Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/macintosh/smu.c
15109 views
1
/*
2
* PowerMac G5 SMU driver
3
*
4
* Copyright 2004 J. Mayer <[email protected]>
5
* Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6
*
7
* Released under the term of the GNU GPL v2.
8
*/
9
10
/*
11
* TODO:
12
* - maybe add timeout to commands ?
13
* - blocking version of time functions
14
* - polling version of i2c commands (including timer that works with
15
* interrupts off)
16
* - maybe avoid some data copies with i2c by directly using the smu cmd
17
* buffer and a lower level internal interface
18
* - understand SMU -> CPU events and implement reception of them via
19
* the userland interface
20
*/
21
22
#include <linux/types.h>
23
#include <linux/kernel.h>
24
#include <linux/device.h>
25
#include <linux/dmapool.h>
26
#include <linux/bootmem.h>
27
#include <linux/vmalloc.h>
28
#include <linux/highmem.h>
29
#include <linux/jiffies.h>
30
#include <linux/interrupt.h>
31
#include <linux/rtc.h>
32
#include <linux/completion.h>
33
#include <linux/miscdevice.h>
34
#include <linux/delay.h>
35
#include <linux/sysdev.h>
36
#include <linux/poll.h>
37
#include <linux/mutex.h>
38
#include <linux/of_device.h>
39
#include <linux/of_platform.h>
40
#include <linux/slab.h>
41
42
#include <asm/byteorder.h>
43
#include <asm/io.h>
44
#include <asm/prom.h>
45
#include <asm/machdep.h>
46
#include <asm/pmac_feature.h>
47
#include <asm/smu.h>
48
#include <asm/sections.h>
49
#include <asm/abs_addr.h>
50
#include <asm/uaccess.h>
51
52
#define VERSION "0.7"
53
#define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
54
55
#undef DEBUG_SMU
56
57
#ifdef DEBUG_SMU
58
#define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
59
#else
60
#define DPRINTK(fmt, args...) do { } while (0)
61
#endif
62
63
/*
64
* This is the command buffer passed to the SMU hardware
65
*/
66
#define SMU_MAX_DATA 254
67
68
struct smu_cmd_buf {
69
u8 cmd;
70
u8 length;
71
u8 data[SMU_MAX_DATA];
72
};
73
74
struct smu_device {
75
spinlock_t lock;
76
struct device_node *of_node;
77
struct platform_device *of_dev;
78
int doorbell; /* doorbell gpio */
79
u32 __iomem *db_buf; /* doorbell buffer */
80
struct device_node *db_node;
81
unsigned int db_irq;
82
int msg;
83
struct device_node *msg_node;
84
unsigned int msg_irq;
85
struct smu_cmd_buf *cmd_buf; /* command buffer virtual */
86
u32 cmd_buf_abs; /* command buffer absolute */
87
struct list_head cmd_list;
88
struct smu_cmd *cmd_cur; /* pending command */
89
int broken_nap;
90
struct list_head cmd_i2c_list;
91
struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */
92
struct timer_list i2c_timer;
93
};
94
95
/*
96
* I don't think there will ever be more than one SMU, so
97
* for now, just hard code that
98
*/
99
static DEFINE_MUTEX(smu_mutex);
100
static struct smu_device *smu;
101
static DEFINE_MUTEX(smu_part_access);
102
static int smu_irq_inited;
103
104
static void smu_i2c_retry(unsigned long data);
105
106
/*
107
* SMU driver low level stuff
108
*/
109
110
static void smu_start_cmd(void)
111
{
112
unsigned long faddr, fend;
113
struct smu_cmd *cmd;
114
115
if (list_empty(&smu->cmd_list))
116
return;
117
118
/* Fetch first command in queue */
119
cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
120
smu->cmd_cur = cmd;
121
list_del(&cmd->link);
122
123
DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
124
cmd->data_len);
125
DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
126
((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
127
((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
128
((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
129
((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
130
131
/* Fill the SMU command buffer */
132
smu->cmd_buf->cmd = cmd->cmd;
133
smu->cmd_buf->length = cmd->data_len;
134
memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
135
136
/* Flush command and data to RAM */
137
faddr = (unsigned long)smu->cmd_buf;
138
fend = faddr + smu->cmd_buf->length + 2;
139
flush_inval_dcache_range(faddr, fend);
140
141
142
/* We also disable NAP mode for the duration of the command
143
* on U3 based machines.
144
* This is slightly racy as it can be written back to 1 by a sysctl
145
* but that never happens in practice. There seem to be an issue with
146
* U3 based machines such as the iMac G5 where napping for the
147
* whole duration of the command prevents the SMU from fetching it
148
* from memory. This might be related to the strange i2c based
149
* mechanism the SMU uses to access memory.
150
*/
151
if (smu->broken_nap)
152
powersave_nap = 0;
153
154
/* This isn't exactly a DMA mapping here, I suspect
155
* the SMU is actually communicating with us via i2c to the
156
* northbridge or the CPU to access RAM.
