Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/isdn/hardware/mISDN/hfcmulti.c
15112 views
1
/*
2
* hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
3
*
4
* Author Andreas Eversberg ([email protected])
5
* ported to mqueue mechanism:
6
* Peter Sprenger (sprengermoving-bytes.de)
7
*
8
* inspired by existing hfc-pci driver:
9
* Copyright 1999 by Werner Cornelius ([email protected])
10
* Copyright 2008 by Karsten Keil ([email protected])
11
* Copyright 2008 by Andreas Eversberg ([email protected])
12
*
13
* This program is free software; you can redistribute it and/or modify
14
* it under the terms of the GNU General Public License as published by
15
* the Free Software Foundation; either version 2, or (at your option)
16
* any later version.
17
*
18
* This program is distributed in the hope that it will be useful,
19
* but WITHOUT ANY WARRANTY; without even the implied warranty of
20
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21
* GNU General Public License for more details.
22
*
23
* You should have received a copy of the GNU General Public License
24
* along with this program; if not, write to the Free Software
25
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26
*
27
*
28
* Thanks to Cologne Chip AG for this great controller!
29
*/
30
31
/*
32
* module parameters:
33
* type:
34
* By default (0), the card is automatically detected.
35
* Or use the following combinations:
36
* Bit 0-7 = 0x00001 = HFC-E1 (1 port)
37
* or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
38
* or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
39
* Bit 8 = 0x00100 = uLaw (instead of aLaw)
40
* Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
41
* Bit 10 = spare
42
* Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43
* or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44
* Bit 13 = spare
45
* Bit 14 = 0x04000 = Use external ram (128K)
46
* Bit 15 = 0x08000 = Use external ram (512K)
47
* Bit 16 = 0x10000 = Use 64 timeslots instead of 32
48
* or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
49
* Bit 18 = spare
50
* Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51
* (all other bits are reserved and shall be 0)
52
* example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53
* bus (PCM master)
54
*
55
* port: (optional or required for all ports on all installed cards)
56
* HFC-4S/HFC-8S only bits:
57
* Bit 0 = 0x001 = Use master clock for this S/T interface
58
* (ony once per chip).
59
* Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
60
* Don't use this unless you know what you are doing!
61
* Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
62
* example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63
* received from port 1
64
*
65
* HFC-E1 only bits:
66
* Bit 0 = 0x0001 = interface: 0=copper, 1=optical
67
* Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
68
* Bit 2 = 0x0004 = Report LOS
69
* Bit 3 = 0x0008 = Report AIS
70
* Bit 4 = 0x0010 = Report SLIP
71
* Bit 5 = 0x0020 = Report RDI
72
* Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73
* mode instead.
74
* Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
75
* or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
76
* Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77
* (E1 only)
78
* Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79
* for default.
80
* (all other bits are reserved and shall be 0)
81
*
82
* debug:
83
* NOTE: only one debug value must be given for all cards
84
* enable debugging (see hfc_multi.h for debug options)
85
*
86
* poll:
87
* NOTE: only one poll value must be given for all cards
88
* Give the number of samples for each fifo process.
89
* By default 128 is used. Decrease to reduce delay, increase to
90
* reduce cpu load. If unsure, don't mess with it!
91
* Valid is 8, 16, 32, 64, 128, 256.
92
*
93
* pcm:
94
* NOTE: only one pcm value must be given for every card.
95
* The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96
* By default (0), the PCM bus id is 100 for the card that is PCM master.
97
* If multiple cards are PCM master (because they are not interconnected),
98
* each card with PCM master will have increasing PCM id.
99
* All PCM busses with the same ID are expected to be connected and have
100
* common time slots slots.
101
* Only one chip of the PCM bus must be master, the others slave.
102
* -1 means no support of PCM bus not even.
103
* Omit this value, if all cards are interconnected or none is connected.
104
* If unsure, don't give this parameter.
105
*
106
* dslot:
107
* NOTE: only one dslot value must be given for every card.
108
* Also this value must be given for non-E1 cards. If omitted, the E1
109
* card has D-channel on time slot 16, which is default.
110
* If 1..15 or 17..31, an alternate time slot is used for D-channel.
111
* In this case, the application must be able to handle this.
112
* If -1 is given, the D-channel is disabled and all 31 slots can be used
113
* for B-channel. (only for specific applications)
114
* If you don't know how to use it, you don't need it!
115
*
116
* iomode:
117
* NOTE: only one mode value must be given for every card.
118
* -> See hfc_multi.h for HFC_IO_MODE_* values
119
* By default, the IO mode is pci memory IO (MEMIO).
120
* Some cards require specific IO mode, so it cannot be changed.
121
* It may be useful to set IO mode to register io (REGIO) to solve
122
* PCI bridge problems.
123
* If unsure, don't give this parameter.
124
*
125
* clockdelay_nt:
126
* NOTE: only one clockdelay_nt value must be given once for all cards.
127
* Give the value of the clock control register (A_ST_CLK_DLY)
128
* of the S/T interfaces in NT mode.
129
* This register is needed for the TBR3 certification, so don't change it.
130
*
131
* clockdelay_te:
132
* NOTE: only one clockdelay_te value must be given once
133
* Give the value of the clock control register (A_ST_CLK_DLY)
134
* of the S/T interfaces in TE mode.
135
* This register is needed for the TBR3 certification, so don't change it.
136
*
137
* clock:
138
* NOTE: only one clock value must be given once
139
* Selects interface with clock source for mISDN and applications.
140
* Set to card number starting with 1. Set to -1 to disable.
141
* By default, the first card is used as clock source.
142
*
143
* hwid:
144
* NOTE: only one hwid value must be given once
145
* Enable special embedded devices with XHFC controllers.
146
*/
147
148
/*
149
* debug register access (never use this, it will flood your system log)
150
* #define HFC_REGISTER_DEBUG
151
*/
152
153
#define HFC_MULTI_VERSION "2.03"
154
155
#include <linux/module.h>
156
#include <linux/slab.h>
157
#include <linux/pci.h>
158
#include <linux/delay.h>
159
#include <linux/mISDNhw.h>
160
#include <linux/mISDNdsp.h>
161
162
/*
163
#define IRQCOUNT_DEBUG
164
#define IRQ_DEBUG
165
*/
166
167
#include "hfc_multi.h"
168
#ifdef ECHOPREP
169
#include "gaintab.h"
170
#endif
171
172
#define MAX_CARDS 8
173
#define MAX_PORTS (8 * MAX_CARDS)
174
175
static LIST_HEAD(HFClist);
176
static spinlock_t HFClock; /* global hfc list lock */
177
178
static void ph_state_change(struct dchannel *);
179
180
static struct hfc_multi *syncmaster;
181
static int plxsd_master; /* if we have a master card (yet) */
182
static spinlock_t plx_lock; /* may not acquire other lock inside */
183
184
#define TYP_E1 1
185
#define TYP_4S 4
186
#define TYP_8S 8
187
188
static int poll_timer = 6; /* default = 128 samples = 16ms */
189
/* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
190
static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
191
#define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
192
#define CLKDEL_NT 0x6c /* CLKDEL in NT mode
193
(0x60 MUST be included!) */
194
195
#define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
196
#define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
197
#define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
198
199
/*
200
* module stuff
201
*/
202
203
static uint type[MAX_CARDS];
204
static int pcm[MAX_CARDS];
205
static int dslot[MAX_CARDS];
206
static uint iomode[MAX_CARDS];
207
static uint port[MAX_PORTS];
208
static uint debug;
209
static uint poll;
210
static int clock;
211
static uint timer;
212
static uint clockdelay_te = CLKDEL_TE;
213
static uint clockdelay_nt = CLKDEL_NT;
214
#define HWID_NONE 0
215
#define HWID_MINIP4 1
216
#define HWID_MINIP8 2
217
#define HWID_MINIP16 3
218
static uint hwid = HWID_NONE;
219
220
static int HFC_cnt, Port_cnt, PCM_cnt = 99;
221
222
MODULE_AUTHOR("Andreas Eversberg");
223
MODULE_LICENSE("GPL");
224
MODULE_VERSION(HFC_MULTI_VERSION);
225
module_param(debug, uint, S_IRUGO | S_IWUSR);
226
module_param(poll, uint, S_IRUGO | S_IWUSR);
227
module_param(clock, int, S_IRUGO | S_IWUSR);
228
module_param(timer, uint, S_IRUGO | S_IWUSR);
229
module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
230
module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
231
module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
232
module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
233
module_param_array(dslot, int, NULL, S_IRUGO | S_IWUSR);
234
module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
235
module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
236
module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
237
238
#ifdef HFC_REGISTER_DEBUG
239
#define HFC_outb(hc, reg, val) \
240
(hc->HFC_outb(hc, reg, val, __func__, __LINE__))
241
#define HFC_outb_nodebug(hc, reg, val) \
242
(hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
243
#define HFC_inb(hc, reg) \
244
(hc->HFC_inb(hc, reg, __func__, __LINE__))
245
#define HFC_inb_nodebug(hc, reg) \
246
(hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
247
#define HFC_inw(hc, reg) \
248
(hc->HFC_inw(hc, reg, __func__, __LINE__))
249
#define HFC_inw_nodebug(hc, reg) \
250
(hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
251
#define HFC_wait(hc) \
252
(hc->HFC_wait(hc, __func__, __LINE__))
253
#define HFC_wait_nodebug(hc) \
254
(hc->HFC_wait_nodebug(hc, __func__, __LINE__))
255
#else
256
#define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
257
#define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
258
#define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
259
#define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
260
#define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
261
#define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
262
#define HFC_wait(hc) (hc->HFC_wait(hc))
263
#define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
264
#endif
265
266
#ifdef CONFIG_MISDN_HFCMULTI_8xx
267
#include "hfc_multi_8xx.h"
268
#endif
269
270
/* HFC_IO_MODE_PCIMEM */
271
static void
272
#ifdef HFC_REGISTER_DEBUG
273
HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
274
const char *function, int line)
275
#else
276
HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
277
#endif
278
{
279
writeb(val, hc->pci_membase + reg);
280
}
281
static u_char
282
#ifdef HFC_REGISTER_DEBUG
283
HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
284
#else
285
HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
286
#endif
287
{
288
return readb(hc->pci_membase + reg);
289
}
290
static u_short
291
#ifdef HFC_REGISTER_DEBUG
292
HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
293
#else
294
HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
295
#endif
296
{
297
return readw(hc->pci_membase + reg);
298
}
299
static void
300
#ifdef HFC_REGISTER_DEBUG
301
HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
302
#else
303
HFC_wait_pcimem(struct hfc_multi *hc)
304
#endif
305
{
306
while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
307
cpu_relax();
308
}
309
310
/* HFC_IO_MODE_REGIO */
311
static void
312
#ifdef HFC_REGISTER_DEBUG
313
HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
314
const char *function, int line)
315
#else
316
HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
317
#endif
318
{
319
outb(reg, hc->pci_iobase + 4);
320
outb(val, hc->pci_iobase);
321
}
322
static u_char
323
#ifdef HFC_REGISTER_DEBUG
324
HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
325
#else
326
HFC_inb_regio(struct hfc_multi *hc, u_char reg)
327
#endif
328
{
329
outb(reg, hc->pci_iobase + 4);
330
return inb(hc->pci_iobase);
331
}
332
static u_short
333
#ifdef HFC_REGISTER_DEBUG
334
HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
335
#else
336
HFC_inw_regio(struct hfc_multi *hc, u_char reg)
337
#endif
338
{
339
outb(reg, hc->pci_iobase + 4);
340
return inw(hc->pci_iobase);
341
}
342
static void
343
#ifdef HFC_REGISTER_DEBUG
344
HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
345
#else
346
HFC_wait_regio(struct hfc_multi *hc)
347
#endif
348
{
349
outb(R_STATUS, hc->pci_iobase + 4);
350
while (inb(hc->pci_iobase) & V_BUSY)
351
cpu_relax();
352
}
353
354
#ifdef HFC_REGISTER_DEBUG
355
static void
356
HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
357
const char *function, int line)
358
{
359
char regname[256] = "", bits[9] = "xxxxxxxx";
360
int i;
361
362
i = -1;
363
while (hfc_register_names[++i].name) {
364
if (hfc_register_names[i].reg == reg)
365
strcat(regname, hfc_register_names[i].name);
366
}
367
if (regname[0] == '\0')
368
strcpy(regname, "register");
369
370
bits[7] = '0' + (!!(val & 1));
371
bits[6] = '0' + (!!(val & 2));
372
bits[5] = '0' + (!!(val & 4));
373
bits[4] = '0' + (!!(val & 8));
374
bits[3] = '0' + (!!(val & 16));
375
bits[2] = '0' + (!!(val & 32));
376
bits[1] = '0' + (!!(val & 64));
377
bits[0] = '0' + (!!(val & 128));
378
printk(KERN_DEBUG
379
"HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
380
hc->id, reg, regname, val, bits, function, line);
381
HFC_outb_nodebug(hc, reg, val);
382
}
383
static u_char
384
HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
385
{
386
char regname[256] = "", bits[9] = "xxxxxxxx";
387
u_char val = HFC_inb_nodebug(hc, reg);
388
int i;
389
390
i = 0;
391
while (hfc_register_names[i++].name)
392
;
393
while (hfc_register_names[++i].name) {
394
if (hfc_register_names[i].reg == reg)
395
strcat(regname, hfc_register_names[i].name);
396
}
397
if (regname[0] == '\0')
398
strcpy(regname, "register");
399
400
bits[7] = '0' + (!!(val & 1));
401
bits[6] = '0' + (!!(val & 2));
402
bits[5] = '0' + (!!(val & 4));
403
bits[4] = '0' + (!!(val & 8));
404
bits[3] = '0' + (!!(val & 16));
405
bits[2] = '0' + (!!(val & 32));
406
bits[1] = '0' + (!!(val & 64));
407
bits[0] = '0' + (!!(val & 128));
408
printk(KERN_DEBUG
409
"HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
410
hc->id, reg, regname, val, bits, function, line);
411
return val;
412
}
413
static u_short
414
HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
415
{
416
char regname[256] = "";
417
u_short val = HFC_inw_nodebug(hc, reg);
418
int i;
419
420
i = 0;
421
while (hfc_register_names[i++].name)
422
;
423
while (hfc_register_names[++i].name) {
424
if (hfc_register_names[i].reg == reg)
425
strcat(regname, hfc_register_names[i].name);
426
}
427
if (regname[0] == '\0')
428
strcpy(regname, "register");
429
430
printk(KERN_DEBUG
431
"HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
432
hc->id, reg, regname, val, function, line);
433
return val;
434
}
435
static void
436
HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
437
{
438
printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
439
hc->id, function, line);
440
HFC_wait_nodebug(hc);
441
}
442
#endif
443
444
/* write fifo data (REGIO) */
445
static void
446
write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
447
{
448
outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
449
while (len>>2) {
450
outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
451
data += 4;
452
len -= 4;
453
}
454
while (len>>1) {
455
outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
456
data += 2;
457
len -= 2;
458
}
459
while (len) {
460
outb(*data, hc->pci_iobase);
461
data++;
462
len--;
463
}
464
}
465
/* write fifo data (PCIMEM) */
466
static void
467
write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
468
{
469
while (len>>2) {
470
writel(cpu_to_le32(*(u32 *)data),
471
hc->pci_membase + A_FIFO_DATA0);
472
data += 4;
473
len -= 4;
474
}
475
while (len>>1) {
476
writew(cpu_to_le16(*(u16 *)data),
477
hc->pci_membase + A_FIFO_DATA0);
478
data += 2;
479
len -= 2;
480
}
481
while (len) {
482
writeb(*data, hc->pci_membase + A_FIFO_DATA0);
483
data++;
484
len--;
485
}
486
}
487
488
/* read fifo data (REGIO) */
489
static void
490
read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
491
{
492
outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
493
while (len>>2) {
494
*(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
495
data += 4;
496
len -= 4;
497
}
498
while (len>>1) {
499
*(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
500
data += 2;
501
len -= 2;
502
}
503
while (len) {
504
*data = inb(hc->pci_iobase);
505
data++;
506
len--;
507
}
508
}
509
510
/* read fifo data (PCIMEM) */
511
static void
512
read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
513
{
514
while (len>>2) {
515
*(u32 *)data =
516
le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
517
data += 4;
518
len -= 4;
519
}
520
while (len>>1) {
521
*(u16 *)data =
522
le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
523
data += 2;
524
len -= 2;
525
}
526
while (len) {
527
*data = readb(hc->pci_membase + A_FIFO_DATA0);
528
data++;
529
len--;
530
}
531
}
532
533
static void
534
enable_hwirq(struct hfc_multi *hc)
535
{
536
hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
537
HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
538
}
539
540
static void
541
disable_hwirq(struct hfc_multi *hc)
542
{
543
hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
544
HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
545
}
546
547
#define NUM_EC 2
548
#define MAX_TDM_CHAN 32
549
550
551
inline void
552
enablepcibridge(struct hfc_multi *c)
553
{
554
HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
555
}
556
557
inline void
558
disablepcibridge(struct hfc_multi *c)
559
{
560
HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
561
}
562
563
inline unsigned char
564
readpcibridge(struct hfc_multi *hc, unsigned char address)
565
{
566
unsigned short cipv;
567
unsigned char data;
568
569
if (!hc->pci_iobase)
570
return 0;
571
572
/* slow down a PCI read access by 1 PCI clock cycle */
573
HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
574
575
if (address == 0)
576
cipv = 0x4000;
577
else
578
cipv = 0x5800;
579
580
/* select local bridge port address by writing to CIP port */
581
/* data = HFC_inb(c, cipv); * was _io before */
582
outw(cipv, hc->pci_iobase + 4);
583
data = inb(hc->pci_iobase);
584
585
/* restore R_CTRL for normal PCI read cycle speed */
586
HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
587
588
return data;
589
}
590
591
inline void
592
writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
593
{
594
unsigned short cipv;
595
unsigned int datav;
596
597
if (!hc->pci_iobase)
598
return;
599
600
if (address == 0)
601
cipv = 0x4000;
602
else
603
cipv = 0x5800;
604
605
/* select local bridge port address by writing to CIP port */
606
outw(cipv, hc->pci_iobase + 4);
607
/* define a 32 bit dword with 4 identical bytes for write sequence */
608
datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
609
((__u32) data << 24);
610
611
/*
612
* write this 32 bit dword to the bridge data port
613
* this will initiate a write sequence of up to 4 writes to the same
614
* address on the local bus interface the number of write accesses
615
* is undefined but >=1 and depends on the next PCI transaction
616
* during write sequence on the local bus
617
*/
618
outl(datav, hc->pci_iobase);
619
}
620
621
inline void
622
cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
623
{
624
/* Do data pin read low byte */
625
HFC_outb(hc, R_GPIO_OUT1, reg);
626
}
627
628
inline void
629
cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
630
{
631
cpld_set_reg(hc, reg);
632
633
enablepcibridge(hc);
634
writepcibridge(hc, 1, val);
635
disablepcibridge(hc);
636
637
return;
638
}
639
640
inline unsigned char
641
cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
642
{
643
unsigned char bytein;
644
645
cpld_set_reg(hc, reg);
646
647
/* Do data pin read low byte */
648
HFC_outb(hc, R_GPIO_OUT1, reg);
649
650
enablepcibridge(hc);
651
bytein = readpcibridge(hc, 1);
652
disablepcibridge(hc);
653
654
return bytein;
655
}
656
657
inline void
658
vpm_write_address(struct hfc_multi *hc, unsigned short addr)
659
{
660
cpld_write_reg(hc, 0, 0xff & addr);
661
cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
662
}
663
664
inline unsigned short
665
vpm_read_address(struct hfc_multi *c)
666
{
667
unsigned short addr;
668
unsigned short highbit;
669
670
addr = cpld_read_reg(c, 0);
671
highbit = cpld_read_reg(c, 1);
672
673
addr = addr | (highbit << 8);
674
675
return addr & 0x1ff;
676
}
677
678
inline unsigned char
679
vpm_in(struct hfc_multi *c, int which, unsigned short addr)
680
{
681
unsigned char res;
682
683
vpm_write_address(c, addr);
684
685
if (!which)
686
cpld_set_reg(c, 2);
687
else
688
cpld_set_reg(c, 3);
689
690
enablepcibridge(c);
691
res = readpcibridge(c, 1);
692
disablepcibridge(c);
693
694
cpld_set_reg(c, 0);
695
696
return res;
697
}
698
699
inline void
700
vpm_out(struct hfc_multi *c, int which, unsigned short addr,
701
unsigned char data)
702
{
703
vpm_write_address(c, addr);
704
705
enablepcibridge(c);
706
707
if (!which)
708
cpld_set_reg(c, 2);
709
else
710
cpld_set_reg(c, 3);
711
712
writepcibridge(c, 1, data);
713
714
cpld_set_reg(c, 0);
715
716
disablepcibridge(c);
717
718
{
719
unsigned char regin;
720
regin = vpm_in(c, which, addr);
721
if (regin != data)
722
printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
723
"0x%x\n", data, addr, regin);
724
}
725
726
}
727
728
729
static void
730
vpm_init(struct hfc_multi *wc)
731
{
732
unsigned char reg;
733
unsigned int mask;
734
unsigned int i, x, y;
735
unsigned int ver;
736
737
for (x = 0; x < NUM_EC; x++) {
738
/* Setup GPIO's */
739
if (!x) {
740
ver = vpm_in(wc, x, 0x1a0);
741
printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
742
}
743
744
for (y = 0; y < 4; y++) {
745
vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
746
vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
747
vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
748
}
749
750
/* Setup TDM path - sets fsync and tdm_clk as inputs */
751
reg = vpm_in(wc, x, 0x1a3); /* misc_con */
752
vpm_out(wc, x, 0x1a3, reg & ~2);
753
754
/* Setup Echo length (256 taps) */
755
vpm_out(wc, x, 0x022, 1);
756
vpm_out(wc, x, 0x023, 0xff);
757
758
/* Setup timeslots */
759
vpm_out(wc, x, 0x02f, 0x00);
760
mask = 0x02020202 << (x * 4);
761
762
/* Setup the tdm channel masks for all chips */
763
for (i = 0; i < 4; i++)
764
vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
765
766
/* Setup convergence rate */
767
printk(KERN_DEBUG "VPM: A-law mode\n");
768
reg = 0x00 | 0x10 | 0x01;
769
vpm_out(wc, x, 0x20, reg);
770
printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
771
/*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
772
773
vpm_out(wc, x, 0x24, 0x02);
774
reg = vpm_in(wc, x, 0x24);
775
printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
776
777
/* Initialize echo cans */
778
for (i = 0; i < MAX_TDM_CHAN; i++) {
779
if (mask & (0x00000001 << i))
780
vpm_out(wc, x, i, 0x00);
781
}
782
783
/*
784
* ARM arch at least disallows a udelay of
785
* more than 2ms... it gives a fake "__bad_udelay"
786
* reference at link-time.
