev_suspend,
1612
.resume = input_dev_resume,
1613
.poweroff = input_dev_suspend,
1614
.restore = input_dev_resume,
1615
};
1616
#endif /* CONFIG_PM */
1617
1618
static struct device_type input_dev_type = {
1619
.groups = input_dev_attr_groups,
1620
.release = input_dev_release,
1621
.uevent = input_dev_uevent,
1622
#ifdef CONFIG_PM
1623
.pm = &input_dev_pm_ops,
1624
#endif
1625
};
1626
1627
static char *input_devnode(struct device *dev, mode_t *mode)
1628
{
1629
return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1630
}
1631
1632
struct class input_class = {
1633
.name = "input",
1634
.devnode = input_devnode,
1635
};
1636
EXPORT_SYMBOL_GPL(input_class);
1637
1638
/**
1639
* input_allocate_device - allocate memory for new input device
1640
*
1641
* Returns prepared struct input_dev or NULL.
1642
*
1643
* NOTE: Use input_free_device() to free devices that have not been
1644
* registered; input_unregister_device() should be used for already
1645
* registered devices.
1646
*/
1647
struct input_dev *input_allocate_device(void)
1648
{
1649
struct input_dev *dev;
1650
1651
dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1652
if (dev) {
1653
dev->dev.type = &input_dev_type;
1654
dev->dev.class = &input_class;
1655
device_initialize(&dev->dev);
1656
mutex_init(&dev->mutex);
1657
spin_lock_init(&dev->event_lock);
1658
INIT_LIST_HEAD(&dev->h_list);
1659
INIT_LIST_HEAD(&dev->node);
1660
1661
__module_get(THIS_MODULE);
1662
}
1663
1664
return dev;
1665
}
1666
EXPORT_SYMBOL(input_allocate_device);
1667
1668
/**
1669
* input_free_device - free memory occupied by input_dev structure
1670
* @dev: input device to free
1671
*
1672
* This function should only be used if input_register_device()
1673
* was not called yet or if it failed. Once device was registered
1674
* use input_unregister_device() and memory will be freed once last
1675
* reference to the device is dropped.
1676
*
1677
* Device should be allocated by input_allocate_device().
1678
*
1679
* NOTE: If there are references to the input device then memory
1680
* will not be freed until last reference is dropped.
1681
*/
1682
void input_free_device(struct input_dev *dev)
1683
{
1684
if (dev)
1685
input_put_device(dev);
1686
}
1687
EXPORT_SYMBOL(input_free_device);
1688
1689
/**
1690
* input_set_capability - mark device as capable of a certain event
1691
* @dev: device that is capable of emitting or accepting event
1692
* @type: type of the event (EV_KEY, EV_REL, etc...)
1693
* @code: event code
1694
*
1695
* In addition to setting up corresponding bit in appropriate capability
1696
* bitmap the function also adjusts dev->evbit.
1697
*/
1698
void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1699
{
1700
switch (type) {
1701
case EV_KEY:
1702
__set_bit(code, dev->keybit);
1703
break;
1704
1705
case EV_REL:
1706
__set_bit(code, dev->relbit);
1707
break;
1708
1709
case EV_ABS:
1710
__set_bit(code, dev->absbit);
1711
break;
1712
1713
case EV_MSC:
1714
__set_bit(code, dev->mscbit);
1715
break;
1716
1717
case EV_SW:
1718
__set_bit(code, dev->swbit);
1719
break;
1720
1721
case EV_LED:
1722
__set_bit(code, dev->ledbit);
1723
break;
1724
1725
case EV_SND:
1726
__set_bit(code, dev->sndbit);
1727
break;
1728
1729
case EV_FF:
1730
__set_bit(code, dev->ffbit);
1731
break;
1732
1733
case EV_PWR:
1734
/* do nothing */
1735
break;
1736
1737
default:
1738
pr_err("input_set_capability: unknown type %u (code %u)\n",
1739
type, code);
1740
dump_stack();
1741
return;
1742
}
1743
1744
__set_bit(type, dev->evbit);
1745
}
1746
EXPORT_SYMBOL(input_set_capability);
1747
1748
static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1749
{
1750
int mt_slots;
1751
int i;
1752
unsigned int events;
1753
1754
if (dev->mtsize) {
1755
mt_slots = dev->mtsize;
1756
} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1757
mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1758
dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1759
mt_slots = clamp(mt_slots, 2, 32);
1760
} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1761
mt_slots = 2;
1762
} else {
1763
mt_slots = 0;
1764
}
1765
1766
events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1767
1768
for (i = 0; i < ABS_CNT; i++) {
1769
if (test_bit(i, dev->absbit)) {
1770
if (input_is_mt_axis(i))
1771
events += mt_slots;
1772
else
1773
events++;
1774
}
1775
}
1776
1777
for (i = 0; i < REL_CNT; i++)
1778
if (test_bit(i, dev->relbit))
1779
events++;
1780
1781
return events;
1782
}
1783
1784
#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1785
do { \
1786
if (!test_bit(EV_##type, dev->evbit)) \
1787
memset(dev->bits##bit, 0, \
1788
sizeof(dev->bits##bit)); \
1789
} while (0)
1790
1791
static void input_cleanse_bitmasks(struct input_dev *dev)
1792
{
1793
INPUT_CLEANSE_BITMASK(dev, KEY, key);
1794
INPUT_CLEANSE_BITMASK(dev, REL, rel);
1795
INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1796
INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1797
INPUT_CLEANSE_BITMASK(dev, LED, led);
1798
INPUT_CLEANSE_BITMASK(dev, SND, snd);
1799
INPUT_CLEANSE_BITMASK(dev, FF, ff);
1800
INPUT_CLEANSE_BITMASK(dev, SW, sw);
1801
}
1802
1803
/**
1804
* input_register_device - register device with input core
1805
* @dev: device to be registered
1806
*
1807
* This function registers device with input core. The device must be
1808
* allocated with input_allocate_device() and all it's capabilities
1809
* set up before registering.
1810
* If function fails the device must be freed with input_free_device().
1811
* Once device has been successfully registered it can be unregistered
1812
* with input_unregister_device(); input_free_device() should not be
1813
* called in this case.
1814
*/
1815
int input_register_device(struct input_dev *dev)
1816
{
1817
static atomic_t input_no = ATOMIC_INIT(0);
1818
struct input_handler *handler;
1819
const char *path;
1820
int error;
1821
1822
/* Every input device generates EV_SYN/SYN_REPORT events. */
1823
__set_bit(EV_SYN, dev->evbit);
1824
1825
/* KEY_RESERVED is not supposed to be transmitted to userspace. */
1826
__clear_bit(KEY_RESERVED, dev->keybit);
1827
1828
/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1829
input_cleanse_bitmasks(dev);
1830
1831
if (!dev->hint_events_per_packet)
1832
dev->hint_events_per_packet =
1833
input_estimate_events_per_packet(dev);
1834
1835
/*
1836
* If delay and period are pre-set by the driver, then autorepeating
1837
* is handled by the driver itself and we don't do it in input.c.
1838
*/
1839
init_timer(&dev->timer);
1840
if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1841
dev->timer.data = (long) dev;
1842
dev->timer.function = input_repeat_key;
1843
dev->rep[REP_DELAY] = 250;
1844
dev->rep[REP_PERIOD] = 33;
1845
}
1846
1847
if (!dev->getkeycode)
1848
dev->getkeycode = input_default_getkeycode;
1849
1850
if (!dev->setkeycode)
1851
dev->setkeycode = input_default_setkeycode;
1852
1853
dev_set_name(&dev->dev, "input%ld",
1854
(unsigned long) atomic_inc_return(&input_no) - 1);
1855
1856
error = device_add(&dev->dev);
1857
if (error)
1858
return error;
1859
1860
path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1861
pr_info("%s as %s\n",
1862
dev->name ? dev->name : "Unspecified device",
1863
path ? path : "N/A");
1864
kfree(path);
1865
1866
error = mutex_lock_interruptible(&input_mutex);
1867
if (error) {
1868
device_del(&dev->dev);
1869
return error;
1870
}
1871
1872
list_add_tail(&dev->node, &input_dev_list);
1873
1874
list_for_each_entry(handler, &input_handler_list, node)
1875
input_attach_handler(dev, handler);
1876
1877
input_wakeup_procfs_readers();
1878
1879
mutex_unlock(&input_mutex);
1880
1881
return 0;
1882
}
1883
EXPORT_SYMBOL(input_register_device);
1884
1885
/**
1886
* input_unregister_device - unregister previously registered device
1887
* @dev: device to be unregistered
1888
*
1889
* This function unregisters an input device. Once device is unregistered
1890
* the caller should not try to access it as it may get freed at any moment.
