Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/isdn/hardware/mISDN/hfcsusb.c
15111 views
1
/* hfcsusb.c
2
* mISDN driver for Colognechip HFC-S USB chip
3
*
4
* Copyright 2001 by Peter Sprenger ([email protected])
5
* Copyright 2008 by Martin Bachem ([email protected])
6
*
7
* This program is free software; you can redistribute it and/or modify
8
* it under the terms of the GNU General Public License as published by
9
* the Free Software Foundation; either version 2, or (at your option)
10
* any later version.
11
*
12
* This program is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15
* GNU General Public License for more details.
16
*
17
* You should have received a copy of the GNU General Public License
18
* along with this program; if not, write to the Free Software
19
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
*
21
*
22
* module params
23
* debug=<n>, default=0, with n=0xHHHHGGGG
24
* H - l1 driver flags described in hfcsusb.h
25
* G - common mISDN debug flags described at mISDNhw.h
26
*
27
* poll=<n>, default 128
28
* n : burst size of PH_DATA_IND at transparent rx data
29
*
30
*/
31
32
#include <linux/module.h>
33
#include <linux/delay.h>
34
#include <linux/usb.h>
35
#include <linux/mISDNhw.h>
36
#include <linux/slab.h>
37
#include "hfcsusb.h"
38
39
static const char *hfcsusb_rev = "Revision: 0.3.3 (socket), 2008-11-05";
40
41
static unsigned int debug;
42
static int poll = DEFAULT_TRANSP_BURST_SZ;
43
44
static LIST_HEAD(HFClist);
45
static DEFINE_RWLOCK(HFClock);
46
47
48
MODULE_AUTHOR("Martin Bachem");
49
MODULE_LICENSE("GPL");
50
module_param(debug, uint, S_IRUGO | S_IWUSR);
51
module_param(poll, int, 0);
52
53
static int hfcsusb_cnt;
54
55
/* some function prototypes */
56
static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
57
static void release_hw(struct hfcsusb *hw);
58
static void reset_hfcsusb(struct hfcsusb *hw);
59
static void setPortMode(struct hfcsusb *hw);
60
static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
61
static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
62
static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
63
static void deactivate_bchannel(struct bchannel *bch);
64
static void hfcsusb_ph_info(struct hfcsusb *hw);
65
66
/* start next background transfer for control channel */
67
static void
68
ctrl_start_transfer(struct hfcsusb *hw)
69
{
70
if (debug & DBG_HFC_CALL_TRACE)
71
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
72
73
if (hw->ctrl_cnt) {
74
hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
75
hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
76
hw->ctrl_urb->transfer_buffer = NULL;
77
hw->ctrl_urb->transfer_buffer_length = 0;
78
hw->ctrl_write.wIndex =
79
cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
80
hw->ctrl_write.wValue =
81
cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
82
83
usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
84
}
85
}
86
87
/*
88
* queue a control transfer request to write HFC-S USB
89
* chip register using CTRL resuest queue
90
*/
91
static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
92
{
93
struct ctrl_buf *buf;
94
95
if (debug & DBG_HFC_CALL_TRACE)
96
printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
97
hw->name, __func__, reg, val);
98
99
spin_lock(&hw->ctrl_lock);
100
if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
101
spin_unlock(&hw->ctrl_lock);
102
return 1;
103
}
104
buf = &hw->ctrl_buff[hw->ctrl_in_idx];
105
buf->hfcs_reg = reg;
106
buf->reg_val = val;
107
if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
108
hw->ctrl_in_idx = 0;
109
if (++hw->ctrl_cnt == 1)
110
ctrl_start_transfer(hw);
111
spin_unlock(&hw->ctrl_lock);
112
113
return 0;
114
}
115
116
/* control completion routine handling background control cmds */
117
static void
118
ctrl_complete(struct urb *urb)
119
{
120
struct hfcsusb *hw = (struct hfcsusb *) urb->context;
121
122
if (debug & DBG_HFC_CALL_TRACE)
123
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
124
125
urb->dev = hw->dev;
126
if (hw->ctrl_cnt) {
127
hw->ctrl_cnt--; /* decrement actual count */
128
if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
129
hw->ctrl_out_idx = 0; /* pointer wrap */
130
131
ctrl_start_transfer(hw); /* start next transfer */
132
}
133
}
134
135
/* handle LED bits */
136
static void
137
set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
138
{
139
if (set_on) {
140
if (led_bits < 0)
141
hw->led_state &= ~abs(led_bits);
142
else
143
hw->led_state |= led_bits;
144
} else {
145
if (led_bits < 0)
146
hw->led_state |= abs(led_bits);
147
else
148
hw->led_state &= ~led_bits;
149
}
150
}
151
152
/* handle LED requests */
153
static void
154
handle_led(struct hfcsusb *hw, int event)
155
{
156
struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
157
hfcsusb_idtab[hw->vend_idx].driver_info;
158
__u8 tmpled;
159
160
if (driver_info->led_scheme == LED_OFF)
161
return;
162
tmpled = hw->led_state;
163
164
switch (event) {
165
case LED_POWER_ON:
166
set_led_bit(hw, driver_info->led_bits[0], 1);
167
set_led_bit(hw, driver_info->led_bits[1], 0);
168
set_led_bit(hw, driver_info->led_bits[2], 0);
169
set_led_bit(hw, driver_info->led_bits[3], 0);
170
break;
171
case LED_POWER_OFF:
172
set_led_bit(hw, driver_info->led_bits[0], 0);
173
set_led_bit(hw, driver_info->led_bits[1], 0);
174
set_led_bit(hw, driver_info->led_bits[2], 0);
175
set_led_bit(hw, driver_info->led_bits[3], 0);
176
break;
177
case LED_S0_ON:
178
set_led_bit(hw, driver_info->led_bits[1], 1);
179
break;
180
case LED_S0_OFF:
181
set_led_bit(hw, driver_info->led_bits[1], 0);
182
break;
183
case LED_B1_ON:
184
set_led_bit(hw, driver_info->led_bits[2], 1);
185
break;
186
case LED_B1_OFF:
187
set_led_bit(hw, driver_info->led_bits[2], 0);
188
break;
189
case LED_B2_ON:
190
set_led_bit(hw, driver_info->led_bits[3], 1);
191
break;
192
case LED_B2_OFF:
193
set_led_bit(hw, driver_info->led_bits[3], 0);
194
break;
195
}
196
197
if (hw->led_state != tmpled) {
198
if (debug & DBG_HFC_CALL_TRACE)
199
printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
200
hw->name, __func__,
201
HFCUSB_P_DATA, hw->led_state);
202
203
write_reg(hw, HFCUSB_P_DATA, hw->led_state);
204
}
205
}
206
207
/*
208
* Layer2 -> Layer 1 Bchannel data
209
*/
210
static int
211
hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
212
{
213
struct bchannel *bch = container_of(ch, struct bchannel, ch);
214
struct hfcsusb *hw = bch->hw;
215
int ret = -EINVAL;
216
struct mISDNhead *hh = mISDN_HEAD_P(skb);
217
u_long flags;
218
219
if (debug & DBG_HFC_CALL_TRACE)
220
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
221
222
switch (hh->prim) {
223
case PH_DATA_REQ:
224
spin_lock_irqsave(&hw->lock, flags);
225
ret = bchannel_senddata(bch, skb);
226
spin_unlock_irqrestore(&hw->lock, flags);
227
if (debug & DBG_HFC_CALL_TRACE)
228
printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
229
hw->name, __func__, ret);
230
if (ret > 0) {
231
/*
232
* other l1 drivers don't send early confirms on
233
* transp data, but hfcsusb does because tx_next
234
* skb is needed in tx_iso_complete()
235
*/
236
queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
237
ret = 0;
238
}
239
return ret;
240
case PH_ACTIVATE_REQ:
241
if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
242
hfcsusb_start_endpoint(hw, bch->nr);
243
ret = hfcsusb_setup_bch(bch, ch->protocol);
244
} else
245
ret = 0;
246
if (!ret)
247
_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
248
