Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/input/keyboard/lm8323.c
15111 views
1
/*
2
* drivers/i2c/chips/lm8323.c
3
*
4
* Copyright (C) 2007-2009 Nokia Corporation
5
*
6
* Written by Daniel Stone <[email protected]>
7
* Timo O. Karjalainen <[email protected]>
8
*
9
* Updated by Felipe Balbi <[email protected]>
10
*
11
* This program is free software; you can redistribute it and/or modify
12
* it under the terms of the GNU General Public License as published by
13
* the Free Software Foundation (version 2 of the License only).
14
*
15
* This program is distributed in the hope that it will be useful,
16
* but WITHOUT ANY WARRANTY; without even the implied warranty of
17
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18
* GNU General Public License for more details.
19
*
20
* You should have received a copy of the GNU General Public License
21
* along with this program; if not, write to the Free Software
22
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23
*/
24
25
#include <linux/module.h>
26
#include <linux/i2c.h>
27
#include <linux/interrupt.h>
28
#include <linux/sched.h>
29
#include <linux/mutex.h>
30
#include <linux/delay.h>
31
#include <linux/input.h>
32
#include <linux/leds.h>
33
#include <linux/pm.h>
34
#include <linux/i2c/lm8323.h>
35
#include <linux/slab.h>
36
37
/* Commands to send to the chip. */
38
#define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
39
#define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
40
#define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
41
#define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
42
#define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
43
#define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
44
#define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
45
#define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
46
#define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
47
#define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
48
#define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
49
#define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
50
#define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
51
#define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
52
#define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
53
#define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
54
#define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
55
#define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
56
#define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
57
#define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
58
#define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
59
#define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
60
61
/* Interrupt status. */
62
#define INT_KEYPAD 0x01 /* Key event. */
63
#define INT_ROTATOR 0x02 /* Rotator event. */
64
#define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
65
#define INT_NOINIT 0x10 /* Lost configuration. */
66
#define INT_PWM1 0x20 /* PWM1 stopped. */
67
#define INT_PWM2 0x40 /* PWM2 stopped. */
68
#define INT_PWM3 0x80 /* PWM3 stopped. */
69
70
/* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
71
#define ERR_BADPAR 0x01 /* Bad parameter. */
72
#define ERR_CMDUNK 0x02 /* Unknown command. */
73
#define ERR_KEYOVR 0x04 /* Too many keys pressed. */
74
#define ERR_FIFOOVER 0x40 /* FIFO overflow. */
75
76
/* Configuration keys (CMD_{WRITE,READ}_CFG). */
77
#define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
78
#define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
79
#define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
80
#define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
81
#define CFG_PSIZE 0x20 /* Package size (must be 0). */
82
#define CFG_ROTEN 0x40 /* Enable rotator. */
83
84
/* Clock settings (CMD_{WRITE,READ}_CLOCK). */
85
#define CLK_RCPWM_INTERNAL 0x00
86
#define CLK_RCPWM_EXTERNAL 0x03
87
#define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
88
#define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
89
90
/* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
91
#define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
92
#define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
93
#define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
94
#define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
95
96
/* Key event fifo length */
97
#define LM8323_FIFO_LEN 15
98
99
/* Commands for PWM engine; feed in with PWM_WRITE. */
100
/* Load ramp counter from duty cycle field (range 0 - 0xff). */
101
#define PWM_SET(v) (0x4000 | ((v) & 0xff))
102
/* Go to start of script. */
103
#define PWM_GOTOSTART 0x0000
104
/*
105
* Stop engine (generates interrupt). If reset is 1, clear the program
106
* counter, else leave it.
107
*/
108
#define PWM_END(reset) (0xc000 | (!!(reset) << 11))
109
/*
110
* Ramp. If s is 1, divide clock by 512, else divide clock by 16.
111
* Take t clock scales (up to 63) per step, for n steps (up to 126).
112
* If u is set, ramp up, else ramp down.
113
*/
114
#define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
115
((n) & 0x7f) | ((u) ? 0 : 0x80))
116
/*
117
* Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
118
* If cnt is zero, execute until PWM_END is encountered.
119
*/
120
#define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
121
((pos) & 0x3f))
122
/*
123
* Wait for trigger. Argument is a mask of channels, shifted by the channel
124
* number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
125
* from 1, not 0.
