Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/input/misc/hp_sdc_rtc.c
15109 views
1
/*
2
* HP i8042 SDC + MSM-58321 BBRTC driver.
3
*
4
* Copyright (c) 2001 Brian S. Julin
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions, and the following disclaimer,
12
* without modification.
13
* 2. The name of the author may not be used to endorse or promote products
14
* derived from this software without specific prior written permission.
15
*
16
* Alternatively, this software may be distributed under the terms of the
17
* GNU General Public License ("GPL").
18
*
19
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28
*
29
* References:
30
* System Device Controller Microprocessor Firmware Theory of Operation
31
* for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2
32
* efirtc.c by Stephane Eranian/Hewlett Packard
33
*
34
*/
35
36
#include <linux/hp_sdc.h>
37
#include <linux/errno.h>
38
#include <linux/types.h>
39
#include <linux/init.h>
40
#include <linux/module.h>
41
#include <linux/time.h>
42
#include <linux/miscdevice.h>
43
#include <linux/proc_fs.h>
44
#include <linux/poll.h>
45
#include <linux/rtc.h>
46
#include <linux/mutex.h>
47
#include <linux/semaphore.h>
48
49
MODULE_AUTHOR("Brian S. Julin <[email protected]>");
50
MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
51
MODULE_LICENSE("Dual BSD/GPL");
52
53
#define RTC_VERSION "1.10d"
54
55
static DEFINE_MUTEX(hp_sdc_rtc_mutex);
56
static unsigned long epoch = 2000;
57
58
static struct semaphore i8042tregs;
59
60
static hp_sdc_irqhook hp_sdc_rtc_isr;
61
62
static struct fasync_struct *hp_sdc_rtc_async_queue;
63
64
static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
65
66
static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
67
size_t count, loff_t *ppos);
68
69
static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
70
unsigned int cmd, unsigned long arg);
71
72
static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
73
74
static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
75
static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
76
77
static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
78
int count, int *eof, void *data);
79
80
static void hp_sdc_rtc_isr (int irq, void *dev_id,
81
uint8_t status, uint8_t data)
82
{
83
return;
84
}
85
86
static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
87
{
88
struct semaphore tsem;
89
hp_sdc_transaction t;
90
uint8_t tseq[91];
91
int i;
92
93
i = 0;
94
while (i < 91) {
95
tseq[i++] = HP_SDC_ACT_DATAREG |
96
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
97
tseq[i++] = 0x01; /* write i8042[0x70] */
98
tseq[i] = i / 7; /* BBRTC reg address */
99
i++;
100
tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */
101
tseq[i++] = 2; /* expect 1 stat/dat pair back. */
102
i++; i++; /* buffer for stat/dat pair */
103
}
104
tseq[84] |= HP_SDC_ACT_SEMAPHORE;
105
t.endidx = 91;
106
t.seq = tseq;
107
t.act.semaphore = &tsem;
108
sema_init(&tsem, 0);
109
110
if (hp_sdc_enqueue_transaction(&t)) return -1;
111
112
down_interruptible(&tsem); /* Put ourselves to sleep for results. */
113
114
/* Check for nonpresence of BBRTC */
115
if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
116
tseq[55] | tseq[62] | tseq[34] | tseq[41] |
117
tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f))
118
return -1;
119
120
memset(rtctm, 0, sizeof(struct rtc_time));
121
rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
122
rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
123
rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
124
rtctm->tm_wday = (tseq[48] & 0x0f);
125
rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
126
rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
127
rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10;
128
129
return 0;
130
}
131
132
static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
133
{
134
struct rtc_time tm, tm_last;
135
int i = 0;
136
137
/* MSM-58321 has no read latch, so must read twice and compare. */
138
139