787
* long delays in kernel code are pretty sucky anyway
788
* for now work around it using 5 x 2ms instead of 1 x 10ms
789
*/
790
791
udelay(2000);
792
udelay(2000);
793
udelay(2000);
794
udelay(2000);
795
udelay(2000);
796
797
/* Put in bypass mode */
798
for (i = 0; i < MAX_TDM_CHAN; i++) {
799
if (mask & (0x00000001 << i))
800
vpm_out(wc, x, i, 0x01);
801
}
802
803
/* Enable bypass */
804
for (i = 0; i < MAX_TDM_CHAN; i++) {
805
if (mask & (0x00000001 << i))
806
vpm_out(wc, x, 0x78 + i, 0x01);
807
}
808
809
}
810
}
811
812
#ifdef UNUSED
813
static void
814
vpm_check(struct hfc_multi *hctmp)
815
{
816
unsigned char gpi2;
817
818
gpi2 = HFC_inb(hctmp, R_GPI_IN2);
819
820
if ((gpi2 & 0x3) != 0x3)
821
printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
822
}
823
#endif /* UNUSED */
824
825
826
/*
827
* Interface to enable/disable the HW Echocan
828
*
829
* these functions are called within a spin_lock_irqsave on
830
* the channel instance lock, so we are not disturbed by irqs
831
*
832
* we can later easily change the interface to make other
833
* things configurable, for now we configure the taps
834
*
835
*/
836
837
static void
838
vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
839
{
840
unsigned int timeslot;
841
unsigned int unit;
842
struct bchannel *bch = hc->chan[ch].bch;
843
#ifdef TXADJ
844
int txadj = -4;
845
struct sk_buff *skb;
846
#endif
847
if (hc->chan[ch].protocol != ISDN_P_B_RAW)
848
return;
849
850
if (!bch)
851
return;
852
853
#ifdef TXADJ
854
skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
855
sizeof(int), &txadj, GFP_ATOMIC);
856
if (skb)
857
recv_Bchannel_skb(bch, skb);
858
#endif
859
860
timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
861
unit = ch % 4;
862
863
printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
864
taps, timeslot);
865
866
vpm_out(hc, unit, timeslot, 0x7e);
867
}
868
869
static void
870
vpm_echocan_off(struct hfc_multi *hc, int ch)
871
{
872
unsigned int timeslot;
873
unsigned int unit;
874
struct bchannel *bch = hc->chan[ch].bch;
875
#ifdef TXADJ
876
int txadj = 0;
877
struct sk_buff *skb;
878
#endif
879
880
if (hc->chan[ch].protocol != ISDN_P_B_RAW)
881
return;
882
883
if (!bch)
884
return;
885
886
#ifdef TXADJ
887
skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
888
sizeof(int), &txadj, GFP_ATOMIC);
889
if (skb)
890
recv_Bchannel_skb(bch, skb);
891
#endif
892
893
timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
894
unit = ch % 4;
895
896
printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
897
timeslot);
898
/* FILLME */
899
vpm_out(hc, unit, timeslot, 0x01);
900
}
901
902
903
/*
904
* Speech Design resync feature
905
* NOTE: This is called sometimes outside interrupt handler.
906
* We must lock irqsave, so no other interrupt (other card) will occur!
907
* Also multiple interrupts may nest, so must lock each access (lists, card)!
908
*/
909
static inline void
910
hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
911
{
912
struct hfc_multi *hc, *next, *pcmmaster = NULL;
913
void __iomem *plx_acc_32;
914
u_int pv;
915
u_long flags;
916
917
spin_lock_irqsave(&HFClock, flags);
918
spin_lock(&plx_lock); /* must be locked inside other locks */
919
920
if (debug & DEBUG_HFCMULTI_PLXSD)
921
printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
922
__func__, syncmaster);
923
924
/* select new master */
925
if (newmaster) {
926
if (debug & DEBUG_HFCMULTI_PLXSD)
927
printk(KERN_DEBUG "using provided controller\n");
928
} else {
929
list_for_each_entry_safe(hc, next, &HFClist, list) {
930
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
931
if (hc->syncronized) {
932
newmaster = hc;
933
break;
934
}
935
}
936
}
937
}
938
939
/* Disable sync of all cards */
940
list_for_each_entry_safe(hc, next, &HFClist, list) {
941
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
942
plx_acc_32 = hc->plx_membase + PLX_GPIOC;
943
pv = readl(plx_acc_32);
944
pv &= ~PLX_SYNC_O_EN;
945
writel(pv, plx_acc_32);
946
if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
947
pcmmaster = hc;
948
if (hc->ctype == HFC_TYPE_E1) {
949
if (debug & DEBUG_HFCMULTI_PLXSD)
950
printk(KERN_DEBUG
951
"Schedule SYNC_I\n");
952
hc->e1_resync |= 1; /* get SYNC_I */
953
}
954
}
955
}
956
}
957
958
if (newmaster) {
959
hc = newmaster;
960
if (debug & DEBUG_HFCMULTI_PLXSD)
961
printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
962
"interface.\n", hc->id, hc);
963
/* Enable new sync master */
964
plx_acc_32 = hc->plx_membase + PLX_GPIOC;
965
pv = readl(plx_acc_32);
966
pv |= PLX_SYNC_O_EN;
967
writel(pv, plx_acc_32);
968
/* switch to jatt PLL, if not disabled by RX_SYNC */
969
if (hc->ctype == HFC_TYPE_E1
970
&& !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
971
if (debug & DEBUG_HFCMULTI_PLXSD)
972
printk(KERN_DEBUG "Schedule jatt PLL\n");
973
hc->e1_resync |= 2; /* switch to jatt */
974
}
975
} else {
976
if (pcmmaster) {
977
hc = pcmmaster;
978
if (debug & DEBUG_HFCMULTI_PLXSD)
979
printk(KERN_DEBUG
980
"id=%d (0x%p) = PCM master syncronized "
981
"with QUARTZ\n", hc->id, hc);
982
if (hc->ctype == HFC_TYPE_E1) {
983
/* Use the crystal clock for the PCM
984
master card */
985
if (debug & DEBUG_HFCMULTI_PLXSD)
986
printk(KERN_DEBUG
987
"Schedule QUARTZ for HFC-E1\n");
988
hc->e1_resync |= 4; /* switch quartz */
989
} else {
990
if (debug & DEBUG_HFCMULTI_PLXSD)
991
printk(KERN_DEBUG
992
"QUARTZ is automatically "
993
"enabled by HFC-%dS\n", hc->ctype);
994
}
995
plx_acc_32 = hc->plx_membase + PLX_GPIOC;
996
pv = readl(plx_acc_32);
997
pv |= PLX_SYNC_O_EN;
998
writel(pv, plx_acc_32);
999
} else
1000
if (!rm)
1001
printk(KERN_ERR "%s no pcm master, this MUST "
1002
"not happen!\n", __func__);
1003
}
1004
syncmaster = newmaster;
1005
1006
spin_unlock(&plx_lock);
1007
spin_unlock_irqrestore(&HFClock, flags);
1008
}
1009
1010
/* This must be called AND hc must be locked irqsave!!! */
1011
inline void
1012
plxsd_checksync(struct hfc_multi *hc, int rm)
1013
{
1014
if (hc->syncronized) {
1015
if (syncmaster == NULL) {
1016
if (debug & DEBUG_HFCMULTI_PLXSD)
1017
printk(KERN_DEBUG "%s: GOT sync on card %d"
1018
" (id=%d)\n", __func__, hc->id + 1,
1019
hc->id);
1020
hfcmulti_resync(hc, hc, rm);
1021
}
1022
} else {
1023
if (syncmaster == hc) {
1024
if (debug & DEBUG_HFCMULTI_PLXSD)
1025
printk(KERN_DEBUG "%s: LOST sync on card %d"
1026
" (id=%d)\n", __func__, hc->id + 1,
1027
hc->id);
1028
hfcmulti_resync(hc, NULL, rm);
1029
}
1030
}
1031
}
1032
1033
1034
/*
1035
* free hardware resources used by driver
1036
*/
1037
static void
1038
release_io_hfcmulti(struct hfc_multi *hc)
1039
{
1040
void __iomem *plx_acc_32;
1041
u_int pv;
1042
u_long plx_flags;
1043
1044
if (debug & DEBUG_HFCMULTI_INIT)
1045
printk(KERN_DEBUG "%s: entered\n", __func__);
1046
1047
/* soft reset also masks all interrupts */
1048
hc->hw.r_cirm |= V_SRES;
1049
HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1050
udelay(1000);
1051
hc->hw.r_cirm &= ~V_SRES;
1052
HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1053
udelay(1000); /* instead of 'wait' that may cause locking */
1054
1055
/* release Speech Design card, if PLX was initialized */
1056
if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1057
if (debug & DEBUG_HFCMULTI_PLXSD)
1058
printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1059
__func__, hc->id + 1);
1060
spin_lock_irqsave(&plx_lock, plx_flags);
1061
plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1062
writel(PLX_GPIOC_INIT, plx_acc_32);
1063
pv = readl(plx_acc_32);
1064
/* Termination off */
1065
pv &= ~PLX_TERM_ON;
1066
/* Disconnect the PCM */
1067
pv |= PLX_SLAVE_EN_N;
1068
pv &= ~PLX_MASTER_EN;
1069
pv &= ~PLX_SYNC_O_EN;
1070
/* Put the DSP in Reset */
1071
pv &= ~PLX_DSP_RES_N;
1072
writel(pv, plx_acc_32);
1073
if (debug & DEBUG_HFCMULTI_INIT)
1074
printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1075
__func__, pv);
1076
spin_unlock_irqrestore(&plx_lock, plx_flags);
1077
}
1078
1079
/* disable memory mapped ports / io ports */
1080
test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1081
if (hc->pci_dev)
1082
pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1083
if (hc->pci_membase)
1084
iounmap(hc->pci_membase);
1085
if (hc->plx_membase)
1086
iounmap(hc->plx_membase);
1087
if (hc->pci_iobase)
1088
release_region(hc->pci_iobase, 8);
1089
if (hc->xhfc_membase)
1090
iounmap((void *)hc->xhfc_membase);
1091
1092
if (hc->pci_dev) {
1093
pci_disable_device(hc->pci_dev);
1094
pci_set_drvdata(hc->pci_dev, NULL);
1095
}
1096
if (debug & DEBUG_HFCMULTI_INIT)
1097
printk(KERN_DEBUG "%s: done\n", __func__);
1098
}
1099
1100
/*
1101
* function called to reset the HFC chip. A complete software reset of chip
1102
* and fifos is done. All configuration of the chip is done.
1103
*/
1104
1105
static int
1106
init_chip(struct hfc_multi *hc)
1107
{
1108
u_long flags, val, val2 = 0, rev;
1109
int i, err = 0;
1110
u_char r_conf_en, rval;
1111
void __iomem *plx_acc_32;
1112
u_int pv;
1113
u_long plx_flags, hfc_flags;
1114
int plx_count;
1115
struct hfc_multi *pos, *next, *plx_last_hc;
1116
1117
spin_lock_irqsave(&hc->lock, flags);
1118
/* reset all registers */
1119
memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1120
1121
/* revision check */
1122
if (debug & DEBUG_HFCMULTI_INIT)
1123
printk(KERN_DEBUG "%s: entered\n", __func__);
1124
val = HFC_inb(hc, R_CHIP_ID);
1125
if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1126
(val >> 1) != 0x31) {
1127
printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1128
err = -EIO;
1129
goto out;
1130
}
1131
rev = HFC_inb(hc, R_CHIP_RV);
1132
printk(KERN_INFO
1133
"HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1134
val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1135
" (old FIFO handling)" : "");
1136
if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1137
test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1138
printk(KERN_WARNING
1139
"HFC_multi: NOTE: Your chip is revision 0, "
1140
"ask Cologne Chip for update. Newer chips "
1141
"have a better FIFO handling. Old chips "
1142
"still work but may have slightly lower "
1143
"HDLC transmit performance.\n");
1144
}
1145
if (rev > 1) {
1146
printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1147
"consider chip revision = %ld. The chip / "
1148
"bridge may not work.\n", rev);
1149
}
1150
1151
/* set s-ram size */
1152
hc->Flen = 0x10;
1153
hc->Zmin = 0x80;
1154
hc->Zlen = 384;
1155
hc->DTMFbase = 0x1000;
1156
if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1157
if (debug & DEBUG_HFCMULTI_INIT)
1158
printk(KERN_DEBUG "%s: changing to 128K extenal RAM\n",
1159
__func__);
1160
hc->hw.r_ctrl |= V_EXT_RAM;
1161
hc->hw.r_ram_sz = 1;
1162
hc->Flen = 0x20;
1163
hc->Zmin = 0xc0;
1164
hc->Zlen = 1856;
1165
hc->DTMFbase = 0x2000;
1166
}
1167
if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1168
if (debug & DEBUG_HFCMULTI_INIT)
1169
printk(KERN_DEBUG "%s: changing to 512K extenal RAM\n",
1170
__func__);
1171
hc->hw.r_ctrl |= V_EXT_RAM;
1172
hc->hw.r_ram_sz = 2;
1173
hc->Flen = 0x20;
1174
hc->Zmin = 0xc0;
1175
hc->Zlen = 8000;
1176
hc->DTMFbase = 0x2000;
1177
}
1178
if (hc->ctype == HFC_TYPE_XHFC) {
1179
hc->Flen = 0x8;
1180
hc->Zmin = 0x0;
1181
hc->Zlen = 64;
1182
hc->DTMFbase = 0x0;
1183
}
1184
hc->max_trans = poll << 1;
1185
if (hc->max_trans > hc->Zlen)
1186
hc->max_trans = hc->Zlen;
1187
1188
/* Speech Design PLX bridge */
1189
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1190
if (debug & DEBUG_HFCMULTI_PLXSD)
1191
printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1192
__func__, hc->id + 1);
1193
spin_lock_irqsave(&plx_lock, plx_flags);
1194
plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1195
writel(PLX_GPIOC_INIT, plx_acc_32);
1196
pv = readl(plx_acc_32);
1197
/* The first and the last cards are terminating the PCM bus */
1198
pv |= PLX_TERM_ON; /* hc is currently the last */
1199
/* Disconnect the PCM */
1200
pv |= PLX_SLAVE_EN_N;
1201
pv &= ~PLX_MASTER_EN;
1202
pv &= ~PLX_SYNC_O_EN;
1203
/* Put the DSP in Reset */
1204
pv &= ~PLX_DSP_RES_N;
1205
writel(pv, plx_acc_32);
1206
spin_unlock_irqrestore(&plx_lock, plx_flags);
1207
if (debug & DEBUG_HFCMULTI_INIT)
1208
printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1209
__func__, pv);
1210
/*
1211
* If we are the 3rd PLXSD card or higher, we must turn
1212
* termination of last PLXSD card off.
1213
*/
1214
spin_lock_irqsave(&HFClock, hfc_flags);
1215
plx_count = 0;
1216
plx_last_hc = NULL;
1217
list_for_each_entry_safe(pos, next, &HFClist, list) {
1218
if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1219
plx_count++;
1220
if (pos != hc)
1221
plx_last_hc = pos;
1222
}
1223
}
1224
if (plx_count >= 3) {
1225
if (debug & DEBUG_HFCMULTI_PLXSD)
1226
printk(KERN_DEBUG "%s: card %d is between, so "
1227
"we disable termination\n",
1228
__func__, plx_last_hc->id + 1);
1229
spin_lock_irqsave(&plx_lock, plx_flags);
1230
plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1231
pv = readl(plx_acc_32);
1232
pv &= ~PLX_TERM_ON;
1233
writel(pv, plx_acc_32);
1234
spin_unlock_irqrestore(&plx_lock, plx_flags);
1235
if (debug & DEBUG_HFCMULTI_INIT)
1236
printk(KERN_DEBUG
1237
"%s: term off: PLX_GPIO=%x\n",
1238
__func__, pv);
1239
}
1240
spin_unlock_irqrestore(&HFClock, hfc_flags);
1241
hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1242
}
1243
1244
if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1245
hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1246
1247
/* we only want the real Z2 read-pointer for revision > 0 */
1248
if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1249
hc->hw.r_ram_sz |= V_FZ_MD;
1250
1251
/* select pcm mode */
1252
if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1253
if (debug & DEBUG_HFCMULTI_INIT)
1254
printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1255
__func__);
1256
} else
1257
if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1258
if (debug & DEBUG_HFCMULTI_INIT)
1259
printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1260
__func__);
1261
hc->hw.r_pcm_md0 |= V_PCM_MD;
1262
} else {
1263
if (debug & DEBUG_HFCMULTI_INIT)
1264
printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1265
__func__);
1266
}
1267
1268
/* soft reset */
1269
HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1270
if (hc->ctype == HFC_TYPE_XHFC)
1271
HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1272
0x11 /* 16 Bytes TX/RX */);
1273
else
1274
HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1275
HFC_outb(hc, R_FIFO_MD, 0);
1276
if (hc->ctype == HFC_TYPE_XHFC)
1277
hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1278
else
1279
hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1280
| V_RLD_EPR;
1281
HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1282
udelay(100);
1283
hc->hw.r_cirm = 0;
1284
HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1285
udelay(100);
1286
if (hc->ctype != HFC_TYPE_XHFC)
1287
HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1288
1289
/* Speech Design PLX bridge pcm and sync mode */
1290
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1291
spin_lock_irqsave(&plx_lock, plx_flags);
1292
plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1293
pv = readl(plx_acc_32);
1294
/* Connect PCM */
1295
if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1296
pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1297
pv |= PLX_SYNC_O_EN;
1298
if (debug & DEBUG_HFCMULTI_INIT)
1299
printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1300
__func__, pv);
1301
} else {
1302
pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1303
pv &= ~PLX_SYNC_O_EN;
1304
if (debug & DEBUG_HFCMULTI_INIT)
1305
printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1306
__func__, pv);
1307
}
1308
writel(pv, plx_acc_32);
1309
spin_unlock_irqrestore(&plx_lock, plx_flags);
1310
}
1311
1312
/* PCM setup */
1313
HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1314
if (hc->slots == 32)
1315
HFC_outb(hc, R_PCM_MD1, 0x00);
1316
if (hc->slots == 64)
1317
HFC_outb(hc, R_PCM_MD1, 0x10);
1318
if (hc->slots == 128)
1319
HFC_outb(hc, R_PCM_MD1, 0x20);
1320
HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1321
if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1322
HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1323
else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1324
HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1325
else
1326
HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1327
HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1328
for (i = 0; i < 256; i++) {
1329
HFC_outb_nodebug(hc, R_SLOT, i);
1330
HFC_outb_nodebug(hc, A_SL_CFG, 0);
1331
if (hc->ctype != HFC_TYPE_XHFC)
1332
HFC_outb_nodebug(hc, A_CONF, 0);
1333
hc->slot_owner[i] = -1;
1334
}
1335
1336
/* set clock speed */
1337
if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1338
if (debug & DEBUG_HFCMULTI_INIT)
1339
printk(KERN_DEBUG
1340
"%s: setting double clock\n", __func__);
1341
HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1342
}
1343
1344
if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1345
HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1346
1347
/* B410P GPIO */
1348
if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1349
printk(KERN_NOTICE "Setting GPIOs\n");
1350
HFC_outb(hc, R_GPIO_SEL, 0x30);
1351
HFC_outb(hc, R_GPIO_EN1, 0x3);
1352
udelay(1000);
1353
printk(KERN_NOTICE "calling vpm_init\n");
1354
vpm_init(hc);
1355
}
1356
1357
/* check if R_F0_CNT counts (8 kHz frame count) */
1358
val = HFC_inb(hc, R_F0_CNTL);
1359
val += HFC_inb(hc, R_F0_CNTH) << 8;
1360
if (debug & DEBUG_HFCMULTI_INIT)
1361
printk(KERN_DEBUG
1362
"HFC_multi F0_CNT %ld after reset\n", val);
1363
spin_unlock_irqrestore(&hc->lock, flags);
1364
set_current_state(TASK_UNINTERRUPTIBLE);
1365
schedule_timeout((HZ/100)?:1); /* Timeout minimum 10ms */
1366
spin_lock_irqsave(&hc->lock, flags);
1367
val2 = HFC_inb(hc, R_F0_CNTL);
1368
val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1369
if (debug & DEBUG_HFCMULTI_INIT)
1370
printk(KERN_DEBUG
1371
"HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1372
val2);
1373
if (val2 >= val+8) { /* 1 ms */
1374
/* it counts, so we keep the pcm mode */
1375
if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1376
printk(KERN_INFO "controller is PCM bus MASTER\n");
1377
else
1378
if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1379
printk(KERN_INFO "controller is PCM bus SLAVE\n");
1380
else {
1381
test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1382
printk(KERN_INFO "controller is PCM bus SLAVE "
1383
"(auto detected)\n");
1384
}
1385
} else {
1386
/* does not count */
1387
if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1388
controller_fail:
1389
printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1390
"pulse. Seems that controller fails.\n");
1391
err = -EIO;
1392
goto out;
1393
}
1394
if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1395
printk(KERN_INFO "controller is PCM bus SLAVE "
1396
"(ignoring missing PCM clock)\n");
1397
} else {
1398
/* only one pcm master */
1399
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1400
&& plxsd_master) {
1401
printk(KERN_ERR "HFC_multi ERROR, no clock "
1402
"on another Speech Design card found. "
1403
"Please be sure to connect PCM cable.\n");
1404
err = -EIO;
1405
goto out;
1406
}
1407
/* retry with master clock */
1408
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1409
spin_lock_irqsave(&plx_lock, plx_flags);
1410
plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1411
pv = readl(plx_acc_32);
1412
pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1413
pv |= PLX_SYNC_O_EN;
1414
writel(pv, plx_acc_32);
1415
spin_unlock_irqrestore(&plx_lock, plx_flags);
1416
if (debug & DEBUG_HFCMULTI_INIT)
1417
printk(KERN_DEBUG "%s: master: "
1418
"PLX_GPIO=%x\n", __func__, pv);
1419
}
1420
hc->hw.r_pcm_md0 |= V_PCM_MD;
1421
HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1422
spin_unlock_irqrestore(&hc->lock, flags);
1423
set_current_state(TASK_UNINTERRUPTIBLE);
1424
schedule_timeout((HZ/100)?:1); /* Timeout min. 10ms */
1425
spin_lock_irqsave(&hc->lock, flags);
1426
val2 = HFC_inb(hc, R_F0_CNTL);
1427
val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1428
if (debug & DEBUG_HFCMULTI_INIT)
1429
printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1430
"10 ms (2nd try)\n", val2);
1431
if (val2 >= val+8) { /* 1 ms */
1432
test_and_set_bit(HFC_CHIP_PCM_MASTER,
1433
&hc->chip);
1434
printk(KERN_INFO "controller is PCM bus MASTER "
1435
"(auto detected)\n");
1436
} else
1437
goto controller_fail;
1438
}
1439
}
1440
1441