157
*/
158
writel(smu->cmd_buf_abs, smu->db_buf);
159
160
/* Ring the SMU doorbell */
161
pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
162
}
163
164
165
static irqreturn_t smu_db_intr(int irq, void *arg)
166
{
167
unsigned long flags;
168
struct smu_cmd *cmd;
169
void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
170
void *misc = NULL;
171
u8 gpio;
172
int rc = 0;
173
174
/* SMU completed the command, well, we hope, let's make sure
175
* of it
176
*/
177
spin_lock_irqsave(&smu->lock, flags);
178
179
gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
180
if ((gpio & 7) != 7) {
181
spin_unlock_irqrestore(&smu->lock, flags);
182
return IRQ_HANDLED;
183
}
184
185
cmd = smu->cmd_cur;
186
smu->cmd_cur = NULL;
187
if (cmd == NULL)
188
goto bail;
189
190
if (rc == 0) {
191
unsigned long faddr;
192
int reply_len;
193
u8 ack;
194
195
/* CPU might have brought back the cache line, so we need
196
* to flush again before peeking at the SMU response. We
197
* flush the entire buffer for now as we haven't read the
198
* reply length (it's only 2 cache lines anyway)
199
*/
200
faddr = (unsigned long)smu->cmd_buf;
201
flush_inval_dcache_range(faddr, faddr + 256);
202
203
/* Now check ack */
204
ack = (~cmd->cmd) & 0xff;
205
if (ack != smu->cmd_buf->cmd) {
206
DPRINTK("SMU: incorrect ack, want %x got %x\n",
207
ack, smu->cmd_buf->cmd);
208
rc = -EIO;
209
}
210
reply_len = rc == 0 ? smu->cmd_buf->length : 0;
211
DPRINTK("SMU: reply len: %d\n", reply_len);
212
if (reply_len > cmd->reply_len) {
213
printk(KERN_WARNING "SMU: reply buffer too small,"
214
"got %d bytes for a %d bytes buffer\n",
215
reply_len, cmd->reply_len);
216
reply_len = cmd->reply_len;
217
}
218
cmd->reply_len = reply_len;
219
if (cmd->reply_buf && reply_len)
220
memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
221
}
222
223
/* Now complete the command. Write status last in order as we lost
224
* ownership of the command structure as soon as it's no longer -1
225
*/
226
done = cmd->done;
227
misc = cmd->misc;
228
mb();
229
cmd->status = rc;
230
231
/* Re-enable NAP mode */
232
if (smu->broken_nap)
233
powersave_nap = 1;
234
bail:
235
/* Start next command if any */
236
smu_start_cmd();
237
spin_unlock_irqrestore(&smu->lock, flags);
238
239
/* Call command completion handler if any */
240
if (done)
241
done(cmd, misc);
242
243
/* It's an edge interrupt, nothing to do */
244
return IRQ_HANDLED;
245
}
246
247
248
static irqreturn_t smu_msg_intr(int irq, void *arg)
249
{
250
/* I don't quite know what to do with this one, we seem to never
251
* receive it, so I suspect we have to arm it someway in the SMU
252
* to start getting events that way.
253
*/
254
255
printk(KERN_INFO "SMU: message interrupt !\n");
256
257
/* It's an edge interrupt, nothing to do */
258
return IRQ_HANDLED;
259
}
260
261
262
/*
263
* Queued command management.
264
*
265
*/
266
267
int smu_queue_cmd(struct smu_cmd *cmd)
268
{
269
unsigned long flags;
270
271
if (smu == NULL)
272
return -ENODEV;
273
if (cmd->data_len > SMU_MAX_DATA ||
274
cmd->reply_len > SMU_MAX_DATA)
275
return -EINVAL;
276
277
cmd->status = 1;
278
spin_lock_irqsave(&smu->lock, flags);
279
list_add_tail(&cmd->link, &smu->cmd_list);
280
if (smu->cmd_cur == NULL)
281
smu_start_cmd();
282
spin_unlock_irqrestore(&smu->lock, flags);
283
284
/* Workaround for early calls when irq isn't available */
285
if (!smu_irq_inited || smu->db_irq == NO_IRQ)
286
smu_spinwait_cmd(cmd);
287
288
return 0;
289
}
290
EXPORT_SYMBOL(smu_queue_cmd);
291
292
293
int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
294
unsigned int data_len,
295
void (*done)(struct smu_cmd *cmd, void *misc),
296
void *misc, ...)