1891
*/
1892
void input_unregister_device(struct input_dev *dev)
1893
{
1894
struct input_handle *handle, *next;
1895
1896
input_disconnect_device(dev);
1897
1898
mutex_lock(&input_mutex);
1899
1900
list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1901
handle->handler->disconnect(handle);
1902
WARN_ON(!list_empty(&dev->h_list));
1903
1904
del_timer_sync(&dev->timer);
1905
list_del_init(&dev->node);
1906
1907
input_wakeup_procfs_readers();
1908
1909
mutex_unlock(&input_mutex);
1910
1911
device_unregister(&dev->dev);
1912
}
1913
EXPORT_SYMBOL(input_unregister_device);
1914
1915
/**
1916
* input_register_handler - register a new input handler
1917
* @handler: handler to be registered
1918
*
1919
* This function registers a new input handler (interface) for input
1920
* devices in the system and attaches it to all input devices that
1921
* are compatible with the handler.
1922
*/
1923
int input_register_handler(struct input_handler *handler)
1924
{
1925
struct input_dev *dev;
1926
int retval;
1927
1928
retval = mutex_lock_interruptible(&input_mutex);
1929
if (retval)
1930
return retval;
1931
1932
INIT_LIST_HEAD(&handler->h_list);
1933
1934
if (handler->fops != NULL) {
1935
if (input_table[handler->minor >> 5]) {
1936
retval = -EBUSY;
1937
goto out;
1938
}
1939
input_table[handler->minor >> 5] = handler;
1940
}
1941
1942
list_add_tail(&handler->node, &input_handler_list);
1943
1944
list_for_each_entry(dev, &input_dev_list, node)
1945
input_attach_handler(dev, handler);
1946
1947
input_wakeup_procfs_readers();
1948
1949
out:
1950
mutex_unlock(&input_mutex);
1951
return retval;
1952
}
1953
EXPORT_SYMBOL(input_register_handler);
1954
1955
/**
1956
* input_unregister_handler - unregisters an input handler
1957
* @handler: handler to be unregistered
1958
*
1959
* This function disconnects a handler from its input devices and
1960
* removes it from lists of known handlers.
1961
*/
1962
void input_unregister_handler(struct input_handler *handler)
1963
{
1964
struct input_handle *handle, *next;
1965
1966
mutex_lock(&input_mutex);
1967
1968
list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1969
handler->disconnect(handle);
1970
WARN_ON(!list_empty(&handler->h_list));
1971
1972
list_del_init(&handler->node);
1973
1974
if (handler->fops != NULL)
1975
input_table[handler->minor >> 5] = NULL;
1976
1977
input_wakeup_procfs_readers();
1978
1979
mutex_unlock(&input_mutex);
1980
}
1981
EXPORT_SYMBOL(input_unregister_handler);
1982
1983
/**
1984
* input_handler_for_each_handle - handle iterator
1985
* @handler: input handler to iterate
1986
* @data: data for the callback
1987
* @fn: function to be called for each handle
1988
*
1989
* Iterate over @bus's list of devices, and call @fn for each, passing
1990
* it @data and stop when @fn returns a non-zero value. The function is
1991
* using RCU to traverse the list and therefore may be usind in atonic
1992
* contexts. The @fn callback is invoked from RCU critical section and
1993
* thus must not sleep.
1994
*/
1995
int input_handler_for_each_handle(struct input_handler *handler, void *data,
1996
int (*fn)(struct input_handle *, void *))
1997
{
1998
struct input_handle *handle;
1999
int retval = 0;
2000
2001
rcu_read_lock();
2002
2003
list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2004
retval = fn(handle, data);
2005
if (retval)
2006
break;
2007
}
2008
2009
rcu_read_unlock();
2010
2011
return retval;
2012
}
2013
EXPORT_SYMBOL(input_handler_for_each_handle);
2014
2015
/**
2016
* input_register_handle - register a new input handle
2017
* @handle: handle to register
2018
*
2019
* This function puts a new input handle onto device's
2020
* and handler's lists so that events can flow through
2021
* it once it is opened using input_open_device().
2022
*
2023
* This function is supposed to be called from handler's
2024
* connect() method.