/* Release the DSP Reset */
1442
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1443
if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1444
plxsd_master = 1;
1445
spin_lock_irqsave(&plx_lock, plx_flags);
1446
plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1447
pv = readl(plx_acc_32);
1448
pv |= PLX_DSP_RES_N;
1449
writel(pv, plx_acc_32);
1450
spin_unlock_irqrestore(&plx_lock, plx_flags);
1451
if (debug & DEBUG_HFCMULTI_INIT)
1452
printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1453
__func__, pv);
1454
}
1455
1456
/* pcm id */
1457
if (hc->pcm)
1458
printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1459
hc->pcm);
1460
else {
1461
if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1462
|| test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1463
PCM_cnt++; /* SD has proprietary bridging */
1464
}
1465
hc->pcm = PCM_cnt;
1466
printk(KERN_INFO "controller has PCM BUS ID %d "
1467
"(auto selected)\n", hc->pcm);
1468
}
1469
1470
/* set up timer */
1471
HFC_outb(hc, R_TI_WD, poll_timer);
1472
hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1473
1474
/* set E1 state machine IRQ */
1475
if (hc->ctype == HFC_TYPE_E1)
1476
hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1477
1478
/* set DTMF detection */
1479
if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1480
if (debug & DEBUG_HFCMULTI_INIT)
1481
printk(KERN_DEBUG "%s: enabling DTMF detection "
1482
"for all B-channel\n", __func__);
1483
hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1484
if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1485
hc->hw.r_dtmf |= V_ULAW_SEL;
1486
HFC_outb(hc, R_DTMF_N, 102 - 1);
1487
hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1488
}
1489
1490
/* conference engine */
1491
if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1492
r_conf_en = V_CONF_EN | V_ULAW;
1493
else
1494
r_conf_en = V_CONF_EN;
1495
if (hc->ctype != HFC_TYPE_XHFC)
1496
HFC_outb(hc, R_CONF_EN, r_conf_en);
1497
1498
/* setting leds */
1499
switch (hc->leds) {
1500
case 1: /* HFC-E1 OEM */
1501
if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1502
HFC_outb(hc, R_GPIO_SEL, 0x32);
1503
else
1504
HFC_outb(hc, R_GPIO_SEL, 0x30);
1505
1506
HFC_outb(hc, R_GPIO_EN1, 0x0f);
1507
HFC_outb(hc, R_GPIO_OUT1, 0x00);
1508
1509
HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1510
break;
1511
1512
case 2: /* HFC-4S OEM */
1513
case 3:
1514
HFC_outb(hc, R_GPIO_SEL, 0xf0);
1515
HFC_outb(hc, R_GPIO_EN1, 0xff);
1516
HFC_outb(hc, R_GPIO_OUT1, 0x00);
1517
break;
1518
}
1519
1520
if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1521
hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1522
HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1523
}
1524
1525
/* set master clock */
1526
if (hc->masterclk >= 0) {
1527
if (debug & DEBUG_HFCMULTI_INIT)
1528
printk(KERN_DEBUG "%s: setting ST master clock "
1529
"to port %d (0..%d)\n",
1530
__func__, hc->masterclk, hc->ports-1);
1531
hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1532
HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1533
}
1534
1535
1536
1537
/* setting misc irq */
1538
HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1539
if (debug & DEBUG_HFCMULTI_INIT)
1540
printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1541
hc->hw.r_irqmsk_misc);
1542
1543
/* RAM access test */
1544
HFC_outb(hc, R_RAM_ADDR0, 0);
1545
HFC_outb(hc, R_RAM_ADDR1, 0);
1546
HFC_outb(hc, R_RAM_ADDR2, 0);
1547
for (i = 0; i < 256; i++) {
1548
HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1549
HFC_outb_nodebug(hc, R_RAM_DATA, ((i*3)&0xff));
1550
}
1551
for (i = 0; i < 256; i++) {
1552
HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1553
HFC_inb_nodebug(hc, R_RAM_DATA);
1554
rval = HFC_inb_nodebug(hc, R_INT_DATA);
1555
if (rval != ((i * 3) & 0xff)) {
1556
printk(KERN_DEBUG
1557
"addr:%x val:%x should:%x\n", i, rval,
1558
(i * 3) & 0xff);
1559
err++;
1560
}
1561
}
1562
if (err) {
1563
printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1564
err = -EIO;
1565
goto out;
1566
}
1567
1568
if (debug & DEBUG_HFCMULTI_INIT)
1569
printk(KERN_DEBUG "%s: done\n", __func__);
1570
out:
1571
spin_unlock_irqrestore(&hc->lock, flags);
1572
return err;
1573
}
1574
1575
1576
/*
1577
* control the watchdog
1578
*/
1579
static void
1580
hfcmulti_watchdog(struct hfc_multi *hc)
1581
{
1582
hc->wdcount++;
1583
1584
if (hc->wdcount > 10) {
1585
hc->wdcount = 0;
1586
hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1587
V_GPIO_OUT3 : V_GPIO_OUT2;
1588
1589
/* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1590
HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1591
HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1592
}
1593
}
1594
1595
1596
1597
/*
1598
* output leds
1599
*/
1600
static void
1601
hfcmulti_leds(struct hfc_multi *hc)
1602
{
1603
unsigned long lled;
1604
unsigned long leddw;
1605
int i, state, active, leds;
1606
struct dchannel *dch;
1607
int led[4];
1608
1609
hc->ledcount += poll;
1610
if (hc->ledcount > 4096) {
1611
hc->ledcount -= 4096;
1612
hc->ledstate = 0xAFFEAFFE;
1613
}
1614
1615
switch (hc->leds) {
1616
case 1: /* HFC-E1 OEM */
1617
/* 2 red blinking: NT mode deactivate
1618
* 2 red steady: TE mode deactivate
1619
* left green: L1 active
1620
* left red: frame sync, but no L1
1621
* right green: L2 active
1622
*/
1623
if (hc->chan[hc->dslot].sync != 2) { /* no frame sync */
1624
if (hc->chan[hc->dslot].dch->dev.D.protocol
1625
!= ISDN_P_NT_E1) {
1626
led[0] = 1;
1627
led[1] = 1;
1628
} else if (hc->ledcount>>11) {
1629
led[0] = 1;
1630
led[1] = 1;
1631
} else {
1632
led[0] = 0;
1633
led[1] = 0;
1634
}
1635
led[2] = 0;
1636
led[3] = 0;
1637
} else { /* with frame sync */
1638
/* TODO make it work */
1639
led[0] = 0;
1640
led[1] = 0;
1641
led[2] = 0;
1642
led[3] = 1;
1643
}
1644
leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1645
/* leds are inverted */
1646
if (leds != (int)hc->ledstate) {
1647
HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1648
hc->ledstate = leds;
1649
}
1650
break;
1651
1652
case 2: /* HFC-4S OEM */
1653
/* red blinking = PH_DEACTIVATE NT Mode
1654
* red steady = PH_DEACTIVATE TE Mode
1655
* green steady = PH_ACTIVATE
1656
*/
1657
for (i = 0; i < 4; i++) {
1658
state = 0;
1659
active = -1;
1660
dch = hc->chan[(i << 2) | 2].dch;
1661
if (dch) {
1662
state = dch->state;
1663
if (dch->dev.D.protocol == ISDN_P_NT_S0)
1664
active = 3;
1665
else
1666
active = 7;
1667
}
1668
if (state) {
1669
if (state == active) {
1670
led[i] = 1; /* led green */
1671
} else
1672
if (dch->dev.D.protocol == ISDN_P_TE_S0)
1673
/* TE mode: led red */
1674
led[i] = 2;
1675
else
1676
if (hc->ledcount>>11)
1677
/* led red */
1678
led[i] = 2;
1679
else
1680
/* led off */
1681
led[i] = 0;
1682
} else
1683
led[i] = 0; /* led off */
1684
}
1685
if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1686
leds = 0;
1687
for (i = 0; i < 4; i++) {
1688
if (led[i] == 1) {
1689
/*green*/
1690
leds |= (0x2 << (i * 2));
1691
} else if (led[i] == 2) {
1692
/*red*/
1693
leds |= (0x1 << (i * 2));
1694
}
1695
}
1696
if (leds != (int)hc->ledstate) {
1697
vpm_out(hc, 0, 0x1a8 + 3, leds);
1698
hc->ledstate = leds;
1699
}
1700
} else {
1701
leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1702
((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1703
((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1704
((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1705
if (leds != (int)hc->ledstate) {
1706
HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1707
HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1708
hc->ledstate = leds;
1709
}
1710
}
1711
break;
1712
1713
case 3: /* HFC 1S/2S Beronet */
1714
/* red blinking = PH_DEACTIVATE NT Mode
1715
* red steady = PH_DEACTIVATE TE Mode
1716
* green steady = PH_ACTIVATE
1717
*/
1718
for (i = 0; i < 2; i++) {
1719
state = 0;
1720
active = -1;
1721
dch = hc->chan[(i << 2) | 2].dch;
1722
if (dch) {
1723
state = dch->state;
1724
if (dch->dev.D.protocol == ISDN_P_NT_S0)
1725
active = 3;
1726
else
1727
active = 7;
1728
}
1729
if (state) {
1730
if (state == active) {
1731
led[i] = 1; /* led green */
1732
} else
1733
if (dch->dev.D.protocol == ISDN_P_TE_S0)
1734
/* TE mode: led red */
1735
led[i] = 2;
1736
else
1737
if (hc->ledcount >> 11)
1738
/* led red */
1739
led[i] = 2;
1740
else
1741
/* led off */
1742
led[i] = 0;
1743
} else
1744
led[i] = 0; /* led off */
1745
}
1746
1747
1748
leds = (led[0] > 0) | ((led[1] > 0)<<1) | ((led[0]&1)<<2)
1749
| ((led[1]&1)<<3);
1750
if (leds != (int)hc->ledstate) {
1751
HFC_outb_nodebug(hc, R_GPIO_EN1,
1752
((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1753
HFC_outb_nodebug(hc, R_GPIO_OUT1,
1754
((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1755
hc->ledstate = leds;
1756
}
1757
break;
1758
case 8: /* HFC 8S+ Beronet */
1759
lled = 0;
1760
1761
for (i = 0; i < 8; i++) {
1762
state = 0;
1763
active = -1;
1764
dch = hc->chan[(i << 2) | 2].dch;
1765
if (dch) {
1766
state = dch->state;
1767
if (dch->dev.D.protocol == ISDN_P_NT_S0)
1768
active = 3;
1769
else
1770
active = 7;
1771
}
1772
if (state) {
1773
if (state == active) {
1774
lled |= 0 << i;
1775
} else
1776
if (hc->ledcount >> 11)
1777
lled |= 0 << i;
1778
else
1779
lled |= 1 << i;
1780
} else
1781
lled |= 1 << i;
1782
}
1783
leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1784
if (leddw != hc->ledstate) {
1785
/* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1786
HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1787
/* was _io before */
1788
HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1789
outw(0x4000, hc->pci_iobase + 4);
1790
outl(leddw, hc->pci_iobase);
1791
HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1792
hc->ledstate = leddw;
1793
}
1794
break;
1795
}
1796
}
1797
/*
1798
* read dtmf coefficients
1799
*/
1800
1801
static void
1802
hfcmulti_dtmf(struct hfc_multi *hc)
1803
{
1804
s32 *coeff;
1805
u_int mantissa;
1806
int co, ch;
1807
struct bchannel *bch = NULL;
1808
u8 exponent;
1809
int dtmf = 0;
1810
int addr;
1811
u16 w_float;
1812
struct sk_buff *skb;
1813
struct mISDNhead *hh;
1814
1815
if (debug & DEBUG_HFCMULTI_DTMF)
1816
printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1817
for (ch = 0; ch <= 31; ch++) {
1818
/* only process enabled B-channels */
1819
bch = hc->chan[ch].bch;
1820
if (!bch)
1821
continue;
1822
if (!hc->created[hc->chan[ch].port])
1823
continue;
1824
if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1825
continue;
1826
if (debug & DEBUG_HFCMULTI_DTMF)
1827
printk(KERN_DEBUG "%s: dtmf channel %d:",
1828
__func__, ch);
1829
coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1830
dtmf = 1;
1831
for (co = 0; co < 8; co++) {
1832
/* read W(n-1) coefficient */
1833
addr = hc->DTMFbase + ((co<<7) | (ch<<2));
1834
HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1835
HFC_outb_nodebug(hc, R_RAM_ADDR1, addr>>8);
1836
HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr>>16)
1837
| V_ADDR_INC);
1838
w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1839
w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1840
if (debug & DEBUG_HFCMULTI_DTMF)
1841
printk(" %04x", w_float);
1842
1843
/* decode float (see chip doc) */
1844
mantissa = w_float & 0x0fff;
1845
if (w_float & 0x8000)
1846
mantissa |= 0xfffff000;
1847
exponent = (w_float>>12) & 0x7;
1848
if (exponent) {
1849
mantissa ^= 0x1000;
1850
mantissa <<= (exponent-1);
1851
}
1852
1853
/* store coefficient */
1854
coeff[co<<1] = mantissa;
1855
1856
/* read W(n) coefficient */
1857
w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1858
w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1859
if (debug & DEBUG_HFCMULTI_DTMF)
1860
printk(" %04x", w_float);
1861
1862
/* decode float (see chip doc) */
1863
mantissa = w_float & 0x0fff;
1864
if (w_float & 0x8000)
1865
mantissa |= 0xfffff000;
1866
exponent = (w_float>>12) & 0x7;
1867
if (exponent) {
1868
mantissa ^= 0x1000;
1869
mantissa <<= (exponent-1);
1870
}
1871
1872
/* store coefficient */
1873
coeff[(co<<1)|1] = mantissa;
1874
}
1875
if (debug & DEBUG_HFCMULTI_DTMF)
1876
printk(" DTMF ready %08x %08x %08x %08x "
1877
"%08x %08x %08x %08x\n",
1878
coeff[0], coeff[1], coeff[2], coeff[3],
1879
coeff[4], coeff[5], coeff[6], coeff[7]);
1880
hc->chan[ch].coeff_count++;
1881
if (hc->chan[ch].coeff_count == 8) {
1882
hc->chan[ch].coeff_count = 0;
1883
skb = mI_alloc_skb(512, GFP_ATOMIC);
1884
if (!skb) {
1885
printk(KERN_DEBUG "%s: No memory for skb\n",
1886
__func__);
1887
continue;
1888
}
1889
hh = mISDN_HEAD_P(skb);
1890
hh->prim = PH_CONTROL_IND;
1891
hh->id = DTMF_HFC_COEF;
1892
memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1893
recv_Bchannel_skb(bch, skb);
1894
}
1895
}
1896
1897
/* restart DTMF processing */
1898
hc->dtmf = dtmf;
1899
if (dtmf)
1900
HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1901
}
1902
1903
1904
/*
1905
* fill fifo as much as possible
1906
*/
1907
1908
static void
1909
hfcmulti_tx(struct hfc_multi *hc, int ch)
1910
{
1911
int i, ii, temp, len = 0;
1912
int Zspace, z1, z2; /* must be int for calculation */
1913
int Fspace, f1, f2;
1914
u_char *d;
1915
int *txpending, slot_tx;
1916
struct bchannel *bch;
1917
struct dchannel *dch;
1918
struct sk_buff **sp = NULL;
1919
int *idxp;
1920
1921
bch = hc->chan[ch].bch;
1922
dch = hc->chan[ch].dch;
1923
if ((!dch) && (!bch))
1924
return;
1925
1926
txpending = &hc->chan[ch].txpending;
1927
slot_tx = hc->chan[ch].slot_tx;
1928
if (dch) {
1929
if (!test_bit(FLG_ACTIVE, &dch->Flags))
1930
return;
1931
sp = &dch->tx_skb;
1932
idxp = &dch->tx_idx;
1933
} else {
1934
if (!test_bit(FLG_ACTIVE, &bch->Flags))
1935
return;
1936
sp = &bch->tx_skb;
1937
idxp = &bch->tx_idx;
1938
}
1939
if (*sp)
1940
len = (*sp)->len;
1941
1942
if ((!len) && *txpending != 1)
1943
return; /* no data */
1944
1945
if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1946
(hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1947
(hc->chan[ch].slot_rx < 0) &&
1948
(hc->chan[ch].slot_tx < 0))
1949
HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1950
else
1951
HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1952
HFC_wait_nodebug(hc);
1953
1954
if (*txpending == 2) {
1955
/* reset fifo */
1956
HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1957
HFC_wait_nodebug(hc);
1958
HFC_outb(hc, A_SUBCH_CFG, 0);
1959
*txpending = 1;
1960
}
1961
next_frame:
1962
if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1963
f1 = HFC_inb_nodebug(hc, A_F1);
1964
f2 = HFC_inb_nodebug(hc, A_F2);
1965
while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1966
if (debug & DEBUG_HFCMULTI_FIFO)
1967
printk(KERN_DEBUG
1968
"%s(card %d): reread f2 because %d!=%d\n",
1969
__func__, hc->id + 1, temp, f2);
1970
f2 = temp; /* repeat until F2 is equal */
1971
}
1972
Fspace = f2 - f1 - 1;
1973
if (Fspace < 0)
1974
Fspace += hc->Flen;
1975
/*
1976
* Old FIFO handling doesn't give us the current Z2 read
1977
* pointer, so we cannot send the next frame before the fifo
1978
* is empty. It makes no difference except for a slightly
1979
* lower performance.
1980
*/
1981
if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1982
if (f1 != f2)
1983
Fspace = 0;
1984
else
1985
Fspace = 1;
1986
}
1987
/* one frame only for ST D-channels, to allow resending */
1988
if (hc->ctype != HFC_TYPE_E1 && dch) {
1989
if (f1 != f2)
1990
Fspace = 0;
1991
}
1992
/* F-counter full condition */
1993
if (Fspace == 0)
1994
return;
1995
}
1996
z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1997
z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1998
while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1999
if (debug & DEBUG_HFCMULTI_FIFO)
2000
printk(KERN_DEBUG "%s(card %d): reread z2 because "
2001
"%d!=%d\n", __func__, hc->id + 1, temp, z2);
2002
z2 = temp; /* repeat unti Z2 is equal */
2003
}
2004
hc->chan[ch].Zfill = z1 - z2;
2005
if (hc->chan[ch].Zfill < 0)
2006
hc->chan[ch].Zfill += hc->Zlen;
2007
Zspace = z2 - z1;
2008
if (Zspace <= 0)
2009
Zspace += hc->Zlen;
2010
Zspace -= 4; /* keep not too full, so pointers will not overrun */
2011
/* fill transparent data only to maxinum transparent load (minus 4) */
2012
if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2013
Zspace = Zspace - hc->Zlen + hc->max_trans;
2014
if (Zspace <= 0) /* no space of 4 bytes */
2015
return;
2016
2017
/* if no data */
2018
if (!len) {
2019
if (z1 == z2) { /* empty */
2020
/* if done with FIFO audio data during PCM connection */
2021
if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2022
*txpending && slot_tx >= 0) {
2023
if (debug & DEBUG_HFCMULTI_MODE)
2024
printk(KERN_DEBUG
2025
"%s: reconnecting PCM due to no "
2026
"more FIFO data: channel %d "
2027
"slot_tx %d\n",
2028
__func__, ch, slot_tx);
2029
/* connect slot */
2030
if (hc->ctype == HFC_TYPE_XHFC)
2031
HFC_outb(hc, A_CON_HDLC, 0xc0
2032
| 0x07 << 2 | V_HDLC_TRP | V_IFF);
2033
/* Enable FIFO, no interrupt */
2034
else
2035
HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2036
V_HDLC_TRP | V_IFF);
2037
HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
2038
HFC_wait_nodebug(hc);
2039
if (hc->ctype == HFC_TYPE_XHFC)
2040
HFC_outb(hc, A_CON_HDLC, 0xc0
2041
| 0x07 << 2 | V_HDLC_TRP | V_IFF);
2042
/* Enable FIFO, no interrupt */
2043
else
2044
HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2045
V_HDLC_TRP | V_IFF);
2046
HFC_outb_nodebug(hc, R_FIFO, ch<<1);
2047
HFC_wait_nodebug(hc);
2048
}
2049
*txpending = 0;
2050
}
2051
return; /* no data */
2052
}
2053
2054
/* "fill fifo if empty" feature */
2055
if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2056
&& !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2057
if (debug & DEBUG_HFCMULTI_FILL)
2058
printk(KERN_DEBUG "%s: buffer empty, so we have "
2059
"underrun\n", __func__);
2060
/* fill buffer, to prevent future underrun */
2061
hc->write_fifo(hc, hc->silence_data, poll >> 1);
2062
Zspace -= (poll >> 1);
2063
}
2064
2065
/* if audio data and connected slot */
2066
if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2067
&& slot_tx >= 0) {
2068
if (debug & DEBUG_HFCMULTI_MODE)
2069
printk(KERN_DEBUG "%s: disconnecting PCM due to "
2070
"FIFO data: channel %d slot_tx %d\n",
2071
__func__, ch, slot_tx);
2072
/* disconnect slot */
2073
if (hc->ctype == HFC_TYPE_XHFC)
2074
HFC_outb(hc, A_CON_HDLC, 0x80
2075
| 0x07 << 2 | V_HDLC_TRP | V_IFF);
2076
/* Enable FIFO, no interrupt */
2077
else
2078
HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2079
V_HDLC_TRP | V_IFF);
2080
HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
2081
HFC_wait_nodebug(hc);
2082
if (hc->ctype == HFC_TYPE_XHFC)
2083
HFC_outb(hc, A_CON_HDLC, 0x80
2084
| 0x07 << 2 | V_HDLC_TRP | V_IFF);
2085
/* Enable FIFO, no interrupt */
2086
else
2087
HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2088
V_HDLC_TRP | V_IFF);
2089
HFC_outb_nodebug(hc, R_FIFO, ch<<1);
2090
HFC_wait_nodebug(hc);
2091
}
2092
*txpending = 1;
2093
2094
/* show activity */
2095
hc->activity[hc->chan[ch].port] = 1;
2096
2097
/* fill fifo to what we have left */
2098
ii = len;
2099
if (dch || test_bit(FLG_HDLC, &bch->Flags))
2100
temp = 1;
2101
else
2102
temp = 0;
2103
i = *idxp;
2104
d = (*sp)->data + i;
2105
if (ii - i > Zspace)
2106
ii = Zspace + i;
2107
if (debug & DEBUG_HFCMULTI_FIFO)
2108
printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2109
"left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2110
__func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2111
temp ? "HDLC" : "TRANS");
2112
2113
/* Have to prep the audio data */
2114
hc->write_fifo(hc, d, ii - i);
2115
hc->chan[ch].Zfill += ii - i;
2116
*idxp = ii;
2117
2118
/* if not all data has been written */
2119
if (ii != len) {
2120
/* NOTE: fifo is started by the calling function */
2121
return;
2122
}
2123
2124
/* if all data has been written, terminate frame */
2125
if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2126
/* increment f-counter */
2127
HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2128
HFC_wait_nodebug(hc);
2129
}
2130
2131
/* send confirm, since get_net_bframe will not do it with trans */
2132
if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2133
confirm_Bsend(bch);
2134
2135
/* check for next frame */
2136
dev_kfree_skb(*sp);
2137
if (bch && get_next_bframe(bch)) { /* hdlc is confirmed here */
2138
len = (*sp)->len;
2139
goto next_frame;
2140
}
2141
if (dch && get_next_dframe(dch)) {
2142
len = (*sp)->len;
2143
goto next_frame;
2144
}
2145
2146
/*
2147
* now we have no more data, so in case of transparent,
2148
* we set the last byte in fifo to 'silence' in case we will get
2149
* no more data at all. this prevents sending an undefined value.
