Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/lguest/page_tables.c
15109 views
1
/*P:700
2
* The pagetable code, on the other hand, still shows the scars of
3
* previous encounters. It's functional, and as neat as it can be in the
4
* circumstances, but be wary, for these things are subtle and break easily.
5
* The Guest provides a virtual to physical mapping, but we can neither trust
6
* it nor use it: we verify and convert it here then point the CPU to the
7
* converted Guest pages when running the Guest.
8
:*/
9
10
/* Copyright (C) Rusty Russell IBM Corporation 2006.
11
* GPL v2 and any later version */
12
#include <linux/mm.h>
13
#include <linux/gfp.h>
14
#include <linux/types.h>
15
#include <linux/spinlock.h>
16
#include <linux/random.h>
17
#include <linux/percpu.h>
18
#include <asm/tlbflush.h>
19
#include <asm/uaccess.h>
20
#include <asm/bootparam.h>
21
#include "lg.h"
22
23
/*M:008
24
* We hold reference to pages, which prevents them from being swapped.
25
* It'd be nice to have a callback in the "struct mm_struct" when Linux wants
26
* to swap out. If we had this, and a shrinker callback to trim PTE pages, we
27
* could probably consider launching Guests as non-root.
28
:*/
29
30
/*H:300
31
* The Page Table Code
32
*
33
* We use two-level page tables for the Guest, or three-level with PAE. If
34
* you're not entirely comfortable with virtual addresses, physical addresses
35
* and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
36
* Table Handling" (with diagrams!).
37
*
38
* The Guest keeps page tables, but we maintain the actual ones here: these are
39
* called "shadow" page tables. Which is a very Guest-centric name: these are
40
* the real page tables the CPU uses, although we keep them up to date to
41
* reflect the Guest's. (See what I mean about weird naming? Since when do
42
* shadows reflect anything?)
43
*
44
* Anyway, this is the most complicated part of the Host code. There are seven
45
* parts to this:
46
* (i) Looking up a page table entry when the Guest faults,
47
* (ii) Making sure the Guest stack is mapped,
48
* (iii) Setting up a page table entry when the Guest tells us one has changed,
49
* (iv) Switching page tables,
50
* (v) Flushing (throwing away) page tables,
51
* (vi) Mapping the Switcher when the Guest is about to run,
52
* (vii) Setting up the page tables initially.
53
:*/
54
55
/*
56
* The Switcher uses the complete top PTE page. That's 1024 PTE entries (4MB)
57
* or 512 PTE entries with PAE (2MB).
58
*/
59
#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
60
61
/*
62
* For PAE we need the PMD index as well. We use the last 2MB, so we
63
* will need the last pmd entry of the last pmd page.
64
*/
65
#ifdef CONFIG_X86_PAE
66
#define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
67
#define RESERVE_MEM 2U
68
#define CHECK_GPGD_MASK _PAGE_PRESENT
69
#else
70
#define RESERVE_MEM 4U
71
#define CHECK_GPGD_MASK _PAGE_TABLE
72
#endif
73
74
/*
75
* We actually need a separate PTE page for each CPU. Remember that after the
76
* Switcher code itself comes two pages for each CPU, and we don't want this
77
* CPU's guest to see the pages of any other CPU.
78
*/
79
static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
80
#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
81
82
/*H:320
83
* The page table code is curly enough to need helper functions to keep it
84
* clear and clean. The kernel itself provides many of them; one advantage
85
* of insisting that the Guest and Host use the same CONFIG_PAE setting.
86
*
87
* There are two functions which return pointers to the shadow (aka "real")
88
* page tables.
89
*
90
* spgd_addr() takes the virtual address and returns a pointer to the top-level
91
* page directory entry (PGD) for that address. Since we keep track of several
92
* page tables, the "i" argument tells us which one we're interested in (it's
93
* usually the current one).
94
*/
95
static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
96
{
97
unsigned int index = pgd_index(vaddr);
98
99
#ifndef CONFIG_X86_PAE
100
/* We kill any Guest trying to touch the Switcher addresses. */
101
if (index >= SWITCHER_PGD_INDEX) {
102
kill_guest(cpu, "attempt to access switcher pages");
103
index = 0;
104
}
105
#endif
106
/* Return a pointer index'th pgd entry for the i'th page table. */
107
return &cpu->lg->pgdirs[i].pgdir[index];
108
}
109
110
#ifdef CONFIG_X86_PAE
111
/*
112
* This routine then takes the PGD entry given above, which contains the
113
* address of the PMD page. It then returns a pointer to the PMD entry for the
114
* given address.
115
*/
116
static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
117
{
118
unsigned int index = pmd_index(vaddr);
119
pmd_t *page;
120
121
/* We kill any Guest trying to touch the Switcher addresses. */
122
if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
123
index >= SWITCHER_PMD_INDEX) {
124
kill_guest(cpu, "attempt to access switcher pages");
125
index = 0;
126
}
127
128
/* You should never call this if the PGD entry wasn't valid */
129
BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
130
page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
131
132
return &page[index];
133
}
134
#endif
135
136
/*
137
* This routine then takes the page directory entry returned above, which
138
* contains the address of the page table entry (PTE) page. It then returns a
139
* pointer to the PTE entry for the given address.