0, NULL, GFP_KERNEL);
249
break;
250
case PH_DEACTIVATE_REQ:
251
deactivate_bchannel(bch);
252
_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
253
0, NULL, GFP_KERNEL);
254
ret = 0;
255
break;
256
}
257
if (!ret)
258
dev_kfree_skb(skb);
259
return ret;
260
}
261
262
/*
263
* send full D/B channel status information
264
* as MPH_INFORMATION_IND
265
*/
266
static void
267
hfcsusb_ph_info(struct hfcsusb *hw)
268
{
269
struct ph_info *phi;
270
struct dchannel *dch = &hw->dch;
271
int i;
272
273
phi = kzalloc(sizeof(struct ph_info) +
274
dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
275
phi->dch.ch.protocol = hw->protocol;
276
phi->dch.ch.Flags = dch->Flags;
277
phi->dch.state = dch->state;
278
phi->dch.num_bch = dch->dev.nrbchan;
279
for (i = 0; i < dch->dev.nrbchan; i++) {
280
phi->bch[i].protocol = hw->bch[i].ch.protocol;
281
phi->bch[i].Flags = hw->bch[i].Flags;
282
}
283
_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
284
sizeof(struct ph_info_dch) + dch->dev.nrbchan *
285
sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
286
kfree(phi);
287
}
288
289
/*
290
* Layer2 -> Layer 1 Dchannel data
291
*/
292
static int
293
hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
294
{
295
struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
296
struct dchannel *dch = container_of(dev, struct dchannel, dev);
297
struct mISDNhead *hh = mISDN_HEAD_P(skb);
298
struct hfcsusb *hw = dch->hw;
299
int ret = -EINVAL;
300
u_long flags;
301
302
switch (hh->prim) {
303
case PH_DATA_REQ:
304
if (debug & DBG_HFC_CALL_TRACE)
305
printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
306
hw->name, __func__);
307
308
spin_lock_irqsave(&hw->lock, flags);
309
ret = dchannel_senddata(dch, skb);
310
spin_unlock_irqrestore(&hw->lock, flags);
311
if (ret > 0) {
312
ret = 0;
313
queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
314
}
315
break;
316
317
case PH_ACTIVATE_REQ:
318
if (debug & DBG_HFC_CALL_TRACE)
319
printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
320
hw->name, __func__,
321
(hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
322
323
if (hw->protocol == ISDN_P_NT_S0) {
324
ret = 0;
325
if (test_bit(FLG_ACTIVE, &dch->Flags)) {
326
_queue_data(&dch->dev.D,
327
PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
328
NULL, GFP_ATOMIC);
329
} else {
330
hfcsusb_ph_command(hw,
331
HFC_L1_ACTIVATE_NT);
332
test_and_set_bit(FLG_L2_ACTIVATED,
333
&dch->Flags);
334
}
335
} else {
336
hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
337
ret = l1_event(dch->l1, hh->prim);
338
}
339
break;
340
341
case PH_DEACTIVATE_REQ:
342
if (debug & DBG_HFC_CALL_TRACE)
343
printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
344
hw->name, __func__);
345
test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
346
347
if (hw->protocol == ISDN_P_NT_S0) {
348
hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
349
spin_lock_irqsave(&hw->lock, flags);
350
skb_queue_purge(&dch->squeue);
351
if (dch->tx_skb) {
352
dev_kfree_skb(dch->tx_skb);
353
dch->tx_skb = NULL;
354
}
355
dch->tx_idx = 0;
356
if (dch->rx_skb) {
357
dev_kfree_skb(dch->rx_skb);
358
dch->rx_skb = NULL;
359
}
360
test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
361
spin_unlock_irqrestore(&hw->lock, flags);
362
#ifdef FIXME
363
if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
364
dchannel_sched_event(&hc->dch, D_CLEARBUSY);
365
#endif
366
ret = 0;
367
} else
368
ret = l1_event(dch->l1, hh->prim);
369
break;
370
case MPH_INFORMATION_REQ:
371
hfcsusb_ph_info(hw);
372
ret = 0;
373
break;
374
}
375
376
return ret;
377
}
378
379
/*
380
* Layer 1 callback function
381
*/
382
static int
383
hfc_l1callback(struct dchannel *dch, u_int cmd)
384
{
385
struct hfcsusb *hw = dch->hw;
386
387
if (debug & DBG_HFC_CALL_TRACE)
388
printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
389
hw->name, __func__, cmd);
390
391
switch (cmd) {
392
case INFO3_P8:
393
case INFO3_P10:
394
case HW_RESET_REQ:
395
case HW_POWERUP_REQ:
396
break;
397
398
case HW_DEACT_REQ:
399
skb_queue_purge(&dch->squeue);
400
if (dch->tx_skb) {
401
dev_kfree_skb(dch->tx_skb);
402
dch->tx_skb = NULL;
403
}
404
dch->tx_idx = 0;
405
if (dch->rx_skb) {
406
dev_kfree_skb(dch->rx_skb);
407
dch->rx_skb = NULL;
408
}
409
test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
410
break;
411
case PH_ACTIVATE_IND:
412
test_and_set_bit(FLG_ACTIVE, &dch->Flags);
413
_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
414
GFP_ATOMIC);
415
break;
416
case PH_DEACTIVATE_IND:
417
test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
418
_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
419
GFP_ATOMIC);
420
break;
421
default:
422
if (dch->debug & DEBUG_HW)
423
printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
424
hw->name, __func__, cmd);
425
return -1;
426
}
427
hfcsusb_ph_info(hw);
428
return 0;
429
}
430
431
static int
432
open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
433
struct channel_req *rq)
434
{
435
int err = 0;
436
437
if (debug & DEBUG_HW_OPEN)
438
printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
439
hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
440
__builtin_return_address(0));
441
if (rq->protocol == ISDN_P_NONE)
442
return -EINVAL;
443
444
test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
445
test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
446
hfcsusb_start_endpoint(hw, HFC_CHAN_D);
447
448
/* E-Channel logging */
449
if (rq->adr.channel == 1) {
450
if (hw->fifos[HFCUSB_PCM_RX].pipe) {
451
hfcsusb_start_endpoint(hw, HFC_CHAN_E);
452
set_bit(FLG_ACTIVE, &hw->ech.Flags);
453
_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
454
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
455
} else
456
return -EINVAL;
457
}
458
459
if (!hw->initdone) {
460
hw->protocol = rq->protocol;
461
if (rq->protocol == ISDN_P_TE_S0) {
462
err = create_l1(&hw->dch, hfc_l1callback);
463
if (err)
464
return err;
465
}
466
setPortMode(hw);
467
ch->protocol = rq->protocol;
468
hw->initdone = 1;
469
} else {
470
if (rq->protocol != ch->protocol)
471
return -EPROTONOSUPPORT;
472
}
473
474
if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
475
((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
476
_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
477
0, NULL, GFP_KERNEL);
478
rq->ch = ch;
479
if (!try_module_get(THIS_MODULE))
480
printk(KERN_WARNING "%s: %s: cannot get module\n",
481
hw->name, __func__);
482
return 0;
483
}
484
485
static int
486
open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
487
{
488
struct bchannel *bch;
489
490
if (rq->adr.channel > 2)
491
return -EINVAL;
492
if (rq->protocol == ISDN_P_NONE)
493
return -EINVAL;
494
495
if (debug & DBG_HFC_CALL_TRACE)
496
printk(KERN_DEBUG "%s: %s B%i\n",
497
hw->name, __func__, rq->adr.channel);
498
499
bch = &hw->bch[rq->adr.channel - 1];
500
if (test_and_set_bit(FLG_OPEN, &bch->Flags))
501
return -EBUSY; /* b-channel can be only open once */
502
test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
503
bch->ch.protocol = rq->protocol;
504
rq->ch = &bch->ch;
505
506
/* start USB endpoint for bchannel */
507
if (rq->adr.channel == 1)
508
hfcsusb_start_endpoint(hw, HFC_CHAN_B1);
509
else
510
hfcsusb_start_endpoint(hw, HFC_CHAN_B2);
511
512
if (!try_module_get(THIS_MODULE))
513
printk(KERN_WARNING "%s: %s:cannot get module\n",
514
hw->name, __func__);
515
return 0;
516
}
517
518
static int
519
channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
