Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/lguest/core.c
15109 views
1
/*P:400
2
* This contains run_guest() which actually calls into the Host<->Guest
3
* Switcher and analyzes the return, such as determining if the Guest wants the
4
* Host to do something. This file also contains useful helper routines.
5
:*/
6
#include <linux/module.h>
7
#include <linux/stringify.h>
8
#include <linux/stddef.h>
9
#include <linux/io.h>
10
#include <linux/mm.h>
11
#include <linux/vmalloc.h>
12
#include <linux/cpu.h>
13
#include <linux/freezer.h>
14
#include <linux/highmem.h>
15
#include <linux/slab.h>
16
#include <asm/paravirt.h>
17
#include <asm/pgtable.h>
18
#include <asm/uaccess.h>
19
#include <asm/poll.h>
20
#include <asm/asm-offsets.h>
21
#include "lg.h"
22
23
24
static struct vm_struct *switcher_vma;
25
static struct page **switcher_page;
26
27
/* This One Big lock protects all inter-guest data structures. */
28
DEFINE_MUTEX(lguest_lock);
29
30
/*H:010
31
* We need to set up the Switcher at a high virtual address. Remember the
32
* Switcher is a few hundred bytes of assembler code which actually changes the
33
* CPU to run the Guest, and then changes back to the Host when a trap or
34
* interrupt happens.
35
*
36
* The Switcher code must be at the same virtual address in the Guest as the
37
* Host since it will be running as the switchover occurs.
38
*
39
* Trying to map memory at a particular address is an unusual thing to do, so
40
* it's not a simple one-liner.
41
*/
42
static __init int map_switcher(void)
43
{
44
int i, err;
45
struct page **pagep;
46
47
/*
48
* Map the Switcher in to high memory.
49
*
50
* It turns out that if we choose the address 0xFFC00000 (4MB under the
51
* top virtual address), it makes setting up the page tables really
52
* easy.
53
*/
54
55
/*
56
* We allocate an array of struct page pointers. map_vm_area() wants
57
* this, rather than just an array of pages.
58
*/
59
switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
60
GFP_KERNEL);
61
if (!switcher_page) {
62
err = -ENOMEM;
63
goto out;
64
}
65
66
/*
67
* Now we actually allocate the pages. The Guest will see these pages,
68
* so we make sure they're zeroed.
69
*/
70
for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
71
switcher_page[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
72
if (!switcher_page[i]) {
73
err = -ENOMEM;
74
goto free_some_pages;
75
}
76
}
77
78
/*
79
* First we check that the Switcher won't overlap the fixmap area at
80
* the top of memory. It's currently nowhere near, but it could have
81
* very strange effects if it ever happened.
82
*/
83
if (SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
84
err = -ENOMEM;
85
printk("lguest: mapping switcher would thwack fixmap\n");
86
goto free_pages;
87
}
88
89
/*
90
* Now we reserve the "virtual memory area" we want: 0xFFC00000
91
* (SWITCHER_ADDR). We might not get it in theory, but in practice
92
* it's worked so far. The end address needs +1 because __get_vm_area
93
* allocates an extra guard page, so we need space for that.
94
*/
95
switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
96
VM_ALLOC, SWITCHER_ADDR, SWITCHER_ADDR
97
+ (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
98
if (!switcher_vma) {
99
err = -ENOMEM;
100
printk("lguest: could not map switcher pages high\n");
101
goto free_pages;
102
}
103
104
/*
105
* This code actually sets up the pages we've allocated to appear at
106
* SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
107
* kind of pages we're mapping (kernel pages), and a pointer to our
108
* array of struct pages. It increments that pointer, but we don't
109
* care.
110
*/
111
pagep = switcher_page;
112
err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
113
if (err) {
114
printk("lguest: map_vm_area failed: %i\n", err);
115
goto free_vma;
116
}
117
118
/*
119
* Now the Switcher is mapped at the right address, we can't fail!
120
* Copy in the compiled-in Switcher code (from <arch>_switcher.S).
121
*/
122
memcpy(switcher_vma->addr, start_switcher_text,
123
end_switcher_text - start_switcher_text);
124
125
printk(KERN_INFO "lguest: mapped switcher at %p\n",
126
switcher_vma->addr);
127
/* And we succeeded... */
128
return 0;
129
130
free_vma:
131
vunmap(switcher_vma->addr);
132
free_pages:
133
i = TOTAL_SWITCHER_PAGES;
134
free_some_pages:
135
for (--i; i >= 0; i--)
136
__free_pages(switcher_page[i], 0);
137
kfree(switcher_page);
138
out:
139
return err;
140
}
141
/*:*/
142
143
/* Cleaning up the mapping when the module is unloaded is almost... too easy. */
144
static void unmap_switcher(void)
145
{
146
unsigned int i;
147
148
/* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
149
vunmap(switcher_vma->addr);
150
/* Now we just need to free the pages we copied the switcher into */
151
for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
152
__free_pages(switcher_page[i], 0);
153
kfree(switcher_page);
154
}
155
156
/*H:032
157
* Dealing With Guest Memory.
158
*
159
* Before we go too much further into the Host, we need to grok the routines
160
* we use to deal with Guest memory.
161
*
162
* When the Guest gives us (what it thinks is) a physical address, we can use
163
* the normal copy_from_user() & copy_to_user() on the corresponding place in
164
* the memory region allocated by the Launcher.
165
*
166
* But we can't trust the Guest: it might be trying to access the Launcher
167
* code. We have to check that the range is below the pfn_limit the Launcher
168
* gave us. We have to make sure that addr + len doesn't give us a false
169
* positive by overflowing, too.