140
*/
141
static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
142
{
143
#ifdef CONFIG_X86_PAE
144
pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
145
pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
146
147
/* You should never call this if the PMD entry wasn't valid */
148
BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
149
#else
150
pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
151
/* You should never call this if the PGD entry wasn't valid */
152
BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
153
#endif
154
155
return &page[pte_index(vaddr)];
156
}
157
158
/*
159
* These functions are just like the above two, except they access the Guest
160
* page tables. Hence they return a Guest address.
161
*/
162
static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
163
{
164
unsigned int index = vaddr >> (PGDIR_SHIFT);
165
return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
166
}
167
168
#ifdef CONFIG_X86_PAE
169
/* Follow the PGD to the PMD. */
170
static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
171
{
172
unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
173
BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
174
return gpage + pmd_index(vaddr) * sizeof(pmd_t);
175
}
176
177
/* Follow the PMD to the PTE. */
178
static unsigned long gpte_addr(struct lg_cpu *cpu,
179
pmd_t gpmd, unsigned long vaddr)
180
{
181
unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
182
183
BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
184
return gpage + pte_index(vaddr) * sizeof(pte_t);
185
}
186
#else
187
/* Follow the PGD to the PTE (no mid-level for !PAE). */
188
static unsigned long gpte_addr(struct lg_cpu *cpu,
189
pgd_t gpgd, unsigned long vaddr)
190
{
191
unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
192
193
BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
194
return gpage + pte_index(vaddr) * sizeof(pte_t);
195
}
196
#endif
197
/*:*/
198
199
/*M:014
200
* get_pfn is slow: we could probably try to grab batches of pages here as
201
* an optimization (ie. pre-faulting).
202
:*/
203
204
/*H:350
205
* This routine takes a page number given by the Guest and converts it to
206
* an actual, physical page number. It can fail for several reasons: the
207
* virtual address might not be mapped by the Launcher, the write flag is set
208
* and the page is read-only, or the write flag was set and the page was
209
* shared so had to be copied, but we ran out of memory.
210
*
211
* This holds a reference to the page, so release_pte() is careful to put that
212
* back.
213
*/
214
static unsigned long get_pfn(unsigned long virtpfn, int write)
215
{
216
struct page *page;
217
218
/* gup me one page at this address please! */
219
if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
220
return page_to_pfn(page);
221
222
/* This value indicates failure. */
223
return -1UL;
224
}
225
226
/*H:340
227
* Converting a Guest page table entry to a shadow (ie. real) page table
228
* entry can be a little tricky. The flags are (almost) the same, but the
229
* Guest PTE contains a virtual page number: the CPU needs the real page
230
* number.
231
*/
232
static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
233
{
234
unsigned long pfn, base, flags;
235
236
/*
237
* The Guest sets the global flag, because it thinks that it is using
238
* PGE. We only told it to use PGE so it would tell us whether it was
239
* flushing a kernel mapping or a userspace mapping. We don't actually
240
* use the global bit, so throw it away.
241
*/
242
flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
243
244
/* The Guest's pages are offset inside the Launcher. */
245
base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
246
247
/*
248
* We need a temporary "unsigned long" variable to hold the answer from
249
* get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
250
* fit in spte.pfn. get_pfn() finds the real physical number of the
251
* page, given the virtual number.
252
*/
253
pfn = get_pfn(base + pte_pfn(gpte), write);
254
if (pfn == -1UL) {
255
kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
256
/*
257
* When we destroy the Guest, we'll go through the shadow page
258
* tables and release_pte() them. Make sure we don't think
259
* this one is valid!
260
*/
261
flags = 0;
262
}
263
/* Now we assemble our shadow PTE from the page number and flags. */
264
return pfn_pte(pfn, __pgprot(flags));
265
}
266
267
/*H:460 And to complete the chain, release_pte() looks like this: */
268
static void release_pte(pte_t pte)
269
{
270
/*
271
* Remember that get_user_pages_fast() took a reference to the page, in
272
* get_pfn()? We have to put it back now.
273
*/
274
if (pte_flags(pte) & _PAGE_PRESENT)
275
put_page(pte_page(pte));
276
}
277
/*:*/
278
279
static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
280
{
281
if ((pte_flags(gpte) & _PAGE_PSE) ||
282
pte_pfn(gpte) >= cpu->lg->pfn_limit)
283
kill_guest(cpu, "bad page table entry");
284
}
285
286
static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
287
{
288
if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
289
(pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
290
kill_guest(cpu, "bad page directory entry");
291
}
292
293
#ifdef CONFIG_X86_PAE
294
static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
295
{
296
if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
297
(pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
298
kill_guest(cpu, "bad page middle directory entry");
299
}
300
#endif
301
302
/*H:330
303
* (i) Looking up a page table entry when the Guest faults.
304
*
305
* We saw this call in run_guest(): when we see a page fault in the Guest, we
306
* come here. That's because we only set up the shadow page tables lazily as
307
* they're needed, so we get page faults all the time and quietly fix them up
308
* and return to the Guest without it knowing.
309
*
310
* If we fixed up the fault (ie. we mapped the address), this routine returns
311
* true. Otherwise, it was a real fault and we need to tell the Guest.