297
{
298
struct smu_cmd *cmd = &scmd->cmd;
299
va_list list;
300
int i;
301
302
if (data_len > sizeof(scmd->buffer))
303
return -EINVAL;
304
305
memset(scmd, 0, sizeof(*scmd));
306
cmd->cmd = command;
307
cmd->data_len = data_len;
308
cmd->data_buf = scmd->buffer;
309
cmd->reply_len = sizeof(scmd->buffer);
310
cmd->reply_buf = scmd->buffer;
311
cmd->done = done;
312
cmd->misc = misc;
313
314
va_start(list, misc);
315
for (i = 0; i < data_len; ++i)
316
scmd->buffer[i] = (u8)va_arg(list, int);
317
va_end(list);
318
319
return smu_queue_cmd(cmd);
320
}
321
EXPORT_SYMBOL(smu_queue_simple);
322
323
324
void smu_poll(void)
325
{
326
u8 gpio;
327
328
if (smu == NULL)
329
return;
330
331
gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
332
if ((gpio & 7) == 7)
333
smu_db_intr(smu->db_irq, smu);
334
}
335
EXPORT_SYMBOL(smu_poll);
336
337
338
void smu_done_complete(struct smu_cmd *cmd, void *misc)
339
{
340
struct completion *comp = misc;
341
342
complete(comp);
343
}
344
EXPORT_SYMBOL(smu_done_complete);
345
346
347
void smu_spinwait_cmd(struct smu_cmd *cmd)
348
{
349
while(cmd->status == 1)
350
smu_poll();
351
}
352
EXPORT_SYMBOL(smu_spinwait_cmd);
353
354
355
/* RTC low level commands */
356
static inline int bcd2hex (int n)
357
{
358
return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
359
}
360
361
362
static inline int hex2bcd (int n)
363
{
364
return ((n / 10) << 4) + (n % 10);
365
}
366
367
368
static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
369
struct rtc_time *time)
370
{
371
cmd_buf->cmd = 0x8e;
372
cmd_buf->length = 8;
373
cmd_buf->data[0] = 0x80;
374
cmd_buf->data[1] = hex2bcd(time->tm_sec);
375
cmd_buf->data[2] = hex2bcd(time->tm_min);
376
cmd_buf->data[3] = hex2bcd(time->tm_hour);
377
cmd_buf->data[4] = time->tm_wday;
378
cmd_buf->data[5] = hex2bcd(time->tm_mday);
379
cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
380
cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
381
}
382
383
384
int smu_get_rtc_time(struct rtc_time *time, int spinwait)
385
{
386
struct smu_simple_cmd cmd;
387
int rc;
388
389
if (smu == NULL)
390
return -ENODEV;
391
392
memset(time, 0, sizeof(struct rtc_time));
393
rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
394
SMU_CMD_RTC_GET_DATETIME);
395
if (rc)
396
return rc;
397
smu_spinwait_simple(&cmd);
398
399
time->tm_sec = bcd2hex(cmd.buffer[0]);
400
time->tm_min = bcd2hex(cmd.buffer[1]);
401
time->tm_hour = bcd2hex(cmd.buffer[2]);
402
time->tm_wday = bcd2hex(cmd.buffer[3]);
403
time->tm_mday = bcd2hex(cmd.buffer[4]);
404
time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
405
time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
406
407
return 0;
408
}
409
410
411
int smu_set_rtc_time(struct rtc_time *time, int spinwait)
412
{
413
struct smu_simple_cmd cmd;
414
int rc;
415
416
if (smu == NULL)
417
return -ENODEV;
418
419
rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
420
SMU_CMD_RTC_SET_DATETIME,
421
hex2bcd(time->tm_sec),
422
hex2bcd(time->tm_min),
423
hex2bcd(time->tm_hour),
424
time->tm_wday,
425
hex2bcd(time->tm_mday),
426
hex2bcd(time->tm_mon) + 1,
427
hex2bcd(time->tm_year - 100));
428
if (rc)
429
return rc;
430
smu_spinwait_simple(&cmd);
431
432
return 0;
433
}
434
435
436
void smu_shutdown(void)
437
{
438
struct smu_simple_cmd cmd;
439
440
if (smu == NULL)
441
return;
442
443
if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
444
'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
445
return;
446
smu_spinwait_simple(&cmd);
447
for (;;)
448
;
449
}
450
451
452
void smu_restart(void)
453
{
454
struct smu_simple_cmd cmd;
455
456
if (smu == NULL)
457
return;
458
459
if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
460
'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
461
return;
462
smu_spinwait_simple(&cmd);
463
for (;;)
464
;
465
}
466
467
468
int smu_present(void)
469
{
470
return smu != NULL;
471
}
472
EXPORT_SYMBOL(smu_present);
473
474
475
int __init smu_init (void)
476
{
477
struct device_node *np;
478
const u32 *data;
479
int ret = 0;
480
481
np = of_find_node_by_type(NULL, "smu");
482
if (np == NULL)
483
return -ENODEV;
484
485
printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
486
487
if (smu_cmdbuf_abs == 0) {
488
printk(KERN_ERR "SMU: Command buffer not allocated !\n");
489
ret = -EINVAL;
490
goto fail_np;
491
}
492
493
smu = alloc_bootmem(sizeof(struct smu_device));
494
495
spin_lock_init(&smu->lock);
496
INIT_LIST_HEAD(&smu->cmd_list);
497
INIT_LIST_HEAD(&smu->cmd_i2c_list);
498
smu->of_node = np;
499
smu->db_irq = NO_IRQ;
500
smu->msg_irq = NO_IRQ;
501
502
/* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
503
* 32 bits value safely
504
*/
505
smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
506
smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs);
507
508
smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
509
if (smu->db_node == NULL) {
510
printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
511
ret = -ENXIO;
512
goto fail_bootmem;
513
}
514
data = of_get_property(smu->db_node, "reg", NULL);
515
if (data == NULL) {
516
printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
517
ret = -ENXIO;
518
goto fail_db_node;
519
}
520
521
/* Current setup has one doorbell GPIO that does both doorbell
522
* and ack. GPIOs are at 0x50, best would be to find that out
523
* in the device-tree though.