126
*/
127
#define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
128
/* Send trigger. Argument is same as PWM_WAIT_TRIG. */
129
#define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
130
131
struct lm8323_pwm {
132
int id;
133
int fade_time;
134
int brightness;
135
int desired_brightness;
136
bool enabled;
137
bool running;
138
/* pwm lock */
139
struct mutex lock;
140
struct work_struct work;
141
struct led_classdev cdev;
142
struct lm8323_chip *chip;
143
};
144
145
struct lm8323_chip {
146
/* device lock */
147
struct mutex lock;
148
struct i2c_client *client;
149
struct work_struct work;
150
struct input_dev *idev;
151
bool kp_enabled;
152
bool pm_suspend;
153
unsigned keys_down;
154
char phys[32];
155
unsigned short keymap[LM8323_KEYMAP_SIZE];
156
int size_x;
157
int size_y;
158
int debounce_time;
159
int active_time;
160
struct lm8323_pwm pwm[LM8323_NUM_PWMS];
161
};
162
163
#define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
164
#define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
165
#define work_to_lm8323(w) container_of(w, struct lm8323_chip, work)
166
#define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
167
#define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
168
169
#define LM8323_MAX_DATA 8
170
171
/*
172
* To write, we just access the chip's address in write mode, and dump the
173
* command and data out on the bus. The command byte and data are taken as
174
* sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
175
*/
176
static int lm8323_write(struct lm8323_chip *lm, int len, ...)
177
{
178
int ret, i;
179
va_list ap;
180
u8 data[LM8323_MAX_DATA];
181
182
va_start(ap, len);
183
184
if (unlikely(len > LM8323_MAX_DATA)) {
185
dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
186
va_end(ap);
187
return 0;
188
}
189
190
for (i = 0; i < len; i++)
191
data[i] = va_arg(ap, int);
192
193
va_end(ap);
194
195
/*
196
* If the host is asleep while we send the data, we can get a NACK
197
* back while it wakes up, so try again, once.
198
*/
199
ret = i2c_master_send(lm->client, data, len);
200
if (unlikely(ret == -EREMOTEIO))
201
ret = i2c_master_send(lm->client, data, len);
202
if (unlikely(ret != len))
203
dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
204
len, ret);
205
206
return ret;
207
}
208
209
/*
210
* To read, we first send the command byte to the chip and end the transaction,
211
* then access the chip in read mode, at which point it will send the data.
212
*/
213
static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
214
{
215
int ret;
216
217
/*
218
* If the host is asleep while we send the byte, we can get a NACK
219
* back while it wakes up, so try again, once.
220
*/
221
ret = i2c_master_send(lm->client, &cmd, 1);
222
if (unlikely(ret == -EREMOTEIO))
223
ret = i2c_master_send(lm->client, &cmd, 1);
224
if (unlikely(ret != 1)) {
225
dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
226
cmd);
227
return 0;
228
}
229
230
ret = i2c_master_recv(lm->client, buf, len);
231
if (unlikely(ret != len))
232
dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
233
len, ret);
234
235
return ret;
236
}
237
238
/*
239
* Set the chip active time (idle time before it enters halt).
240
*/
241
static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
242
{
243
lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
244
}
245
246
/*
247
* The signals are AT-style: the low 7 bits are the keycode, and the top
248
* bit indicates the state (1 for down, 0 for up).
249
*/
250
static inline u8 lm8323_whichkey(u8 event)
251
{
252
return event & 0x7f;
253
}
254
255
static inline int lm8323_ispress(u8 event)
256
{
257
return (event & 0x80) ? 1 : 0;
258
}
259
260
static void process_keys(struct lm8323_chip *lm)
261
{
262
u8 event;
263
u8 key_fifo[LM8323_FIFO_LEN + 1];
264
int old_keys_down = lm->keys_down;
265
int ret;
266
int i = 0;
267
268
/*
269
* Read all key events from the FIFO at once. Next READ_FIFO clears the
270
* FIFO even if we didn't read all events previously.
271
*/
272
ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
273
274
if (ret < 0) {
275
dev_err(&lm->client->dev, "Failed reading fifo \n");
276
return;
277
}
278
key_fifo[ret] = 0;
279
280
while ((event = key_fifo[i++])) {
281
u8 key = lm8323_whichkey(event);
282
int isdown = lm8323_ispress(event);
283
unsigned short keycode = lm->keymap[key];
284
285
dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
286
key, isdown ? "down" : "up");
287
288
if (lm->kp_enabled) {
289
input_event(lm->idev, EV_MSC, MSC_SCAN, key);
290
input_report_key(lm->idev, keycode, isdown);
291
input_sync(lm->idev);
292
}
293
294
if (isdown)
295
lm->keys_down++;
296
else
297
lm->keys_down--;
298
}
299
300
/*
301
* Errata: We need to ensure that the chip never enters halt mode
302
* during a keypress, so set active time to 0. When it's released,
303
* we can enter halt again, so set the active time back to normal.