2150
*/
2151
if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2152
HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2153
}
2154
2155
2156
/* NOTE: only called if E1 card is in active state */
2157
static void
2158
hfcmulti_rx(struct hfc_multi *hc, int ch)
2159
{
2160
int temp;
2161
int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2162
int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2163
int again = 0;
2164
struct bchannel *bch;
2165
struct dchannel *dch;
2166
struct sk_buff *skb, **sp = NULL;
2167
int maxlen;
2168
2169
bch = hc->chan[ch].bch;
2170
dch = hc->chan[ch].dch;
2171
if ((!dch) && (!bch))
2172
return;
2173
if (dch) {
2174
if (!test_bit(FLG_ACTIVE, &dch->Flags))
2175
return;
2176
sp = &dch->rx_skb;
2177
maxlen = dch->maxlen;
2178
} else {
2179
if (!test_bit(FLG_ACTIVE, &bch->Flags))
2180
return;
2181
sp = &bch->rx_skb;
2182
maxlen = bch->maxlen;
2183
}
2184
next_frame:
2185
/* on first AND before getting next valid frame, R_FIFO must be written
2186
to. */
2187
if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2188
(hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2189
(hc->chan[ch].slot_rx < 0) &&
2190
(hc->chan[ch].slot_tx < 0))
2191
HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch<<1) | 1);
2192
else
2193
HFC_outb_nodebug(hc, R_FIFO, (ch<<1)|1);
2194
HFC_wait_nodebug(hc);
2195
2196
/* ignore if rx is off BUT change fifo (above) to start pending TX */
2197
if (hc->chan[ch].rx_off)
2198
return;
2199
2200
if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2201
f1 = HFC_inb_nodebug(hc, A_F1);
2202
while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2203
if (debug & DEBUG_HFCMULTI_FIFO)
2204
printk(KERN_DEBUG
2205
"%s(card %d): reread f1 because %d!=%d\n",
2206
__func__, hc->id + 1, temp, f1);
2207
f1 = temp; /* repeat until F1 is equal */
2208
}
2209
f2 = HFC_inb_nodebug(hc, A_F2);
2210
}
2211
z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2212
while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2213
if (debug & DEBUG_HFCMULTI_FIFO)
2214
printk(KERN_DEBUG "%s(card %d): reread z2 because "
2215
"%d!=%d\n", __func__, hc->id + 1, temp, z2);
2216
z1 = temp; /* repeat until Z1 is equal */
2217
}
2218
z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2219
Zsize = z1 - z2;
2220
if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2221
/* complete hdlc frame */
2222
Zsize++;
2223
if (Zsize < 0)
2224
Zsize += hc->Zlen;
2225
/* if buffer is empty */
2226
if (Zsize <= 0)
2227
return;
2228
2229
if (*sp == NULL) {
2230
*sp = mI_alloc_skb(maxlen + 3, GFP_ATOMIC);
2231
if (*sp == NULL) {
2232
printk(KERN_DEBUG "%s: No mem for rx_skb\n",
2233
__func__);
2234
return;
2235
}
2236
}
2237
/* show activity */
2238
hc->activity[hc->chan[ch].port] = 1;
2239
2240
/* empty fifo with what we have */
2241
if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2242
if (debug & DEBUG_HFCMULTI_FIFO)
2243
printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2244
"bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2245
"got=%d (again %d)\n", __func__, hc->id + 1, ch,
2246
Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2247
f1, f2, Zsize + (*sp)->len, again);
2248
/* HDLC */
2249
if ((Zsize + (*sp)->len) > (maxlen + 3)) {
2250
if (debug & DEBUG_HFCMULTI_FIFO)
2251
printk(KERN_DEBUG
2252
"%s(card %d): hdlc-frame too large.\n",
2253
__func__, hc->id + 1);
2254
skb_trim(*sp, 0);
2255
HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2256
HFC_wait_nodebug(hc);
2257
return;
2258
}
2259
2260
hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2261
2262
if (f1 != f2) {
2263
/* increment Z2,F2-counter */
2264
HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2265
HFC_wait_nodebug(hc);
2266
/* check size */
2267
if ((*sp)->len < 4) {
2268
if (debug & DEBUG_HFCMULTI_FIFO)
2269
printk(KERN_DEBUG
2270
"%s(card %d): Frame below minimum "
2271
"size\n", __func__, hc->id + 1);
2272
skb_trim(*sp, 0);
2273
goto next_frame;
2274
}
2275
/* there is at least one complete frame, check crc */
2276
if ((*sp)->data[(*sp)->len - 1]) {
2277
if (debug & DEBUG_HFCMULTI_CRC)
2278
printk(KERN_DEBUG
2279
"%s: CRC-error\n", __func__);
2280
skb_trim(*sp, 0);
2281
goto next_frame;
2282
}
2283
skb_trim(*sp, (*sp)->len - 3);
2284
if ((*sp)->len < MISDN_COPY_SIZE) {
2285
skb = *sp;
2286
*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2287
if (*sp) {
2288
memcpy(skb_put(*sp, skb->len),
2289
skb->data, skb->len);
2290
skb_trim(skb, 0);
2291
} else {
2292
printk(KERN_DEBUG "%s: No mem\n",
2293
__func__);
2294
*sp = skb;
2295
skb = NULL;
2296
}
2297
} else {
2298
skb = NULL;
2299
}
2300
if (debug & DEBUG_HFCMULTI_FIFO) {
2301
printk(KERN_DEBUG "%s(card %d):",
2302
__func__, hc->id + 1);
2303
temp = 0;
2304
while (temp < (*sp)->len)
2305
printk(" %02x", (*sp)->data[temp++]);
2306
printk("\n");
2307
}
2308
if (dch)
2309
recv_Dchannel(dch);
2310
else
2311
recv_Bchannel(bch, MISDN_ID_ANY);
2312
*sp = skb;
2313
again++;
2314
goto next_frame;
2315
}
2316
/* there is an incomplete frame */
2317
} else {
2318
/* transparent */
2319
if (Zsize > skb_tailroom(*sp))
2320
Zsize = skb_tailroom(*sp);
2321
hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2322
if (((*sp)->len) < MISDN_COPY_SIZE) {
2323
skb = *sp;
2324
*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2325
if (*sp) {
2326
memcpy(skb_put(*sp, skb->len),
2327
skb->data, skb->len);
2328
skb_trim(skb, 0);
2329
} else {
2330
printk(KERN_DEBUG "%s: No mem\n", __func__);
2331
*sp = skb;
2332
skb = NULL;
2333
}
2334
} else {
2335
skb = NULL;
2336
}
2337
if (debug & DEBUG_HFCMULTI_FIFO)
2338
printk(KERN_DEBUG
2339
"%s(card %d): fifo(%d) reading %d bytes "
2340
"(z1=%04x, z2=%04x) TRANS\n",
2341
__func__, hc->id + 1, ch, Zsize, z1, z2);
2342
/* only bch is transparent */
2343
recv_Bchannel(bch, hc->chan[ch].Zfill);
2344
*sp = skb;
2345
}
2346
}
2347
2348
2349
/*
2350
* Interrupt handler
2351
*/
2352
static void
2353
signal_state_up(struct dchannel *dch, int info, char *msg)
2354
{
2355
struct sk_buff *skb;
2356
int id, data = info;
2357
2358
if (debug & DEBUG_HFCMULTI_STATE)
2359
printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2360
2361
id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2362
2363
skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2364
GFP_ATOMIC);
2365
if (!skb)
2366
return;
2367
recv_Dchannel_skb(dch, skb);
2368
}
2369
2370
static inline void
2371
handle_timer_irq(struct hfc_multi *hc)
2372
{
2373
int ch, temp;
2374
struct dchannel *dch;
2375
u_long flags;
2376
2377
/* process queued resync jobs */
2378
if (hc->e1_resync) {
2379
/* lock, so e1_resync gets not changed */
2380
spin_lock_irqsave(&HFClock, flags);
2381
if (hc->e1_resync & 1) {
2382
if (debug & DEBUG_HFCMULTI_PLXSD)
2383
printk(KERN_DEBUG "Enable SYNC_I\n");
2384
HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2385
/* disable JATT, if RX_SYNC is set */
2386
if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2387
HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2388
}
2389
if (hc->e1_resync & 2) {
2390
if (debug & DEBUG_HFCMULTI_PLXSD)
2391
printk(KERN_DEBUG "Enable jatt PLL\n");
2392
HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2393
}
2394
if (hc->e1_resync & 4) {
2395
if (debug & DEBUG_HFCMULTI_PLXSD)
2396
printk(KERN_DEBUG
2397
"Enable QUARTZ for HFC-E1\n");
2398
/* set jatt to quartz */
2399
HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2400
| V_JATT_OFF);
2401
/* switch to JATT, in case it is not already */
2402
HFC_outb(hc, R_SYNC_OUT, 0);
2403
}
2404
hc->e1_resync = 0;
2405
spin_unlock_irqrestore(&HFClock, flags);
2406
}
2407
2408
if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2409
for (ch = 0; ch <= 31; ch++) {
2410
if (hc->created[hc->chan[ch].port]) {
2411
hfcmulti_tx(hc, ch);
2412
/* fifo is started when switching to rx-fifo */
2413
hfcmulti_rx(hc, ch);
2414
if (hc->chan[ch].dch &&
2415
hc->chan[ch].nt_timer > -1) {
2416
dch = hc->chan[ch].dch;
2417
if (!(--hc->chan[ch].nt_timer)) {
2418
schedule_event(dch,
2419
FLG_PHCHANGE);
2420
if (debug &
2421
DEBUG_HFCMULTI_STATE)
2422
printk(KERN_DEBUG
2423
"%s: nt_timer at "
2424
"state %x\n",
2425
__func__,
2426
dch->state);
2427
}
2428
}
2429
}
2430
}
2431
if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2432
dch = hc->chan[hc->dslot].dch;
2433
if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
2434
/* LOS */
2435
temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2436
if (!temp && hc->chan[hc->dslot].los)
2437
signal_state_up(dch, L1_SIGNAL_LOS_ON,
2438
"LOS detected");
2439
if (temp && !hc->chan[hc->dslot].los)
2440
signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2441
"LOS gone");
2442
hc->chan[hc->dslot].los = temp;
2443
}
2444
if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dslot].cfg)) {
2445
/* AIS */
2446
temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2447
if (!temp && hc->chan[hc->dslot].ais)
2448
signal_state_up(dch, L1_SIGNAL_AIS_ON,
2449
"AIS detected");
2450
if (temp && !hc->chan[hc->dslot].ais)
2451
signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2452
"AIS gone");
2453
hc->chan[hc->dslot].ais = temp;
2454
}
2455
if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dslot].cfg)) {
2456
/* SLIP */
2457
temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2458
if (!temp && hc->chan[hc->dslot].slip_rx)
2459
signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2460
" bit SLIP detected RX");
2461
hc->chan[hc->dslot].slip_rx = temp;
2462
temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2463
if (!temp && hc->chan[hc->dslot].slip_tx)
2464
signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2465
" bit SLIP detected TX");
2466
hc->chan[hc->dslot].slip_tx = temp;
2467
}
2468
if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dslot].cfg)) {
2469
/* RDI */
2470
temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2471
if (!temp && hc->chan[hc->dslot].rdi)
2472
signal_state_up(dch, L1_SIGNAL_RDI_ON,
2473
"RDI detected");
2474
if (temp && !hc->chan[hc->dslot].rdi)
2475
signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2476
"RDI gone");
2477
hc->chan[hc->dslot].rdi = temp;
2478
}
2479
temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2480
switch (hc->chan[hc->dslot].sync) {
2481
case 0:
2482
if ((temp & 0x60) == 0x60) {
2483
if (debug & DEBUG_HFCMULTI_SYNC)
2484
printk(KERN_DEBUG
2485
"%s: (id=%d) E1 now "
2486
"in clock sync\n",
2487
__func__, hc->id);
2488
HFC_outb(hc, R_RX_OFF,
2489
hc->chan[hc->dslot].jitter | V_RX_INIT);
2490
HFC_outb(hc, R_TX_OFF,
2491
hc->chan[hc->dslot].jitter | V_RX_INIT);
2492
hc->chan[hc->dslot].sync = 1;
2493
goto check_framesync;
2494
}
2495
break;
2496
case 1:
2497
if ((temp & 0x60) != 0x60) {
2498
if (debug & DEBUG_HFCMULTI_SYNC)
2499
printk(KERN_DEBUG
2500
"%s: (id=%d) E1 "
2501
"lost clock sync\n",
2502
__func__, hc->id);
2503
hc->chan[hc->dslot].sync = 0;
2504
break;
2505
}
2506
check_framesync:
2507
temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2508
if (temp == 0x27) {
2509
if (debug & DEBUG_HFCMULTI_SYNC)
2510
printk(KERN_DEBUG
2511
"%s: (id=%d) E1 "
2512
"now in frame sync\n",
2513
__func__, hc->id);
2514
hc->chan[hc->dslot].sync = 2;
2515
}
2516
break;
2517
case 2:
2518
if ((temp & 0x60) != 0x60) {
2519
if (debug & DEBUG_HFCMULTI_SYNC)
2520
printk(KERN_DEBUG
2521
"%s: (id=%d) E1 lost "
2522
"clock & frame sync\n",
2523
__func__, hc->id);
2524
hc->chan[hc->dslot].sync = 0;
2525
break;
2526
}
2527
temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2528
if (temp != 0x27) {
2529
if (debug & DEBUG_HFCMULTI_SYNC)
2530
printk(KERN_DEBUG
2531
"%s: (id=%d) E1 "
2532
"lost frame sync\n",
2533
__func__, hc->id);
2534
hc->chan[hc->dslot].sync = 1;
2535
}
2536
break;
2537
}
2538
}
2539
2540
if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2541
hfcmulti_watchdog(hc);
2542
2543
if (hc->leds)
2544
hfcmulti_leds(hc);
2545
}
2546
2547
static void
2548
ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2549
{
2550
struct dchannel *dch;
2551
int ch;
2552
int active;
2553
u_char st_status, temp;
2554
2555
/* state machine */
2556
for (ch = 0; ch <= 31; ch++) {
2557
if (hc->chan[ch].dch) {
2558
dch = hc->chan[ch].dch;
2559
if (r_irq_statech & 1) {
2560
HFC_outb_nodebug(hc, R_ST_SEL,
2561
hc->chan[ch].port);
2562
/* undocumented: delay after R_ST_SEL */
2563
udelay(1);
2564
/* undocumented: status changes during read */
2565
st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2566
while (st_status != (temp =
2567
HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2568
if (debug & DEBUG_HFCMULTI_STATE)
2569
printk(KERN_DEBUG "%s: reread "
2570
"STATE because %d!=%d\n",
2571
__func__, temp,
2572
st_status);
2573
st_status = temp; /* repeat */
2574
}
2575
2576
/* Speech Design TE-sync indication */
2577
if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2578
dch->dev.D.protocol == ISDN_P_TE_S0) {
2579
if (st_status & V_FR_SYNC_ST)
2580
hc->syncronized |=
2581
(1 << hc->chan[ch].port);
2582
else
2583
hc->syncronized &=
2584
~(1 << hc->chan[ch].port);
2585
}
2586
dch->state = st_status & 0x0f;
2587
if (dch->dev.D.protocol == ISDN_P_NT_S0)
2588
active = 3;
2589
else
2590
active = 7;
2591
if (dch->state == active) {
2592
HFC_outb_nodebug(hc, R_FIFO,
2593
(ch << 1) | 1);
2594
HFC_wait_nodebug(hc);
2595
HFC_outb_nodebug(hc,
2596
R_INC_RES_FIFO, V_RES_F);
2597
HFC_wait_nodebug(hc);
2598
dch->tx_idx = 0;
2599
}
2600
schedule_event(dch, FLG_PHCHANGE);
2601
if (debug & DEBUG_HFCMULTI_STATE)
2602
printk(KERN_DEBUG
2603
"%s: S/T newstate %x port %d\n",
2604
__func__, dch->state,
2605
hc->chan[ch].port);
2606
}
2607
r_irq_statech >>= 1;
2608
}
2609
}
2610
if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2611
plxsd_checksync(hc, 0);
2612
}
2613
2614
static void
2615
fifo_irq(struct hfc_multi *hc, int block)
2616
{
2617
int ch, j;
2618
struct dchannel *dch;
2619
struct bchannel *bch;
2620
u_char r_irq_fifo_bl;
2621
2622
r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2623
j = 0;
2624
while (j < 8) {
2625
ch = (block << 2) + (j >> 1);
2626
dch = hc->chan[ch].dch;
2627
bch = hc->chan[ch].bch;
2628
if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2629
j += 2;
2630
continue;
2631
}
2632
if (dch && (r_irq_fifo_bl & (1 << j)) &&
2633
test_bit(FLG_ACTIVE, &dch->Flags)) {
2634
hfcmulti_tx(hc, ch);
2635
/* start fifo */
2636
HFC_outb_nodebug(hc, R_FIFO, 0);
2637
HFC_wait_nodebug(hc);
2638
}
2639
if (bch && (r_irq_fifo_bl & (1 << j)) &&
2640
test_bit(FLG_ACTIVE, &bch->Flags)) {
2641
hfcmulti_tx(hc, ch);
2642
/* start fifo */
2643
HFC_outb_nodebug(hc, R_FIFO, 0);
2644
HFC_wait_nodebug(hc);
2645
}
2646
j++;
2647
if (dch && (r_irq_fifo_bl & (1 << j)) &&
2648
test_bit(FLG_ACTIVE, &dch->Flags)) {
2649
hfcmulti_rx(hc, ch);
2650
}
2651
if (bch && (r_irq_fifo_bl & (1 << j)) &&
2652
test_bit(FLG_ACTIVE, &bch->Flags)) {
2653
hfcmulti_rx(hc, ch);
2654
}
2655
j++;
2656
}
2657
}
2658
2659
#ifdef IRQ_DEBUG
2660
int irqsem;
2661
#endif
2662
static irqreturn_t
2663
hfcmulti_interrupt(int intno, void *dev_id)
2664
{
2665
#ifdef IRQCOUNT_DEBUG
2666
static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2667
iq5 = 0, iq6 = 0, iqcnt = 0;
2668
#endif
2669
struct hfc_multi *hc = dev_id;
2670
struct dchannel *dch;
2671
u_char r_irq_statech, status, r_irq_misc, r_irq_oview;
2672
int i;
2673
void __iomem *plx_acc;
2674
u_short wval;
2675
u_char e1_syncsta, temp;
2676
u_long flags;
2677
2678
if (!hc) {
2679
printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2680
return IRQ_NONE;
2681
}
2682
2683
spin_lock(&hc->lock);
2684
2685
#ifdef IRQ_DEBUG
2686
if (irqsem)
2687
printk(KERN_ERR "irq for card %d during irq from "
2688
"card %d, this is no bug.\n", hc->id + 1, irqsem);
2689
irqsem = hc->id + 1;
2690
#endif
2691
#ifdef CONFIG_MISDN_HFCMULTI_8xx
2692
if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2693
goto irq_notforus;
2694
#endif
2695
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2696
spin_lock_irqsave(&plx_lock, flags);
2697
plx_acc = hc->plx_membase + PLX_INTCSR;
2698
wval = readw(plx_acc);
2699
spin_unlock_irqrestore(&plx_lock, flags);
2700
if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2701
goto irq_notforus;
2702
}
2703
2704
status = HFC_inb_nodebug(hc, R_STATUS);
2705
r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2706
#ifdef IRQCOUNT_DEBUG
2707
if (r_irq_statech)
2708
iq1++;
2709
if (status & V_DTMF_STA)
2710
iq2++;
2711
if (status & V_LOST_STA)
2712
iq3++;
2713
if (status & V_EXT_IRQSTA)
2714
iq4++;
2715
if (status & V_MISC_IRQSTA)
2716
iq5++;
2717
if (status & V_FR_IRQSTA)
2718
iq6++;
2719
if (iqcnt++ > 5000) {
2720
printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2721
iq1, iq2, iq3, iq4, iq5, iq6);
2722
iqcnt = 0;
2723
}
2724
#endif
2725
2726
if (!r_irq_statech &&
2727
!(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2728
V_MISC_IRQSTA | V_FR_IRQSTA))) {
2729
/* irq is not for us */
2730
goto irq_notforus;
2731
}
2732
hc->irqcnt++;
2733
if (r_irq_statech) {
2734
if (hc->ctype != HFC_TYPE_E1)
2735
ph_state_irq(hc, r_irq_statech);
2736
}
2737
if (status & V_EXT_IRQSTA)
2738
; /* external IRQ */
2739
if (status & V_LOST_STA) {
2740
/* LOST IRQ */
2741
HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2742
}
2743
if (status & V_MISC_IRQSTA) {
2744
/* misc IRQ */
2745
r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2746
r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2747
if (r_irq_misc & V_STA_IRQ) {
2748
if (hc->ctype == HFC_TYPE_E1) {
2749
/* state machine */
2750
dch = hc->chan[hc->dslot].dch;
2751
e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2752
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2753
&& hc->e1_getclock) {
2754
if (e1_syncsta & V_FR_SYNC_E1)
2755
hc->syncronized = 1;
2756
else
2757
hc->syncronized = 0;
2758
}
2759
/* undocumented: status changes during read */
2760
dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA);
2761
while (dch->state != (temp =
2762
HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2763
if (debug & DEBUG_HFCMULTI_STATE)
2764
printk(KERN_DEBUG "%s: reread "
2765
"STATE because %d!=%d\n",
2766
__func__, temp,
2767
dch->state);
2768
dch->state = temp; /* repeat */
2769
}
2770
dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA)
2771
& 0x7;
2772
schedule_event(dch, FLG_PHCHANGE);
2773
if (debug & DEBUG_HFCMULTI_STATE)
2774
printk(KERN_DEBUG
2775
"%s: E1 (id=%d) newstate %x\n",
2776
__func__, hc->id, dch->state);
2777
if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2778
plxsd_checksync(hc, 0);
2779
}
2780
}
2781
if (r_irq_misc & V_TI_IRQ) {
2782
if (hc->iclock_on)
2783
mISDN_clock_update(hc->iclock, poll, NULL);
2784
handle_timer_irq(hc);
2785
}
2786
2787
if (r_irq_misc & V_DTMF_IRQ)
2788
hfcmulti_dtmf(hc);
2789
2790
if (r_irq_misc & V_IRQ_PROC) {
2791
static int irq_proc_cnt;
2792
if (!irq_proc_cnt++)
2793
printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2794
" this should not happen\n", __func__);
2795
}
2796
2797
}
2798
if (status & V_FR_IRQSTA) {
2799
/* FIFO IRQ */
2800
r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2801
for (i = 0; i < 8; i++) {
2802
if (r_irq_oview & (1 << i))
2803
fifo_irq(hc, i);
2804
}
2805
}
2806
2807
#ifdef IRQ_DEBUG
2808
irqsem = 0;
2809
#endif
2810
spin_unlock(&hc->lock);
2811
return IRQ_HANDLED;
2812
2813
irq_notforus:
2814
#ifdef IRQ_DEBUG
2815
irqsem = 0;
2816
#endif
2817
spin_unlock(&hc->lock);
2818
return IRQ_NONE;
2819
}
2820
2821
2822
/*
2823
* timer callback for D-chan busy resolution. Currently no function
2824
*/
2825
2826
static void
2827
hfcmulti_dbusy_timer(struct hfc_multi *hc)
2828
{
2829
}
2830
2831
2832
/*
2833
* activate/deactivate hardware for selected channels and mode
2834
*
2835
* configure B-channel with the given protocol
2836
* ch eqals to the HFC-channel (0-31)
2837
* ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2838
* for S/T, 1-31 for E1)
2839
* the hdlc interrupts will be set/unset
2840
*/
2841
static int
2842
mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2843
int bank_tx, int slot_rx, int bank_rx)
2844
{
2845
int flow_tx = 0, flow_rx = 0, routing = 0;
2846
int oslot_tx, oslot_rx;
2847
int conf;
2848
2849
if (ch < 0 || ch > 31)
2850
return -EINVAL;
2851
oslot_tx = hc->chan[ch].slot_tx;
2852
oslot_rx = hc->chan[ch].slot_rx;
2853
conf = hc->chan[ch].conf;
2854
2855
if (debug & DEBUG_HFCMULTI_MODE)
2856
printk(KERN_DEBUG
2857
"%s: card %d channel %d protocol %x slot old=%d new=%d "
2858
"bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2859
__func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2860
bank_tx, oslot_rx, slot_rx, bank_rx);
2861
2862
if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2863
/* remove from slot */
2864
if (debug & DEBUG_HFCMULTI_MODE)
2865
printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2866
__func__, oslot_tx);
2867
if (hc->slot_owner[oslot_tx<<1] == ch) {
2868
HFC_outb(hc, R_SLOT, oslot_tx << 1);
2869
HFC_outb(hc, A_SL_CFG, 0);
2870
if (hc->ctype != HFC_TYPE_XHFC)
2871
HFC_outb(hc, A_CONF, 0);
2872
hc->slot_owner[oslot_tx<<1] = -1;
2873
} else {
2874
if (debug & DEBUG_HFCMULTI_MODE)
2875
printk(KERN_DEBUG
2876
"%s: we are not owner of this tx slot "
2877
"anymore, channel %d is.\n",
2878