if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
140
if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
141
142
while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
143
if (i++ > 4) return -1;
144
memcpy(&tm_last, &tm, sizeof(struct rtc_time));
145
if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
146
}
147
148
memcpy(rtctm, &tm, sizeof(struct rtc_time));
149
150
return 0;
151
}
152
153
154
static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
155
{
156
hp_sdc_transaction t;
157
uint8_t tseq[26] = {
158
HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
159
0,
160
HP_SDC_CMD_READ_T1, 2, 0, 0,
161
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
162
HP_SDC_CMD_READ_T2, 2, 0, 0,
163
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
164
HP_SDC_CMD_READ_T3, 2, 0, 0,
165
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
166
HP_SDC_CMD_READ_T4, 2, 0, 0,
167
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
168
HP_SDC_CMD_READ_T5, 2, 0, 0
169
};
170
171
t.endidx = numreg * 5;
172
173
tseq[1] = loadcmd;
174
tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
175
176
t.seq = tseq;
177
t.act.semaphore = &i8042tregs;
178
179
down_interruptible(&i8042tregs); /* Sleep if output regs in use. */
180
181
if (hp_sdc_enqueue_transaction(&t)) return -1;
182
183
down_interruptible(&i8042tregs); /* Sleep until results come back. */
184
up(&i8042tregs);
185
186
return (tseq[5] |
187
((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) |
188
((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
189
}
190
191
192
/* Read the i8042 real-time clock */
193
static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
194
int64_t raw;
195
uint32_t tenms;
196
unsigned int days;
197
198
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
199
if (raw < 0) return -1;
200
201
tenms = (uint32_t)raw & 0xffffff;
202
days = (unsigned int)(raw >> 24) & 0xffff;
203
204
res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
205
res->tv_sec = (time_t)(tenms / 100) + days * 86400;
206
207
return 0;
208
}
209
210
211
/* Read the i8042 fast handshake timer */
212
static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
213
int64_t raw;
214
unsigned int tenms;
215
216
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
217
if (raw < 0) return -1;
218
219
tenms = (unsigned int)raw & 0xffff;
220
221
res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
222
res->tv_sec = (time_t)(tenms / 100);
223
224
return 0;
225
}
226
227
228
/* Read the i8042 match timer (a.k.a. alarm) */
229
static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
230
int64_t raw;
231
uint32_t tenms;
232
233
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
234
if (raw < 0) return -1;
235
236
tenms = (uint32_t)raw & 0xffffff;
237
238
res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
239
res->tv_sec = (time_t)(tenms / 100);
240
241
return 0;
242
}
243
244
245
/* Read the i8042 delay timer */
246
static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
247
int64_t raw;
248
uint32_t tenms;
249
250
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
251
if (raw < 0) return -1;
252
253
tenms = (uint32_t)raw & 0xffffff;
254
255
res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
256
res->tv_sec = (time_t)(tenms / 100);
257
258
return 0;
259
}
260
261
262
/* Read the i8042 cycle timer (a.k.a. periodic) */
263
static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
264
int64_t raw;
265
uint32_t tenms;
266
267
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
268
if (raw < 0) return -1;
269
270
tenms = (uint32_t)raw & 0xffffff;
271
272
res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
273
res->tv_sec = (time_t)(tenms / 100);
274
275
return 0;
276
}
277
278
279
/* Set the i8042 real-time clock */
280
static int hp_sdc_rtc_set_rt (struct timeval *setto)
281
{
282
uint32_t tenms;
283
unsigned int days;
284
hp_sdc_transaction t;
285
uint8_t tseq[11] = {
286
HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
287
HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
288
HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
289
HP_SDC_CMD_SET_RTD, 2, 0, 0
290
};
291
292
t.endidx = 10;
293
294
if (0xffff < setto->tv_sec / 86400) return -1;
295
days = setto->tv_sec / 86400;
296
if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
297
days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
298
if (days > 0xffff) return -1;
299
300
if (0xffffff < setto->tv_sec) return -1;
301
tenms = setto->tv_sec * 100;
302
if (0xffffff < setto->tv_usec / 10000) return -1;
303
tenms += setto->tv_usec / 10000;
304
if (tenms > 0xffffff) return -1;
305
306
tseq[3] = (uint8_t)(tenms & 0xff);
307
tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
308
tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
309
310
tseq[9] = (uint8_t)(days & 0xff);
311
tseq[10] = (uint8_t)((days >> 8) & 0xff);
312
313
t.seq = tseq;
314
315
if (hp_sdc_enqueue_transaction(&t)) return -1;
316
return 0;
317
}
318
319
/* Set the i8042 fast handshake timer */
320
static int hp_sdc_rtc_set_fhs (struct timeval *setto)
321
{
322
uint32_t tenms;
323
hp_sdc_transaction t;
324
uint8_t tseq[5] = {
325
HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
326
HP_SDC_CMD_SET_FHS, 2, 0, 0
327
};
328
329
t.endidx = 4;
330
331
if (0xffff < setto->tv_sec) return -1;
332
tenms = setto->tv_sec * 100;
333
if (0xffff < setto->tv_usec / 10000) return -1;
334
tenms += setto->tv_usec / 10000;
335
if (tenms > 0xffff) return -1;
336
337
tseq[3] = (uint8_t)(tenms & 0xff);
338
tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
339
340
t.seq = tseq;
341
342
if (hp_sdc_enqueue_transaction(&t)) return -1;
343
return 0;
344
}
345
346
347
/* Set the i8042 match timer (a.k.a. alarm) */
348
#define hp_sdc_rtc_set_mt (setto) \
349
hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
350
351
/* Set the i8042 delay timer */
352
#define hp_sdc_rtc_set_dt (setto) \
353
hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
354
355
/* Set the i8042 cycle timer (a.k.a. periodic) */
356
#define hp_sdc_rtc_set_ct (setto) \
357
hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
358
359
/* Set one of the i8042 3-byte wide timers */
360
static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
361
{
362
uint32_t tenms;
363
hp_sdc_transaction t;
364
uint8_t tseq[6] = {
365
HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
366
0, 3, 0, 0, 0
367
};
368
369
t.endidx = 6;
370
371
if (0xffffff < setto->tv_sec) return -1;
372
tenms = setto->tv_sec * 100;
373
if (0xffffff < setto->tv_usec / 10000) return -1;
374
tenms += setto->tv_usec / 10000;
375
if (tenms > 0xffffff) return -1;
376
377
tseq[1] = setcmd;
378
tseq[3] = (uint8_t)(tenms & 0xff);
379
tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
380
tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
381
382
t.seq = tseq;
383
384
if (hp_sdc_enqueue_transaction(&t)) {
385
return -1;
386
}
387
return 0;
388
}
389
390
static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
391
size_t count, loff_t *ppos) {
392
ssize_t retval;
393
394
if (count < sizeof(unsigned long))
395
return -EINVAL;
396
397
retval = put_user(68, (unsigned long __user *)buf);
398
return retval;
399
}
400
401
static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
402
{
403
unsigned long l;
404
405
l = 0;
406
if (l != 0)
407
return POLLIN | POLLRDNORM;
408
return 0;
409
}
410
411
static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
412
{
413
return 0;
414
}
415
416
static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
417
{
418
return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
419
}
420
421
static int hp_sdc_rtc_proc_output (char *buf)
422
{
423
#define YN(bit) ("no")
424
#define NY(bit) ("yes")
425
char *p;
426
struct rtc_time tm;
427
struct timeval tv;
428
429
memset(&tm, 0, sizeof(struct rtc_time));
430
431
p = buf;
432
433
if (hp_sdc_rtc_read_bbrtc(&tm)) {
434
p += sprintf(p, "BBRTC\t\t: READ FAILED!\n");
435
} else {
436
p += sprintf(p,
437
"rtc_time\t: %02d:%02d:%02d\n"
438