312
*/
313
bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
314
{
315
pgd_t gpgd;
316
pgd_t *spgd;
317
unsigned long gpte_ptr;
318
pte_t gpte;
319
pte_t *spte;
320
321
/* Mid level for PAE. */
322
#ifdef CONFIG_X86_PAE
323
pmd_t *spmd;
324
pmd_t gpmd;
325
#endif
326
327
/* First step: get the top-level Guest page table entry. */
328
gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
329
/* Toplevel not present? We can't map it in. */
330
if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
331
return false;
332
333
/* Now look at the matching shadow entry. */
334
spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
335
if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
336
/* No shadow entry: allocate a new shadow PTE page. */
337
unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
338
/*
339
* This is not really the Guest's fault, but killing it is
340
* simple for this corner case.
341
*/
342
if (!ptepage) {
343
kill_guest(cpu, "out of memory allocating pte page");
344
return false;
345
}
346
/* We check that the Guest pgd is OK. */
347
check_gpgd(cpu, gpgd);
348
/*
349
* And we copy the flags to the shadow PGD entry. The page
350
* number in the shadow PGD is the page we just allocated.
351
*/
352
set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
353
}
354
355
#ifdef CONFIG_X86_PAE
356
gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
357
/* Middle level not present? We can't map it in. */
358
if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
359
return false;
360
361
/* Now look at the matching shadow entry. */
362
spmd = spmd_addr(cpu, *spgd, vaddr);
363
364
if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
365
/* No shadow entry: allocate a new shadow PTE page. */
366
unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
367
368
/*
369
* This is not really the Guest's fault, but killing it is
370
* simple for this corner case.
371
*/
372
if (!ptepage) {
373
kill_guest(cpu, "out of memory allocating pte page");
374
return false;
375
}
376
377
/* We check that the Guest pmd is OK. */
378
check_gpmd(cpu, gpmd);
379
380
/*
381
* And we copy the flags to the shadow PMD entry. The page
382
* number in the shadow PMD is the page we just allocated.
383
*/
384
set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
385
}
386
387
/*
388
* OK, now we look at the lower level in the Guest page table: keep its
389
* address, because we might update it later.
390
*/
391
gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
392
#else
393
/*
394
* OK, now we look at the lower level in the Guest page table: keep its
395
* address, because we might update it later.
396
*/
397
gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
398
#endif
399
400
/* Read the actual PTE value. */
401
gpte = lgread(cpu, gpte_ptr, pte_t);
402
403
/* If this page isn't in the Guest page tables, we can't page it in. */
404
if (!(pte_flags(gpte) & _PAGE_PRESENT))
405
return false;
406
407
/*
408
* Check they're not trying to write to a page the Guest wants
409
* read-only (bit 2 of errcode == write).
410
*/
411
if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
412
return false;
413
414
/* User access to a kernel-only page? (bit 3 == user access) */
415
if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
416
return false;
417
418
/*
419
* Check that the Guest PTE flags are OK, and the page number is below
420
* the pfn_limit (ie. not mapping the Launcher binary).
421
*/
422
check_gpte(cpu, gpte);
423
424
/* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
425
gpte = pte_mkyoung(gpte);
426
if (errcode & 2)
427
gpte = pte_mkdirty(gpte);
428
429
/* Get the pointer to the shadow PTE entry we're going to set. */
430
spte = spte_addr(cpu, *spgd, vaddr);
431
432
/*
433
* If there was a valid shadow PTE entry here before, we release it.
434
* This can happen with a write to a previously read-only entry.
435
*/
436
release_pte(*spte);
437
438
/*
439
* If this is a write, we insist that the Guest page is writable (the
440
* final arg to gpte_to_spte()).
441
*/
442
if (pte_dirty(gpte))
443
*spte = gpte_to_spte(cpu, gpte, 1);
444
else
445
/*
446
* If this is a read, don't set the "writable" bit in the page
447
* table entry, even if the Guest says it's writable. That way
448
* we will come back here when a write does actually occur, so
449
* we can update the Guest's _PAGE_DIRTY flag.
450
*/
451
set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
452
453
/*
454
* Finally, we write the Guest PTE entry back: we've set the
455
* _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
456
*/
457
lgwrite(cpu, gpte_ptr, pte_t, gpte);
458
459
/*
460
* The fault is fixed, the page table is populated, the mapping
461
* manipulated, the result returned and the code complete. A small
462
* delay and a trace of alliteration are the only indications the Guest
463
* has that a page fault occurred at all.
464
*/
465
return true;
466
}
467
468
/*H:360
469
* (ii) Making sure the Guest stack is mapped.
470
*
471
* Remember that direct traps into the Guest need a mapped Guest kernel stack.
472
* pin_stack_pages() calls us here: we could simply call demand_page(), but as
473
* we've seen that logic is quite long, and usually the stack pages are already
474
* mapped, so it's overkill.
475
*
476
* This is a quick version which answers the question: is this virtual address
477
* mapped by the shadow page tables, and is it writable?
478
*/
479
static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
480
{
481
pgd_t *spgd;
482
unsigned long flags;
483
484
#ifdef CONFIG_X86_PAE
485
pmd_t *spmd;
486
#endif
487
/* Look at the current top level entry: is it present? */
488
spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
489
if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
490
return false;
491
492
#ifdef CONFIG_X86_PAE
493
spmd = spmd_addr(cpu, *spgd, vaddr);
494
if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
495
return false;
496
#endif
497
498
/*
499
* Check the flags on the pte entry itself: it must be present and
500
* writable.