2025
*/
2026
int input_register_handle(struct input_handle *handle)
2027
{
2028
struct input_handler *handler = handle->handler;
2029
struct input_dev *dev = handle->dev;
2030
int error;
2031
2032
/*
2033
* We take dev->mutex here to prevent race with
2034
* input_release_device().
2035
*/
2036
error = mutex_lock_interruptible(&dev->mutex);
2037
if (error)
2038
return error;
2039
2040
/*
2041
* Filters go to the head of the list, normal handlers
2042
* to the tail.
2043
*/
2044
if (handler->filter)
2045
list_add_rcu(&handle->d_node, &dev->h_list);
2046
else
2047
list_add_tail_rcu(&handle->d_node, &dev->h_list);
2048
2049
mutex_unlock(&dev->mutex);
2050
2051
/*
2052
* Since we are supposed to be called from ->connect()
2053
* which is mutually exclusive with ->disconnect()
2054
* we can't be racing with input_unregister_handle()
2055
* and so separate lock is not needed here.
2056
*/
2057
list_add_tail_rcu(&handle->h_node, &handler->h_list);
2058
2059
if (handler->start)
2060
handler->start(handle);
2061
2062
return 0;
2063
}
2064
EXPORT_SYMBOL(input_register_handle);
2065
2066
/**
2067
* input_unregister_handle - unregister an input handle
2068
* @handle: handle to unregister
2069
*
2070
* This function removes input handle from device's
2071
* and handler's lists.
2072
*
2073
* This function is supposed to be called from handler's
2074
* disconnect() method.
2075
*/
2076
void input_unregister_handle(struct input_handle *handle)
2077
{
2078
struct input_dev *dev = handle->dev;
2079
2080
list_del_rcu(&handle->h_node);
2081
2082
/*
2083
* Take dev->mutex to prevent race with input_release_device().
2084
*/
2085
mutex_lock(&dev->mutex);
2086
list_del_rcu(&handle->d_node);
2087
mutex_unlock(&dev->mutex);
2088
2089
synchronize_rcu();
2090
}
2091
EXPORT_SYMBOL(input_unregister_handle);
2092
2093
static int input_open_file(struct inode *inode, struct file *file)
2094
{
2095
struct input_handler *handler;
2096
const struct file_operations *old_fops, *new_fops = NULL;
2097
int err;
2098
2099
err = mutex_lock_interruptible(&input_mutex);
2100
if (err)
2101
return err;
2102
2103
/* No load-on-demand here? */
2104
handler = input_table[iminor(inode) >> 5];
2105
if (handler)
2106
new_fops = fops_get(handler->fops);
2107
2108
mutex_unlock(&input_mutex);
2109
2110
/*
2111
* That's _really_ odd. Usually NULL ->open means "nothing special",
2112
* not "no device". Oh, well...
2113
*/
2114
if (!new_fops || !new_fops->open) {
2115
fops_put(new_fops);
2116
err = -ENODEV;
2117
goto out;
2118
}
2119
2120
old_fops = file->f_op;
2121
file->f_op = new_fops;
2122
2123
err = new_fops->open(inode, file);
2124
if (err) {
2125
fops_put(file->f_op);
2126
file->f_op = fops_get(old_fops);
2127
}
2128
fops_put(old_fops);
2129
out:
2130
return err;
2131
}
2132
2133
static const struct file_operations input_fops = {
2134
.owner = THIS_MODULE,
2135
.open = input_open_file,
2136
.llseek = noop_llseek,
2137
};
2138
2139
static int __init input_init(void)
2140
{
2141
int err;
2142
2143
err = class_register(&input_class);
2144
if (err) {
2145
pr_err("unable to register input_dev class\n");
2146
return err;
2147
}
2148
2149
err = input_proc_init();
2150
if (err)
2151
goto fail1;
2152
2153
err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2154
if (err) {
2155
pr_err("unable to register char major %d", INPUT_MAJOR);
2156
goto fail2;
2157
}
2158
2159
return 0;
2160
2161
fail2: input_proc_exit();
2162
fail1: class_unregister(&input_class);
2163
return err;
2164
}
2165
2166
static void __exit input_exit(void)
2167
{
2168
input_proc_exit();
2169
unregister_chrdev(INPUT_MAJOR, "input");
2170
class_unregister(&input_class);
2171
}
2172
2173
subsys_initcall(input_init);
2174
module_exit(input_exit);
2175
2176