304
*/
305
if (!old_keys_down && lm->keys_down)
306
lm8323_set_active_time(lm, 0);
307
if (old_keys_down && !lm->keys_down)
308
lm8323_set_active_time(lm, lm->active_time);
309
}
310
311
static void lm8323_process_error(struct lm8323_chip *lm)
312
{
313
u8 error;
314
315
if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
316
if (error & ERR_FIFOOVER)
317
dev_vdbg(&lm->client->dev, "fifo overflow!\n");
318
if (error & ERR_KEYOVR)
319
dev_vdbg(&lm->client->dev,
320
"more than two keys pressed\n");
321
if (error & ERR_CMDUNK)
322
dev_vdbg(&lm->client->dev,
323
"unknown command submitted\n");
324
if (error & ERR_BADPAR)
325
dev_vdbg(&lm->client->dev, "bad command parameter\n");
326
}
327
}
328
329
static void lm8323_reset(struct lm8323_chip *lm)
330
{
331
/* The docs say we must pass 0xAA as the data byte. */
332
lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
333
}
334
335
static int lm8323_configure(struct lm8323_chip *lm)
336
{
337
int keysize = (lm->size_x << 4) | lm->size_y;
338
int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
339
int debounce = lm->debounce_time >> 2;
340
int active = lm->active_time >> 2;
341
342
/*
343
* Active time must be greater than the debounce time: if it's
344
* a close-run thing, give ourselves a 12ms buffer.
345
*/
346
if (debounce >= active)
347
active = debounce + 3;
348
349
lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
350
lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
351
lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
352
lm8323_set_active_time(lm, lm->active_time);
353
lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
354
lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
355
lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
356
357
/*
358
* Not much we can do about errors at this point, so just hope
359
* for the best.
360
*/
361
362
return 0;
363
}
364
365
static void pwm_done(struct lm8323_pwm *pwm)
366
{
367
mutex_lock(&pwm->lock);
368
pwm->running = false;
369
if (pwm->desired_brightness != pwm->brightness)
370
schedule_work(&pwm->work);
371
mutex_unlock(&pwm->lock);
372
}
373
374
/*
375
* Bottom half: handle the interrupt by posting key events, or dealing with
376
* errors appropriately.
377
*/
378
static void lm8323_work(struct work_struct *work)
379
{
380
struct lm8323_chip *lm = work_to_lm8323(work);
381
u8 ints;
382
int i;
383
384
mutex_lock(&lm->lock);
385
386
while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
387
if (likely(ints & INT_KEYPAD))
388
process_keys(lm);
389
if (ints & INT_ROTATOR) {
390
/* We don't currently support the rotator. */
391
dev_vdbg(&lm->client->dev, "rotator fired\n");
392
}
393
if (ints & INT_ERROR) {
394
dev_vdbg(&lm->client->dev, "error!\n");
395
lm8323_process_error(lm);
396
}
397
if (ints & INT_NOINIT) {
398
dev_err(&lm->client->dev, "chip lost config; "
399
"reinitialising\n");
400
lm8323_configure(lm);
401
}
402
for (i = 0; i < LM8323_NUM_PWMS; i++) {
403
if (ints & (1 << (INT_PWM1 + i))) {
404
dev_vdbg(&lm->client->dev,
405
"pwm%d engine completed\n", i);
406
pwm_done(&lm->pwm[i]);
407
}
408
}
409
}
410
411
mutex_unlock(&lm->lock);
412
}
413
414
/*
415
* We cannot use I2C in interrupt context, so we just schedule work.
416
*/
417
static irqreturn_t lm8323_irq(int irq, void *data)
418
{
419
struct lm8323_chip *lm = data;
420
421
schedule_work(&lm->work);
422
423
return IRQ_HANDLED;
424
}
425
426
/*
427
* Read the chip ID.
428
*/
429
static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
430
{
431
int bytes;
432
433
bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
434
if (unlikely(bytes != 2))
435
return -EIO;
436
437
return 0;
438
}
439
440
static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
441
{
442
lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
443
(cmd & 0xff00) >> 8, cmd & 0x00ff);
444
}
445
446
/*
447
* Write a script into a given PWM engine, concluding with PWM_END.