524
*/
525
smu->doorbell = *data;
526
if (smu->doorbell < 0x50)
527
smu->doorbell += 0x50;
528
529
/* Now look for the smu-interrupt GPIO */
530
do {
531
smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
532
if (smu->msg_node == NULL)
533
break;
534
data = of_get_property(smu->msg_node, "reg", NULL);
535
if (data == NULL) {
536
of_node_put(smu->msg_node);
537
smu->msg_node = NULL;
538
break;
539
}
540
smu->msg = *data;
541
if (smu->msg < 0x50)
542
smu->msg += 0x50;
543
} while(0);
544
545
/* Doorbell buffer is currently hard-coded, I didn't find a proper
546
* device-tree entry giving the address. Best would probably to use
547
* an offset for K2 base though, but let's do it that way for now.
548
*/
549
smu->db_buf = ioremap(0x8000860c, 0x1000);
550
if (smu->db_buf == NULL) {
551
printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
552
ret = -ENXIO;
553
goto fail_msg_node;
554
}
555
556
/* U3 has an issue with NAP mode when issuing SMU commands */
557
smu->broken_nap = pmac_get_uninorth_variant() < 4;
558
if (smu->broken_nap)
559
printk(KERN_INFO "SMU: using NAP mode workaround\n");
560
561
sys_ctrler = SYS_CTRLER_SMU;
562
return 0;
563
564
fail_msg_node:
565
if (smu->msg_node)
566
of_node_put(smu->msg_node);
567
fail_db_node:
568
of_node_put(smu->db_node);
569
fail_bootmem:
570
free_bootmem((unsigned long)smu, sizeof(struct smu_device));
571
smu = NULL;
572
fail_np:
573
of_node_put(np);
574
return ret;
575
}
576
577
578
static int smu_late_init(void)
579
{
580
if (!smu)
581
return 0;
582
583
init_timer(&smu->i2c_timer);
584
smu->i2c_timer.function = smu_i2c_retry;
585
smu->i2c_timer.data = (unsigned long)smu;
586
587
if (smu->db_node) {
588
smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
589
if (smu->db_irq == NO_IRQ)
590
printk(KERN_ERR "smu: failed to map irq for node %s\n",
591
smu->db_node->full_name);
592
}
593
if (smu->msg_node) {
594
smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
595
if (smu->msg_irq == NO_IRQ)
596
printk(KERN_ERR "smu: failed to map irq for node %s\n",
597
smu->msg_node->full_name);
598
}
599
600
/*
601
* Try to request the interrupts
602
*/
603
604
if (smu->db_irq != NO_IRQ) {
605
if (request_irq(smu->db_irq, smu_db_intr,
606
IRQF_SHARED, "SMU doorbell", smu) < 0) {
607
printk(KERN_WARNING "SMU: can't "
608
"request interrupt %d\n",
609
smu->db_irq);
610
smu->db_irq = NO_IRQ;
611
}
612
}
613
614
if (smu->msg_irq != NO_IRQ) {
615
if (request_irq(smu->msg_irq, smu_msg_intr,
616
IRQF_SHARED, "SMU message", smu) < 0) {
617
printk(KERN_WARNING "SMU: can't "
618
"request interrupt %d\n",
619
smu->msg_irq);
620
smu->msg_irq = NO_IRQ;
621
}
622
}
623
624
smu_irq_inited = 1;
625
return 0;
626
}
627
/* This has to be before arch_initcall as the low i2c stuff relies on the
628
* above having been done before we reach arch_initcalls
629
*/
630
core_initcall(smu_late_init);
631
632
/*
633
* sysfs visibility
634
*/
635
636
static void smu_expose_childs(struct work_struct *unused)
637
{
638
struct device_node *np;
639
640
for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
641
if (of_device_is_compatible(np, "smu-sensors"))
642
of_platform_device_create(np, "smu-sensors",
643
&smu->of_dev->dev);
644
}
645
646
static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
647
648
static int smu_platform_probe(struct platform_device* dev)
649
{
650
if (!smu)
651
return -ENODEV;
652
smu->of_dev = dev;
653
654
/*
655
* Ok, we are matched, now expose all i2c busses. We have to defer
656
* that unfortunately or it would deadlock inside the device model
657
*/
658
schedule_work(&smu_expose_childs_work);
659
660
return 0;
661
}
662
663
static const struct of_device_id smu_platform_match[] =
664
{
665
{
666
.type = "smu",
667
},
668
{},
669
};
670
671
static struct platform_driver smu_of_platform_driver =
672
{
673
.driver = {
674
.name = "smu",
675
.owner = THIS_MODULE,
676
.of_match_table = smu_platform_match,
677
},
678
.probe = smu_platform_probe,
679
};
680
681
static int __init smu_init_sysfs(void)
682
{
683
/*
684
* Due to sysfs bogosity, a sysdev is not a real device, so
685
* we should in fact create both if we want sysdev semantics
686
* for power management.