170
*/
171
bool lguest_address_ok(const struct lguest *lg,
172
unsigned long addr, unsigned long len)
173
{
174
return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
175
}
176
177
/*
178
* This routine copies memory from the Guest. Here we can see how useful the
179
* kill_lguest() routine we met in the Launcher can be: we return a random
180
* value (all zeroes) instead of needing to return an error.
181
*/
182
void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
183
{
184
if (!lguest_address_ok(cpu->lg, addr, bytes)
185
|| copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
186
/* copy_from_user should do this, but as we rely on it... */
187
memset(b, 0, bytes);
188
kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
189
}
190
}
191
192
/* This is the write (copy into Guest) version. */
193
void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
194
unsigned bytes)
195
{
196
if (!lguest_address_ok(cpu->lg, addr, bytes)
197
|| copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
198
kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
199
}
200
/*:*/
201
202
/*H:030
203
* Let's jump straight to the the main loop which runs the Guest.
204
* Remember, this is called by the Launcher reading /dev/lguest, and we keep
205
* going around and around until something interesting happens.
206
*/
207
int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
208
{
209
/* We stop running once the Guest is dead. */
210
while (!cpu->lg->dead) {
211
unsigned int irq;
212
bool more;
213
214
/* First we run any hypercalls the Guest wants done. */
215
if (cpu->hcall)
216
do_hypercalls(cpu);
217
218
/*
219
* It's possible the Guest did a NOTIFY hypercall to the
220
* Launcher.
221
*/
222
if (cpu->pending_notify) {
223
/*
224
* Does it just needs to write to a registered
225
* eventfd (ie. the appropriate virtqueue thread)?
226
*/
227
if (!send_notify_to_eventfd(cpu)) {
228
/* OK, we tell the main Laucher. */
229
if (put_user(cpu->pending_notify, user))
230
return -EFAULT;
231
return sizeof(cpu->pending_notify);
232
}
233
}
234
235
/* Check for signals */
236
if (signal_pending(current))
237
return -ERESTARTSYS;
238
239
/*
240
* Check if there are any interrupts which can be delivered now:
241
* if so, this sets up the hander to be executed when we next
242
* run the Guest.
243
*/
244
irq = interrupt_pending(cpu, &more);
245
if (irq < LGUEST_IRQS)
246
try_deliver_interrupt(cpu, irq, more);
247
248
/*
249
* All long-lived kernel loops need to check with this horrible
250
* thing called the freezer. If the Host is trying to suspend,
251
* it stops us.
252
*/
253
try_to_freeze();
254
255
/*
256
* Just make absolutely sure the Guest is still alive. One of
257
* those hypercalls could have been fatal, for example.
258
*/
259
if (cpu->lg->dead)
260
break;
261
262
/*
263
* If the Guest asked to be stopped, we sleep. The Guest's
264
* clock timer will wake us.
265
*/
266
if (cpu->halted) {
267
set_current_state(TASK_INTERRUPTIBLE);
268
/*
269
* Just before we sleep, make sure no interrupt snuck in
270
* which we should be doing.
271
*/
272
if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
273
set_current_state(TASK_RUNNING);
274
else
275
schedule();
276
continue;
277
}
278
279
/*
280
* OK, now we're ready to jump into the Guest. First we put up
281
* the "Do Not Disturb" sign:
282
*/
283
local_irq_disable();
284
285
/* Actually run the Guest until something happens. */
286
lguest_arch_run_guest(cpu);
287
288
/* Now we're ready to be interrupted or moved to other CPUs */
289
local_irq_enable();
290
291
/* Now we deal with whatever happened to the Guest. */
292
lguest_arch_handle_trap(cpu);
293
}
294
295
/* Special case: Guest is 'dead' but wants a reboot. */
296
if (cpu->lg->dead == ERR_PTR(-ERESTART))
297
return -ERESTART;
298
299
/* The Guest is dead => "No such file or directory" */
300
return -ENOENT;
301
}
302
303
/*H:000
304
* Welcome to the Host!
305
*
306
* By this point your brain has been tickled by the Guest code and numbed by
307
* the Launcher code; prepare for it to be stretched by the Host code. This is
308
* the heart. Let's begin at the initialization routine for the Host's lg
309
* module.
310
*/
311
static int __init init(void)
312
{
313
int err;
314
315
/* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
316
if (paravirt_enabled()) {
317
printk("lguest is afraid of being a guest\n");
318
return -EPERM;
319
}
320
321
/* First we put the Switcher up in very high virtual memory. */
322
err = map_switcher();
323
if (err)
324
goto out;
325
326
/* Now we set up the pagetable implementation for the Guests. */
327
err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
328
if (err)
329
goto unmap;
330
331
/* We might need to reserve an interrupt vector. */
332
err = init_interrupts();
333
if (err)
334
goto free_pgtables;
335
336
/* /dev/lguest needs to be registered. */
337
err = lguest_device_init();
338
if (err)
339
goto free_interrupts;
340
341
/* Finally we do some architecture-specific setup. */
342
lguest_arch_host_init();
343
344
/* All good! */
345
return 0;
346
347
free_interrupts:
348
free_interrupts();
349
free_pgtables:
350
free_pagetables();
351
unmap:
352
unmap_switcher();
353
out:
354
return err;
355
}
356
357
/* Cleaning up is just the same code, backwards. With a little French. */
358
static void __exit fini(void)
359
{
360
lguest_device_remove();
361
free_interrupts();
362
free_pagetables();
363
unmap_switcher();
364
365
lguest_arch_host_fini();
366
}
367
/*:*/
368
369
/*
370
* The Host side of lguest can be a module. This is a nice way for people to
371
* play with it.
372
*/
373
module_init(init);
374
module_exit(fini);
375
MODULE_LICENSE("GPL");
376
MODULE_AUTHOR("Rusty Russell <[email protected]>");
377
378