__func__, hc->slot_owner[oslot_tx<<1]);
2879
}
2880
}
2881
2882
if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2883
/* remove from slot */
2884
if (debug & DEBUG_HFCMULTI_MODE)
2885
printk(KERN_DEBUG
2886
"%s: remove from slot %d (RX)\n",
2887
__func__, oslot_rx);
2888
if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2889
HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2890
HFC_outb(hc, A_SL_CFG, 0);
2891
hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2892
} else {
2893
if (debug & DEBUG_HFCMULTI_MODE)
2894
printk(KERN_DEBUG
2895
"%s: we are not owner of this rx slot "
2896
"anymore, channel %d is.\n",
2897
__func__,
2898
hc->slot_owner[(oslot_rx << 1) | 1]);
2899
}
2900
}
2901
2902
if (slot_tx < 0) {
2903
flow_tx = 0x80; /* FIFO->ST */
2904
/* disable pcm slot */
2905
hc->chan[ch].slot_tx = -1;
2906
hc->chan[ch].bank_tx = 0;
2907
} else {
2908
/* set pcm slot */
2909
if (hc->chan[ch].txpending)
2910
flow_tx = 0x80; /* FIFO->ST */
2911
else
2912
flow_tx = 0xc0; /* PCM->ST */
2913
/* put on slot */
2914
routing = bank_tx ? 0xc0 : 0x80;
2915
if (conf >= 0 || bank_tx > 1)
2916
routing = 0x40; /* loop */
2917
if (debug & DEBUG_HFCMULTI_MODE)
2918
printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2919
" %d flow %02x routing %02x conf %d (TX)\n",
2920
__func__, ch, slot_tx, bank_tx,
2921
flow_tx, routing, conf);
2922
HFC_outb(hc, R_SLOT, slot_tx << 1);
2923
HFC_outb(hc, A_SL_CFG, (ch<<1) | routing);
2924
if (hc->ctype != HFC_TYPE_XHFC)
2925
HFC_outb(hc, A_CONF,
2926
(conf < 0) ? 0 : (conf | V_CONF_SL));
2927
hc->slot_owner[slot_tx << 1] = ch;
2928
hc->chan[ch].slot_tx = slot_tx;
2929
hc->chan[ch].bank_tx = bank_tx;
2930
}
2931
if (slot_rx < 0) {
2932
/* disable pcm slot */
2933
flow_rx = 0x80; /* ST->FIFO */
2934
hc->chan[ch].slot_rx = -1;
2935
hc->chan[ch].bank_rx = 0;
2936
} else {
2937
/* set pcm slot */
2938
if (hc->chan[ch].txpending)
2939
flow_rx = 0x80; /* ST->FIFO */
2940
else
2941
flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2942
/* put on slot */
2943
routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2944
if (conf >= 0 || bank_rx > 1)
2945
routing = 0x40; /* loop */
2946
if (debug & DEBUG_HFCMULTI_MODE)
2947
printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2948
" %d flow %02x routing %02x conf %d (RX)\n",
2949
__func__, ch, slot_rx, bank_rx,
2950
flow_rx, routing, conf);
2951
HFC_outb(hc, R_SLOT, (slot_rx<<1) | V_SL_DIR);
2952
HFC_outb(hc, A_SL_CFG, (ch<<1) | V_CH_DIR | routing);
2953
hc->slot_owner[(slot_rx<<1)|1] = ch;
2954
hc->chan[ch].slot_rx = slot_rx;
2955
hc->chan[ch].bank_rx = bank_rx;
2956
}
2957
2958
switch (protocol) {
2959
case (ISDN_P_NONE):
2960
/* disable TX fifo */
2961
HFC_outb(hc, R_FIFO, ch << 1);
2962
HFC_wait(hc);
2963
HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2964
HFC_outb(hc, A_SUBCH_CFG, 0);
2965
HFC_outb(hc, A_IRQ_MSK, 0);
2966
HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2967
HFC_wait(hc);
2968
/* disable RX fifo */
2969
HFC_outb(hc, R_FIFO, (ch<<1)|1);
2970
HFC_wait(hc);
2971
HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2972
HFC_outb(hc, A_SUBCH_CFG, 0);
2973
HFC_outb(hc, A_IRQ_MSK, 0);
2974
HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2975
HFC_wait(hc);
2976
if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
2977
hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2978
((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
2979
HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2980
/* undocumented: delay after R_ST_SEL */
2981
udelay(1);
2982
HFC_outb(hc, A_ST_CTRL0,
2983
hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2984
}
2985
if (hc->chan[ch].bch) {
2986
test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2987
test_and_clear_bit(FLG_TRANSPARENT,
2988
&hc->chan[ch].bch->Flags);
2989
}
2990
break;
2991
case (ISDN_P_B_RAW): /* B-channel */
2992
2993
if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2994
(hc->chan[ch].slot_rx < 0) &&
2995
(hc->chan[ch].slot_tx < 0)) {
2996
2997
printk(KERN_DEBUG
2998
"Setting B-channel %d to echo cancelable "
2999
"state on PCM slot %d\n", ch,
3000
((ch / 4) * 8) + ((ch % 4) * 4) + 1);
3001
printk(KERN_DEBUG
3002
"Enabling pass through for channel\n");
3003
vpm_out(hc, ch, ((ch / 4) * 8) +
3004
((ch % 4) * 4) + 1, 0x01);
3005
/* rx path */
3006
/* S/T -> PCM */
3007
HFC_outb(hc, R_FIFO, (ch << 1));
3008
HFC_wait(hc);
3009
HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3010
HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3011
((ch % 4) * 4) + 1) << 1);
3012
HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
3013
3014
/* PCM -> FIFO */
3015
HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3016
HFC_wait(hc);
3017
HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3018
HFC_outb(hc, A_SUBCH_CFG, 0);
3019
HFC_outb(hc, A_IRQ_MSK, 0);
3020
HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3021
HFC_wait(hc);
3022
HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3023
((ch % 4) * 4) + 1) << 1) | 1);
3024
HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3025
3026
/* tx path */
3027
/* PCM -> S/T */
3028
HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3029
HFC_wait(hc);
3030
HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3031
HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3032
((ch % 4) * 4)) << 1) | 1);
3033
HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3034
3035
/* FIFO -> PCM */
3036
HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3037
HFC_wait(hc);
3038
HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3039
HFC_outb(hc, A_SUBCH_CFG, 0);
3040
HFC_outb(hc, A_IRQ_MSK, 0);
3041
HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3042
HFC_wait(hc);
3043
/* tx silence */
3044
HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3045
HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3046
((ch % 4) * 4)) << 1);
3047
HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3048
} else {
3049
/* enable TX fifo */
3050
HFC_outb(hc, R_FIFO, ch << 1);
3051
HFC_wait(hc);
3052
if (hc->ctype == HFC_TYPE_XHFC)
3053
HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3054
V_HDLC_TRP | V_IFF);
3055
/* Enable FIFO, no interrupt */
3056
else
3057
HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3058
V_HDLC_TRP | V_IFF);
3059
HFC_outb(hc, A_SUBCH_CFG, 0);
3060
HFC_outb(hc, A_IRQ_MSK, 0);
3061
HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3062
HFC_wait(hc);
3063
/* tx silence */
3064
HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3065
/* enable RX fifo */
3066
HFC_outb(hc, R_FIFO, (ch<<1)|1);
3067
HFC_wait(hc);
3068
if (hc->ctype == HFC_TYPE_XHFC)
3069
HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3070
V_HDLC_TRP);
3071
/* Enable FIFO, no interrupt*/
3072
else
3073
HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3074
V_HDLC_TRP);
3075
HFC_outb(hc, A_SUBCH_CFG, 0);
3076
HFC_outb(hc, A_IRQ_MSK, 0);
3077
HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3078
HFC_wait(hc);
3079
}
3080
if (hc->ctype != HFC_TYPE_E1) {
3081
hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3082
((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3083
HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3084
/* undocumented: delay after R_ST_SEL */
3085
udelay(1);
3086
HFC_outb(hc, A_ST_CTRL0,
3087
hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3088
}
3089
if (hc->chan[ch].bch)
3090
test_and_set_bit(FLG_TRANSPARENT,
3091
&hc->chan[ch].bch->Flags);
3092
break;
3093
case (ISDN_P_B_HDLC): /* B-channel */
3094
case (ISDN_P_TE_S0): /* D-channel */
3095
case (ISDN_P_NT_S0):
3096
case (ISDN_P_TE_E1):
3097
case (ISDN_P_NT_E1):
3098
/* enable TX fifo */
3099
HFC_outb(hc, R_FIFO, ch<<1);
3100
HFC_wait(hc);
3101
if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3102
/* E1 or B-channel */
3103
HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3104
HFC_outb(hc, A_SUBCH_CFG, 0);
3105
} else {
3106
/* D-Channel without HDLC fill flags */
3107
HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3108
HFC_outb(hc, A_SUBCH_CFG, 2);
3109
}
3110
HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3111
HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3112
HFC_wait(hc);
3113
/* enable RX fifo */
3114
HFC_outb(hc, R_FIFO, (ch<<1)|1);
3115
HFC_wait(hc);
3116
HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3117
if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3118
HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3119
else
3120
HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3121
HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3122
HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3123
HFC_wait(hc);
3124
if (hc->chan[ch].bch) {
3125
test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3126
if (hc->ctype != HFC_TYPE_E1) {
3127
hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3128
((ch&0x3) == 0) ? V_B1_EN : V_B2_EN;
3129
HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3130
/* undocumented: delay after R_ST_SEL */
3131
udelay(1);
3132
HFC_outb(hc, A_ST_CTRL0,
3133
hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3134
}
3135
}
3136
break;
3137
default:
3138
printk(KERN_DEBUG "%s: protocol not known %x\n",
3139
__func__, protocol);
3140
hc->chan[ch].protocol = ISDN_P_NONE;
3141
return -ENOPROTOOPT;
3142
}
3143
hc->chan[ch].protocol = protocol;
3144
return 0;
3145
}
3146
3147
3148
/*
3149
* connect/disconnect PCM
3150
*/
3151
3152
static void
3153
hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3154
int slot_rx, int bank_rx)
3155
{
3156
if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3157
/* disable PCM */
3158
mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3159
return;
3160
}
3161
3162
/* enable pcm */
3163
mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3164
slot_rx, bank_rx);
3165
}
3166
3167
/*
3168
* set/disable conference
3169
*/
3170
3171
static void
3172
hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3173
{
3174
if (num >= 0 && num <= 7)
3175
hc->chan[ch].conf = num;
3176
else
3177
hc->chan[ch].conf = -1;
3178
mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3179
hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3180
hc->chan[ch].bank_rx);
3181
}
3182
3183
3184
/*
3185
* set/disable sample loop
3186
*/
3187
3188
/* NOTE: this function is experimental and therefore disabled */
3189
3190
/*
3191
* Layer 1 callback function
3192
*/
3193
static int
3194
hfcm_l1callback(struct dchannel *dch, u_int cmd)
3195
{
3196
struct hfc_multi *hc = dch->hw;
3197
u_long flags;
3198
3199
switch (cmd) {
3200
case INFO3_P8:
3201
case INFO3_P10:
3202
break;
3203
case HW_RESET_REQ:
3204
/* start activation */
3205
spin_lock_irqsave(&hc->lock, flags);
3206
if (hc->ctype == HFC_TYPE_E1) {
3207
if (debug & DEBUG_HFCMULTI_MSG)
3208
printk(KERN_DEBUG
3209
"%s: HW_RESET_REQ no BRI\n",
3210
__func__);
3211
} else {
3212
HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3213
/* undocumented: delay after R_ST_SEL */
3214
udelay(1);
3215
HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3216
udelay(6); /* wait at least 5,21us */
3217
HFC_outb(hc, A_ST_WR_STATE, 3);
3218
HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT*3));
3219
/* activate */
3220
}
3221
spin_unlock_irqrestore(&hc->lock, flags);
3222
l1_event(dch->l1, HW_POWERUP_IND);
3223
break;
3224
case HW_DEACT_REQ:
3225
/* start deactivation */
3226
spin_lock_irqsave(&hc->lock, flags);
3227
if (hc->ctype == HFC_TYPE_E1) {
3228
if (debug & DEBUG_HFCMULTI_MSG)
3229
printk(KERN_DEBUG
3230
"%s: HW_DEACT_REQ no BRI\n",
3231
__func__);
3232
} else {
3233
HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3234
/* undocumented: delay after R_ST_SEL */
3235
udelay(1);
3236
HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT*2);
3237
/* deactivate */
3238
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3239
hc->syncronized &=
3240
~(1 << hc->chan[dch->slot].port);
3241
plxsd_checksync(hc, 0);
3242
}
3243
}
3244
skb_queue_purge(&dch->squeue);
3245
if (dch->tx_skb) {
3246
dev_kfree_skb(dch->tx_skb);
3247
dch->tx_skb = NULL;
3248
}
3249
dch->tx_idx = 0;
3250
if (dch->rx_skb) {
3251
dev_kfree_skb(dch->rx_skb);
3252
dch->rx_skb = NULL;
3253
}
3254
test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3255
if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3256
del_timer(&dch->timer);
3257
spin_unlock_irqrestore(&hc->lock, flags);
3258
break;
3259
case HW_POWERUP_REQ:
3260
spin_lock_irqsave(&hc->lock, flags);
3261
if (hc->ctype == HFC_TYPE_E1) {
3262
if (debug & DEBUG_HFCMULTI_MSG)
3263
printk(KERN_DEBUG
3264
"%s: HW_POWERUP_REQ no BRI\n",
3265
__func__);
3266
} else {
3267
HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3268
/* undocumented: delay after R_ST_SEL */
3269
udelay(1);
3270
HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3271
udelay(6); /* wait at least 5,21us */
3272
HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3273
}
3274
spin_unlock_irqrestore(&hc->lock, flags);
3275
break;
3276
case PH_ACTIVATE_IND:
3277
test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3278
_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3279
GFP_ATOMIC);
3280
break;
3281
case PH_DEACTIVATE_IND:
3282
test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3283
_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3284
GFP_ATOMIC);
3285
break;
3286
default:
3287
if (dch->debug & DEBUG_HW)
3288
printk(KERN_DEBUG "%s: unknown command %x\n",
3289
__func__, cmd);
3290
return -1;
3291
}
3292
return 0;
3293
}
3294
3295
/*
3296
* Layer2 -> Layer 1 Transfer
3297
*/
3298
3299
static int
3300
handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3301
{
3302
struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
3303
struct dchannel *dch = container_of(dev, struct dchannel, dev);
3304
struct hfc_multi *hc = dch->hw;
3305
struct mISDNhead *hh = mISDN_HEAD_P(skb);
3306
int ret = -EINVAL;
3307
unsigned int id;
3308
u_long flags;
3309
3310
switch (hh->prim) {
3311
case PH_DATA_REQ:
3312
if (skb->len < 1)
3313
break;
3314
spin_lock_irqsave(&hc->lock, flags);
3315
ret = dchannel_senddata(dch, skb);
3316
if (ret > 0) { /* direct TX */
3317
id = hh->id; /* skb can be freed */
3318
hfcmulti_tx(hc, dch->slot);
3319
ret = 0;
3320
/* start fifo */
3321
HFC_outb(hc, R_FIFO, 0);
3322
HFC_wait(hc);
3323
spin_unlock_irqrestore(&hc->lock, flags);
3324
queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3325
} else
3326
spin_unlock_irqrestore(&hc->lock, flags);
3327
return ret;
3328
case PH_ACTIVATE_REQ:
3329
if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3330
spin_lock_irqsave(&hc->lock, flags);
3331
ret = 0;
3332
if (debug & DEBUG_HFCMULTI_MSG)
3333
printk(KERN_DEBUG
3334
"%s: PH_ACTIVATE port %d (0..%d)\n",
3335
__func__, hc->chan[dch->slot].port,
3336
hc->ports-1);
3337
/* start activation */
3338
if (hc->ctype == HFC_TYPE_E1) {
3339
ph_state_change(dch);
3340
if (debug & DEBUG_HFCMULTI_STATE)
3341
printk(KERN_DEBUG
3342
"%s: E1 report state %x \n",
3343
__func__, dch->state);
3344
} else {
3345
HFC_outb(hc, R_ST_SEL,
3346
hc->chan[dch->slot].port);
3347
/* undocumented: delay after R_ST_SEL */
3348
udelay(1);
3349
HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3350
/* G1 */
3351
udelay(6); /* wait at least 5,21us */
3352
HFC_outb(hc, A_ST_WR_STATE, 1);
3353
HFC_outb(hc, A_ST_WR_STATE, 1 |
3354
(V_ST_ACT*3)); /* activate */
3355
dch->state = 1;
3356
}
3357
spin_unlock_irqrestore(&hc->lock, flags);
3358
} else
3359
ret = l1_event(dch->l1, hh->prim);
3360
break;
3361
case PH_DEACTIVATE_REQ:
3362
test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3363
if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3364
spin_lock_irqsave(&hc->lock, flags);
3365
if (debug & DEBUG_HFCMULTI_MSG)
3366
printk(KERN_DEBUG
3367
"%s: PH_DEACTIVATE port %d (0..%d)\n",
3368
__func__, hc->chan[dch->slot].port,
3369
hc->ports-1);
3370
/* start deactivation */
3371
if (hc->ctype == HFC_TYPE_E1) {
3372
if (debug & DEBUG_HFCMULTI_MSG)
3373
printk(KERN_DEBUG
3374
"%s: PH_DEACTIVATE no BRI\n",
3375
__func__);
3376
} else {
3377
HFC_outb(hc, R_ST_SEL,
3378
hc->chan[dch->slot].port);
3379
/* undocumented: delay after R_ST_SEL */
3380
udelay(1);
3381
HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3382
/* deactivate */
3383
dch->state = 1;
3384
}
3385
skb_queue_purge(&dch->squeue);
3386
if (dch->tx_skb) {
3387
dev_kfree_skb(dch->tx_skb);
3388
dch->tx_skb = NULL;
3389
}
3390
dch->tx_idx = 0;
3391
if (dch->rx_skb) {
3392
dev_kfree_skb(dch->rx_skb);
3393
dch->rx_skb = NULL;
3394
}
3395
test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3396
if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3397
del_timer(&dch->timer);
3398
#ifdef FIXME
3399
if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3400
dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3401
#endif
3402
ret = 0;
3403
spin_unlock_irqrestore(&hc->lock, flags);
3404
} else
3405
ret = l1_event(dch->l1, hh->prim);
3406
break;
3407
}
3408
if (!ret)
3409
dev_kfree_skb(skb);
3410
return ret;
3411
}
3412
3413
static void
3414
deactivate_bchannel(struct bchannel *bch)
3415
{
3416
struct hfc_multi *hc = bch->hw;
3417
u_long flags;
3418
3419
spin_lock_irqsave(&hc->lock, flags);
3420
mISDN_clear_bchannel(bch);
3421
hc->chan[bch->slot].coeff_count = 0;
3422
hc->chan[bch->slot].rx_off = 0;
3423
hc->chan[bch->slot].conf = -1;
3424
mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3425
spin_unlock_irqrestore(&hc->lock, flags);
3426
}
3427
3428
static int
3429
handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3430
{
3431
struct bchannel *bch = container_of(ch, struct bchannel, ch);
3432
struct hfc_multi *hc = bch->hw;
3433
int ret = -EINVAL;
3434
struct mISDNhead *hh = mISDN_HEAD_P(skb);
3435
unsigned int id;
3436
u_long flags;
3437
3438
switch (hh->prim) {
3439
case PH_DATA_REQ:
3440
if (!skb->len)
3441
break;
3442
spin_lock_irqsave(&hc->lock, flags);
3443
ret = bchannel_senddata(bch, skb);
3444
if (ret > 0) { /* direct TX */
3445
id = hh->id; /* skb can be freed */
3446
hfcmulti_tx(hc, bch->slot);
3447
ret = 0;
3448
/* start fifo */
3449
HFC_outb_nodebug(hc, R_FIFO, 0);
3450
HFC_wait_nodebug(hc);
3451
if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) {
3452
spin_unlock_irqrestore(&hc->lock, flags);
3453
queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3454
} else
3455
spin_unlock_irqrestore(&hc->lock, flags);
3456
} else
3457
spin_unlock_irqrestore(&hc->lock, flags);
3458
return ret;
3459
case PH_ACTIVATE_REQ:
3460
if (debug & DEBUG_HFCMULTI_MSG)
3461
printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3462
__func__, bch->slot);
3463
spin_lock_irqsave(&hc->lock, flags);
3464
/* activate B-channel if not already activated */
3465
if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3466
hc->chan[bch->slot].txpending = 0;
3467
ret = mode_hfcmulti(hc, bch->slot,
3468
ch->protocol,
3469
hc->chan[bch->slot].slot_tx,
3470
hc->chan[bch->slot].bank_tx,
3471
hc->chan[bch->slot].slot_rx,
3472
hc->chan[bch->slot].bank_rx);
3473
if (!ret) {
3474
if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3475
&& test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3476
/* start decoder */
3477
hc->dtmf = 1;
3478
if (debug & DEBUG_HFCMULTI_DTMF)
3479
printk(KERN_DEBUG
3480
"%s: start dtmf decoder\n",
3481
__func__);
3482
HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3483
V_RST_DTMF);
3484
}
3485
}
3486
} else
3487
ret = 0;
3488
spin_unlock_irqrestore(&hc->lock, flags);
3489
if (!ret)
3490
_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3491
GFP_KERNEL);
3492
break;
3493
case PH_CONTROL_REQ:
3494
spin_lock_irqsave(&hc->lock, flags);
3495
switch (hh->id) {
3496
case HFC_SPL_LOOP_ON: /* set sample loop */
3497
if (debug & DEBUG_HFCMULTI_MSG)
3498
printk(KERN_DEBUG
3499
"%s: HFC_SPL_LOOP_ON (len = %d)\n",
3500
__func__, skb->len);
3501
ret = 0;
3502
break;
3503
case HFC_SPL_LOOP_OFF: /* set silence */
3504
if (debug & DEBUG_HFCMULTI_MSG)
3505
printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3506
__func__);
3507
ret = 0;
3508
break;
3509
default:
3510
printk(KERN_ERR
3511
"%s: unknown PH_CONTROL_REQ info %x\n",
3512
__func__, hh->id);
3513
ret = -EINVAL;
3514
}
3515
spin_unlock_irqrestore(&hc->lock, flags);
3516
break;
3517
case PH_DEACTIVATE_REQ:
3518
deactivate_bchannel(bch); /* locked there */
3519
_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3520
GFP_KERNEL);
3521
ret = 0;
3522
break;
3523
}
3524
if (!ret)
3525
dev_kfree_skb(skb);
3526
return ret;
3527
}
3528
3529
/*
3530
* bchannel control function
3531
*/
3532
static int
3533
channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3534
{
3535
int ret = 0;
3536
struct dsp_features *features =
3537
(struct dsp_features *)(*((u_long *)&cq->p1));
3538
struct hfc_multi *hc = bch->hw;
3539
int slot_tx;
3540
int bank_tx;
3541
int slot_rx;
3542
int bank_rx;
3543
int num;
3544
3545
switch (cq->op) {
3546
case MISDN_CTRL_GETOP:
3547
cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
3548
| MISDN_CTRL_RX_OFF | MISDN_CTRL_FILL_EMPTY;
3549
break;
3550
case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3551
hc->chan[bch->slot].rx_off = !!cq->p1;
3552
if (!hc->chan[bch->slot].rx_off) {
3553
/* reset fifo on rx on */