448
* If 'kill' is nonzero, the engine will be shut down at the end
449
* of the script, producing a zero output. Otherwise the engine
450
* will be kept running at the final PWM level indefinitely.
451
*/
452
static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
453
int len, const u16 *cmds)
454
{
455
int i;
456
457
for (i = 0; i < len; i++)
458
lm8323_write_pwm_one(pwm, i, cmds[i]);
459
460
lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
461
lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
462
pwm->running = true;
463
}
464
465
static void lm8323_pwm_work(struct work_struct *work)
466
{
467
struct lm8323_pwm *pwm = work_to_pwm(work);
468
int div512, perstep, steps, hz, up, kill;
469
u16 pwm_cmds[3];
470
int num_cmds = 0;
471
472
mutex_lock(&pwm->lock);
473
474
/*
475
* Do nothing if we're already at the requested level,
476
* or previous setting is not yet complete. In the latter
477
* case we will be called again when the previous PWM script
478
* finishes.
479
*/
480
if (pwm->running || pwm->desired_brightness == pwm->brightness)
481
goto out;
482
483
kill = (pwm->desired_brightness == 0);
484
up = (pwm->desired_brightness > pwm->brightness);
485
steps = abs(pwm->desired_brightness - pwm->brightness);
486
487
/*
488
* Convert time (in ms) into a divisor (512 or 16 on a refclk of
489
* 32768Hz), and number of ticks per step.
490
*/
491
if ((pwm->fade_time / steps) > (32768 / 512)) {
492
div512 = 1;
493
hz = 32768 / 512;
494
} else {
495
div512 = 0;
496
hz = 32768 / 16;
497
}
498
499
perstep = (hz * pwm->fade_time) / (steps * 1000);
500
501
if (perstep == 0)
502
perstep = 1;
503
else if (perstep > 63)
504
perstep = 63;
505
506
while (steps) {
507
int s;
508
509
s = min(126, steps);
510
pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
511
steps -= s;
512
}
513
514
lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
515
pwm->brightness = pwm->desired_brightness;
516
517
out:
518
mutex_unlock(&pwm->lock);
519
}
520
521
static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
522
enum led_brightness brightness)
523
{
524
struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
525
struct lm8323_chip *lm = pwm->chip;
526
527
mutex_lock(&pwm->lock);
528
pwm->desired_brightness = brightness;
529
mutex_unlock(&pwm->lock);
530
531
if (in_interrupt()) {
532
schedule_work(&pwm->work);
533
} else {
534
/*
535
* Schedule PWM work as usual unless we are going into suspend
536
*/
537
mutex_lock(&lm->lock);
538
if (likely(!lm->pm_suspend))
539
schedule_work(&pwm->work);
540
else
541
lm8323_pwm_work(&pwm->work);
542
mutex_unlock(&lm->lock);
543
}
544
}
545
546
static ssize_t lm8323_pwm_show_time(struct device *dev,
547
struct device_attribute *attr, char *buf)
548
{
549
struct led_classdev *led_cdev = dev_get_drvdata(dev);
550
struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
551
552
return sprintf(buf, "%d\n", pwm->fade_time);
553
}
554
555
static ssize_t lm8323_pwm_store_time(struct device *dev,
556
struct device_attribute *attr, const char *buf, size_t len)
557
{
558
struct led_classdev *led_cdev = dev_get_drvdata(dev);
559
struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
560
int ret;
561
unsigned long time;
562
563
ret = strict_strtoul(buf, 10, &time);
564
/* Numbers only, please. */
565
if (ret)
566
return -EINVAL;
567
568
pwm->fade_time = time;
569
570
return strlen(buf);
571
}
572
static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
573
574
static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
575
const char *name)
576
{
577
struct lm8323_pwm *pwm;
578
579
BUG_ON(id > 3);
580
581
pwm = &lm->pwm[id - 1];
582
583
pwm->id = id;
584
pwm->fade_time = 0;
585
pwm->brightness = 0;
586