520
{
521
int ret = 0;
522
523
if (debug & DBG_HFC_CALL_TRACE)
524
printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
525
hw->name, __func__, (cq->op), (cq->channel));
526
527
switch (cq->op) {
528
case MISDN_CTRL_GETOP:
529
cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
530
MISDN_CTRL_DISCONNECT;
531
break;
532
default:
533
printk(KERN_WARNING "%s: %s: unknown Op %x\n",
534
hw->name, __func__, cq->op);
535
ret = -EINVAL;
536
break;
537
}
538
return ret;
539
}
540
541
/*
542
* device control function
543
*/
544
static int
545
hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
546
{
547
struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
548
struct dchannel *dch = container_of(dev, struct dchannel, dev);
549
struct hfcsusb *hw = dch->hw;
550
struct channel_req *rq;
551
int err = 0;
552
553
if (dch->debug & DEBUG_HW)
554
printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
555
hw->name, __func__, cmd, arg);
556
switch (cmd) {
557
case OPEN_CHANNEL:
558
rq = arg;
559
if ((rq->protocol == ISDN_P_TE_S0) ||
560
(rq->protocol == ISDN_P_NT_S0))
561
err = open_dchannel(hw, ch, rq);
562
else
563
err = open_bchannel(hw, rq);
564
if (!err)
565
hw->open++;
566
break;
567
case CLOSE_CHANNEL:
568
hw->open--;
569
if (debug & DEBUG_HW_OPEN)
570
printk(KERN_DEBUG
571
"%s: %s: dev(%d) close from %p (open %d)\n",
572
hw->name, __func__, hw->dch.dev.id,
573
__builtin_return_address(0), hw->open);
574
if (!hw->open) {
575
hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
576
if (hw->fifos[HFCUSB_PCM_RX].pipe)
577
hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
578
handle_led(hw, LED_POWER_ON);
579
}
580
module_put(THIS_MODULE);
581
break;
582
case CONTROL_CHANNEL:
583
err = channel_ctrl(hw, arg);
584
break;
585
default:
586
if (dch->debug & DEBUG_HW)
587
printk(KERN_DEBUG "%s: %s: unknown command %x\n",
588
hw->name, __func__, cmd);
589
return -EINVAL;
590
}
591
return err;
592
}
593
594
/*
595
* S0 TE state change event handler
596
*/
597
static void
598
ph_state_te(struct dchannel *dch)
599
{
600
struct hfcsusb *hw = dch->hw;
601
602
if (debug & DEBUG_HW) {
603
if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
604
printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
605
HFC_TE_LAYER1_STATES[dch->state]);
606
else
607
printk(KERN_DEBUG "%s: %s: TE F%d\n",
608
hw->name, __func__, dch->state);
609
}
610
611
switch (dch->state) {
612
case 0:
613
l1_event(dch->l1, HW_RESET_IND);
614
break;
615
case 3:
616
l1_event(dch->l1, HW_DEACT_IND);
617
break;
618
case 5:
619
case 8:
620
l1_event(dch->l1, ANYSIGNAL);
621
break;
622
case 6:
623
l1_event(dch->l1, INFO2);
624
break;
625
case 7:
626
l1_event(dch->l1, INFO4_P8);
627
break;
628
}
629
if (dch->state == 7)
630
handle_led(hw, LED_S0_ON);
631
else
632
handle_led(hw, LED_S0_OFF);
633
}
634
635
/*
636
* S0 NT state change event handler
637
*/
638
static void
639
ph_state_nt(struct dchannel *dch)
640
{
641
struct hfcsusb *hw = dch->hw;
642
643
if (debug & DEBUG_HW) {
644
if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
645
printk(KERN_DEBUG "%s: %s: %s\n",
646
hw->name, __func__,
647
HFC_NT_LAYER1_STATES[dch->state]);
648
649
else
650
printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
651
hw->name, __func__, dch->state);
652
}
653
654
switch (dch->state) {
655
case (1):
656
test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
657
test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
658
hw->nt_timer = 0;
659
hw->timers &= ~NT_ACTIVATION_TIMER;
660
handle_led(hw, LED_S0_OFF);
661
break;
662
663
case (2):
664
if (hw->nt_timer < 0) {
665
hw->nt_timer = 0;
666
hw->timers &= ~NT_ACTIVATION_TIMER;
667
hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
668
} else {
669
hw->timers |= NT_ACTIVATION_TIMER;
670
hw->nt_timer = NT_T1_COUNT;
671
/* allow G2 -> G3 transition */
672
write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
673
}
674
break;
675
case (3):
676
hw->nt_timer = 0;
677
hw->timers &= ~NT_ACTIVATION_TIMER;
678
test_and_set_bit(FLG_ACTIVE, &dch->Flags);
679
_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
680
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
681
handle_led(hw, LED_S0_ON);
682
break;
683
case (4):
684
hw->nt_timer = 0;
685
hw->timers &= ~NT_ACTIVATION_TIMER;
686
break;
687
default:
688
break;
689
}
690
hfcsusb_ph_info(hw);
691
}
692
693
static void
694
ph_state(struct dchannel *dch)
695
{
696
struct hfcsusb *hw = dch->hw;
697
698
if (hw->protocol == ISDN_P_NT_S0)
699
ph_state_nt(dch);
700
else if (hw->protocol == ISDN_P_TE_S0)
701
ph_state_te(dch);
702
}
703
704
/*
705
* disable/enable BChannel for desired protocoll
706
*/
707
static int
708
hfcsusb_setup_bch(struct bchannel *bch, int protocol)
709
{
710
struct hfcsusb *hw = bch->hw;
711
__u8 conhdlc, sctrl, sctrl_r;
712
713
if (debug & DEBUG_HW)
714
printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
715
hw->name, __func__, bch->state, protocol,
716
bch->nr);
717
718
/* setup val for CON_HDLC */
719
conhdlc = 0;
720
if (protocol > ISDN_P_NONE)
721
conhdlc = 8; /* enable FIFO */
722
723
switch (protocol) {
724
case (-1): /* used for init */
725
bch->state = -1;
726
/* fall through */
727
case (ISDN_P_NONE):
728
if (bch->state == ISDN_P_NONE)
729
return 0; /* already in idle state */
730
bch->state = ISDN_P_NONE;
731
clear_bit(FLG_HDLC, &bch->Flags);
732
clear_bit(FLG_TRANSPARENT, &bch->Flags);
733
break;
734
case (ISDN_P_B_RAW):
735
conhdlc |= 2;
736
bch->state = protocol;
737
set_bit(FLG_TRANSPARENT, &bch->Flags);
738
break;
739
case (ISDN_P_B_HDLC):
740
bch->state = protocol;
741
set_bit(FLG_HDLC, &bch->Flags);
742
break;
743
default:
744
if (debug & DEBUG_HW)
745
printk(KERN_DEBUG "%s: %s: prot not known %x\n",
746
hw->name, __func__, protocol);
747
return -ENOPROTOOPT;
748
}
749
750
if (protocol >= ISDN_P_NONE) {
751
write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
752
write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
753
write_reg(hw, HFCUSB_INC_RES_F, 2);
754
write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
755
write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
756
write_reg(hw, HFCUSB_INC_RES_F, 2);
757
758
sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
759
sctrl_r = 0x0;
760
if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
761
sctrl |= 1;
762
sctrl_r |= 1;
763
}
764
if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
765
sctrl |= 2;
766
sctrl_r |= 2;
767
}
768
write_reg(hw, HFCUSB_SCTRL, sctrl);
769
write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
770
771
if (protocol > ISDN_P_NONE)
772
handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
773
else
774
handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
775
LED_B2_OFF);
776
}
777
hfcsusb_ph_info(hw);
778
return 0;
779
}
780
781
static void
782
hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
783
{
784
if (debug & DEBUG_HW)
785
printk(KERN_DEBUG "%s: %s: %x\n",
786
hw->name, __func__, command);
787
788
switch (command) {
789
case HFC_L1_ACTIVATE_TE:
790
/* force sending sending INFO1 */
791
write_reg(hw, HFCUSB_STATES, 0x14);
792
/* start l1 activation */
793
write_reg(hw, HFCUSB_STATES, 0x04);
794
break;
795
796
case HFC_L1_FORCE_DEACTIVATE_TE:
797
write_reg(hw, HFCUSB_STATES, 0x10);
798
write_reg(hw, HFCUSB_STATES, 0x03);
799
break;
800
801
case HFC_L1_ACTIVATE_NT:
802
if (hw->dch.state == 3)
803
_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
804
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