3554
HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3555
HFC_wait_nodebug(hc);
3556
HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3557
HFC_wait_nodebug(hc);
3558
}
3559
if (debug & DEBUG_HFCMULTI_MSG)
3560
printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3561
__func__, bch->nr, hc->chan[bch->slot].rx_off);
3562
break;
3563
case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
3564
test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
3565
if (debug & DEBUG_HFCMULTI_MSG)
3566
printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
3567
"off=%d)\n", __func__, bch->nr, !!cq->p1);
3568
break;
3569
case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3570
if (debug & DEBUG_HFCMULTI_MSG)
3571
printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3572
__func__);
3573
/* create confirm */
3574
features->hfc_id = hc->id;
3575
if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3576
features->hfc_dtmf = 1;
3577
if (test_bit(HFC_CHIP_CONF, &hc->chip))
3578
features->hfc_conf = 1;
3579
features->hfc_loops = 0;
3580
if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3581
features->hfc_echocanhw = 1;
3582
} else {
3583
features->pcm_id = hc->pcm;
3584
features->pcm_slots = hc->slots;
3585
features->pcm_banks = 2;
3586
}
3587
break;
3588
case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3589
slot_tx = cq->p1 & 0xff;
3590
bank_tx = cq->p1 >> 8;
3591
slot_rx = cq->p2 & 0xff;
3592
bank_rx = cq->p2 >> 8;
3593
if (debug & DEBUG_HFCMULTI_MSG)
3594
printk(KERN_DEBUG
3595
"%s: HFC_PCM_CONN slot %d bank %d (TX) "
3596
"slot %d bank %d (RX)\n",
3597
__func__, slot_tx, bank_tx,
3598
slot_rx, bank_rx);
3599
if (slot_tx < hc->slots && bank_tx <= 2 &&
3600
slot_rx < hc->slots && bank_rx <= 2)
3601
hfcmulti_pcm(hc, bch->slot,
3602
slot_tx, bank_tx, slot_rx, bank_rx);
3603
else {
3604
printk(KERN_WARNING
3605
"%s: HFC_PCM_CONN slot %d bank %d (TX) "
3606
"slot %d bank %d (RX) out of range\n",
3607
__func__, slot_tx, bank_tx,
3608
slot_rx, bank_rx);
3609
ret = -EINVAL;
3610
}
3611
break;
3612
case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3613
if (debug & DEBUG_HFCMULTI_MSG)
3614
printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3615
__func__);
3616
hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3617
break;
3618
case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3619
num = cq->p1 & 0xff;
3620
if (debug & DEBUG_HFCMULTI_MSG)
3621
printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3622
__func__, num);
3623
if (num <= 7)
3624
hfcmulti_conf(hc, bch->slot, num);
3625
else {
3626
printk(KERN_WARNING
3627
"%s: HW_CONF_JOIN conf %d out of range\n",
3628
__func__, num);
3629
ret = -EINVAL;
3630
}
3631
break;
3632
case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3633
if (debug & DEBUG_HFCMULTI_MSG)
3634
printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3635
hfcmulti_conf(hc, bch->slot, -1);
3636
break;
3637
case MISDN_CTRL_HFC_ECHOCAN_ON:
3638
if (debug & DEBUG_HFCMULTI_MSG)
3639
printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3640
if (test_bit(HFC_CHIP_B410P, &hc->chip))
3641
vpm_echocan_on(hc, bch->slot, cq->p1);
3642
else
3643
ret = -EINVAL;
3644
break;
3645
3646
case MISDN_CTRL_HFC_ECHOCAN_OFF:
3647
if (debug & DEBUG_HFCMULTI_MSG)
3648
printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3649
__func__);
3650
if (test_bit(HFC_CHIP_B410P, &hc->chip))
3651
vpm_echocan_off(hc, bch->slot);
3652
else
3653
ret = -EINVAL;
3654
break;
3655
default:
3656
printk(KERN_WARNING "%s: unknown Op %x\n",
3657
__func__, cq->op);
3658
ret = -EINVAL;
3659
break;
3660
}
3661
return ret;
3662
}
3663
3664
static int
3665
hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3666
{
3667
struct bchannel *bch = container_of(ch, struct bchannel, ch);
3668
struct hfc_multi *hc = bch->hw;
3669
int err = -EINVAL;
3670
u_long flags;
3671
3672
if (bch->debug & DEBUG_HW)
3673
printk(KERN_DEBUG "%s: cmd:%x %p\n",
3674
__func__, cmd, arg);
3675
switch (cmd) {
3676
case CLOSE_CHANNEL:
3677
test_and_clear_bit(FLG_OPEN, &bch->Flags);
3678
if (test_bit(FLG_ACTIVE, &bch->Flags))
3679
deactivate_bchannel(bch); /* locked there */
3680
ch->protocol = ISDN_P_NONE;
3681
ch->peer = NULL;
3682
module_put(THIS_MODULE);
3683
err = 0;
3684
break;
3685
case CONTROL_CHANNEL:
3686
spin_lock_irqsave(&hc->lock, flags);
3687
err = channel_bctrl(bch, arg);
3688
spin_unlock_irqrestore(&hc->lock, flags);
3689
break;
3690
default:
3691
printk(KERN_WARNING "%s: unknown prim(%x)\n",
3692
__func__, cmd);
3693
}
3694
return err;
3695
}
3696
3697
/*
3698
* handle D-channel events
3699
*
3700
* handle state change event
3701
*/
3702
static void
3703
ph_state_change(struct dchannel *dch)
3704
{
3705
struct hfc_multi *hc;
3706
int ch, i;
3707
3708
if (!dch) {
3709
printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3710
return;
3711
}
3712
hc = dch->hw;
3713
ch = dch->slot;
3714
3715
if (hc->ctype == HFC_TYPE_E1) {
3716
if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3717
if (debug & DEBUG_HFCMULTI_STATE)
3718
printk(KERN_DEBUG
3719
"%s: E1 TE (id=%d) newstate %x\n",
3720
__func__, hc->id, dch->state);
3721
} else {
3722
if (debug & DEBUG_HFCMULTI_STATE)
3723
printk(KERN_DEBUG
3724
"%s: E1 NT (id=%d) newstate %x\n",
3725
__func__, hc->id, dch->state);
3726
}
3727
switch (dch->state) {
3728
case (1):
3729
if (hc->e1_state != 1) {
3730
for (i = 1; i <= 31; i++) {
3731
/* reset fifos on e1 activation */
3732
HFC_outb_nodebug(hc, R_FIFO,
3733
(i << 1) | 1);
3734
HFC_wait_nodebug(hc);
3735
HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3736
V_RES_F);
3737
HFC_wait_nodebug(hc);
3738
}
3739
}
3740
test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3741
_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3742
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3743
break;
3744
3745
default:
3746
if (hc->e1_state != 1)
3747
return;
3748
test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3749
_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3750
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3751
}
3752
hc->e1_state = dch->state;
3753
} else {
3754
if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3755
if (debug & DEBUG_HFCMULTI_STATE)
3756
printk(KERN_DEBUG
3757
"%s: S/T TE newstate %x\n",
3758
__func__, dch->state);
3759
switch (dch->state) {
3760
case (0):
3761
l1_event(dch->l1, HW_RESET_IND);
3762
break;
3763
case (3):
3764
l1_event(dch->l1, HW_DEACT_IND);
3765
break;
3766
case (5):
3767
case (8):
3768
l1_event(dch->l1, ANYSIGNAL);
3769
break;
3770
case (6):
3771
l1_event(dch->l1, INFO2);
3772
break;
3773
case (7):
3774
l1_event(dch->l1, INFO4_P8);
3775
break;
3776
}
3777
} else {
3778
if (debug & DEBUG_HFCMULTI_STATE)
3779
printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3780
__func__, dch->state);
3781
switch (dch->state) {
3782
case (2):
3783
if (hc->chan[ch].nt_timer == 0) {
3784
hc->chan[ch].nt_timer = -1;
3785
HFC_outb(hc, R_ST_SEL,
3786
hc->chan[ch].port);
3787
/* undocumented: delay after R_ST_SEL */
3788
udelay(1);
3789
HFC_outb(hc, A_ST_WR_STATE, 4 |
3790
V_ST_LD_STA); /* G4 */
3791
udelay(6); /* wait at least 5,21us */
3792
HFC_outb(hc, A_ST_WR_STATE, 4);
3793
dch->state = 4;
3794
} else {
3795
/* one extra count for the next event */
3796
hc->chan[ch].nt_timer =
3797
nt_t1_count[poll_timer] + 1;
3798
HFC_outb(hc, R_ST_SEL,
3799
hc->chan[ch].port);
3800
/* undocumented: delay after R_ST_SEL */
3801
udelay(1);
3802
/* allow G2 -> G3 transition */
3803
HFC_outb(hc, A_ST_WR_STATE, 2 |
3804
V_SET_G2_G3);
3805
}
3806
break;
3807
case (1):
3808
hc->chan[ch].nt_timer = -1;
3809
test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3810
_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3811
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3812
break;
3813
case (4):
3814
hc->chan[ch].nt_timer = -1;
3815
break;
3816
case (3):
3817
hc->chan[ch].nt_timer = -1;
3818
test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3819
_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3820
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3821
break;
3822
}
3823
}
3824
}
3825
}
3826
3827
/*
3828
* called for card mode init message
3829
*/
3830
3831
static void
3832
hfcmulti_initmode(struct dchannel *dch)
3833
{
3834
struct hfc_multi *hc = dch->hw;
3835
u_char a_st_wr_state, r_e1_wr_sta;
3836
int i, pt;
3837
3838
if (debug & DEBUG_HFCMULTI_INIT)
3839
printk(KERN_DEBUG "%s: entered\n", __func__);
3840
3841
if (hc->ctype == HFC_TYPE_E1) {
3842
hc->chan[hc->dslot].slot_tx = -1;
3843
hc->chan[hc->dslot].slot_rx = -1;
3844
hc->chan[hc->dslot].conf = -1;
3845
if (hc->dslot) {
3846
mode_hfcmulti(hc, hc->dslot, dch->dev.D.protocol,
3847
-1, 0, -1, 0);
3848
dch->timer.function = (void *) hfcmulti_dbusy_timer;
3849
dch->timer.data = (long) dch;
3850
init_timer(&dch->timer);
3851
}
3852
for (i = 1; i <= 31; i++) {
3853
if (i == hc->dslot)
3854
continue;
3855
hc->chan[i].slot_tx = -1;
3856
hc->chan[i].slot_rx = -1;
3857
hc->chan[i].conf = -1;
3858
mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3859
}
3860
/* E1 */
3861
if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
3862
HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3863
HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3864
}
3865
if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dslot].cfg)) {
3866
HFC_outb(hc, R_RX0, 0);
3867
hc->hw.r_tx0 = 0 | V_OUT_EN;
3868
} else {
3869
HFC_outb(hc, R_RX0, 1);
3870
hc->hw.r_tx0 = 1 | V_OUT_EN;
3871
}
3872
hc->hw.r_tx1 = V_ATX | V_NTRI;
3873
HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3874
HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3875
HFC_outb(hc, R_TX_FR0, 0x00);
3876
HFC_outb(hc, R_TX_FR1, 0xf8);
3877
3878
if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3879
HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3880
3881
HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3882
3883
if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3884
HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3885
3886
if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3887
if (debug & DEBUG_HFCMULTI_INIT)
3888
printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3889
__func__);
3890
r_e1_wr_sta = 0; /* G0 */
3891
hc->e1_getclock = 0;
3892
} else {
3893
if (debug & DEBUG_HFCMULTI_INIT)
3894
printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3895
__func__);
3896
r_e1_wr_sta = 0; /* F0 */
3897
hc->e1_getclock = 1;
3898
}
3899
if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3900
HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3901
else
3902
HFC_outb(hc, R_SYNC_OUT, 0);
3903
if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3904
hc->e1_getclock = 1;
3905
if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3906
hc->e1_getclock = 0;
3907
if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3908
/* SLAVE (clock master) */
3909
if (debug & DEBUG_HFCMULTI_INIT)
3910
printk(KERN_DEBUG
3911
"%s: E1 port is clock master "
3912
"(clock from PCM)\n", __func__);
3913
HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3914
} else {
3915
if (hc->e1_getclock) {
3916
/* MASTER (clock slave) */
3917
if (debug & DEBUG_HFCMULTI_INIT)
3918
printk(KERN_DEBUG
3919
"%s: E1 port is clock slave "
3920
"(clock to PCM)\n", __func__);
3921
HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3922
} else {
3923
/* MASTER (clock master) */
3924
if (debug & DEBUG_HFCMULTI_INIT)
3925
printk(KERN_DEBUG "%s: E1 port is "
3926
"clock master "
3927
"(clock from QUARTZ)\n",
3928
__func__);
3929
HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3930
V_PCM_SYNC | V_JATT_OFF);
3931
HFC_outb(hc, R_SYNC_OUT, 0);
3932
}
3933
}
3934
HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3935
HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3936
HFC_outb(hc, R_PWM0, 0x50);
3937
HFC_outb(hc, R_PWM1, 0xff);
3938
/* state machine setup */
3939
HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3940
udelay(6); /* wait at least 5,21us */
3941
HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3942
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3943
hc->syncronized = 0;
3944
plxsd_checksync(hc, 0);
3945
}
3946
} else {
3947
i = dch->slot;
3948
hc->chan[i].slot_tx = -1;
3949
hc->chan[i].slot_rx = -1;
3950
hc->chan[i].conf = -1;
3951
mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3952
dch->timer.function = (void *)hfcmulti_dbusy_timer;
3953
dch->timer.data = (long) dch;
3954
init_timer(&dch->timer);
3955
hc->chan[i - 2].slot_tx = -1;
3956
hc->chan[i - 2].slot_rx = -1;
3957
hc->chan[i - 2].conf = -1;
3958
mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3959
hc->chan[i - 1].slot_tx = -1;
3960
hc->chan[i - 1].slot_rx = -1;
3961
hc->chan[i - 1].conf = -1;
3962
mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3963
/* ST */
3964
pt = hc->chan[i].port;
3965
/* select interface */
3966
HFC_outb(hc, R_ST_SEL, pt);
3967
/* undocumented: delay after R_ST_SEL */
3968
udelay(1);
3969
if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3970
if (debug & DEBUG_HFCMULTI_INIT)
3971
printk(KERN_DEBUG
3972
"%s: ST port %d is NT-mode\n",
3973
__func__, pt);
3974
/* clock delay */
3975
HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3976
a_st_wr_state = 1; /* G1 */
3977
hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3978
} else {
3979
if (debug & DEBUG_HFCMULTI_INIT)
3980
printk(KERN_DEBUG
3981
"%s: ST port %d is TE-mode\n",
3982
__func__, pt);
3983
/* clock delay */
3984
HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3985
a_st_wr_state = 2; /* F2 */
3986
hc->hw.a_st_ctrl0[pt] = 0;
3987
}
3988
if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3989
hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3990
if (hc->ctype == HFC_TYPE_XHFC) {
3991
hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
3992
HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
3993
0x7c << 1 /* V_ST_PULSE */);
3994
}
3995
/* line setup */
3996
HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]);
3997
/* disable E-channel */
3998
if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3999
test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
4000
HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
4001
else
4002
HFC_outb(hc, A_ST_CTRL1, 0);
4003
/* enable B-channel receive */
4004
HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
4005
/* state machine setup */
4006
HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
4007
udelay(6); /* wait at least 5,21us */
4008
HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4009
hc->hw.r_sci_msk |= 1 << pt;
4010
/* state machine interrupts */
4011
HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4012
/* unset sync on port */
4013
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4014
hc->syncronized &=
4015
~(1 << hc->chan[dch->slot].port);
4016
plxsd_checksync(hc, 0);
4017
}
4018
}
4019
if (debug & DEBUG_HFCMULTI_INIT)
4020
printk("%s: done\n", __func__);
4021
}
4022
4023
4024
static int
4025
open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4026
struct channel_req *rq)
4027
{
4028
int err = 0;
4029
u_long flags;
4030
4031
if (debug & DEBUG_HW_OPEN)
4032
printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4033
dch->dev.id, __builtin_return_address(0));
4034
if (rq->protocol == ISDN_P_NONE)
4035
return -EINVAL;
4036
if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4037
(dch->dev.D.protocol != rq->protocol)) {
4038
if (debug & DEBUG_HFCMULTI_MODE)
4039
printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4040
__func__, dch->dev.D.protocol, rq->protocol);
4041
}
4042
if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4043
(rq->protocol != ISDN_P_TE_S0))
4044
l1_event(dch->l1, CLOSE_CHANNEL);
4045
if (dch->dev.D.protocol != rq->protocol) {
4046
if (rq->protocol == ISDN_P_TE_S0) {
4047
err = create_l1(dch, hfcm_l1callback);
4048
if (err)
4049
return err;
4050
}
4051
dch->dev.D.protocol = rq->protocol;
4052
spin_lock_irqsave(&hc->lock, flags);
4053
hfcmulti_initmode(dch);
4054
spin_unlock_irqrestore(&hc->lock, flags);
4055
}
4056
4057
if (((rq->protocol == ISDN_P_NT_S0) && (dch->state == 3)) ||
4058
((rq->protocol == ISDN_P_TE_S0) && (dch->state == 7)) ||
4059
((rq->protocol == ISDN_P_NT_E1) && (dch->state == 1)) ||
4060
((rq->protocol == ISDN_P_TE_E1) && (dch->state == 1))) {
4061
_queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4062
0, NULL, GFP_KERNEL);
4063
}
4064
rq->ch = &dch->dev.D;
4065
if (!try_module_get(THIS_MODULE))
4066
printk(KERN_WARNING "%s:cannot get module\n", __func__);
4067
return 0;
4068
}
4069
4070
static int
4071
open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4072
struct channel_req *rq)
4073
{
4074
struct bchannel *bch;
4075
int ch;
4076
4077
if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4078
return -EINVAL;
4079
if (rq->protocol == ISDN_P_NONE)
4080
return -EINVAL;
4081
if (hc->ctype == HFC_TYPE_E1)
4082
ch = rq->adr.channel;
4083
else
4084
ch = (rq->adr.channel - 1) + (dch->slot - 2);
4085
bch = hc->chan[ch].bch;
4086
if (!bch) {
4087
printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4088
__func__, ch);
4089
return -EINVAL;
4090
}
4091
if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4092
return -EBUSY; /* b-channel can be only open once */
4093
test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
4094
bch->ch.protocol = rq->protocol;
4095
hc->chan[ch].rx_off = 0;
4096
rq->ch = &bch->ch;
4097
if (!try_module_get(THIS_MODULE))
4098
printk(KERN_WARNING "%s:cannot get module\n", __func__);
4099
return 0;
4100
}
4101
4102
/*
4103
* device control function
4104
*/
4105
static int
4106
channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4107
{
4108
struct hfc_multi *hc = dch->hw;
4109
int ret = 0;
4110
int wd_mode, wd_cnt;
4111
4112
switch (cq->op) {
4113
case MISDN_CTRL_GETOP:
4114
cq->op = MISDN_CTRL_HFC_OP;
4115
break;
4116
case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4117
wd_cnt = cq->p1 & 0xf;
4118
wd_mode = !!(cq->p1 >> 4);
4119
if (debug & DEBUG_HFCMULTI_MSG)
4120
printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4121
", counter 0x%x\n", __func__,
4122
wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4123
/* set the watchdog timer */
4124
HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4125
hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4126
if (hc->ctype == HFC_TYPE_XHFC)
4127
hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4128
/* init the watchdog register and reset the counter */
4129
HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4130
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4131
/* enable the watchdog output for Speech-Design */
4132
HFC_outb(hc, R_GPIO_SEL, V_GPIO_SEL7);
4133
HFC_outb(hc, R_GPIO_EN1, V_GPIO_EN15);
4134
HFC_outb(hc, R_GPIO_OUT1, 0);
4135
HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4136
}
4137
break;
4138
case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4139
if (debug & DEBUG_HFCMULTI_MSG)
4140
printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4141
__func__);
4142
HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4143
break;
4144
default:
4145
printk(KERN_WARNING "%s: unknown Op %x\n",
4146
__func__, cq->op);
4147
ret = -EINVAL;
4148
break;
4149
}
4150
return ret;
4151
}
4152
4153
static int
4154
hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4155
{
4156
struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
4157
struct dchannel *dch = container_of(dev, struct dchannel, dev);
4158
struct hfc_multi *hc = dch->hw;
4159
struct channel_req *rq;
4160
int err = 0;
4161
u_long flags;
4162
4163
if (dch->debug & DEBUG_HW)
4164
printk(KERN_DEBUG "%s: cmd:%x %p\n",
4165
__func__, cmd, arg);
4166
switch (cmd) {
4167
case OPEN_CHANNEL:
4168
rq = arg;
4169
switch (rq->protocol) {
4170
case ISDN_P_TE_S0:
4171
case ISDN_P_NT_S0:
4172
if (hc->ctype == HFC_TYPE_E1) {
4173
err = -EINVAL;
4174
break;
4175
}
4176
err = open_dchannel(hc, dch, rq); /* locked there */
4177
break;
4178
case ISDN_P_TE_E1:
4179
case ISDN_P_NT_E1:
4180
if (hc->ctype != HFC_TYPE_E1) {
4181
err = -EINVAL;
4182
break;
4183
}
4184
err = open_dchannel(hc, dch, rq); /* locked there */
4185
break;
4186
default:
4187
spin_lock_irqsave(&hc->lock, flags);
4188
err = open_bchannel(hc, dch, rq);
4189
spin_unlock_irqrestore(&hc->lock, flags);
4190
}
4191
break;
4192
case CLOSE_CHANNEL:
4193
if (debug & DEBUG_HW_OPEN)
4194
printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4195
__func__, dch->dev.id,
4196
__builtin_return_address(0));
4197
module_put(THIS_MODULE);
4198
break;
4199
case CONTROL_CHANNEL:
4200
spin_lock_irqsave(&hc->lock, flags);
4201
err = channel_dctrl(dch, arg);
4202
spin_unlock_irqrestore(&hc->lock, flags);
4203
break;
4204
default:
4205
if (dch->debug & DEBUG_HW)
4206
printk(KERN_DEBUG "%s: unknown command %x\n",
4207
__func__, cmd);
4208
err = -EINVAL;
4209
}
4210
return err;
4211
}
4212
4213
static int
4214
clockctl(void *priv, int enable)
4215
{
4216
struct hfc_multi *hc = priv;
4217
4218
hc->iclock_on = enable;
4219
return 0;
4220
}
4221
4222
/*
4223
* initialize the card
4224
*/
4225
4226
/*
4227
* start timer irq, wait some time and check if we have interrupts.