501
*/
502
flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
503
504
return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
505
}
506
507
/*
508
* So, when pin_stack_pages() asks us to pin a page, we check if it's already
509
* in the page tables, and if not, we call demand_page() with error code 2
510
* (meaning "write").
511
*/
512
void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
513
{
514
if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
515
kill_guest(cpu, "bad stack page %#lx", vaddr);
516
}
517
/*:*/
518
519
#ifdef CONFIG_X86_PAE
520
static void release_pmd(pmd_t *spmd)
521
{
522
/* If the entry's not present, there's nothing to release. */
523
if (pmd_flags(*spmd) & _PAGE_PRESENT) {
524
unsigned int i;
525
pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
526
/* For each entry in the page, we might need to release it. */
527
for (i = 0; i < PTRS_PER_PTE; i++)
528
release_pte(ptepage[i]);
529
/* Now we can free the page of PTEs */
530
free_page((long)ptepage);
531
/* And zero out the PMD entry so we never release it twice. */
532
set_pmd(spmd, __pmd(0));
533
}
534
}
535
536
static void release_pgd(pgd_t *spgd)
537
{
538
/* If the entry's not present, there's nothing to release. */
539
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
540
unsigned int i;
541
pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
542
543
for (i = 0; i < PTRS_PER_PMD; i++)
544
release_pmd(&pmdpage[i]);
545
546
/* Now we can free the page of PMDs */
547
free_page((long)pmdpage);
548
/* And zero out the PGD entry so we never release it twice. */
549
set_pgd(spgd, __pgd(0));
550
}
551
}
552
553
#else /* !CONFIG_X86_PAE */
554
/*H:450
555
* If we chase down the release_pgd() code, the non-PAE version looks like
556
* this. The PAE version is almost identical, but instead of calling
557
* release_pte it calls release_pmd(), which looks much like this.
558
*/
559
static void release_pgd(pgd_t *spgd)
560
{
561
/* If the entry's not present, there's nothing to release. */
562
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
563
unsigned int i;
564
/*
565
* Converting the pfn to find the actual PTE page is easy: turn
566
* the page number into a physical address, then convert to a
567
* virtual address (easy for kernel pages like this one).
568
*/
569
pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
570
/* For each entry in the page, we might need to release it. */
571
for (i = 0; i < PTRS_PER_PTE; i++)
572
release_pte(ptepage[i]);
573
/* Now we can free the page of PTEs */
574
free_page((long)ptepage);
575
/* And zero out the PGD entry so we never release it twice. */
576
*spgd = __pgd(0);
577
}
578
}
579
#endif
580
581
/*H:445
582
* We saw flush_user_mappings() twice: once from the flush_user_mappings()
583
* hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
584
* It simply releases every PTE page from 0 up to the Guest's kernel address.
585
*/
586
static void flush_user_mappings(struct lguest *lg, int idx)
587
{
588
unsigned int i;
589
/* Release every pgd entry up to the kernel's address. */
590
for (i = 0; i < pgd_index(lg->kernel_address); i++)
591
release_pgd(lg->pgdirs[idx].pgdir + i);
592
}
593
594
/*H:440
595
* (v) Flushing (throwing away) page tables,
596
*
597
* The Guest has a hypercall to throw away the page tables: it's used when a
598
* large number of mappings have been changed.
599
*/
600
void guest_pagetable_flush_user(struct lg_cpu *cpu)
601
{
602
/* Drop the userspace part of the current page table. */
603
flush_user_mappings(cpu->lg, cpu->cpu_pgd);
604
}
605
/*:*/
606
607
/* We walk down the guest page tables to get a guest-physical address */
608
unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
609
{
610
pgd_t gpgd;
611
pte_t gpte;
612
#ifdef CONFIG_X86_PAE
613
pmd_t gpmd;
614
#endif
615
/* First step: get the top-level Guest page table entry. */
616
gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
617
/* Toplevel not present? We can't map it in. */
618
if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
619
kill_guest(cpu, "Bad address %#lx", vaddr);
620
return -1UL;
621
}
622
623
#ifdef CONFIG_X86_PAE
624
gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
625
if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
626
kill_guest(cpu, "Bad address %#lx", vaddr);
627
gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
628
#else
629
gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
630
#endif
631
if (!(pte_flags(gpte) & _PAGE_PRESENT))
632
kill_guest(cpu, "Bad address %#lx", vaddr);
633
634
return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
635
}
636
637
/*
638
* We keep several page tables. This is a simple routine to find the page
639
* table (if any) corresponding to this top-level address the Guest has given
640
* us.
641
*/
642
static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
643
{
644
unsigned int i;
645
for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
646
if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
647
break;
648
return i;
649
}
650
651
/*H:435
652
* And this is us, creating the new page directory. If we really do
653
* allocate a new one (and so the kernel parts are not there), we set
654
* blank_pgdir.
655
*/
656
static unsigned int new_pgdir(struct lg_cpu *cpu,
657
unsigned long gpgdir,
658
int *blank_pgdir)
659
{
660
unsigned int next;
661
#ifdef CONFIG_X86_PAE
662
pmd_t *pmd_table;
663
#endif
664
665
/*
666
* We pick one entry at random to throw out. Choosing the Least
667
* Recently Used might be better, but this is easy.