805
else
806
write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
807
HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
808
break;
809
810
case HFC_L1_DEACTIVATE_NT:
811
write_reg(hw, HFCUSB_STATES,
812
HFCUSB_DO_ACTION);
813
break;
814
}
815
}
816
817
/*
818
* Layer 1 B-channel hardware access
819
*/
820
static int
821
channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
822
{
823
int ret = 0;
824
825
switch (cq->op) {
826
case MISDN_CTRL_GETOP:
827
cq->op = MISDN_CTRL_FILL_EMPTY;
828
break;
829
case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
830
test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
831
if (debug & DEBUG_HW_OPEN)
832
printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
833
"off=%d)\n", __func__, bch->nr, !!cq->p1);
834
break;
835
default:
836
printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
837
ret = -EINVAL;
838
break;
839
}
840
return ret;
841
}
842
843
/* collect data from incoming interrupt or isochron USB data */
844
static void
845
hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
846
int finish)
847
{
848
struct hfcsusb *hw = fifo->hw;
849
struct sk_buff *rx_skb = NULL;
850
int maxlen = 0;
851
int fifon = fifo->fifonum;
852
int i;
853
int hdlc = 0;
854
855
if (debug & DBG_HFC_CALL_TRACE)
856
printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
857
"dch(%p) bch(%p) ech(%p)\n",
858
hw->name, __func__, fifon, len,
859
fifo->dch, fifo->bch, fifo->ech);
860
861
if (!len)
862
return;
863
864
if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
865
printk(KERN_DEBUG "%s: %s: undefined channel\n",
866
hw->name, __func__);
867
return;
868
}
869
870
spin_lock(&hw->lock);
871
if (fifo->dch) {
872
rx_skb = fifo->dch->rx_skb;
873
maxlen = fifo->dch->maxlen;
874
hdlc = 1;
875
}
876
if (fifo->bch) {
877
rx_skb = fifo->bch->rx_skb;
878
maxlen = fifo->bch->maxlen;
879
hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
880
}
881
if (fifo->ech) {
882
rx_skb = fifo->ech->rx_skb;
883
maxlen = fifo->ech->maxlen;
884
hdlc = 1;
885
}
886
887
if (!rx_skb) {
888
rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
889
if (rx_skb) {
890
if (fifo->dch)
891
fifo->dch->rx_skb = rx_skb;
892
if (fifo->bch)
893
fifo->bch->rx_skb = rx_skb;
894
if (fifo->ech)
895
fifo->ech->rx_skb = rx_skb;
896
skb_trim(rx_skb, 0);
897
} else {
898
printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
899
hw->name, __func__);
900
spin_unlock(&hw->lock);
901
return;
902
}
903
}
904
905
if (fifo->dch || fifo->ech) {
906
/* D/E-Channel SKB range check */
907
if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
908
printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
909
"for fifo(%d) HFCUSB_D_RX\n",
910
hw->name, __func__, fifon);
911
skb_trim(rx_skb, 0);
912
spin_unlock(&hw->lock);
913
return;
914
}
915
} else if (fifo->bch) {
916
/* B-Channel SKB range check */
917
if ((rx_skb->len + len) >= (MAX_BCH_SIZE + 3)) {
918
printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
919
"for fifo(%d) HFCUSB_B_RX\n",
920
hw->name, __func__, fifon);
921
skb_trim(rx_skb, 0);
922
spin_unlock(&hw->lock);
923
return;
924
}
925
}
926
927
memcpy(skb_put(rx_skb, len), data, len);
928
929
if (hdlc) {
930
/* we have a complete hdlc packet */
931
if (finish) {
932
if ((rx_skb->len > 3) &&
933
(!(rx_skb->data[rx_skb->len - 1]))) {
934
if (debug & DBG_HFC_FIFO_VERBOSE) {
935
printk(KERN_DEBUG "%s: %s: fifon(%i)"
936
" new RX len(%i): ",
937
hw->name, __func__, fifon,
938
rx_skb->len);
939
i = 0;
940
while (i < rx_skb->len)
941
printk("%02x ",
942
rx_skb->data[i++]);
943
printk("\n");
944
}
945
946
/* remove CRC & status */
947
skb_trim(rx_skb, rx_skb->len - 3);
948
949
if (fifo->dch)
950
recv_Dchannel(fifo->dch);
951
if (fifo->bch)
952
recv_Bchannel(fifo->bch, MISDN_ID_ANY);
953
if (fifo->ech)
954
recv_Echannel(fifo->ech,
955
&hw->dch);
956
} else {
957
if (debug & DBG_HFC_FIFO_VERBOSE) {
958
printk(KERN_DEBUG
959
"%s: CRC or minlen ERROR fifon(%i) "
960
"RX len(%i): ",
961
hw->name, fifon, rx_skb->len);
962
i = 0;
963
while (i < rx_skb->len)
964
printk("%02x ",
965
rx_skb->data[i++]);
966
printk("\n");
967
}
968
skb_trim(rx_skb, 0);
969
}
970
}
971
} else {
972
/* deliver transparent data to layer2 */
973
if (rx_skb->len >= poll)
974
recv_Bchannel(fifo->bch, MISDN_ID_ANY);
975
}
976
spin_unlock(&hw->lock);
977
}
978
979
static void
980
fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
981
void *buf, int num_packets, int packet_size, int interval,
982
usb_complete_t complete, void *context)
983
{
984
int k;
985
986
usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
987
complete, context);
988
989
urb->number_of_packets = num_packets;
990
urb->transfer_flags = URB_ISO_ASAP;
991
urb->actual_length = 0;
992
urb->interval = interval;
993
994
for (k = 0; k < num_packets; k++) {
995
urb->iso_frame_desc[k].offset = packet_size * k;
996
urb->iso_frame_desc[k].length = packet_size;
997
urb->iso_frame_desc[k].actual_length = 0;
998
}
999
}
1000
1001
/* receive completion routine for all ISO tx fifos */
1002
static void
1003
rx_iso_complete(struct urb *urb)
1004
{
1005
struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1006
struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1007
struct hfcsusb *hw = fifo->hw;
1008
int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
1009
status, iso_status, i;
1010
__u8 *buf;
1011
static __u8 eof[8];
1012
__u8 s0_state;
1013
1014
fifon = fifo->fifonum;
1015
status = urb->status;
1016
1017
spin_lock(&hw->lock);
1018
if (fifo->stop_gracefull) {
1019
fifo->stop_gracefull = 0;
1020
fifo->active = 0;
1021
spin_unlock(&hw->lock);
1022
return;
1023
}
1024
spin_unlock(&hw->lock);
1025
1026
/*
1027
* ISO transfer only partially completed,
1028
* look at individual frame status for details
1029
*/
1030
if (status == -EXDEV) {
1031
if (debug & DEBUG_HW)
1032
printk(KERN_DEBUG "%s: %s: with -EXDEV "
1033
"urb->status %d, fifonum %d\n",
1034
hw->name, __func__, status, fifon);
1035
1036
/* clear status, so go on with ISO transfers */
1037
status = 0;
1038
}
1039
1040
s0_state = 0;
1041
if (fifo->active && !status) {
1042
num_isoc_packets = iso_packets[fifon];
1043
maxlen = fifo->usb_packet_maxlen;
1044
1045
for (k = 0; k < num_isoc_packets; ++k) {
1046
len = urb->iso_frame_desc[k].actual_length;
1047
offset = urb->iso_frame_desc[k].offset;
1048
buf = context_iso_urb->buffer + offset;
1049
iso_status = urb->iso_frame_desc[k].status;
1050
1051
if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1052
printk(KERN_DEBUG "%s: %s: "
1053
"ISO packet %i, status: %i\n",
1054
hw->name, __func__, k, iso_status);
1055
}
1056
1057
/* USB data log for every D ISO in */
1058
if ((fifon == HFCUSB_D_RX) &&
1059
(debug & DBG_HFC_USB_VERBOSE)) {
1060
printk(KERN_DEBUG
1061
"%s: %s: %d (%d/%d) len(%d) ",
1062
hw->name, __func__, urb->start_frame,
1063
k, num_isoc_packets-1,
1064
len);
1065
for (i = 0; i < len; i++)
1066
printk("%x ", buf[i]);
1067
printk("\n");
1068
}
1069
1070
if (!iso_status) {
1071
if (fifo->last_urblen != maxlen) {
1072
/*
1073
* save fifo fill-level threshold bits
1074
* to use them later in TX ISO URB
1075
* completions
1076
*/
1077
hw->threshold_mask = buf[1];
1078
1079
if (fifon == HFCUSB_D_RX)
1080
s0_state = (buf[0] >> 4);
1081
1082
eof[fifon] = buf[0] & 1;
1083
if (len > 2)
1084
hfcsusb_rx_frame(fifo, buf + 2,
1085
len - 2, (len < maxlen)
1086
? eof[fifon] : 0);
1087
} else
1088
hfcsusb_rx_frame(fifo, buf, len,
1089
(len < maxlen) ?