687
* For now, we don't power manage machines with an SMU chip,
688
* I'm a bit too far from figuring out how that works with those
689
* new chipsets, but that will come back and bite us
690
*/
691
platform_driver_register(&smu_of_platform_driver);
692
return 0;
693
}
694
695
device_initcall(smu_init_sysfs);
696
697
struct platform_device *smu_get_ofdev(void)
698
{
699
if (!smu)
700
return NULL;
701
return smu->of_dev;
702
}
703
704
EXPORT_SYMBOL_GPL(smu_get_ofdev);
705
706
/*
707
* i2c interface
708
*/
709
710
static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
711
{
712
void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
713
void *misc = cmd->misc;
714
unsigned long flags;
715
716
/* Check for read case */
717
if (!fail && cmd->read) {
718
if (cmd->pdata[0] < 1)
719
fail = 1;
720
else
721
memcpy(cmd->info.data, &cmd->pdata[1],
722
cmd->info.datalen);
723
}
724
725
DPRINTK("SMU: completing, success: %d\n", !fail);
726
727
/* Update status and mark no pending i2c command with lock
728
* held so nobody comes in while we dequeue an eventual
729
* pending next i2c command
730
*/
731
spin_lock_irqsave(&smu->lock, flags);
732
smu->cmd_i2c_cur = NULL;
733
wmb();
734
cmd->status = fail ? -EIO : 0;
735
736
/* Is there another i2c command waiting ? */
737
if (!list_empty(&smu->cmd_i2c_list)) {
738
struct smu_i2c_cmd *newcmd;
739
740
/* Fetch it, new current, remove from list */
741
newcmd = list_entry(smu->cmd_i2c_list.next,
742
struct smu_i2c_cmd, link);
743
smu->cmd_i2c_cur = newcmd;
744
list_del(&cmd->link);
745
746
/* Queue with low level smu */
747
list_add_tail(&cmd->scmd.link, &smu->cmd_list);
748
if (smu->cmd_cur == NULL)
749
smu_start_cmd();
750
}
751
spin_unlock_irqrestore(&smu->lock, flags);
752
753
/* Call command completion handler if any */
754
if (done)
755
done(cmd, misc);
756
757
}
758
759
760
static void smu_i2c_retry(unsigned long data)
761
{
762
struct smu_i2c_cmd *cmd = smu->cmd_i2c_cur;
763
764
DPRINTK("SMU: i2c failure, requeuing...\n");
765
766
/* requeue command simply by resetting reply_len */
767
cmd->pdata[0] = 0xff;
768
cmd->scmd.reply_len = sizeof(cmd->pdata);
769
smu_queue_cmd(&cmd->scmd);
770
}
771
772
773
static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
774
{
775
struct smu_i2c_cmd *cmd = misc;
776
int fail = 0;
777
778
DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
779
cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
780
781
/* Check for possible status */
782
if (scmd->status < 0)
783
fail = 1;
784
else if (cmd->read) {
785
if (cmd->stage == 0)
786
fail = cmd->pdata[0] != 0;
787
else
788
fail = cmd->pdata[0] >= 0x80;
789
} else {
790
fail = cmd->pdata[0] != 0;
791
}
792
793
/* Handle failures by requeuing command, after 5ms interval
794
*/
795
if (fail && --cmd->retries > 0) {
796
DPRINTK("SMU: i2c failure, starting timer...\n");
797
BUG_ON(cmd != smu->cmd_i2c_cur);
798
if (!smu_irq_inited) {
799
mdelay(5);
800
smu_i2c_retry(0);
801
return;
802
}
803
mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
804
return;
805
}
806
807
/* If failure or stage 1, command is complete */
808
if (fail || cmd->stage != 0) {
809
smu_i2c_complete_command(cmd, fail);
810
return;
811
}
812
813
DPRINTK("SMU: going to stage 1\n");
814
815
/* Ok, initial command complete, now poll status */
816
scmd->reply_buf = cmd->pdata;
817
scmd->reply_len = sizeof(cmd->pdata);
818
scmd->data_buf = cmd->pdata;
819
scmd->data_len = 1;
820
cmd->pdata[0] = 0;
821
cmd->stage = 1;
822
cmd->retries = 20;
823
smu_queue_cmd(scmd);
824
}
825
826
827
int smu_queue_i2c(struct smu_i2c_cmd *cmd)
828
{
829
unsigned long flags;
830
831
if (smu == NULL)
832
return -ENODEV;
833
834
/* Fill most fields of scmd */
835
cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
836
cmd->scmd.done = smu_i2c_low_completion;
837
cmd->scmd.misc = cmd;
838
cmd->scmd.reply_buf = cmd->pdata;
839
cmd->scmd.reply_len = sizeof(cmd->pdata);
840
cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
841
cmd->scmd.status = 1;
842
cmd->stage = 0;
843
cmd->pdata[0] = 0xff;
844
cmd->retries = 20;
845
cmd->status = 1;
846
847
/* Check transfer type, sanitize some "info" fields
848
* based on transfer type and do more checking
849
*/
850
cmd->info.caddr = cmd->info.devaddr;
851
cmd->read = cmd->info.devaddr & 0x01;
852
switch(cmd->info.type) {