668
*/
669
next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
670
/* If it's never been allocated at all before, try now. */
671
if (!cpu->lg->pgdirs[next].pgdir) {
672
cpu->lg->pgdirs[next].pgdir =
673
(pgd_t *)get_zeroed_page(GFP_KERNEL);
674
/* If the allocation fails, just keep using the one we have */
675
if (!cpu->lg->pgdirs[next].pgdir)
676
next = cpu->cpu_pgd;
677
else {
678
#ifdef CONFIG_X86_PAE
679
/*
680
* In PAE mode, allocate a pmd page and populate the
681
* last pgd entry.
682
*/
683
pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
684
if (!pmd_table) {
685
free_page((long)cpu->lg->pgdirs[next].pgdir);
686
set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
687
next = cpu->cpu_pgd;
688
} else {
689
set_pgd(cpu->lg->pgdirs[next].pgdir +
690
SWITCHER_PGD_INDEX,
691
__pgd(__pa(pmd_table) | _PAGE_PRESENT));
692
/*
693
* This is a blank page, so there are no kernel
694
* mappings: caller must map the stack!
695
*/
696
*blank_pgdir = 1;
697
}
698
#else
699
*blank_pgdir = 1;
700
#endif
701
}
702
}
703
/* Record which Guest toplevel this shadows. */
704
cpu->lg->pgdirs[next].gpgdir = gpgdir;
705
/* Release all the non-kernel mappings. */
706
flush_user_mappings(cpu->lg, next);
707
708
return next;
709
}
710
711
/*H:430
712
* (iv) Switching page tables
713
*
714
* Now we've seen all the page table setting and manipulation, let's see
715
* what happens when the Guest changes page tables (ie. changes the top-level
716
* pgdir). This occurs on almost every context switch.
717
*/
718
void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
719
{
720
int newpgdir, repin = 0;
721
722
/* Look to see if we have this one already. */
723
newpgdir = find_pgdir(cpu->lg, pgtable);
724
/*
725
* If not, we allocate or mug an existing one: if it's a fresh one,
726
* repin gets set to 1.
727
*/
728
if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
729
newpgdir = new_pgdir(cpu, pgtable, &repin);
730
/* Change the current pgd index to the new one. */
731
cpu->cpu_pgd = newpgdir;
732
/* If it was completely blank, we map in the Guest kernel stack */
733
if (repin)
734
pin_stack_pages(cpu);
735
}
736
737
/*H:470
738
* Finally, a routine which throws away everything: all PGD entries in all
739
* the shadow page tables, including the Guest's kernel mappings. This is used
740
* when we destroy the Guest.
741
*/
742
static void release_all_pagetables(struct lguest *lg)
743
{
744
unsigned int i, j;
745
746
/* Every shadow pagetable this Guest has */
747
for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
748
if (lg->pgdirs[i].pgdir) {
749
#ifdef CONFIG_X86_PAE
750
pgd_t *spgd;
751
pmd_t *pmdpage;
752
unsigned int k;
753
754
/* Get the last pmd page. */
755
spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
756
pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
757
758
/*
759
* And release the pmd entries of that pmd page,
760
* except for the switcher pmd.
761
*/
762
for (k = 0; k < SWITCHER_PMD_INDEX; k++)
763
release_pmd(&pmdpage[k]);
764
#endif
765
/* Every PGD entry except the Switcher at the top */
766
for (j = 0; j < SWITCHER_PGD_INDEX; j++)
767
release_pgd(lg->pgdirs[i].pgdir + j);
768
}
769
}
770
771
/*
772
* We also throw away everything when a Guest tells us it's changed a kernel
773
* mapping. Since kernel mappings are in every page table, it's easiest to
774
* throw them all away. This traps the Guest in amber for a while as
775
* everything faults back in, but it's rare.
776
*/
777
void guest_pagetable_clear_all(struct lg_cpu *cpu)
778
{
779
release_all_pagetables(cpu->lg);
780
/* We need the Guest kernel stack mapped again. */
781
pin_stack_pages(cpu);
782
}
783
/*:*/
784
785
/*M:009
786
* Since we throw away all mappings when a kernel mapping changes, our
787
* performance sucks for guests using highmem. In fact, a guest with
788
* PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
789
* usually slower than a Guest with less memory.
790
*
791
* This, of course, cannot be fixed. It would take some kind of... well, I
792
* don't know, but the term "puissant code-fu" comes to mind.
793
:*/
794
795
/*H:420
796
* This is the routine which actually sets the page table entry for then
797
* "idx"'th shadow page table.
798
*
799
* Normally, we can just throw out the old entry and replace it with 0: if they
800
* use it demand_page() will put the new entry in. We need to do this anyway:
801
* The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
802
* is read from, and _PAGE_DIRTY when it's written to.
803
*
804
* But Avi Kivity pointed out that most Operating Systems (Linux included) set
805
* these bits on PTEs immediately anyway. This is done to save the CPU from
806
* having to update them, but it helps us the same way: if they set
807
* _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
808
* they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
809
*/
810
static void do_set_pte(struct lg_cpu *cpu, int idx,
811
unsigned long vaddr, pte_t gpte)
812
{
813
/* Look up the matching shadow page directory entry. */
814
pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
815
#ifdef CONFIG_X86_PAE
816
pmd_t *spmd;
817
#endif
818
819
/* If the top level isn't present, there's no entry to update. */
820
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
821
#ifdef CONFIG_X86_PAE
822
spmd = spmd_addr(cpu, *spgd, vaddr);
823
if (pmd_flags(*spmd) & _PAGE_PRESENT) {
824
#endif
825
/* Otherwise, start by releasing the existing entry. */
826
pte_t *spte = spte_addr(cpu, *spgd, vaddr);
827
release_pte(*spte);
828
829
/*
830
* If they're setting this entry as dirty or accessed,
831
* we might as well put that entry they've given us in
832
* now. This shaves 10% off a copy-on-write
833
* micro-benchmark.