1090
eof[fifon] : 0);
1091
fifo->last_urblen = len;
1092
}
1093
}
1094
1095
/* signal S0 layer1 state change */
1096
if ((s0_state) && (hw->initdone) &&
1097
(s0_state != hw->dch.state)) {
1098
hw->dch.state = s0_state;
1099
schedule_event(&hw->dch, FLG_PHCHANGE);
1100
}
1101
1102
fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1103
context_iso_urb->buffer, num_isoc_packets,
1104
fifo->usb_packet_maxlen, fifo->intervall,
1105
(usb_complete_t)rx_iso_complete, urb->context);
1106
errcode = usb_submit_urb(urb, GFP_ATOMIC);
1107
if (errcode < 0) {
1108
if (debug & DEBUG_HW)
1109
printk(KERN_DEBUG "%s: %s: error submitting "
1110
"ISO URB: %d\n",
1111
hw->name, __func__, errcode);
1112
}
1113
} else {
1114
if (status && (debug & DBG_HFC_URB_INFO))
1115
printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1116
"urb->status %d, fifonum %d\n",
1117
hw->name, __func__, status, fifon);
1118
}
1119
}
1120
1121
/* receive completion routine for all interrupt rx fifos */
1122
static void
1123
rx_int_complete(struct urb *urb)
1124
{
1125
int len, status, i;
1126
__u8 *buf, maxlen, fifon;
1127
struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1128
struct hfcsusb *hw = fifo->hw;
1129
static __u8 eof[8];
1130
1131
spin_lock(&hw->lock);
1132
if (fifo->stop_gracefull) {
1133
fifo->stop_gracefull = 0;
1134
fifo->active = 0;
1135
spin_unlock(&hw->lock);
1136
return;
1137
}
1138
spin_unlock(&hw->lock);
1139
1140
fifon = fifo->fifonum;
1141
if ((!fifo->active) || (urb->status)) {
1142
if (debug & DBG_HFC_URB_ERROR)
1143
printk(KERN_DEBUG
1144
"%s: %s: RX-Fifo %i is going down (%i)\n",
1145
hw->name, __func__, fifon, urb->status);
1146
1147
fifo->urb->interval = 0; /* cancel automatic rescheduling */
1148
return;
1149
}
1150
len = urb->actual_length;
1151
buf = fifo->buffer;
1152
maxlen = fifo->usb_packet_maxlen;
1153
1154
/* USB data log for every D INT in */
1155
if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1156
printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1157
hw->name, __func__, len);
1158
for (i = 0; i < len; i++)
1159
printk("%02x ", buf[i]);
1160
printk("\n");
1161
}
1162
1163
if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1164
/* the threshold mask is in the 2nd status byte */
1165
hw->threshold_mask = buf[1];
1166
1167
/* signal S0 layer1 state change */
1168
if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1169
hw->dch.state = (buf[0] >> 4);
1170
schedule_event(&hw->dch, FLG_PHCHANGE);
1171
}
1172
1173
eof[fifon] = buf[0] & 1;
1174
/* if we have more than the 2 status bytes -> collect data */
1175
if (len > 2)
1176
hfcsusb_rx_frame(fifo, buf + 2,
1177
urb->actual_length - 2,
1178
(len < maxlen) ? eof[fifon] : 0);
1179
} else {
1180
hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1181
(len < maxlen) ? eof[fifon] : 0);
1182
}
1183
fifo->last_urblen = urb->actual_length;
1184
1185
status = usb_submit_urb(urb, GFP_ATOMIC);
1186
if (status) {
1187
if (debug & DEBUG_HW)
1188
printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1189
hw->name, __func__);
1190
}
1191
}
1192
1193
/* transmit completion routine for all ISO tx fifos */
1194
static void
1195
tx_iso_complete(struct urb *urb)
1196
{
1197
struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1198
struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1199
struct hfcsusb *hw = fifo->hw;
1200
struct sk_buff *tx_skb;
1201
int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1202
errcode, hdlc, i;
1203
int *tx_idx;
1204
int frame_complete, fifon, status;
1205
__u8 threshbit;
1206
1207
spin_lock(&hw->lock);
1208
if (fifo->stop_gracefull) {
1209
fifo->stop_gracefull = 0;
1210
fifo->active = 0;
1211
spin_unlock(&hw->lock);
1212
return;
1213
}
1214
1215
if (fifo->dch) {
1216
tx_skb = fifo->dch->tx_skb;
1217
tx_idx = &fifo->dch->tx_idx;
1218
hdlc = 1;
1219
} else if (fifo->bch) {
1220
tx_skb = fifo->bch->tx_skb;
1221
tx_idx = &fifo->bch->tx_idx;
1222
hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1223
} else {
1224
printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1225
hw->name, __func__);
1226
spin_unlock(&hw->lock);
1227
return;
1228
}
1229
1230
fifon = fifo->fifonum;
1231
status = urb->status;
1232
1233
tx_offset = 0;
1234
1235
/*
1236
* ISO transfer only partially completed,
1237
* look at individual frame status for details
1238
*/
1239
if (status == -EXDEV) {
1240
if (debug & DBG_HFC_URB_ERROR)
1241
printk(KERN_DEBUG "%s: %s: "
1242
"-EXDEV (%i) fifon (%d)\n",
1243
hw->name, __func__, status, fifon);
1244
1245
/* clear status, so go on with ISO transfers */
1246
status = 0;
1247
}
1248
1249
if (fifo->active && !status) {
1250
/* is FifoFull-threshold set for our channel? */
1251
threshbit = (hw->threshold_mask & (1 << fifon));
1252
num_isoc_packets = iso_packets[fifon];
1253
1254
/* predict dataflow to avoid fifo overflow */
1255
if (fifon >= HFCUSB_D_TX)
1256
sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1257
else
1258
sink = (threshbit) ? SINK_MIN : SINK_MAX;
1259
fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1260
context_iso_urb->buffer, num_isoc_packets,
1261
fifo->usb_packet_maxlen, fifo->intervall,
1262
(usb_complete_t)tx_iso_complete, urb->context);
1263
memset(context_iso_urb->buffer, 0,
1264
sizeof(context_iso_urb->buffer));
1265
frame_complete = 0;
1266
1267
for (k = 0; k < num_isoc_packets; ++k) {
1268
/* analyze tx success of previous ISO packets */
1269
if (debug & DBG_HFC_URB_ERROR) {
1270
errcode = urb->iso_frame_desc[k].status;
1271
if (errcode) {
1272
printk(KERN_DEBUG "%s: %s: "
1273
"ISO packet %i, status: %i\n",
1274
hw->name, __func__, k, errcode);
1275
}
1276
}
1277
1278
/* Generate next ISO Packets */
1279
if (tx_skb)
1280
remain = tx_skb->len - *tx_idx;
1281
else
1282
remain = 0;
1283
1284
if (remain > 0) {
1285
fifo->bit_line -= sink;
1286
current_len = (0 - fifo->bit_line) / 8;
1287
if (current_len > 14)
1288
current_len = 14;
1289
if (current_len < 0)
1290
current_len = 0;
1291
if (remain < current_len)
1292
current_len = remain;
1293
1294
/* how much bit do we put on the line? */
1295
fifo->bit_line += current_len * 8;
1296
1297
context_iso_urb->buffer[tx_offset] = 0;
1298
if (current_len == remain) {
1299
if (hdlc) {
1300
/* signal frame completion */
1301
context_iso_urb->
1302
buffer[tx_offset] = 1;
1303
/* add 2 byte flags and 16bit
1304
* CRC at end of ISDN frame */
1305
fifo->bit_line += 32;
1306
}
1307
frame_complete = 1;
1308
}
1309
1310
/* copy tx data to iso-urb buffer */
1311
memcpy(context_iso_urb->buffer + tx_offset + 1,
1312
(tx_skb->data + *tx_idx), current_len);
1313
*tx_idx += current_len;
1314
1315
urb->iso_frame_desc[k].offset = tx_offset;
1316
urb->iso_frame_desc[k].length = current_len + 1;
1317
1318
/* USB data log for every D ISO out */
1319
if ((fifon == HFCUSB_D_RX) &&
1320
(debug & DBG_HFC_USB_VERBOSE)) {
1321
printk(KERN_DEBUG
1322
"%s: %s (%d/%d) offs(%d) len(%d) ",
1323
hw->name, __func__,
1324
k, num_isoc_packets-1,
1325
urb->iso_frame_desc[k].offset,
1326
urb->iso_frame_desc[k].length);
1327
1328
for (i = urb->iso_frame_desc[k].offset;
1329
i < (urb->iso_frame_desc[k].offset
1330
+ urb->iso_frame_desc[k].length);
1331
i++)
1332
printk("%x ",
1333
context_iso_urb->buffer[i]);
1334
1335
printk(" skb->len(%i) tx-idx(%d)\n",
1336
tx_skb->len, *tx_idx);
1337
}
1338
1339
tx_offset += (current_len + 1);
1340
} else {
1341
urb->iso_frame_desc[k].offset = tx_offset++;
1342
urb->iso_frame_desc[k].length = 1;
1343
/* we lower data margin every msec */
1344
fifo->bit_line -= sink;
1345
if (fifo->bit_line < BITLINE_INF)
1346
fifo->bit_line = BITLINE_INF;
1347
}
1348
1349
if (frame_complete) {
1350
frame_complete = 0;
1351
1352
if (debug & DBG_HFC_FIFO_VERBOSE) {
1353
printk(KERN_DEBUG "%s: %s: "
1354
"fifon(%i) new TX len(%i): ",
1355
hw->name, __func__,
1356
fifon, tx_skb->len);
1357
i = 0;
1358
while (i < tx_skb->len)
1359
printk("%02x ",
1360
tx_skb->data[i++]);
1361
printk("\n");
1362
}
1363
1364
dev_kfree_skb(tx_skb);
1365
tx_skb = NULL;
1366
if (fifo->dch && get_next_dframe(fifo->dch))
1367
tx_skb = fifo->dch->tx_skb;
1368
else if (fifo->bch &&