853
case SMU_I2C_TRANSFER_SIMPLE:
854
memset(&cmd->info.sublen, 0, 4);
855
break;
856
case SMU_I2C_TRANSFER_COMBINED:
857
cmd->info.devaddr &= 0xfe;
858
case SMU_I2C_TRANSFER_STDSUB:
859
if (cmd->info.sublen > 3)
860
return -EINVAL;
861
break;
862
default:
863
return -EINVAL;
864
}
865
866
/* Finish setting up command based on transfer direction
867
*/
868
if (cmd->read) {
869
if (cmd->info.datalen > SMU_I2C_READ_MAX)
870
return -EINVAL;
871
memset(cmd->info.data, 0xff, cmd->info.datalen);
872
cmd->scmd.data_len = 9;
873
} else {
874
if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
875
return -EINVAL;
876
cmd->scmd.data_len = 9 + cmd->info.datalen;
877
}
878
879
DPRINTK("SMU: i2c enqueuing command\n");
880
DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
881
cmd->read ? "read" : "write", cmd->info.datalen,
882
cmd->info.bus, cmd->info.caddr,
883
cmd->info.subaddr[0], cmd->info.type);
884
885
886
/* Enqueue command in i2c list, and if empty, enqueue also in
887
* main command list
888
*/
889
spin_lock_irqsave(&smu->lock, flags);
890
if (smu->cmd_i2c_cur == NULL) {
891
smu->cmd_i2c_cur = cmd;
892
list_add_tail(&cmd->scmd.link, &smu->cmd_list);
893
if (smu->cmd_cur == NULL)
894
smu_start_cmd();
895
} else
896
list_add_tail(&cmd->link, &smu->cmd_i2c_list);
897
spin_unlock_irqrestore(&smu->lock, flags);
898
899
return 0;
900
}
901
902
/*
903
* Handling of "partitions"
904
*/
905
906
static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
907
{
908
DECLARE_COMPLETION_ONSTACK(comp);
909
unsigned int chunk;
910
struct smu_cmd cmd;
911
int rc;
912
u8 params[8];
913
914
/* We currently use a chunk size of 0xe. We could check the
915
* SMU firmware version and use bigger sizes though
916
*/
917
chunk = 0xe;
918
919
while (len) {
920
unsigned int clen = min(len, chunk);
921
922
cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
923
cmd.data_len = 7;
924
cmd.data_buf = params;
925
cmd.reply_len = chunk;
926
cmd.reply_buf = dest;
927
cmd.done = smu_done_complete;
928
cmd.misc = &comp;
929
params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
930
params[1] = 0x4;
931
*((u32 *)&params[2]) = addr;
932
params[6] = clen;
933
934
rc = smu_queue_cmd(&cmd);
935
if (rc)
936
return rc;
937
wait_for_completion(&comp);
938
if (cmd.status != 0)
939
return rc;
940
if (cmd.reply_len != clen) {
941
printk(KERN_DEBUG "SMU: short read in "
942
"smu_read_datablock, got: %d, want: %d\n",
943
cmd.reply_len, clen);
944
return -EIO;
945
}
946
len -= clen;
947
addr += clen;
948
dest += clen;
949
}
950
return 0;
951
}
952
953
static struct smu_sdbp_header *smu_create_sdb_partition(int id)
954
{
955
DECLARE_COMPLETION_ONSTACK(comp);
956
struct smu_simple_cmd cmd;
957
unsigned int addr, len, tlen;
958
struct smu_sdbp_header *hdr;
959
struct property *prop;
960
961
/* First query the partition info */
962
DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
963
smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
964
smu_done_complete, &comp,
965
SMU_CMD_PARTITION_LATEST, id);
966
wait_for_completion(&comp);
967
DPRINTK("SMU: done, status: %d, reply_len: %d\n",
968
cmd.cmd.status, cmd.cmd.reply_len);
969
970
/* Partition doesn't exist (or other error) */
971
if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
972
return NULL;
973
974
/* Fetch address and length from reply */
975
addr = *((u16 *)cmd.buffer);
976
len = cmd.buffer[3] << 2;
977
/* Calucluate total length to allocate, including the 17 bytes
978
* for "sdb-partition-XX" that we append at the end of the buffer
979
*/
980
tlen = sizeof(struct property) + len + 18;
981
982
prop = kzalloc(tlen, GFP_KERNEL);
983
if (prop == NULL)
984
return NULL;
985
hdr = (struct smu_sdbp_header *)(prop + 1);
986
prop->name = ((char *)prop) + tlen - 18;
987
sprintf(prop->name, "sdb-partition-%02x", id);
988
prop->length = len;
989
prop->value = hdr;
990
prop->next = NULL;
991
992
/* Read the datablock */
993
if (smu_read_datablock((u8 *)hdr, addr, len)) {
994
printk(KERN_DEBUG "SMU: datablock read failed while reading "
995
"partition %02x !\n", id);
996
goto failure;
997
}
998
999
/* Got it, check a few things and create the property */
1000
if (hdr->id != id) {
1001
printk(KERN_DEBUG "SMU: Reading partition %02x and got "
1002
"%02x !\n", id, hdr->id);
1003
goto failure;
1004
}
1005