834
*/
835
if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
836
check_gpte(cpu, gpte);
837
set_pte(spte,
838
gpte_to_spte(cpu, gpte,
839
pte_flags(gpte) & _PAGE_DIRTY));
840
} else {
841
/*
842
* Otherwise kill it and we can demand_page()
843
* it in later.
844
*/
845
set_pte(spte, __pte(0));
846
}
847
#ifdef CONFIG_X86_PAE
848
}
849
#endif
850
}
851
}
852
853
/*H:410
854
* Updating a PTE entry is a little trickier.
855
*
856
* We keep track of several different page tables (the Guest uses one for each
857
* process, so it makes sense to cache at least a few). Each of these have
858
* identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
859
* all processes. So when the page table above that address changes, we update
860
* all the page tables, not just the current one. This is rare.
861
*
862
* The benefit is that when we have to track a new page table, we can keep all
863
* the kernel mappings. This speeds up context switch immensely.
864
*/
865
void guest_set_pte(struct lg_cpu *cpu,
866
unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
867
{
868
/*
869
* Kernel mappings must be changed on all top levels. Slow, but doesn't
870
* happen often.
871
*/
872
if (vaddr >= cpu->lg->kernel_address) {
873
unsigned int i;
874
for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
875
if (cpu->lg->pgdirs[i].pgdir)
876
do_set_pte(cpu, i, vaddr, gpte);
877
} else {
878
/* Is this page table one we have a shadow for? */
879
int pgdir = find_pgdir(cpu->lg, gpgdir);
880
if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
881
/* If so, do the update. */
882
do_set_pte(cpu, pgdir, vaddr, gpte);
883
}
884
}
885
886
/*H:400
887
* (iii) Setting up a page table entry when the Guest tells us one has changed.
888
*
889
* Just like we did in interrupts_and_traps.c, it makes sense for us to deal
890
* with the other side of page tables while we're here: what happens when the
891
* Guest asks for a page table to be updated?
892
*
893
* We already saw that demand_page() will fill in the shadow page tables when
894
* needed, so we can simply remove shadow page table entries whenever the Guest
895
* tells us they've changed. When the Guest tries to use the new entry it will
896
* fault and demand_page() will fix it up.
897
*
898
* So with that in mind here's our code to update a (top-level) PGD entry:
899
*/
900
void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
901
{
902
int pgdir;
903
904
if (idx >= SWITCHER_PGD_INDEX)
905
return;
906
907
/* If they're talking about a page table we have a shadow for... */
908
pgdir = find_pgdir(lg, gpgdir);
909
if (pgdir < ARRAY_SIZE(lg->pgdirs))
910
/* ... throw it away. */
911
release_pgd(lg->pgdirs[pgdir].pgdir + idx);
912
}
913
914
#ifdef CONFIG_X86_PAE
915
/* For setting a mid-level, we just throw everything away. It's easy. */
916
void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
917
{
918
guest_pagetable_clear_all(&lg->cpus[0]);
919
}
920
#endif
921
922
/*H:505
923
* To get through boot, we construct simple identity page mappings (which
924
* set virtual == physical) and linear mappings which will get the Guest far
925
* enough into the boot to create its own. The linear mapping means we
926
* simplify the Guest boot, but it makes assumptions about their PAGE_OFFSET,
927
* as you'll see.
928
*
929
* We lay them out of the way, just below the initrd (which is why we need to
930
* know its size here).
931
*/
932
static unsigned long setup_pagetables(struct lguest *lg,
933
unsigned long mem,
934
unsigned long initrd_size)
935
{
936
pgd_t __user *pgdir;
937
pte_t __user *linear;
938
unsigned long mem_base = (unsigned long)lg->mem_base;
939
unsigned int mapped_pages, i, linear_pages;
940
#ifdef CONFIG_X86_PAE
941
pmd_t __user *pmds;
942
unsigned int j;
943
pgd_t pgd;
944
pmd_t pmd;
945
#else
946
unsigned int phys_linear;
947
#endif
948
949
/*
950
* We have mapped_pages frames to map, so we need linear_pages page
951
* tables to map them.
952
*/
953
mapped_pages = mem / PAGE_SIZE;
954
linear_pages = (mapped_pages + PTRS_PER_PTE - 1) / PTRS_PER_PTE;
955
956
/* We put the toplevel page directory page at the top of memory. */
957
pgdir = (pgd_t *)(mem + mem_base - initrd_size - PAGE_SIZE);
958
959
/* Now we use the next linear_pages pages as pte pages */
960
linear = (void *)pgdir - linear_pages * PAGE_SIZE;
961
962
#ifdef CONFIG_X86_PAE
963
/*
964
* And the single mid page goes below that. We only use one, but
965
* that's enough to map 1G, which definitely gets us through boot.
966
*/
967
pmds = (void *)linear - PAGE_SIZE;
968
#endif
969
/*
970
* Linear mapping is easy: put every page's address into the
971
* mapping in order.