4228
* if not, reset chip and try again.
4229
*/
4230
static int
4231
init_card(struct hfc_multi *hc)
4232
{
4233
int err = -EIO;
4234
u_long flags;
4235
void __iomem *plx_acc;
4236
u_long plx_flags;
4237
4238
if (debug & DEBUG_HFCMULTI_INIT)
4239
printk(KERN_DEBUG "%s: entered\n", __func__);
4240
4241
spin_lock_irqsave(&hc->lock, flags);
4242
/* set interrupts but leave global interrupt disabled */
4243
hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4244
disable_hwirq(hc);
4245
spin_unlock_irqrestore(&hc->lock, flags);
4246
4247
if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4248
"HFC-multi", hc)) {
4249
printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4250
hc->irq);
4251
hc->irq = 0;
4252
return -EIO;
4253
}
4254
4255
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4256
spin_lock_irqsave(&plx_lock, plx_flags);
4257
plx_acc = hc->plx_membase + PLX_INTCSR;
4258
writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4259
plx_acc); /* enable PCI & LINT1 irq */
4260
spin_unlock_irqrestore(&plx_lock, plx_flags);
4261
}
4262
4263
if (debug & DEBUG_HFCMULTI_INIT)
4264
printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4265
__func__, hc->irq, hc->irqcnt);
4266
err = init_chip(hc);
4267
if (err)
4268
goto error;
4269
/*
4270
* Finally enable IRQ output
4271
* this is only allowed, if an IRQ routine is already
4272
* established for this HFC, so don't do that earlier
4273
*/
4274
spin_lock_irqsave(&hc->lock, flags);
4275
enable_hwirq(hc);
4276
spin_unlock_irqrestore(&hc->lock, flags);
4277
/* printk(KERN_DEBUG "no master irq set!!!\n"); */
4278
set_current_state(TASK_UNINTERRUPTIBLE);
4279
schedule_timeout((100*HZ)/1000); /* Timeout 100ms */
4280
/* turn IRQ off until chip is completely initialized */
4281
spin_lock_irqsave(&hc->lock, flags);
4282
disable_hwirq(hc);
4283
spin_unlock_irqrestore(&hc->lock, flags);
4284
if (debug & DEBUG_HFCMULTI_INIT)
4285
printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4286
__func__, hc->irq, hc->irqcnt);
4287
if (hc->irqcnt) {
4288
if (debug & DEBUG_HFCMULTI_INIT)
4289
printk(KERN_DEBUG "%s: done\n", __func__);
4290
4291
return 0;
4292
}
4293
if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4294
printk(KERN_INFO "ignoring missing interrupts\n");
4295
return 0;
4296
}
4297
4298
printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4299
hc->irq);
4300
4301
err = -EIO;
4302
4303
error:
4304
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4305
spin_lock_irqsave(&plx_lock, plx_flags);
4306
plx_acc = hc->plx_membase + PLX_INTCSR;
4307
writew(0x00, plx_acc); /*disable IRQs*/
4308
spin_unlock_irqrestore(&plx_lock, plx_flags);
4309
}
4310
4311
if (debug & DEBUG_HFCMULTI_INIT)
4312
printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4313
if (hc->irq) {
4314
free_irq(hc->irq, hc);
4315
hc->irq = 0;
4316
}
4317
4318
if (debug & DEBUG_HFCMULTI_INIT)
4319
printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4320
return err;
4321
}
4322
4323
/*
4324
* find pci device and set it up
4325
*/
4326
4327
static int
4328
setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4329
const struct pci_device_id *ent)
4330
{
4331
struct hm_map *m = (struct hm_map *)ent->driver_data;
4332
4333
printk(KERN_INFO
4334
"HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4335
m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4336
4337
hc->pci_dev = pdev;
4338
if (m->clock2)
4339
test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4340
4341
if (ent->device == 0xB410) {
4342
test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4343
test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4344
test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4345
hc->slots = 32;
4346
}
4347
4348
if (hc->pci_dev->irq <= 0) {
4349
printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4350
return -EIO;
4351
}
4352
if (pci_enable_device(hc->pci_dev)) {
4353
printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4354
return -EIO;
4355
}
4356
hc->leds = m->leds;
4357
hc->ledstate = 0xAFFEAFFE;
4358
hc->opticalsupport = m->opticalsupport;
4359
4360
hc->pci_iobase = 0;
4361
hc->pci_membase = NULL;
4362
hc->plx_membase = NULL;
4363
4364
/* set memory access methods */
4365
if (m->io_mode) /* use mode from card config */
4366
hc->io_mode = m->io_mode;
4367
switch (hc->io_mode) {
4368
case HFC_IO_MODE_PLXSD:
4369
test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4370
hc->slots = 128; /* required */
4371
hc->HFC_outb = HFC_outb_pcimem;
4372
hc->HFC_inb = HFC_inb_pcimem;
4373
hc->HFC_inw = HFC_inw_pcimem;
4374
hc->HFC_wait = HFC_wait_pcimem;
4375
hc->read_fifo = read_fifo_pcimem;
4376
hc->write_fifo = write_fifo_pcimem;
4377
hc->plx_origmembase = hc->pci_dev->resource[0].start;
4378
/* MEMBASE 1 is PLX PCI Bridge */
4379
4380
if (!hc->plx_origmembase) {
4381
printk(KERN_WARNING
4382
"HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4383
pci_disable_device(hc->pci_dev);
4384
return -EIO;
4385
}
4386
4387
hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4388
if (!hc->plx_membase) {
4389
printk(KERN_WARNING
4390
"HFC-multi: failed to remap plx address space. "
4391
"(internal error)\n");
4392
pci_disable_device(hc->pci_dev);
4393
return -EIO;
4394
}
4395
printk(KERN_INFO
4396
"HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4397
(u_long)hc->plx_membase, hc->plx_origmembase);
4398
4399
hc->pci_origmembase = hc->pci_dev->resource[2].start;
4400
/* MEMBASE 1 is PLX PCI Bridge */
4401
if (!hc->pci_origmembase) {
4402
printk(KERN_WARNING
4403
"HFC-multi: No IO-Memory for PCI card found\n");
4404
pci_disable_device(hc->pci_dev);
4405
return -EIO;
4406
}
4407
4408
hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4409
if (!hc->pci_membase) {
4410
printk(KERN_WARNING "HFC-multi: failed to remap io "
4411
"address space. (internal error)\n");
4412
pci_disable_device(hc->pci_dev);
4413
return -EIO;
4414
}
4415
4416
printk(KERN_INFO
4417
"card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4418
"leds-type %d\n",
4419
hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4420
hc->pci_dev->irq, HZ, hc->leds);
4421
pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4422
break;
4423
case HFC_IO_MODE_PCIMEM:
4424
hc->HFC_outb = HFC_outb_pcimem;
4425
hc->HFC_inb = HFC_inb_pcimem;
4426
hc->HFC_inw = HFC_inw_pcimem;
4427
hc->HFC_wait = HFC_wait_pcimem;
4428
hc->read_fifo = read_fifo_pcimem;
4429
hc->write_fifo = write_fifo_pcimem;
4430
hc->pci_origmembase = hc->pci_dev->resource[1].start;
4431
if (!hc->pci_origmembase) {
4432
printk(KERN_WARNING
4433
"HFC-multi: No IO-Memory for PCI card found\n");
4434
pci_disable_device(hc->pci_dev);
4435
return -EIO;
4436
}
4437
4438
hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4439
if (!hc->pci_membase) {
4440
printk(KERN_WARNING
4441
"HFC-multi: failed to remap io address space. "
4442
"(internal error)\n");
4443
pci_disable_device(hc->pci_dev);
4444
return -EIO;
4445
}
4446
printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4447
"%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4448
hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4449
pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4450
break;
4451
case HFC_IO_MODE_REGIO:
4452
hc->HFC_outb = HFC_outb_regio;
4453
hc->HFC_inb = HFC_inb_regio;
4454
hc->HFC_inw = HFC_inw_regio;
4455
hc->HFC_wait = HFC_wait_regio;
4456
hc->read_fifo = read_fifo_regio;
4457
hc->write_fifo = write_fifo_regio;
4458
hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4459
if (!hc->pci_iobase) {
4460
printk(KERN_WARNING
4461
"HFC-multi: No IO for PCI card found\n");
4462
pci_disable_device(hc->pci_dev);
4463
return -EIO;
4464
}
4465
4466
if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4467
printk(KERN_WARNING "HFC-multi: failed to request "
4468
"address space at 0x%08lx (internal error)\n",
4469
hc->pci_iobase);
4470
pci_disable_device(hc->pci_dev);
4471
return -EIO;
4472
}
4473
4474
printk(KERN_INFO
4475
"%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4476
m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4477
hc->pci_dev->irq, HZ, hc->leds);
4478
pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4479
break;
4480
default:
4481
printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4482
pci_disable_device(hc->pci_dev);
4483
return -EIO;
4484
}
4485
4486
pci_set_drvdata(hc->pci_dev, hc);
4487
4488
/* At this point the needed PCI config is done */
4489
/* fifos are still not enabled */
4490
return 0;
4491
}
4492
4493
4494
/*
4495
* remove port
4496
*/
4497
4498
static void
4499
release_port(struct hfc_multi *hc, struct dchannel *dch)
4500
{
4501
int pt, ci, i = 0;
4502
u_long flags;
4503
struct bchannel *pb;
4504
4505
ci = dch->slot;
4506
pt = hc->chan[ci].port;
4507
4508
if (debug & DEBUG_HFCMULTI_INIT)
4509
printk(KERN_DEBUG "%s: entered for port %d\n",
4510
__func__, pt + 1);
4511
4512
if (pt >= hc->ports) {
4513
printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4514
__func__, pt + 1);
4515
return;
4516
}
4517
4518
if (debug & DEBUG_HFCMULTI_INIT)
4519
printk(KERN_DEBUG "%s: releasing port=%d\n",
4520
__func__, pt + 1);
4521
4522
if (dch->dev.D.protocol == ISDN_P_TE_S0)
4523
l1_event(dch->l1, CLOSE_CHANNEL);
4524
4525
hc->chan[ci].dch = NULL;
4526
4527
if (hc->created[pt]) {
4528
hc->created[pt] = 0;
4529
mISDN_unregister_device(&dch->dev);
4530
}
4531
4532
spin_lock_irqsave(&hc->lock, flags);
4533
4534
if (dch->timer.function) {
4535
del_timer(&dch->timer);
4536
dch->timer.function = NULL;
4537
}
4538
4539
if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4540
/* remove sync */
4541
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4542
hc->syncronized = 0;
4543
plxsd_checksync(hc, 1);
4544
}
4545
/* free channels */
4546
for (i = 0; i <= 31; i++) {
4547
if (hc->chan[i].bch) {
4548
if (debug & DEBUG_HFCMULTI_INIT)
4549
printk(KERN_DEBUG
4550
"%s: free port %d channel %d\n",
4551
__func__, hc->chan[i].port+1, i);
4552
pb = hc->chan[i].bch;
4553
hc->chan[i].bch = NULL;
4554
spin_unlock_irqrestore(&hc->lock, flags);
4555
mISDN_freebchannel(pb);
4556
kfree(pb);
4557
kfree(hc->chan[i].coeff);
4558
spin_lock_irqsave(&hc->lock, flags);
4559
}
4560
}
4561
} else {
4562
/* remove sync */
4563
if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4564
hc->syncronized &=
4565
~(1 << hc->chan[ci].port);
4566
plxsd_checksync(hc, 1);
4567
}
4568
/* free channels */
4569
if (hc->chan[ci - 2].bch) {
4570
if (debug & DEBUG_HFCMULTI_INIT)
4571
printk(KERN_DEBUG
4572
"%s: free port %d channel %d\n",
4573
__func__, hc->chan[ci - 2].port+1,
4574
ci - 2);
4575
pb = hc->chan[ci - 2].bch;
4576
hc->chan[ci - 2].bch = NULL;
4577
spin_unlock_irqrestore(&hc->lock, flags);
4578
mISDN_freebchannel(pb);
4579
kfree(pb);
4580
kfree(hc->chan[ci - 2].coeff);
4581
spin_lock_irqsave(&hc->lock, flags);
4582
}
4583
if (hc->chan[ci - 1].bch) {
4584
if (debug & DEBUG_HFCMULTI_INIT)
4585
printk(KERN_DEBUG
4586
"%s: free port %d channel %d\n",
4587
__func__, hc->chan[ci - 1].port+1,
4588
ci - 1);
4589
pb = hc->chan[ci - 1].bch;
4590
hc->chan[ci - 1].bch = NULL;
4591
spin_unlock_irqrestore(&hc->lock, flags);
4592
mISDN_freebchannel(pb);
4593
kfree(pb);
4594
kfree(hc->chan[ci - 1].coeff);
4595
spin_lock_irqsave(&hc->lock, flags);
4596
}
4597
}
4598
4599
spin_unlock_irqrestore(&hc->lock, flags);
4600
4601
if (debug & DEBUG_HFCMULTI_INIT)
4602
printk(KERN_DEBUG "%s: free port %d channel D\n", __func__, pt);
4603
mISDN_freedchannel(dch);
4604
kfree(dch);
4605
4606
if (debug & DEBUG_HFCMULTI_INIT)
4607
printk(KERN_DEBUG "%s: done!\n", __func__);
4608
}
4609
4610
static void
4611
release_card(struct hfc_multi *hc)
4612
{
4613
u_long flags;
4614
int ch;
4615
4616
if (debug & DEBUG_HFCMULTI_INIT)
4617
printk(KERN_DEBUG "%s: release card (%d) entered\n",
4618
__func__, hc->id);
4619
4620
/* unregister clock source */
4621
if (hc->iclock)
4622
mISDN_unregister_clock(hc->iclock);
4623
4624
/* disable irq */
4625
spin_lock_irqsave(&hc->lock, flags);
4626
disable_hwirq(hc);
4627
spin_unlock_irqrestore(&hc->lock, flags);
4628
udelay(1000);
4629
4630
/* dimm leds */
4631
if (hc->leds)
4632
hfcmulti_leds(hc);
4633
4634
/* disable D-channels & B-channels */
4635
if (debug & DEBUG_HFCMULTI_INIT)
4636
printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4637
__func__);
4638
for (ch = 0; ch <= 31; ch++) {
4639
if (hc->chan[ch].dch)
4640
release_port(hc, hc->chan[ch].dch);
4641
}
4642
4643
/* release hardware & irq */
4644
if (hc->irq) {
4645
if (debug & DEBUG_HFCMULTI_INIT)
4646
printk(KERN_DEBUG "%s: free irq %d\n",
4647
__func__, hc->irq);
4648
free_irq(hc->irq, hc);
4649
hc->irq = 0;
4650
4651
}
4652
release_io_hfcmulti(hc);
4653
4654
if (debug & DEBUG_HFCMULTI_INIT)
4655
printk(KERN_DEBUG "%s: remove instance from list\n",
4656
__func__);
4657
list_del(&hc->list);
4658
4659
if (debug & DEBUG_HFCMULTI_INIT)
4660
printk(KERN_DEBUG "%s: delete instance\n", __func__);
4661
if (hc == syncmaster)
4662
syncmaster = NULL;
4663
kfree(hc);
4664
if (debug & DEBUG_HFCMULTI_INIT)
4665
printk(KERN_DEBUG "%s: card successfully removed\n",
4666
__func__);
4667
}
4668
4669
static int
4670
init_e1_port(struct hfc_multi *hc, struct hm_map *m)
4671
{
4672
struct dchannel *dch;
4673
struct bchannel *bch;
4674
int ch, ret = 0;
4675
char name[MISDN_MAX_IDLEN];
4676
4677
dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4678
if (!dch)
4679
return -ENOMEM;
4680
dch->debug = debug;
4681
mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4682
dch->hw = hc;
4683
dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4684
dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4685
(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4686
dch->dev.D.send = handle_dmsg;
4687
dch->dev.D.ctrl = hfcm_dctrl;
4688
dch->dev.nrbchan = (hc->dslot) ? 30 : 31;
4689
dch->slot = hc->dslot;
4690
hc->chan[hc->dslot].dch = dch;
4691
hc->chan[hc->dslot].port = 0;
4692
hc->chan[hc->dslot].nt_timer = -1;
4693
for (ch = 1; ch <= 31; ch++) {
4694
if (ch == hc->dslot) /* skip dchannel */
4695
continue;
4696
bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4697
if (!bch) {
4698
printk(KERN_ERR "%s: no memory for bchannel\n",
4699
__func__);
4700
ret = -ENOMEM;
4701
goto free_chan;
4702
}
4703
hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4704
if (!hc->chan[ch].coeff) {
4705
printk(KERN_ERR "%s: no memory for coeffs\n",
4706
__func__);
4707
ret = -ENOMEM;
4708
kfree(bch);
4709
goto free_chan;
4710
}
4711
bch->nr = ch;
4712
bch->slot = ch;
4713
bch->debug = debug;
4714
mISDN_initbchannel(bch, MAX_DATA_MEM);
4715
bch->hw = hc;
4716
bch->ch.send = handle_bmsg;
4717
bch->ch.ctrl = hfcm_bctrl;
4718
bch->ch.nr = ch;
4719
list_add(&bch->ch.list, &dch->dev.bchannels);
4720
hc->chan[ch].bch = bch;
4721
hc->chan[ch].port = 0;
4722
set_channelmap(bch->nr, dch->dev.channelmap);
4723
}
4724
/* set optical line type */
4725
if (port[Port_cnt] & 0x001) {
4726
if (!m->opticalsupport) {
4727
printk(KERN_INFO
4728
"This board has no optical "
4729
"support\n");
4730
} else {
4731
if (debug & DEBUG_HFCMULTI_INIT)
4732
printk(KERN_DEBUG
4733
"%s: PORT set optical "
4734
"interfacs: card(%d) "
4735
"port(%d)\n",
4736
__func__,
4737
HFC_cnt + 1, 1);
4738
test_and_set_bit(HFC_CFG_OPTICAL,
4739
&hc->chan[hc->dslot].cfg);
4740
}
4741
}
4742
/* set LOS report */
4743
if (port[Port_cnt] & 0x004) {
4744
if (debug & DEBUG_HFCMULTI_INIT)
4745
printk(KERN_DEBUG "%s: PORT set "
4746
"LOS report: card(%d) port(%d)\n",
4747
__func__, HFC_cnt + 1, 1);
4748
test_and_set_bit(HFC_CFG_REPORT_LOS,
4749
&hc->chan[hc->dslot].cfg);
4750
}
4751
/* set AIS report */
4752
if (port[Port_cnt] & 0x008) {
4753
if (debug & DEBUG_HFCMULTI_INIT)
4754
printk(KERN_DEBUG "%s: PORT set "
4755
"AIS report: card(%d) port(%d)\n",
4756
__func__, HFC_cnt + 1, 1);
4757
test_and_set_bit(HFC_CFG_REPORT_AIS,
4758
&hc->chan[hc->dslot].cfg);
4759
}
4760
/* set SLIP report */
4761
if (port[Port_cnt] & 0x010) {
4762
if (debug & DEBUG_HFCMULTI_INIT)
4763
printk(KERN_DEBUG
4764
"%s: PORT set SLIP report: "
4765
"card(%d) port(%d)\n",
4766
__func__, HFC_cnt + 1, 1);
4767
test_and_set_bit(HFC_CFG_REPORT_SLIP,
4768
&hc->chan[hc->dslot].cfg);
4769
}
4770
/* set RDI report */
4771
if (port[Port_cnt] & 0x020) {
4772
if (debug & DEBUG_HFCMULTI_INIT)
4773
printk(KERN_DEBUG
4774
"%s: PORT set RDI report: "
4775
"card(%d) port(%d)\n",
4776
__func__, HFC_cnt + 1, 1);
4777
test_and_set_bit(HFC_CFG_REPORT_RDI,
4778
&hc->chan[hc->dslot].cfg);
4779
}
4780
/* set CRC-4 Mode */
4781
if (!(port[Port_cnt] & 0x100)) {
4782
if (debug & DEBUG_HFCMULTI_INIT)
4783
printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4784
" card(%d) port(%d)\n",
4785
__func__, HFC_cnt + 1, 1);
4786
test_and_set_bit(HFC_CFG_CRC4,
4787
&hc->chan[hc->dslot].cfg);
4788
} else {
4789
if (debug & DEBUG_HFCMULTI_INIT)
4790
printk(KERN_DEBUG "%s: PORT turn off CRC4"
4791
" report: card(%d) port(%d)\n",
4792
__func__, HFC_cnt + 1, 1);
4793
}
4794
/* set forced clock */
4795
if (port[Port_cnt] & 0x0200) {
4796
if (debug & DEBUG_HFCMULTI_INIT)
4797
printk(KERN_DEBUG "%s: PORT force getting clock from "
4798
"E1: card(%d) port(%d)\n",
4799
__func__, HFC_cnt + 1, 1);
4800
test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4801
} else
4802
if (port[Port_cnt] & 0x0400) {
4803
if (debug & DEBUG_HFCMULTI_INIT)
4804
printk(KERN_DEBUG "%s: PORT force putting clock to "
4805
"E1: card(%d) port(%d)\n",
4806
__func__, HFC_cnt + 1, 1);
4807
test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4808
}
4809
/* set JATT PLL */
4810
if (port[Port_cnt] & 0x0800) {
4811
if (debug & DEBUG_HFCMULTI_INIT)
4812
printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4813
"E1: card(%d) port(%d)\n",
4814
__func__, HFC_cnt + 1, 1);
4815
test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4816
}
4817
/* set elastic jitter buffer */
4818
if (port[Port_cnt] & 0x3000) {
4819
hc->chan[hc->dslot].jitter = (port[Port_cnt]>>12) & 0x3;
4820
if (debug & DEBUG_HFCMULTI_INIT)
4821
printk(KERN_DEBUG
4822
"%s: PORT set elastic "
4823
"buffer to %d: card(%d) port(%d)\n",
4824
__func__, hc->chan[hc->dslot].jitter,
4825
HFC_cnt + 1, 1);
4826
} else
4827
hc->chan[hc->dslot].jitter = 2; /* default */
4828
snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4829
ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4830
if (ret)
4831
goto free_chan;
4832
hc->created[0] = 1;
4833
return ret;
4834
free_chan:
4835
release_port(hc, dch);
4836
return ret;
4837
}
4838
4839
static int
4840
init_multi_port(struct hfc_multi *hc, int pt)
4841
{
4842
struct dchannel *dch;
4843
struct bchannel *bch;
4844
int ch, i, ret = 0;
4845
char name[MISDN_MAX_IDLEN];
4846
4847
dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4848
if (!dch)
4849
return -ENOMEM;
4850
dch->debug = debug;
4851
mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4852
dch->hw = hc;
4853
dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4854
dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4855
(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4856
dch->dev.D.send = handle_dmsg;
4857
dch->dev.D.ctrl = hfcm_dctrl;
4858
dch->dev.nrbchan = 2;
4859
i = pt << 2;
4860
dch->slot = i + 2;
4861
hc->chan[i + 2].dch = dch;
4862
hc->chan[i + 2].port = pt;
4863
hc->chan[i + 2].nt_timer = -1;
4864
for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4865
bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4866
if (!bch) {
4867
printk(KERN_ERR "%s: no memory for bchannel\n",
4868
__func__);
4869
ret = -ENOMEM;
4870
goto free_chan;
4871
}
4872
hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4873
if (!hc->chan[i + ch].coeff) {
4874
printk(KERN_ERR "%s: no memory for coeffs\n",
4875
__func__);
4876
ret = -ENOMEM;
4877
kfree(bch);
4878
goto free_chan;
4879
}
4880
bch->nr = ch + 1;
4881
bch->slot = i + ch;
4882
bch->debug = debug;
4883
mISDN_initbchannel(bch, MAX_DATA_MEM);
4884
bch->hw = hc;
4885
bch->ch.send = handle_bmsg;
4886
bch->ch.ctrl = hfcm_bctrl;
4887
bch->ch.nr = ch + 1;
4888
list_add(&bch->ch.list, &dch->dev.bchannels);
4889
hc->chan[i + ch].bch = bch;
4890
hc->chan[i + ch].port = pt;
4891
set_channelmap(bch->nr, dch->dev.channelmap);
4892
}
4893
/* set master clock */
4894
if (port[Port_cnt] & 0x001) {
4895
if (debug & DEBUG_HFCMULTI_INIT)
4896
printk(KERN_DEBUG
4897
"%s: PROTOCOL set master clock: "
4898
"card(%d) port(%d)\n",
4899
__func__, HFC_cnt + 1, pt + 1);
4900