if (prom_add_property(smu->of_node, prop)) {
1006
printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1007
"property !\n", id);
1008
goto failure;
1009
}
1010
1011
return hdr;
1012
failure:
1013
kfree(prop);
1014
return NULL;
1015
}
1016
1017
/* Note: Only allowed to return error code in pointers (using ERR_PTR)
1018
* when interruptible is 1
1019
*/
1020
const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1021
unsigned int *size, int interruptible)
1022
{
1023
char pname[32];
1024
const struct smu_sdbp_header *part;
1025
1026
if (!smu)
1027
return NULL;
1028
1029
sprintf(pname, "sdb-partition-%02x", id);
1030
1031
DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1032
1033
if (interruptible) {
1034
int rc;
1035
rc = mutex_lock_interruptible(&smu_part_access);
1036
if (rc)
1037
return ERR_PTR(rc);
1038
} else
1039
mutex_lock(&smu_part_access);
1040
1041
part = of_get_property(smu->of_node, pname, size);
1042
if (part == NULL) {
1043
DPRINTK("trying to extract from SMU ...\n");
1044
part = smu_create_sdb_partition(id);
1045
if (part != NULL && size)
1046
*size = part->len << 2;
1047
}
1048
mutex_unlock(&smu_part_access);
1049
return part;
1050
}
1051
1052
const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1053
{
1054
return __smu_get_sdb_partition(id, size, 0);
1055
}
1056
EXPORT_SYMBOL(smu_get_sdb_partition);
1057
1058
1059
/*
1060
* Userland driver interface
1061
*/
1062
1063
1064
static LIST_HEAD(smu_clist);
1065
static DEFINE_SPINLOCK(smu_clist_lock);
1066
1067
enum smu_file_mode {
1068
smu_file_commands,
1069
smu_file_events,
1070
smu_file_closing
1071
};
1072
1073
struct smu_private
1074
{
1075
struct list_head list;
1076
enum smu_file_mode mode;
1077
int busy;
1078
struct smu_cmd cmd;
1079
spinlock_t lock;
1080
wait_queue_head_t wait;
1081
u8 buffer[SMU_MAX_DATA];
1082
};
1083
1084
1085
static int smu_open(struct inode *inode, struct file *file)
1086
{
1087
struct smu_private *pp;
1088
unsigned long flags;
1089
1090
pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1091
if (pp == 0)
1092
return -ENOMEM;
1093
spin_lock_init(&pp->lock);
1094
pp->mode = smu_file_commands;
1095
init_waitqueue_head(&pp->wait);
1096
1097
mutex_lock(&smu_mutex);
1098
spin_lock_irqsave(&smu_clist_lock, flags);
1099
list_add(&pp->list, &smu_clist);
1100
spin_unlock_irqrestore(&smu_clist_lock, flags);
1101
file->private_data = pp;
1102
mutex_unlock(&smu_mutex);
1103
1104
return 0;
1105
}
1106
1107
1108
static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1109
{
1110
struct smu_private *pp = misc;
1111
1112
wake_up_all(&pp->wait);
1113
}
1114
1115
1116
static ssize_t smu_write(struct file *file, const char __user *buf,
1117
size_t count, loff_t *ppos)
1118
{
1119
struct smu_private *pp = file->private_data;
1120
unsigned long flags;
1121
struct smu_user_cmd_hdr hdr;
1122
int rc = 0;
1123
1124
if (pp->busy)
1125
return -EBUSY;
1126
else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1127
return -EFAULT;
1128
else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1129
pp->mode = smu_file_events;
1130
return 0;
1131
} else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1132
const struct smu_sdbp_header *part;
1133
part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1134
if (part == NULL)
1135
return -EINVAL;
1136
else if (IS_ERR(part))
1137
return PTR_ERR(part);
1138
return 0;
1139
} else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1140
return -EINVAL;
1141
else if (pp->mode != smu_file_commands)
1142
return -EBADFD;
1143
else if (hdr.data_len > SMU_MAX_DATA)
1144
return -EINVAL;
1145
1146
spin_lock_irqsave(&pp->lock, flags);
1147
if (pp->busy) {
1148
spin_unlock_irqrestore(&pp->lock, flags);
1149
return -EBUSY;
1150
}
1151
pp->busy = 1;
1152
pp->cmd.status = 1;
1153
spin_unlock_irqrestore(&pp->lock, flags);
1154
1155
if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1156
pp->busy = 0;
1157
return -EFAULT;
1158
}
1159
1160
pp->cmd.cmd = hdr.cmd;
1161
pp->cmd.data_len = hdr.data_len;
1162
pp->cmd.reply_len = SMU_MAX_DATA;
1163
pp->cmd.data_buf = pp->buffer;
1164
pp->cmd.reply_buf = pp->buffer;
1165
pp->cmd.done = smu_user_cmd_done;
1166
pp->cmd.misc = pp;
1167
rc = smu_queue_cmd(&pp->cmd);
1168
if (rc < 0)
1169
return rc;
1170
return count;
1171
}
1172
1173
1174
static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1175