972
*/
973
for (i = 0; i < mapped_pages; i++) {
974
pte_t pte;
975
pte = pfn_pte(i, __pgprot(_PAGE_PRESENT|_PAGE_RW|_PAGE_USER));
976
if (copy_to_user(&linear[i], &pte, sizeof(pte)) != 0)
977
return -EFAULT;
978
}
979
980
#ifdef CONFIG_X86_PAE
981
/*
982
* Make the Guest PMD entries point to the corresponding place in the
983
* linear mapping (up to one page worth of PMD).
984
*/
985
for (i = j = 0; i < mapped_pages && j < PTRS_PER_PMD;
986
i += PTRS_PER_PTE, j++) {
987
pmd = pfn_pmd(((unsigned long)&linear[i] - mem_base)/PAGE_SIZE,
988
__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
989
990
if (copy_to_user(&pmds[j], &pmd, sizeof(pmd)) != 0)
991
return -EFAULT;
992
}
993
994
/* One PGD entry, pointing to that PMD page. */
995
pgd = __pgd(((unsigned long)pmds - mem_base) | _PAGE_PRESENT);
996
/* Copy it in as the first PGD entry (ie. addresses 0-1G). */
997
if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0)
998
return -EFAULT;
999
/*
1000
* And the other PGD entry to make the linear mapping at PAGE_OFFSET
1001
*/
1002
if (copy_to_user(&pgdir[KERNEL_PGD_BOUNDARY], &pgd, sizeof(pgd)))
1003
return -EFAULT;
1004
#else
1005
/*
1006
* The top level points to the linear page table pages above.
1007
* We setup the identity and linear mappings here.
1008
*/
1009
phys_linear = (unsigned long)linear - mem_base;
1010
for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
1011
pgd_t pgd;
1012
/*
1013
* Create a PGD entry which points to the right part of the
1014
* linear PTE pages.
1015
*/
1016
pgd = __pgd((phys_linear + i * sizeof(pte_t)) |
1017
(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
1018
1019
/*
1020
* Copy it into the PGD page at 0 and PAGE_OFFSET.
1021
*/
1022
if (copy_to_user(&pgdir[i / PTRS_PER_PTE], &pgd, sizeof(pgd))
1023
|| copy_to_user(&pgdir[pgd_index(PAGE_OFFSET)
1024
+ i / PTRS_PER_PTE],
1025
&pgd, sizeof(pgd)))
1026
return -EFAULT;
1027
}
1028
#endif
1029
1030
/*
1031
* We return the top level (guest-physical) address: we remember where
1032
* this is to write it into lguest_data when the Guest initializes.
1033
*/
1034
return (unsigned long)pgdir - mem_base;
1035
}
1036
1037
/*H:500
1038
* (vii) Setting up the page tables initially.
1039
*
1040
* When a Guest is first created, the Launcher tells us where the toplevel of
1041
* its first page table is. We set some things up here:
1042
*/
1043
int init_guest_pagetable(struct lguest *lg)
1044
{
1045
u64 mem;
1046
u32 initrd_size;
1047
struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
1048
#ifdef CONFIG_X86_PAE
1049
pgd_t *pgd;
1050
pmd_t *pmd_table;
1051
#endif
1052
/*
1053
* Get the Guest memory size and the ramdisk size from the boot header
1054
* located at lg->mem_base (Guest address 0).
1055
*/
1056
if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
1057
|| get_user(initrd_size, &boot->hdr.ramdisk_size))
1058
return -EFAULT;
1059
1060
/*
1061
* We start on the first shadow page table, and give it a blank PGD
1062
* page.
1063
*/
1064
lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size);
1065
if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir))
1066
return lg->pgdirs[0].gpgdir;
1067
lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
1068
if (!lg->pgdirs[0].pgdir)
1069
return -ENOMEM;
1070
1071
#ifdef CONFIG_X86_PAE
1072
/* For PAE, we also create the initial mid-level. */
1073
pgd = lg->pgdirs[0].pgdir;
1074
pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL);
1075
if (!pmd_table)
1076
return -ENOMEM;
1077
1078
set_pgd(pgd + SWITCHER_PGD_INDEX,
1079
__pgd(__pa(pmd_table) | _PAGE_PRESENT));
1080
#endif
1081
1082
/* This is the current page table. */
1083
lg->cpus[0].cpu_pgd = 0;
1084
return 0;
1085
}
1086
1087
/*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
1088
void page_table_guest_data_init(struct lg_cpu *cpu)
1089
{
1090
/* We get the kernel address: above this is all kernel memory. */
1091
if (get_user(cpu->lg->kernel_address,
1092
&cpu->lg->lguest_data->kernel_address)
1093
/*
1094
* We tell the Guest that it can't use the top 2 or 4 MB
1095
* of virtual addresses used by the Switcher.
1096
*/
1097
|| put_user(RESERVE_MEM * 1024 * 1024,
1098
&cpu->lg->lguest_data->reserve_mem)
1099
|| put_user(cpu->lg->pgdirs[0].gpgdir,
1100
&cpu->lg->lguest_data->pgdir))
1101
kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
1102
1103
/*
1104
* In flush_user_mappings() we loop from 0 to
1105
* "pgd_index(lg->kernel_address)". This assumes it won't hit the
1106
* Switcher mappings, so check that now.