1369
get_next_bframe(fifo->bch)) {
1370
if (test_bit(FLG_TRANSPARENT,
1371
&fifo->bch->Flags))
1372
confirm_Bsend(fifo->bch);
1373
tx_skb = fifo->bch->tx_skb;
1374
}
1375
}
1376
}
1377
errcode = usb_submit_urb(urb, GFP_ATOMIC);
1378
if (errcode < 0) {
1379
if (debug & DEBUG_HW)
1380
printk(KERN_DEBUG
1381
"%s: %s: error submitting ISO URB: %d \n",
1382
hw->name, __func__, errcode);
1383
}
1384
1385
/*
1386
* abuse DChannel tx iso completion to trigger NT mode state
1387
* changes tx_iso_complete is assumed to be called every
1388
* fifo->intervall (ms)
1389
*/
1390
if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1391
&& (hw->timers & NT_ACTIVATION_TIMER)) {
1392
if ((--hw->nt_timer) < 0)
1393
schedule_event(&hw->dch, FLG_PHCHANGE);
1394
}
1395
1396
} else {
1397
if (status && (debug & DBG_HFC_URB_ERROR))
1398
printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
1399
"fifonum=%d\n",
1400
hw->name, __func__,
1401
symbolic(urb_errlist, status), status, fifon);
1402
}
1403
spin_unlock(&hw->lock);
1404
}
1405
1406
/*
1407
* allocs urbs and start isoc transfer with two pending urbs to avoid
1408
* gaps in the transfer chain
1409
*/
1410
static int
1411
start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1412
usb_complete_t complete, int packet_size)
1413
{
1414
struct hfcsusb *hw = fifo->hw;
1415
int i, k, errcode;
1416
1417
if (debug)
1418
printk(KERN_DEBUG "%s: %s: fifo %i\n",
1419
hw->name, __func__, fifo->fifonum);
1420
1421
/* allocate Memory for Iso out Urbs */
1422
for (i = 0; i < 2; i++) {
1423
if (!(fifo->iso[i].urb)) {
1424
fifo->iso[i].urb =
1425
usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1426
if (!(fifo->iso[i].urb)) {
1427
printk(KERN_DEBUG
1428
"%s: %s: alloc urb for fifo %i failed",
1429
hw->name, __func__, fifo->fifonum);
1430
}
1431
fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1432
fifo->iso[i].indx = i;
1433
1434
/* Init the first iso */
1435
if (ISO_BUFFER_SIZE >=
1436
(fifo->usb_packet_maxlen *
1437
num_packets_per_urb)) {
1438
fill_isoc_urb(fifo->iso[i].urb,
1439
fifo->hw->dev, fifo->pipe,
1440
fifo->iso[i].buffer,
1441
num_packets_per_urb,
1442
fifo->usb_packet_maxlen,
1443
fifo->intervall, complete,
1444
&fifo->iso[i]);
1445
memset(fifo->iso[i].buffer, 0,
1446
sizeof(fifo->iso[i].buffer));
1447
1448
for (k = 0; k < num_packets_per_urb; k++) {
1449
fifo->iso[i].urb->
1450
iso_frame_desc[k].offset =
1451
k * packet_size;
1452
fifo->iso[i].urb->
1453
iso_frame_desc[k].length =
1454
packet_size;
1455
}
1456
} else {
1457
printk(KERN_DEBUG
1458
"%s: %s: ISO Buffer size to small!\n",
1459
hw->name, __func__);
1460
}
1461
}
1462
fifo->bit_line = BITLINE_INF;
1463
1464
errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1465
fifo->active = (errcode >= 0) ? 1 : 0;
1466
fifo->stop_gracefull = 0;
1467
if (errcode < 0) {
1468
printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1469
hw->name, __func__,
1470
symbolic(urb_errlist, errcode), i);
1471
}
1472
}
1473
return fifo->active;
1474
}
1475
1476
static void
1477
stop_iso_gracefull(struct usb_fifo *fifo)
1478
{
1479
struct hfcsusb *hw = fifo->hw;
1480
int i, timeout;
1481
u_long flags;
1482
1483
for (i = 0; i < 2; i++) {
1484
spin_lock_irqsave(&hw->lock, flags);
1485
if (debug)
1486
printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1487
hw->name, __func__, fifo->fifonum, i);
1488
fifo->stop_gracefull = 1;
1489
spin_unlock_irqrestore(&hw->lock, flags);
1490
}
1491
1492
for (i = 0; i < 2; i++) {
1493
timeout = 3;
1494
while (fifo->stop_gracefull && timeout--)
1495
schedule_timeout_interruptible((HZ/1000)*16);
1496
if (debug && fifo->stop_gracefull)
1497
printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1498
hw->name, __func__, fifo->fifonum, i);
1499
}
1500
}
1501
1502
static void
1503
stop_int_gracefull(struct usb_fifo *fifo)
1504
{
1505
struct hfcsusb *hw = fifo->hw;
1506
int timeout;
1507
u_long flags;
1508
1509
spin_lock_irqsave(&hw->lock, flags);
1510
if (debug)
1511
printk(KERN_DEBUG "%s: %s for fifo %i\n",
1512
hw->name, __func__, fifo->fifonum);
1513
fifo->stop_gracefull = 1;
1514
spin_unlock_irqrestore(&hw->lock, flags);
1515
1516
timeout = 3;
1517
while (fifo->stop_gracefull && timeout--)
1518
schedule_timeout_interruptible((HZ/1000)*3);
1519
if (debug && fifo->stop_gracefull)
1520
printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1521
hw->name, __func__, fifo->fifonum);
1522
}
1523
1524
/* start the interrupt transfer for the given fifo */
1525
static void
1526
start_int_fifo(struct usb_fifo *fifo)
1527
{
1528
struct hfcsusb *hw = fifo->hw;
1529
int errcode;
1530
1531
if (debug)
1532
printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1533
hw->name, __func__, fifo->fifonum);
1534
1535
if (!fifo->urb) {
1536
fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1537
if (!fifo->urb)
1538
return;
1539
}
1540
usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1541
fifo->buffer, fifo->usb_packet_maxlen,
1542
(usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1543
fifo->active = 1;
1544
fifo->stop_gracefull = 0;
1545
errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1546
if (errcode) {
1547
printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1548
hw->name, __func__, errcode);
1549
fifo->active = 0;
1550
}
1551
}
1552
1553
static void
1554
setPortMode(struct hfcsusb *hw)
1555
{
1556
if (debug & DEBUG_HW)
1557
printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1558
(hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1559
1560
if (hw->protocol == ISDN_P_TE_S0) {
1561
write_reg(hw, HFCUSB_SCTRL, 0x40);
1562
write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1563
write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1564
write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1565
write_reg(hw, HFCUSB_STATES, 3);
1566
} else {
1567
write_reg(hw, HFCUSB_SCTRL, 0x44);
1568
write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1569
write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1570
write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1571
write_reg(hw, HFCUSB_STATES, 1);
1572
}
1573
}
1574
1575
static void
1576
reset_hfcsusb(struct hfcsusb *hw)
1577
{
1578
struct usb_fifo *fifo;
1579
int i;
1580
1581
if (debug & DEBUG_HW)
1582
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1583
1584
/* do Chip reset */
1585
write_reg(hw, HFCUSB_CIRM, 8);
1586
1587
/* aux = output, reset off */
1588
write_reg(hw, HFCUSB_CIRM, 0x10);
1589
1590
/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1591
write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1592
((hw->packet_size / 8) << 4));
1593
1594
/* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1595
write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1596
1597
/* enable PCM/GCI master mode */
1598
write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
1599
write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
1600
1601
/* init the fifos */
1602
write_reg(hw, HFCUSB_F_THRES,
1603
(HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1604
1605
fifo = hw->fifos;
1606
for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1607
write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
1608
fifo[i].max_size =
1609
(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1610
fifo[i].last_urblen = 0;
1611
1612
/* set 2 bit for D- & E-channel */
1613
write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1614
1615
/* enable all fifos */
1616
if (i == HFCUSB_D_TX)
1617
write_reg(hw, HFCUSB_CON_HDLC,
1618
(hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1619
else
1620
write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1621
write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1622
}
1623
1624
write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1625
handle_led(hw, LED_POWER_ON);
1626
}
1627
1628
/* start USB data pipes dependand on device's endpoint configuration */
1629
static void
1630
hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1631
{
1632
/* quick check if endpoint already running */
1633
if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1634