"rtc_date\t: %04d-%02d-%02d\n"
439
"rtc_epoch\t: %04lu\n",
440
tm.tm_hour, tm.tm_min, tm.tm_sec,
441
tm.tm_year + 1900, tm.tm_mon + 1,
442
tm.tm_mday, epoch);
443
}
444
445
if (hp_sdc_rtc_read_rt(&tv)) {
446
p += sprintf(p, "i8042 rtc\t: READ FAILED!\n");
447
} else {
448
p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n",
449
tv.tv_sec, (int)tv.tv_usec/1000);
450
}
451
452
if (hp_sdc_rtc_read_fhs(&tv)) {
453
p += sprintf(p, "handshake\t: READ FAILED!\n");
454
} else {
455
p += sprintf(p, "handshake\t: %ld.%02d seconds\n",
456
tv.tv_sec, (int)tv.tv_usec/1000);
457
}
458
459
if (hp_sdc_rtc_read_mt(&tv)) {
460
p += sprintf(p, "alarm\t\t: READ FAILED!\n");
461
} else {
462
p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n",
463
tv.tv_sec, (int)tv.tv_usec/1000);
464
}
465
466
if (hp_sdc_rtc_read_dt(&tv)) {
467
p += sprintf(p, "delay\t\t: READ FAILED!\n");
468
} else {
469
p += sprintf(p, "delay\t\t: %ld.%02d seconds\n",
470
tv.tv_sec, (int)tv.tv_usec/1000);
471
}
472
473
if (hp_sdc_rtc_read_ct(&tv)) {
474
p += sprintf(p, "periodic\t: READ FAILED!\n");
475
} else {
476
p += sprintf(p, "periodic\t: %ld.%02d seconds\n",
477
tv.tv_sec, (int)tv.tv_usec/1000);
478
}
479
480
p += sprintf(p,
481
"DST_enable\t: %s\n"
482
"BCD\t\t: %s\n"
483
"24hr\t\t: %s\n"
484
"square_wave\t: %s\n"
485
"alarm_IRQ\t: %s\n"
486
"update_IRQ\t: %s\n"
487
"periodic_IRQ\t: %s\n"
488
"periodic_freq\t: %ld\n"
489
"batt_status\t: %s\n",
490
YN(RTC_DST_EN),
491
NY(RTC_DM_BINARY),
492
YN(RTC_24H),
493
YN(RTC_SQWE),
494
YN(RTC_AIE),
495
YN(RTC_UIE),
496
YN(RTC_PIE),
497
1UL,
498
1 ? "okay" : "dead");
499
500
return p - buf;
501
#undef YN
502
#undef NY
503
}
504
505
static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
506
int count, int *eof, void *data)
507
{
508
int len = hp_sdc_rtc_proc_output (page);
509
if (len <= off+count) *eof = 1;
510
*start = page + off;
511
len -= off;
512
if (len>count) len = count;
513
if (len<0) len = 0;
514
return len;
515
}
516
517
static int hp_sdc_rtc_ioctl(struct file *file,
518
unsigned int cmd, unsigned long arg)
519
{
520
#if 1
521
return -EINVAL;
522
#else
523
524
struct rtc_time wtime;
525
struct timeval ttime;
526
int use_wtime = 0;
527
528
/* This needs major work. */
529
530
switch (cmd) {
531
532
case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
533
case RTC_AIE_ON: /* Allow alarm interrupts. */
534
case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
535
case RTC_PIE_ON: /* Allow periodic ints */
536
case RTC_UIE_ON: /* Allow ints for RTC updates. */
537
case RTC_UIE_OFF: /* Allow ints for RTC updates. */
538
{
539
/* We cannot mask individual user timers and we
540
cannot tell them apart when they occur, so it
541
would be disingenuous to succeed these IOCTLs */
542
return -EINVAL;
543
}
544
case RTC_ALM_READ: /* Read the present alarm time */
545
{
546
if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
547
if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
548
549
wtime.tm_hour = ttime.tv_sec / 3600; ttime.tv_sec %= 3600;
550
wtime.tm_min = ttime.tv_sec / 60; ttime.tv_sec %= 60;
551
wtime.tm_sec = ttime.tv_sec;
552
553
break;
554
}
555
case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
556
{
557
return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
558
}
559
case RTC_IRQP_SET: /* Set periodic IRQ rate. */
560
{
561
/*
562
* The max we can do is 100Hz.
563
*/
564
565
if ((arg < 1) || (arg > 100)) return -EINVAL;
566
ttime.tv_sec = 0;
567
ttime.tv_usec = 1000000 / arg;
568
if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
569
hp_sdc_rtc_freq = arg;
570
return 0;
571
}
572
case RTC_ALM_SET: /* Store a time into the alarm */
573
{
574
/*
575
* This expects a struct hp_sdc_rtc_time. Writing 0xff means
576
* "don't care" or "match all" for PC timers. The HP SDC
577
* does not support that perk, but it could be emulated fairly
578
* easily. Only the tm_hour, tm_min and tm_sec are used.
579
* We could do it with 10ms accuracy with the HP SDC, if the
580
* rtc interface left us a way to do that.