char __user *buf, size_t count)
1176
{
1177
DECLARE_WAITQUEUE(wait, current);
1178
struct smu_user_reply_hdr hdr;
1179
unsigned long flags;
1180
int size, rc = 0;
1181
1182
if (!pp->busy)
1183
return 0;
1184
if (count < sizeof(struct smu_user_reply_hdr))
1185
return -EOVERFLOW;
1186
spin_lock_irqsave(&pp->lock, flags);
1187
if (pp->cmd.status == 1) {
1188
if (file->f_flags & O_NONBLOCK) {
1189
spin_unlock_irqrestore(&pp->lock, flags);
1190
return -EAGAIN;
1191
}
1192
add_wait_queue(&pp->wait, &wait);
1193
for (;;) {
1194
set_current_state(TASK_INTERRUPTIBLE);
1195
rc = 0;
1196
if (pp->cmd.status != 1)
1197
break;
1198
rc = -ERESTARTSYS;
1199
if (signal_pending(current))
1200
break;
1201
spin_unlock_irqrestore(&pp->lock, flags);
1202
schedule();
1203
spin_lock_irqsave(&pp->lock, flags);
1204
}
1205
set_current_state(TASK_RUNNING);
1206
remove_wait_queue(&pp->wait, &wait);
1207
}
1208
spin_unlock_irqrestore(&pp->lock, flags);
1209
if (rc)
1210
return rc;
1211
if (pp->cmd.status != 0)
1212
pp->cmd.reply_len = 0;
1213
size = sizeof(hdr) + pp->cmd.reply_len;
1214
if (count < size)
1215
size = count;
1216
rc = size;
1217
hdr.status = pp->cmd.status;
1218
hdr.reply_len = pp->cmd.reply_len;
1219
if (copy_to_user(buf, &hdr, sizeof(hdr)))
1220
return -EFAULT;
1221
size -= sizeof(hdr);
1222
if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1223
return -EFAULT;
1224
pp->busy = 0;
1225
1226
return rc;
1227
}
1228
1229
1230
static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1231
char __user *buf, size_t count)
1232
{
1233
/* Not implemented */
1234
msleep_interruptible(1000);
1235
return 0;
1236
}
1237
1238
1239
static ssize_t smu_read(struct file *file, char __user *buf,
1240
size_t count, loff_t *ppos)
1241
{
1242
struct smu_private *pp = file->private_data;
1243
1244
if (pp->mode == smu_file_commands)
1245
return smu_read_command(file, pp, buf, count);
1246
if (pp->mode == smu_file_events)
1247
return smu_read_events(file, pp, buf, count);
1248
1249
return -EBADFD;
1250
}
1251
1252
static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1253
{
1254
struct smu_private *pp = file->private_data;
1255
unsigned int mask = 0;
1256
unsigned long flags;
1257
1258
if (pp == 0)
1259
return 0;
1260
1261
if (pp->mode == smu_file_commands) {
1262
poll_wait(file, &pp->wait, wait);
1263
1264
spin_lock_irqsave(&pp->lock, flags);
1265
if (pp->busy && pp->cmd.status != 1)
1266
mask |= POLLIN;
1267
spin_unlock_irqrestore(&pp->lock, flags);
1268
} if (pp->mode == smu_file_events) {
1269
/* Not yet implemented */
1270
}
1271
return mask;
1272
}
1273
1274
static int smu_release(struct inode *inode, struct file *file)
1275
{
1276
struct smu_private *pp = file->private_data;
1277
unsigned long flags;
1278
unsigned int busy;
1279
1280
if (pp == 0)
1281
return 0;
1282
1283
file->private_data = NULL;
1284
1285
/* Mark file as closing to avoid races with new request */
1286
spin_lock_irqsave(&pp->lock, flags);
1287
pp->mode = smu_file_closing;
1288
busy = pp->busy;
1289
1290
/* Wait for any pending request to complete */
1291
if (busy && pp->cmd.status == 1) {
1292
DECLARE_WAITQUEUE(wait, current);
1293
1294
add_wait_queue(&pp->wait, &wait);
1295
for (;;) {
1296
set_current_state(TASK_UNINTERRUPTIBLE);
1297
if (pp->cmd.status != 1)
1298
break;
1299
spin_unlock_irqrestore(&pp->lock, flags);
1300
schedule();
1301
spin_lock_irqsave(&pp->lock, flags);
1302
}
1303
set_current_state(TASK_RUNNING);
1304
remove_wait_queue(&pp->wait, &wait);
1305
}
1306
spin_unlock_irqrestore(&pp->lock, flags);
1307
1308
spin_lock_irqsave(&smu_clist_lock, flags);
1309
list_del(&pp->list);
1310
spin_unlock_irqrestore(&smu_clist_lock, flags);
1311
kfree(pp);
1312
1313
return 0;
1314
}
1315
1316
1317
static const struct file_operations smu_device_fops = {
1318
.llseek = no_llseek,
1319
.read = smu_read,
1320
.write = smu_write,
1321
.poll = smu_fpoll,
1322
.open = smu_open,
1323
.release = smu_release,
1324
};
1325
1326
static struct miscdevice pmu_device = {
1327
MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1328
};
1329
1330
static int smu_device_init(void)
1331
{
1332
if (!smu)
1333
return -ENODEV;
1334
if (misc_register(&pmu_device) < 0)
1335
printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1336
return 0;
1337
}
1338
device_initcall(smu_device_init);
1339
1340