pwm->desired_brightness = 0;
587
pwm->running = false;
588
pwm->enabled = false;
589
INIT_WORK(&pwm->work, lm8323_pwm_work);
590
mutex_init(&pwm->lock);
591
pwm->chip = lm;
592
593
if (name) {
594
pwm->cdev.name = name;
595
pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
596
if (led_classdev_register(dev, &pwm->cdev) < 0) {
597
dev_err(dev, "couldn't register PWM %d\n", id);
598
return -1;
599
}
600
if (device_create_file(pwm->cdev.dev,
601
&dev_attr_time) < 0) {
602
dev_err(dev, "couldn't register time attribute\n");
603
led_classdev_unregister(&pwm->cdev);
604
return -1;
605
}
606
pwm->enabled = true;
607
}
608
609
return 0;
610
}
611
612
static struct i2c_driver lm8323_i2c_driver;
613
614
static ssize_t lm8323_show_disable(struct device *dev,
615
struct device_attribute *attr, char *buf)
616
{
617
struct lm8323_chip *lm = dev_get_drvdata(dev);
618
619
return sprintf(buf, "%u\n", !lm->kp_enabled);
620
}
621
622
static ssize_t lm8323_set_disable(struct device *dev,
623
struct device_attribute *attr,
624
const char *buf, size_t count)
625
{
626
struct lm8323_chip *lm = dev_get_drvdata(dev);
627
int ret;
628
unsigned long i;
629
630
ret = strict_strtoul(buf, 10, &i);
631
632
mutex_lock(&lm->lock);
633
lm->kp_enabled = !i;
634
mutex_unlock(&lm->lock);
635
636
return count;
637
}
638
static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
639
640
static int __devinit lm8323_probe(struct i2c_client *client,
641
const struct i2c_device_id *id)
642
{
643
struct lm8323_platform_data *pdata = client->dev.platform_data;
644
struct input_dev *idev;
645
struct lm8323_chip *lm;
646
int pwm;
647
int i, err;
648
unsigned long tmo;
649
u8 data[2];
650
651
if (!pdata || !pdata->size_x || !pdata->size_y) {
652
dev_err(&client->dev, "missing platform_data\n");
653
return -EINVAL;
654
}
655
656
if (pdata->size_x > 8) {
657
dev_err(&client->dev, "invalid x size %d specified\n",
658
pdata->size_x);
659
return -EINVAL;
660
}
661
662
if (pdata->size_y > 12) {
663
dev_err(&client->dev, "invalid y size %d specified\n",
664
pdata->size_y);
665
return -EINVAL;
666
}
667
668
lm = kzalloc(sizeof *lm, GFP_KERNEL);
669
idev = input_allocate_device();
670
if (!lm || !idev) {
671
err = -ENOMEM;
672
goto fail1;
673
}
674
675
lm->client = client;
676
lm->idev = idev;
677
mutex_init(&lm->lock);
678
INIT_WORK(&lm->work, lm8323_work);
679
680
lm->size_x = pdata->size_x;
681
lm->size_y = pdata->size_y;
682
dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
683
lm->size_x, lm->size_y);
684
685
lm->debounce_time = pdata->debounce_time;
686
lm->active_time = pdata->active_time;
687
688
lm8323_reset(lm);
689
690
/* Nothing's set up to service the IRQ yet, so just spin for max.
691
* 100ms until we can configure. */
692
tmo = jiffies + msecs_to_jiffies(100);
693
while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
694
if (data[0] & INT_NOINIT)
695
break;
696
697
if (time_after(jiffies, tmo)) {
698
dev_err(&client->dev,
699
"timeout waiting for initialisation\n");
700
break;
701
}
702
703
msleep(1);
704
}
705
706
lm8323_configure(lm);
707
708
/* If a true probe check the device */
709
if (lm8323_read_id(lm, data) != 0) {
710
dev_err(&client->dev, "device not found\n");
711
err = -ENODEV;
712
goto fail1;
713
}
714
715
for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
716
err = init_pwm(lm, pwm + 1, &client->dev,
717
pdata->pwm_names[pwm]);
718
if (err < 0)
719
goto fail2;
720
}
721
722
lm->kp_enabled = true;
723
err = device_create_file(&client->dev, &dev_attr_disable_kp);
724
if (err < 0)
725
goto fail2;
726
727
idev->name = pdata->name ? : "LM8323 keypad";
728
snprintf(lm->phys, sizeof(lm->phys),
729
"%s/input-kp", dev_name(&client->dev));
730
idev->phys = lm->phys;
731