581
*/
582
struct hp_sdc_rtc_time alm_tm;
583
584
if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
585
sizeof(struct hp_sdc_rtc_time)))
586
return -EFAULT;
587
588
if (alm_tm.tm_hour > 23) return -EINVAL;
589
if (alm_tm.tm_min > 59) return -EINVAL;
590
if (alm_tm.tm_sec > 59) return -EINVAL;
591
592
ttime.sec = alm_tm.tm_hour * 3600 +
593
alm_tm.tm_min * 60 + alm_tm.tm_sec;
594
ttime.usec = 0;
595
if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
596
return 0;
597
}
598
case RTC_RD_TIME: /* Read the time/date from RTC */
599
{
600
if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
601
break;
602
}
603
case RTC_SET_TIME: /* Set the RTC */
604
{
605
struct rtc_time hp_sdc_rtc_tm;
606
unsigned char mon, day, hrs, min, sec, leap_yr;
607
unsigned int yrs;
608
609
if (!capable(CAP_SYS_TIME))
610
return -EACCES;
611
if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
612
sizeof(struct rtc_time)))
613
return -EFAULT;
614
615
yrs = hp_sdc_rtc_tm.tm_year + 1900;
616
mon = hp_sdc_rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
617
day = hp_sdc_rtc_tm.tm_mday;
618
hrs = hp_sdc_rtc_tm.tm_hour;
619
min = hp_sdc_rtc_tm.tm_min;
620
sec = hp_sdc_rtc_tm.tm_sec;
621
622
if (yrs < 1970)
623
return -EINVAL;
624
625
leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
626
627
if ((mon > 12) || (day == 0))
628
return -EINVAL;
629
if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
630
return -EINVAL;
631
if ((hrs >= 24) || (min >= 60) || (sec >= 60))
632
return -EINVAL;
633
634
if ((yrs -= eH) > 255) /* They are unsigned */
635
return -EINVAL;
636
637
638
return 0;
639
}
640
case RTC_EPOCH_READ: /* Read the epoch. */
641
{
642
return put_user (epoch, (unsigned long *)arg);
643
}
644
case RTC_EPOCH_SET: /* Set the epoch. */
645
{
646
/*
647
* There were no RTC clocks before 1900.
648
*/
649
if (arg < 1900)
650
return -EINVAL;
651
if (!capable(CAP_SYS_TIME))
652
return -EACCES;
653
654
epoch = arg;
655
return 0;
656
}
657
default:
658
return -EINVAL;
659
}
660
return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
661
#endif
662
}
663
664
static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
665
unsigned int cmd, unsigned long arg)
666
{
667
int ret;
668
669
mutex_lock(&hp_sdc_rtc_mutex);
670
ret = hp_sdc_rtc_ioctl(file, cmd, arg);
671
mutex_unlock(&hp_sdc_rtc_mutex);
672
673
return ret;
674
}
675
676
677
static const struct file_operations hp_sdc_rtc_fops = {
678
.owner = THIS_MODULE,
679
.llseek = no_llseek,
680
.read = hp_sdc_rtc_read,
681
.poll = hp_sdc_rtc_poll,
682
.unlocked_ioctl = hp_sdc_rtc_unlocked_ioctl,
683
.open = hp_sdc_rtc_open,
684
.fasync = hp_sdc_rtc_fasync,
685
};
686
687
static struct miscdevice hp_sdc_rtc_dev = {
688
.minor = RTC_MINOR,
689
.name = "rtc_HIL",
690
.fops = &hp_sdc_rtc_fops
691
};
692
693
static int __init hp_sdc_rtc_init(void)
694
{
695
int ret;
696
697
#ifdef __mc68000__
698
if (!MACH_IS_HP300)
699
return -ENODEV;
700
#endif
701
702
sema_init(&i8042tregs, 1);
703
704
if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
705
return ret;
706
if (misc_register(&hp_sdc_rtc_dev) != 0)
707
printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n");
708
709
create_proc_read_entry ("driver/rtc", 0, NULL,
710
hp_sdc_rtc_read_proc, NULL);
711
712
printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
713
"(RTC v " RTC_VERSION ")\n");
714
715
return 0;
716
}
717
718
static void __exit hp_sdc_rtc_exit(void)
719
{
720
remove_proc_entry ("driver/rtc", NULL);
721
misc_deregister(&hp_sdc_rtc_dev);
722
hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
723
printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
724
}
725
726
module_init(hp_sdc_rtc_init);
727
module_exit(hp_sdc_rtc_exit);
728
729