return;
1635
if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1636
return;
1637
if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1638
return;
1639
if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1640
return;
1641
1642
/* start rx endpoints using USB INT IN method */
1643
if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1644
start_int_fifo(hw->fifos + channel*2 + 1);
1645
1646
/* start rx endpoints using USB ISO IN method */
1647
if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1648
switch (channel) {
1649
case HFC_CHAN_D:
1650
start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1651
ISOC_PACKETS_D,
1652
(usb_complete_t)rx_iso_complete,
1653
16);
1654
break;
1655
case HFC_CHAN_E:
1656
start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1657
ISOC_PACKETS_D,
1658
(usb_complete_t)rx_iso_complete,
1659
16);
1660
break;
1661
case HFC_CHAN_B1:
1662
start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1663
ISOC_PACKETS_B,
1664
(usb_complete_t)rx_iso_complete,
1665
16);
1666
break;
1667
case HFC_CHAN_B2:
1668
start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1669
ISOC_PACKETS_B,
1670
(usb_complete_t)rx_iso_complete,
1671
16);
1672
break;
1673
}
1674
}
1675
1676
/* start tx endpoints using USB ISO OUT method */
1677
switch (channel) {
1678
case HFC_CHAN_D:
1679
start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1680
ISOC_PACKETS_B,
1681
(usb_complete_t)tx_iso_complete, 1);
1682
break;
1683
case HFC_CHAN_B1:
1684
start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1685
ISOC_PACKETS_D,
1686
(usb_complete_t)tx_iso_complete, 1);
1687
break;
1688
case HFC_CHAN_B2:
1689
start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1690
ISOC_PACKETS_B,
1691
(usb_complete_t)tx_iso_complete, 1);
1692
break;
1693
}
1694
}
1695
1696
/* stop USB data pipes dependand on device's endpoint configuration */
1697
static void
1698
hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1699
{
1700
/* quick check if endpoint currently running */
1701
if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1702
return;
1703
if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1704
return;
1705
if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1706
return;
1707
if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1708
return;
1709
1710
/* rx endpoints using USB INT IN method */
1711
if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1712
stop_int_gracefull(hw->fifos + channel*2 + 1);
1713
1714
/* rx endpoints using USB ISO IN method */
1715
if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1716
stop_iso_gracefull(hw->fifos + channel*2 + 1);
1717
1718
/* tx endpoints using USB ISO OUT method */
1719
if (channel != HFC_CHAN_E)
1720
stop_iso_gracefull(hw->fifos + channel*2);
1721
}
1722
1723
1724
/* Hardware Initialization */
1725
static int
1726
setup_hfcsusb(struct hfcsusb *hw)
1727
{
1728
u_char b;
1729
1730
if (debug & DBG_HFC_CALL_TRACE)
1731
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1732
1733
/* check the chip id */
1734
if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1735
printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1736
hw->name, __func__);
1737
return 1;
1738
}
1739
if (b != HFCUSB_CHIPID) {
1740
printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1741
hw->name, __func__, b);
1742
return 1;
1743
}
1744
1745
/* first set the needed config, interface and alternate */
1746
(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1747
1748
hw->led_state = 0;
1749
1750
/* init the background machinery for control requests */
1751
hw->ctrl_read.bRequestType = 0xc0;
1752
hw->ctrl_read.bRequest = 1;
1753
hw->ctrl_read.wLength = cpu_to_le16(1);
1754
hw->ctrl_write.bRequestType = 0x40;
1755
hw->ctrl_write.bRequest = 0;
1756
hw->ctrl_write.wLength = 0;
1757
usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1758
(u_char *)&hw->ctrl_write, NULL, 0,
1759
(usb_complete_t)ctrl_complete, hw);
1760
1761
reset_hfcsusb(hw);
1762
return 0;
1763
}
1764
1765
static void
1766
release_hw(struct hfcsusb *hw)
1767
{
1768
if (debug & DBG_HFC_CALL_TRACE)
1769
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1770
1771
/*
1772
* stop all endpoints gracefully
1773
* TODO: mISDN_core should generate CLOSE_CHANNEL
1774
* signals after calling mISDN_unregister_device()
1775
*/
1776
hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1777
hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1778
hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1779
if (hw->fifos[HFCUSB_PCM_RX].pipe)
1780
hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1781
if (hw->protocol == ISDN_P_TE_S0)
1782
l1_event(hw->dch.l1, CLOSE_CHANNEL);
1783
1784
mISDN_unregister_device(&hw->dch.dev);
1785
mISDN_freebchannel(&hw->bch[1]);
1786
mISDN_freebchannel(&hw->bch[0]);
1787
mISDN_freedchannel(&hw->dch);
1788
1789
if (hw->ctrl_urb) {
1790
usb_kill_urb(hw->ctrl_urb);
1791
usb_free_urb(hw->ctrl_urb);
1792
hw->ctrl_urb = NULL;
1793
}
1794
1795
if (hw->intf)
1796
usb_set_intfdata(hw->intf, NULL);
1797
list_del(&hw->list);
1798
kfree(hw);
1799
hw = NULL;
1800
}
1801
1802
static void
1803
deactivate_bchannel(struct bchannel *bch)
1804
{
1805
struct hfcsusb *hw = bch->hw;
1806
u_long flags;
1807
1808
if (bch->debug & DEBUG_HW)
1809
printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1810
hw->name, __func__, bch->nr);
1811
1812
spin_lock_irqsave(&hw->lock, flags);
1813
mISDN_clear_bchannel(bch);
1814
spin_unlock_irqrestore(&hw->lock, flags);
1815
hfcsusb_setup_bch(bch, ISDN_P_NONE);
1816
hfcsusb_stop_endpoint(hw, bch->nr);
1817
}
1818
1819
/*
1820
* Layer 1 B-channel hardware access
1821
*/
1822
static int
1823
hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1824
{
1825
struct bchannel *bch = container_of(ch, struct bchannel, ch);
1826
int ret = -EINVAL;
1827
1828
if (bch->debug & DEBUG_HW)
1829
printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1830
1831
switch (cmd) {
1832
case HW_TESTRX_RAW:
1833
case HW_TESTRX_HDLC:
1834
case HW_TESTRX_OFF:
1835
ret = -EINVAL;
1836
break;
1837
1838
case CLOSE_CHANNEL:
1839
test_and_clear_bit(FLG_OPEN, &bch->Flags);
1840
if (test_bit(FLG_ACTIVE, &bch->Flags))
1841
deactivate_bchannel(bch);
1842
ch->protocol = ISDN_P_NONE;
1843
ch->peer = NULL;
1844
module_put(THIS_MODULE);
1845
ret = 0;
1846
break;
1847
case CONTROL_CHANNEL:
1848
ret = channel_bctrl(bch, arg);
1849
break;
1850
default:
1851
printk(KERN_WARNING "%s: unknown prim(%x)\n",
1852
__func__, cmd);
1853
}
1854
return ret;
1855
}
1856
1857
static int
1858
setup_instance(struct hfcsusb *hw, struct device *parent)
1859
{
1860
u_long flags;
1861
int err, i;
1862
1863
if (debug & DBG_HFC_CALL_TRACE)
1864
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1865
1866
spin_lock_init(&hw->ctrl_lock);
1867
spin_lock_init(&hw->lock);
1868
1869
mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1870
hw->dch.debug = debug & 0xFFFF;
1871
hw->dch.hw = hw;
1872
hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1873
hw->dch.dev.D.send = hfcusb_l2l1D;
1874
hw->dch.dev.D.ctrl = hfc_dctrl;
1875
1876
/* enable E-Channel logging */
1877
if (hw->fifos[HFCUSB_PCM_RX].pipe)
1878
mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1879
1880
hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1881
(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1882
hw->dch.dev.nrbchan = 2;
1883
for (i = 0; i < 2; i++) {
1884
hw->bch[i].nr = i + 1;
1885
set_channelmap(i + 1, hw->dch.dev.channelmap);
1886
hw->bch[i].debug = debug;
1887
mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM);
1888
hw->bch[i].hw = hw;
1889
hw->bch[i].ch.send = hfcusb_l2l1B;
1890
hw->bch[i].ch.ctrl = hfc_bctrl;
1891
hw->bch[i].ch.nr = i + 1;
1892
list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1893
}
1894
1895
hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1896
hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1897
hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1898
hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1899
hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1900
hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1901
hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1902
hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1903
1904
err = setup_hfcsusb(hw);
1905
if (err)
1906
goto out;
1907
1908
snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1909
hfcsusb_cnt + 1);
1910
printk(KERN_INFO "%s: registered as '%s'\n",
1911
DRIVER_NAME, hw->name);
1912
1913
err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1914
if (err)
1915
goto out;
1916
1917
hfcsusb_cnt++;
1918
write_lock_irqsave(&HFClock, flags);
1919
list_add_tail(&hw->list, &HFClist);
1920
write_unlock_irqrestore(&HFClock, flags);
1921
return 0;
1922
1923
out:
1924
mISDN_freebchannel(&hw->bch[1]);
1925
mISDN_freebchannel(&hw->bch[0]);
1926
mISDN_freedchannel(&hw->dch);
1927
kfree(hw);
1928
return err;
1929
}
1930
1931
static int
1932
hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1933
{
1934
struct hfcsusb *hw;
1935
struct usb_device *dev = interface_to_usbdev(intf);
1936
struct usb_host_interface *iface = intf->cur_altsetting;
1937
struct usb_host_interface *iface_used = NULL;
1938
struct usb_host_endpoint *ep;
1939
struct hfcsusb_vdata *driver_info;
1940
int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1941
probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1942
ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1943
alt_used = 0;
1944
1945
vend_idx = 0xffff;
1946
for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1947
if ((le16_to_cpu(dev->descriptor.idVendor)
1948
== hfcsusb_idtab[i].idVendor) &&
1949
(le16_to_cpu(dev->descriptor.idProduct)
1950
== hfcsusb_idtab[i].idProduct)) {
1951
vend_idx = i;
1952
continue;
1953
}
1954
}
1955
1956
printk(KERN_DEBUG
1957
"%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1958
__func__, ifnum, iface->desc.bAlternateSetting,
1959
intf->minor, vend_idx);
1960
1961
if (vend_idx == 0xffff) {
1962
printk(KERN_WARNING
1963
"%s: no valid vendor found in USB descriptor\n",
1964
__func__);
1965
return -EIO;
1966
}
1967
/* if vendor and product ID is OK, start probing alternate settings */
1968
alt_idx = 0;
1969
small_match = -1;
1970
1971
/* default settings */
1972
iso_packet_size = 16;
1973
packet_size = 64;
1974
1975
while (alt_idx < intf->num_altsetting) {
1976
iface = intf->altsetting + alt_idx;
1977
probe_alt_setting = iface->desc.bAlternateSetting;
1978
cfg_used = 0;
1979
1980
while (validconf[cfg_used][0]) {
1981
cfg_found = 1;
1982
vcf = validconf[cfg_used];
1983
ep = iface->endpoint;
1984
memcpy(cmptbl, vcf, 16 * sizeof(int));
1985
1986
/* check for all endpoints in this alternate setting */
1987
for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1988
ep_addr = ep->desc.bEndpointAddress;
1989
1990
/* get endpoint base */
1991
idx = ((ep_addr & 0x7f) - 1) * 2;
1992
if (ep_addr & 0x80)
1993
idx++;
1994
attr = ep->desc.bmAttributes;
1995
1996
if (cmptbl[idx] != EP_NOP) {
1997
if (cmptbl[idx] == EP_NUL)
1998
cfg_found = 0;
1999
if (attr == USB_ENDPOINT_XFER_INT
2000
&& cmptbl[idx] == EP_INT)
2001
cmptbl[idx] = EP_NUL;
2002
if (attr == USB_ENDPOINT_XFER_BULK
2003
&& cmptbl[idx] == EP_BLK)
2004
cmptbl[idx] = EP_NUL;
2005
if (attr == USB_ENDPOINT_XFER_ISOC
2006
&& cmptbl[idx] == EP_ISO)
2007
cmptbl[idx] = EP_NUL;
2008
2009
if (attr == USB_ENDPOINT_XFER_INT &&
2010
ep->desc.bInterval < vcf[17]) {
2011
cfg_found = 0;
2012
}
2013
}
2014
ep++;
2015
}
2016
2017
for (i = 0; i < 16; i++)
2018
if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2019
cfg_found = 0;
2020
2021
if (cfg_found) {
2022
if (small_match < cfg_used) {
2023
small_match = cfg_used;
2024
alt_used = probe_alt_setting;
2025
iface_used = iface;
2026
}
2027
}
2028
cfg_used++;
2029
}
2030
alt_idx++;
2031
} /* (alt_idx < intf->num_altsetting) */
2032
2033
/* not found a valid USB Ta Endpoint config */
2034
if (small_match == -1)
2035
return -EIO;
2036
2037
iface = iface_used;
2038
hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2039
if (!hw)
2040
return -ENOMEM; /* got no mem */
2041
snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2042
2043
ep = iface->endpoint;
2044
vcf = validconf[small_match];
2045
2046
for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2047
struct usb_fifo *f;
2048
2049
ep_addr = ep->desc.bEndpointAddress;
2050
/* get endpoint base */
2051
idx = ((ep_addr & 0x7f) - 1) * 2;
2052
if (ep_addr & 0x80)
2053
idx++;
2054
f = &hw->fifos[idx & 7];
2055
2056
/* init Endpoints */
2057
if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2058
ep++;
2059
continue;
2060
}
2061
switch (ep->desc.bmAttributes) {
2062
case USB_ENDPOINT_XFER_INT:
2063
f->pipe = usb_rcvintpipe(dev,
2064
ep->desc.bEndpointAddress);
2065
f->usb_transfer_mode = USB_INT;
2066
packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2067
break;
2068
case USB_ENDPOINT_XFER_BULK:
2069
if (ep_addr & 0x80)
2070
f->pipe = usb_rcvbulkpipe(dev,
2071
ep->desc.bEndpointAddress);
2072
else
2073
f->pipe = usb_sndbulkpipe(dev,
2074
ep->desc.bEndpointAddress);
2075
f->usb_transfer_mode = USB_BULK;
2076
packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2077
break;
2078
case USB_ENDPOINT_XFER_ISOC:
2079
if (ep_addr & 0x80)
2080
f->pipe = usb_rcvisocpipe(dev,
2081
ep->desc.bEndpointAddress);
2082
else
2083
f->pipe = usb_sndisocpipe(dev,
2084
ep->desc.bEndpointAddress);
2085
f->usb_transfer_mode = USB_ISOC;
2086
iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2087
break;
2088
default:
2089
f->pipe = 0;
2090
}
2091
2092
if (f->pipe) {
2093
f->fifonum = idx & 7;
2094
f->hw = hw;
2095
f->usb_packet_maxlen =
2096
le16_to_cpu(ep->desc.wMaxPacketSize);
2097
f->intervall = ep->desc.bInterval;
2098
}
2099
ep++;
2100
}
2101
hw->dev = dev; /* save device */
2102
hw->if_used = ifnum; /* save used interface */
2103
hw->alt_used = alt_used; /* and alternate config */
2104
hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2105
hw->cfg_used = vcf[16]; /* store used config */
2106
hw->vend_idx = vend_idx; /* store found vendor */
2107
hw->packet_size = packet_size;
2108
hw->iso_packet_size = iso_packet_size;
2109
2110
/* create the control pipes needed for register access */
2111
hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2112
hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2113
hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2114
2115
driver_info =
2116
(struct hfcsusb_vdata *)hfcsusb_idtab[vend_idx].driver_info;
2117
printk(KERN_DEBUG "%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2118
hw->name, __func__, driver_info->vend_name,
2119
conf_str[small_match], ifnum, alt_used);
2120
2121
if (setup_instance(hw, dev->dev.parent))
2122
return -EIO;
2123
2124
hw->intf = intf;
2125
usb_set_intfdata(hw->intf, hw);
2126
return 0;
2127
}
2128
2129
/* function called when an active device is removed */
2130
static void
2131
hfcsusb_disconnect(struct usb_interface *intf)
2132
{
2133
struct hfcsusb *hw = usb_get_intfdata(intf);
2134
struct hfcsusb *next;
2135
int cnt = 0;
2136
2137
printk(KERN_INFO "%s: device disconnected\n", hw->name);
2138
2139
handle_led(hw, LED_POWER_OFF);
2140
release_hw(hw);
2141
2142
list_for_each_entry_safe(hw, next, &HFClist, list)
2143
cnt++;
2144
if (!cnt)
2145
hfcsusb_cnt = 0;
2146
2147
usb_set_intfdata(intf, NULL);
2148
}
2149
2150
static struct usb_driver hfcsusb_drv = {
2151
.name = DRIVER_NAME,
2152
.id_table = hfcsusb_idtab,
2153
.probe = hfcsusb_probe,
2154
.disconnect = hfcsusb_disconnect,
2155
};
2156
2157
static int __init
2158
hfcsusb_init(void)
2159
{
2160
printk(KERN_INFO DRIVER_NAME " driver Rev. %s debug(0x%x) poll(%i)\n",
2161
hfcsusb_rev, debug, poll);
2162
2163
if (usb_register(&hfcsusb_drv)) {
2164
printk(KERN_INFO DRIVER_NAME
2165
": Unable to register hfcsusb module at usb stack\n");
2166
return -ENODEV;
2167
}
2168
2169
return 0;
2170
}
2171
2172
static void __exit
2173
hfcsusb_cleanup(void)
2174
{
2175
if (debug & DBG_HFC_CALL_TRACE)
2176
printk(KERN_INFO DRIVER_NAME ": %s\n", __func__);
2177
2178
/* unregister Hardware */
2179
usb_deregister(&hfcsusb_drv); /* release our driver */
2180
}
2181
2182
module_init(hfcsusb_init);
2183
module_exit(hfcsusb_cleanup);
2184
2185