if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4901
printk(KERN_ERR "Error: Master clock "
4902
"for port(%d) of card(%d) is only"
4903
" possible with TE-mode\n",
4904
pt + 1, HFC_cnt + 1);
4905
ret = -EINVAL;
4906
goto free_chan;
4907
}
4908
if (hc->masterclk >= 0) {
4909
printk(KERN_ERR "Error: Master clock "
4910
"for port(%d) of card(%d) already "
4911
"defined for port(%d)\n",
4912
pt + 1, HFC_cnt + 1, hc->masterclk+1);
4913
ret = -EINVAL;
4914
goto free_chan;
4915
}
4916
hc->masterclk = pt;
4917
}
4918
/* set transmitter line to non capacitive */
4919
if (port[Port_cnt] & 0x002) {
4920
if (debug & DEBUG_HFCMULTI_INIT)
4921
printk(KERN_DEBUG
4922
"%s: PROTOCOL set non capacitive "
4923
"transmitter: card(%d) port(%d)\n",
4924
__func__, HFC_cnt + 1, pt + 1);
4925
test_and_set_bit(HFC_CFG_NONCAP_TX,
4926
&hc->chan[i + 2].cfg);
4927
}
4928
/* disable E-channel */
4929
if (port[Port_cnt] & 0x004) {
4930
if (debug & DEBUG_HFCMULTI_INIT)
4931
printk(KERN_DEBUG
4932
"%s: PROTOCOL disable E-channel: "
4933
"card(%d) port(%d)\n",
4934
__func__, HFC_cnt + 1, pt + 1);
4935
test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4936
&hc->chan[i + 2].cfg);
4937
}
4938
if (hc->ctype == HFC_TYPE_XHFC) {
4939
snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4940
HFC_cnt + 1, pt + 1);
4941
ret = mISDN_register_device(&dch->dev, NULL, name);
4942
} else {
4943
snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4944
hc->ctype, HFC_cnt + 1, pt + 1);
4945
ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4946
}
4947
if (ret)
4948
goto free_chan;
4949
hc->created[pt] = 1;
4950
return ret;
4951
free_chan:
4952
release_port(hc, dch);
4953
return ret;
4954
}
4955
4956
static int
4957
hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
4958
const struct pci_device_id *ent)
4959
{
4960
int ret_err = 0;
4961
int pt;
4962
struct hfc_multi *hc;
4963
u_long flags;
4964
u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4965
int i;
4966
4967
if (HFC_cnt >= MAX_CARDS) {
4968
printk(KERN_ERR "too many cards (max=%d).\n",
4969
MAX_CARDS);
4970
return -EINVAL;
4971
}
4972
if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4973
printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4974
"type[%d] %d was supplied as module parameter\n",
4975
m->vendor_name, m->card_name, m->type, HFC_cnt,
4976
type[HFC_cnt] & 0xff);
4977
printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4978
"first, to see cards and their types.");
4979
return -EINVAL;
4980
}
4981
if (debug & DEBUG_HFCMULTI_INIT)
4982
printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4983
__func__, m->vendor_name, m->card_name, m->type,
4984
type[HFC_cnt]);
4985
4986
/* allocate card+fifo structure */
4987
hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4988
if (!hc) {
4989
printk(KERN_ERR "No kmem for HFC-Multi card\n");
4990
return -ENOMEM;
4991
}
4992
spin_lock_init(&hc->lock);
4993
hc->mtyp = m;
4994
hc->ctype = m->type;
4995
hc->ports = m->ports;
4996
hc->id = HFC_cnt;
4997
hc->pcm = pcm[HFC_cnt];
4998
hc->io_mode = iomode[HFC_cnt];
4999
if (dslot[HFC_cnt] < 0 && hc->ctype == HFC_TYPE_E1) {
5000
hc->dslot = 0;
5001
printk(KERN_INFO "HFC-E1 card has disabled D-channel, but "
5002
"31 B-channels\n");
5003
}
5004
if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32
5005
&& hc->ctype == HFC_TYPE_E1) {
5006
hc->dslot = dslot[HFC_cnt];
5007
printk(KERN_INFO "HFC-E1 card has alternating D-channel on "
5008
"time slot %d\n", dslot[HFC_cnt]);
5009
} else
5010
hc->dslot = 16;
5011
5012
/* set chip specific features */
5013
hc->masterclk = -1;
5014
if (type[HFC_cnt] & 0x100) {
5015
test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5016
hc->silence = 0xff; /* ulaw silence */
5017
} else
5018
hc->silence = 0x2a; /* alaw silence */
5019
if ((poll >> 1) > sizeof(hc->silence_data)) {
5020
printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5021
"please fix\n");
5022
return -EINVAL;
5023
}
5024
for (i = 0; i < (poll >> 1); i++)
5025
hc->silence_data[i] = hc->silence;
5026
5027
if (hc->ctype != HFC_TYPE_XHFC) {
5028
if (!(type[HFC_cnt] & 0x200))
5029
test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5030
test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5031
}
5032
5033
if (type[HFC_cnt] & 0x800)
5034
test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5035
if (type[HFC_cnt] & 0x1000) {
5036
test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5037
test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5038
}
5039
if (type[HFC_cnt] & 0x4000)
5040
test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5041
if (type[HFC_cnt] & 0x8000)
5042
test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5043
hc->slots = 32;
5044
if (type[HFC_cnt] & 0x10000)
5045
hc->slots = 64;
5046
if (type[HFC_cnt] & 0x20000)
5047
hc->slots = 128;
5048
if (type[HFC_cnt] & 0x80000) {
5049
test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5050
hc->wdcount = 0;
5051
hc->wdbyte = V_GPIO_OUT2;
5052
printk(KERN_NOTICE "Watchdog enabled\n");
5053
}
5054
5055
if (pdev && ent)
5056
/* setup pci, hc->slots may change due to PLXSD */
5057
ret_err = setup_pci(hc, pdev, ent);
5058
else
5059
#ifdef CONFIG_MISDN_HFCMULTI_8xx
5060
ret_err = setup_embedded(hc, m);
5061
#else
5062
{
5063
printk(KERN_WARNING "Embedded IO Mode not selected\n");
5064
ret_err = -EIO;
5065
}
5066
#endif
5067
if (ret_err) {
5068
if (hc == syncmaster)
5069
syncmaster = NULL;
5070
kfree(hc);
5071
return ret_err;
5072
}
5073
5074
hc->HFC_outb_nodebug = hc->HFC_outb;
5075
hc->HFC_inb_nodebug = hc->HFC_inb;
5076
hc->HFC_inw_nodebug = hc->HFC_inw;
5077
hc->HFC_wait_nodebug = hc->HFC_wait;
5078
#ifdef HFC_REGISTER_DEBUG
5079
hc->HFC_outb = HFC_outb_debug;
5080
hc->HFC_inb = HFC_inb_debug;
5081
hc->HFC_inw = HFC_inw_debug;
5082
hc->HFC_wait = HFC_wait_debug;
5083
#endif
5084
/* create channels */
5085
for (pt = 0; pt < hc->ports; pt++) {
5086
if (Port_cnt >= MAX_PORTS) {
5087
printk(KERN_ERR "too many ports (max=%d).\n",
5088
MAX_PORTS);
5089
ret_err = -EINVAL;
5090
goto free_card;
5091
}
5092
if (hc->ctype == HFC_TYPE_E1)
5093
ret_err = init_e1_port(hc, m);
5094
else
5095
ret_err = init_multi_port(hc, pt);
5096
if (debug & DEBUG_HFCMULTI_INIT)
5097
printk(KERN_DEBUG
5098
"%s: Registering D-channel, card(%d) port(%d)"
5099
"result %d\n",
5100
__func__, HFC_cnt + 1, pt, ret_err);
5101
5102
if (ret_err) {
5103
while (pt) { /* release already registered ports */
5104
pt--;
5105
release_port(hc, hc->chan[(pt << 2) + 2].dch);
5106
}
5107
goto free_card;
5108
}
5109
Port_cnt++;
5110
}
5111
5112
/* disp switches */
5113
switch (m->dip_type) {
5114
case DIP_4S:
5115
/*
5116
* Get DIP setting for beroNet 1S/2S/4S cards
5117
* DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5118
* GPI 19/23 (R_GPI_IN2))
5119
*/
5120
dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5121
((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5122
(~HFC_inb(hc, R_GPI_IN2) & 0x08);
5123
5124
/* Port mode (TE/NT) jumpers */
5125
pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf);
5126
5127
if (test_bit(HFC_CHIP_B410P, &hc->chip))
5128
pmj = ~pmj & 0xf;
5129
5130
printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5131
m->vendor_name, m->card_name, dips, pmj);
5132
break;
5133
case DIP_8S:
5134
/*
5135
* Get DIP Setting for beroNet 8S0+ cards
5136
* Enable PCI auxbridge function
5137
*/
5138
HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5139
/* prepare access to auxport */
5140
outw(0x4000, hc->pci_iobase + 4);
5141
/*
5142
* some dummy reads are required to
5143
* read valid DIP switch data
5144
*/
5145
dips = inb(hc->pci_iobase);
5146
dips = inb(hc->pci_iobase);
5147
dips = inb(hc->pci_iobase);
5148
dips = ~inb(hc->pci_iobase) & 0x3F;
5149
outw(0x0, hc->pci_iobase + 4);
5150
/* disable PCI auxbridge function */
5151
HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5152
printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5153
m->vendor_name, m->card_name, dips);
5154
break;
5155
case DIP_E1:
5156
/*
5157
* get DIP Setting for beroNet E1 cards
5158
* DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5159
*/
5160
dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0)>>4;
5161
printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5162
m->vendor_name, m->card_name, dips);
5163
break;
5164
}
5165
5166
/* add to list */
5167
spin_lock_irqsave(&HFClock, flags);
5168
list_add_tail(&hc->list, &HFClist);
5169
spin_unlock_irqrestore(&HFClock, flags);
5170
5171
/* use as clock source */
5172
if (clock == HFC_cnt + 1)
5173
hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5174
5175
/* initialize hardware */
5176
hc->irq = (m->irq) ? : hc->pci_dev->irq;
5177
ret_err = init_card(hc);
5178
if (ret_err) {
5179
printk(KERN_ERR "init card returns %d\n", ret_err);
5180
release_card(hc);
5181
return ret_err;
5182
}
5183
5184
/* start IRQ and return */
5185
spin_lock_irqsave(&hc->lock, flags);
5186
enable_hwirq(hc);
5187
spin_unlock_irqrestore(&hc->lock, flags);
5188
return 0;
5189
5190
free_card:
5191
release_io_hfcmulti(hc);
5192
if (hc == syncmaster)
5193
syncmaster = NULL;
5194
kfree(hc);
5195
return ret_err;
5196
}
5197
5198
static void __devexit hfc_remove_pci(struct pci_dev *pdev)
5199
{
5200
struct hfc_multi *card = pci_get_drvdata(pdev);
5201
u_long flags;
5202
5203
if (debug)
5204
printk(KERN_INFO "removing hfc_multi card vendor:%x "
5205
"device:%x subvendor:%x subdevice:%x\n",
5206
pdev->vendor, pdev->device,
5207
pdev->subsystem_vendor, pdev->subsystem_device);
5208
5209
if (card) {
5210
spin_lock_irqsave(&HFClock, flags);
5211
release_card(card);
5212
spin_unlock_irqrestore(&HFClock, flags);
5213
} else {
5214
if (debug)
5215
printk(KERN_DEBUG "%s: drvdata already removed\n",
5216
__func__);
5217
}
5218
}
5219
5220
#define VENDOR_CCD "Cologne Chip AG"
5221
#define VENDOR_BN "beroNet GmbH"
5222
#define VENDOR_DIG "Digium Inc."
5223
#define VENDOR_JH "Junghanns.NET GmbH"
5224
#define VENDOR_PRIM "PrimuX"
5225
5226
static const struct hm_map hfcm_map[] = {
5227
/*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5228
/*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5229
/*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5230
/*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5231
/*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5232
/*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5233
/*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5234
/*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5235
/*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5236
/*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5237
/*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5238
/*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5239
5240
/*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5241
/*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5242
HFC_IO_MODE_REGIO, 0},
5243
/*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5244
/*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5245
5246
/*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5247
/*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5248
/*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5249
5250
/*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5251
/*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5252
/*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5253
/*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5254
5255
/*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5256
/*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5257
/*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5258
5259
/*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5260
HFC_IO_MODE_PLXSD, 0},
5261
/*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5262
HFC_IO_MODE_PLXSD, 0},
5263
/*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5264
/*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5265
/*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5266
/*31*/ {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5267
HFC_IO_MODE_EMBSD, XHFC_IRQ},
5268
/*32*/ {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5269
/*33*/ {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5270
/*34*/ {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5271
};
5272
5273
#undef H
5274
#define H(x) ((unsigned long)&hfcm_map[x])
5275
static struct pci_device_id hfmultipci_ids[] __devinitdata = {
5276
5277
/* Cards with HFC-4S Chip */
5278
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5279
PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5280
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5281
PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5282
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5283
PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5284
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5285
PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5286
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5287
PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5288
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5289
PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5290
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5291
PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5292
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5293
PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5294
{ PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5295
PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5296
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5297
PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5298
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5299
PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5300
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5301
PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5302
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5303
PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5304
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5305
PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5306
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5307
0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5308
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5309
0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5310
5311
/* Cards with HFC-8S Chip */
5312
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5313
PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5314
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5315
PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5316
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5317
PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5318
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5319
PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5320
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5321
PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */
5322
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5323
PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */
5324
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5325
PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5326
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5327
PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5328
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5329
PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S */
5330
5331
5332
/* Cards with HFC-E1 Chip */
5333
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5334
PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5335
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5336
PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5337
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5338
PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5339
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5340
PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5341
5342
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5343
PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5344
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5345
PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5346
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5347
PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5348
5349
{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5350
PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5351
{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5352
PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5353
5354
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5355
PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5356
5357
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5358
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5359
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5360
{0, }
5361
};
5362
#undef H
5363
5364
MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5365
5366
static int
5367
hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5368
{
5369
struct hm_map *m = (struct hm_map *)ent->driver_data;
5370
int ret;
5371
5372
if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5373
ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5374
ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5375
ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5376
printk(KERN_ERR
5377
"Unknown HFC multiport controller (vendor:%04x device:%04x "
5378
"subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5379
pdev->device, pdev->subsystem_vendor,
5380
pdev->subsystem_device);
5381
printk(KERN_ERR
5382
"Please contact the driver maintainer for support.\n");
5383
return -ENODEV;
5384
}
5385
ret = hfcmulti_init(m, pdev, ent);
5386
if (ret)
5387
return ret;
5388
HFC_cnt++;
5389
printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5390
return 0;
5391
}
5392
5393
static struct pci_driver hfcmultipci_driver = {
5394
.name = "hfc_multi",
5395
.probe = hfcmulti_probe,
5396
.remove = __devexit_p(hfc_remove_pci),
5397
.id_table = hfmultipci_ids,
5398
};
5399
5400
static void __exit
5401
HFCmulti_cleanup(void)
5402
{
5403
struct hfc_multi *card, *next;
5404
5405
/* get rid of all devices of this driver */
5406
list_for_each_entry_safe(card, next, &HFClist, list)
5407
release_card(card);
5408
pci_unregister_driver(&hfcmultipci_driver);
5409
}
5410
5411
static int __init
5412
HFCmulti_init(void)
5413
{
5414
int err;
5415
int i, xhfc = 0;
5416
struct hm_map m;
5417
5418
printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5419
5420
#ifdef IRQ_DEBUG
5421
printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5422
#endif
5423
5424
spin_lock_init(&HFClock);
5425
spin_lock_init(&plx_lock);
5426
5427
if (debug & DEBUG_HFCMULTI_INIT)
5428
printk(KERN_DEBUG "%s: init entered\n", __func__);
5429
5430
switch (poll) {
5431
case 0:
5432
poll_timer = 6;
5433
poll = 128;
5434
break;
5435
case 8:
5436
poll_timer = 2;
5437
break;
5438
case 16:
5439
poll_timer = 3;
5440
break;
5441
case 32:
5442
poll_timer = 4;
5443
break;
5444
case 64:
5445
poll_timer = 5;
5446
break;
5447
case 128:
5448
poll_timer = 6;
5449
break;
5450
case 256:
5451
poll_timer = 7;
5452
break;
5453
default:
5454
printk(KERN_ERR
5455
"%s: Wrong poll value (%d).\n", __func__, poll);
5456
err = -EINVAL;
5457
return err;
5458
5459
}
5460
5461
if (!clock)
5462
clock = 1;
5463
5464
/* Register the embedded devices.
5465
* This should be done before the PCI cards registration */
5466
switch (hwid) {
5467
case HWID_MINIP4:
5468
xhfc = 1;
5469
m = hfcm_map[31];
5470
break;
5471
case HWID_MINIP8:
5472
xhfc = 2;
5473
m = hfcm_map[31];
5474
break;
5475
case HWID_MINIP16:
5476
xhfc = 4;
5477
m = hfcm_map[31];
5478
break;
5479
default:
5480
xhfc = 0;
5481
}
5482
5483
for (i = 0; i < xhfc; ++i) {
5484
err = hfcmulti_init(&m, NULL, NULL);
5485
if (err) {
5486
printk(KERN_ERR "error registering embedded driver: "
5487
"%x\n", err);
5488
return err;
5489
}
5490
HFC_cnt++;
5491
printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5492
}
5493
5494
/* Register the PCI cards */
5495
err = pci_register_driver(&hfcmultipci_driver);
5496
if (err < 0) {
5497
printk(KERN_ERR "error registering pci driver: %x\n", err);
5498
return err;
5499
}
5500
5501
return 0;
5502
}
5503
5504
5505
module_init(HFCmulti_init);
5506
module_exit(HFCmulti_cleanup);
5507
5508