1107
*/
1108
#ifdef CONFIG_X86_PAE
1109
if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
1110
pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
1111
#else
1112
if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
1113
#endif
1114
kill_guest(cpu, "bad kernel address %#lx",
1115
cpu->lg->kernel_address);
1116
}
1117
1118
/* When a Guest dies, our cleanup is fairly simple. */
1119
void free_guest_pagetable(struct lguest *lg)
1120
{
1121
unsigned int i;
1122
1123
/* Throw away all page table pages. */
1124
release_all_pagetables(lg);
1125
/* Now free the top levels: free_page() can handle 0 just fine. */
1126
for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
1127
free_page((long)lg->pgdirs[i].pgdir);
1128
}
1129
1130
/*H:480
1131
* (vi) Mapping the Switcher when the Guest is about to run.
1132
*
1133
* The Switcher and the two pages for this CPU need to be visible in the
1134
* Guest (and not the pages for other CPUs). We have the appropriate PTE pages
1135
* for each CPU already set up, we just need to hook them in now we know which
1136
* Guest is about to run on this CPU.
1137
*/
1138
void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
1139
{
1140
pte_t *switcher_pte_page = __this_cpu_read(switcher_pte_pages);
1141
pte_t regs_pte;
1142
1143
#ifdef CONFIG_X86_PAE
1144
pmd_t switcher_pmd;
1145
pmd_t *pmd_table;
1146
1147
switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> PAGE_SHIFT,
1148
PAGE_KERNEL_EXEC);
1149
1150
/* Figure out where the pmd page is, by reading the PGD, and converting
1151
* it to a virtual address. */
1152
pmd_table = __va(pgd_pfn(cpu->lg->
1153
pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
1154
<< PAGE_SHIFT);
1155
/* Now write it into the shadow page table. */
1156
set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
1157
#else
1158
pgd_t switcher_pgd;
1159
1160
/*
1161
* Make the last PGD entry for this Guest point to the Switcher's PTE
1162
* page for this CPU (with appropriate flags).
1163
*/
1164
switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
1165
1166
cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
1167
1168
#endif
1169
/*
1170
* We also change the Switcher PTE page. When we're running the Guest,
1171
* we want the Guest's "regs" page to appear where the first Switcher
1172
* page for this CPU is. This is an optimization: when the Switcher
1173
* saves the Guest registers, it saves them into the first page of this
1174
* CPU's "struct lguest_pages": if we make sure the Guest's register
1175
* page is already mapped there, we don't have to copy them out
1176
* again.
1177
*/
1178
regs_pte = pfn_pte(__pa(cpu->regs_page) >> PAGE_SHIFT, PAGE_KERNEL);
1179
set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], regs_pte);
1180
}
1181
/*:*/
1182
1183
static void free_switcher_pte_pages(void)
1184
{
1185
unsigned int i;
1186
1187
for_each_possible_cpu(i)
1188
free_page((long)switcher_pte_page(i));
1189
}
1190
1191
/*H:520
1192
* Setting up the Switcher PTE page for given CPU is fairly easy, given
1193
* the CPU number and the "struct page"s for the Switcher code itself.
1194
*
1195
* Currently the Switcher is less than a page long, so "pages" is always 1.
1196
*/
1197
static __init void populate_switcher_pte_page(unsigned int cpu,
1198
struct page *switcher_page[],
1199
unsigned int pages)
1200
{
1201
unsigned int i;
1202
pte_t *pte = switcher_pte_page(cpu);
1203
1204
/* The first entries are easy: they map the Switcher code. */
1205
for (i = 0; i < pages; i++) {
1206
set_pte(&pte[i], mk_pte(switcher_page[i],
1207
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1208
}
1209
1210
/* The only other thing we map is this CPU's pair of pages. */
1211
i = pages + cpu*2;
1212
1213
/* First page (Guest registers) is writable from the Guest */
1214
set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
1215
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
1216
1217
/*
1218
* The second page contains the "struct lguest_ro_state", and is
1219
* read-only.
1220
*/
1221
set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
1222
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1223
}
1224
1225
/*
1226
* We've made it through the page table code. Perhaps our tired brains are
1227
* still processing the details, or perhaps we're simply glad it's over.
1228
*
1229
* If nothing else, note that all this complexity in juggling shadow page tables
1230
* in sync with the Guest's page tables is for one reason: for most Guests this
1231
* page table dance determines how bad performance will be. This is why Xen
1232
* uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
1233
* have implemented shadow page table support directly into hardware.
1234
*
1235
* There is just one file remaining in the Host.
1236
*/
1237
1238
/*H:510
1239
* At boot or module load time, init_pagetables() allocates and populates
1240
* the Switcher PTE page for each CPU.
1241
*/
1242
__init int init_pagetables(struct page **switcher_page, unsigned int pages)
1243
{
1244
unsigned int i;
1245
1246
for_each_possible_cpu(i) {
1247
switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
1248
if (!switcher_pte_page(i)) {
1249
free_switcher_pte_pages();
1250
return -ENOMEM;
1251
}
1252
populate_switcher_pte_page(i, switcher_page, pages);
1253
}
1254
return 0;
1255
}
1256
/*:*/
1257
1258
/* Cleaning up simply involves freeing the PTE page for each CPU. */
1259
void free_pagetables(void)
1260
{
1261
free_switcher_pte_pages();
1262
}
1263
1264