732
idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
733
__set_bit(MSC_SCAN, idev->mscbit);
734
for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
735
__set_bit(pdata->keymap[i], idev->keybit);
736
lm->keymap[i] = pdata->keymap[i];
737
}
738
__clear_bit(KEY_RESERVED, idev->keybit);
739
740
if (pdata->repeat)
741
__set_bit(EV_REP, idev->evbit);
742
743
err = input_register_device(idev);
744
if (err) {
745
dev_dbg(&client->dev, "error registering input device\n");
746
goto fail3;
747
}
748
749
err = request_irq(client->irq, lm8323_irq,
750
IRQF_TRIGGER_FALLING | IRQF_DISABLED,
751
"lm8323", lm);
752
if (err) {
753
dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
754
goto fail4;
755
}
756
757
i2c_set_clientdata(client, lm);
758
759
device_init_wakeup(&client->dev, 1);
760
enable_irq_wake(client->irq);
761
762
return 0;
763
764
fail4:
765
input_unregister_device(idev);
766
idev = NULL;
767
fail3:
768
device_remove_file(&client->dev, &dev_attr_disable_kp);
769
fail2:
770
while (--pwm >= 0)
771
if (lm->pwm[pwm].enabled)
772
led_classdev_unregister(&lm->pwm[pwm].cdev);
773
fail1:
774
input_free_device(idev);
775
kfree(lm);
776
return err;
777
}
778
779
static int __devexit lm8323_remove(struct i2c_client *client)
780
{
781
struct lm8323_chip *lm = i2c_get_clientdata(client);
782
int i;
783
784
disable_irq_wake(client->irq);
785
free_irq(client->irq, lm);
786
cancel_work_sync(&lm->work);
787
788
input_unregister_device(lm->idev);
789
790
device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
791
792
for (i = 0; i < 3; i++)
793
if (lm->pwm[i].enabled)
794
led_classdev_unregister(&lm->pwm[i].cdev);
795
796
kfree(lm);
797
798
return 0;
799
}
800
801
#ifdef CONFIG_PM
802
/*
803
* We don't need to explicitly suspend the chip, as it already switches off
804
* when there's no activity.
805
*/
806
static int lm8323_suspend(struct device *dev)
807
{
808
struct i2c_client *client = to_i2c_client(dev);
809
struct lm8323_chip *lm = i2c_get_clientdata(client);
810
int i;
811
812
irq_set_irq_wake(client->irq, 0);
813
disable_irq(client->irq);
814
815
mutex_lock(&lm->lock);
816
lm->pm_suspend = true;
817
mutex_unlock(&lm->lock);
818
819
for (i = 0; i < 3; i++)
820
if (lm->pwm[i].enabled)
821
led_classdev_suspend(&lm->pwm[i].cdev);
822
823
return 0;
824
}
825
826
static int lm8323_resume(struct device *dev)
827
{
828
struct i2c_client *client = to_i2c_client(dev);
829
struct lm8323_chip *lm = i2c_get_clientdata(client);
830
int i;
831
832
mutex_lock(&lm->lock);
833
lm->pm_suspend = false;
834
mutex_unlock(&lm->lock);
835
836
for (i = 0; i < 3; i++)
837
if (lm->pwm[i].enabled)
838
led_classdev_resume(&lm->pwm[i].cdev);
839
840
enable_irq(client->irq);
841
irq_set_irq_wake(client->irq, 1);
842
843
return 0;
844
}
845
#endif
846
847
static SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume);
848
849
static const struct i2c_device_id lm8323_id[] = {
850
{ "lm8323", 0 },
851
{ }
852
};
853
854
static struct i2c_driver lm8323_i2c_driver = {
855
.driver = {
856
.name = "lm8323",
857
.pm = &lm8323_pm_ops,
858
},
859
.probe = lm8323_probe,
860
.remove = __devexit_p(lm8323_remove),
861
.id_table = lm8323_id,
862
};
863
MODULE_DEVICE_TABLE(i2c, lm8323_id);
864
865
static int __init lm8323_init(void)
866
{
867
return i2c_add_driver(&lm8323_i2c_driver);
868
}
869
module_init(lm8323_init);
870
871
static void __exit lm8323_exit(void)
872
{
873
i2c_del_driver(&lm8323_i2c_driver);
874
}
875
module_exit(lm8323_exit);
876
877
MODULE_AUTHOR("Timo O. Karjalainen <[email protected]>");
878
MODULE_AUTHOR("Daniel Stone");
879
MODULE_AUTHOR("Felipe Balbi <[email protected]>");
880
MODULE_DESCRIPTION("LM8323 keypad driver");
881
MODULE_LICENSE("GPL");
882
883
884