Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/macintosh/therm_pm72.c
15112 views
1
/*
2
* Device driver for the thermostats & fan controller of the
3
* Apple G5 "PowerMac7,2" desktop machines.
4
*
5
* (c) Copyright IBM Corp. 2003-2004
6
*
7
* Maintained by: Benjamin Herrenschmidt
8
* <[email protected]>
9
*
10
*
11
* The algorithm used is the PID control algorithm, used the same
12
* way the published Darwin code does, using the same values that
13
* are present in the Darwin 7.0 snapshot property lists.
14
*
15
* As far as the CPUs control loops are concerned, I use the
16
* calibration & PID constants provided by the EEPROM,
17
* I do _not_ embed any value from the property lists, as the ones
18
* provided by Darwin 7.0 seem to always have an older version that
19
* what I've seen on the actual computers.
20
* It would be interesting to verify that though. Darwin has a
21
* version code of 1.0.0d11 for all control loops it seems, while
22
* so far, the machines EEPROMs contain a dataset versioned 1.0.0f
23
*
24
* Darwin doesn't provide source to all parts, some missing
25
* bits like the AppleFCU driver or the actual scale of some
26
* of the values returned by sensors had to be "guessed" some
27
* way... or based on what Open Firmware does.
28
*
29
* I didn't yet figure out how to get the slots power consumption
30
* out of the FCU, so that part has not been implemented yet and
31
* the slots fan is set to a fixed 50% PWM, hoping this value is
32
* safe enough ...
33
*
34
* Note: I have observed strange oscillations of the CPU control
35
* loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36
* oscillates slowly (over several minutes) between the minimum
37
* of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38
* this, it could be some incorrect constant or an error in the
39
* way I ported the algorithm, or it could be just normal. I
40
* don't have full understanding on the way Apple tweaked the PID
41
* algorithm for the CPU control, it is definitely not a standard
42
* implementation...
43
*
44
* TODO: - Check MPU structure version/signature
45
* - Add things like /sbin/overtemp for non-critical
46
* overtemp conditions so userland can take some policy
47
* decisions, like slowing down CPUs
48
* - Deal with fan and i2c failures in a better way
49
* - Maybe do a generic PID based on params used for
50
* U3 and Drives ? Definitely need to factor code a bit
51
* better... also make sensor detection more robust using
52
* the device-tree to probe for them
53
* - Figure out how to get the slots consumption and set the
54
* slots fan accordingly
55
*
56
* History:
57
*
58
* Nov. 13, 2003 : 0.5
59
* - First release
60
*
61
* Nov. 14, 2003 : 0.6
62
* - Read fan speed from FCU, low level fan routines now deal
63
* with errors & check fan status, though higher level don't
64
* do much.
65
* - Move a bunch of definitions to .h file
66
*
67
* Nov. 18, 2003 : 0.7
68
* - Fix build on ppc64 kernel
69
* - Move back statics definitions to .c file
70
* - Avoid calling schedule_timeout with a negative number
71
*
72
* Dec. 18, 2003 : 0.8
73
* - Fix typo when reading back fan speed on 2 CPU machines
74
*
75
* Mar. 11, 2004 : 0.9
76
* - Rework code accessing the ADC chips, make it more robust and
77
* closer to the chip spec. Also make sure it is configured properly,
78
* I've seen yet unexplained cases where on startup, I would have stale
79
* values in the configuration register
80
* - Switch back to use of target fan speed for PID, thus lowering
81
* pressure on i2c
82
*
83
* Oct. 20, 2004 : 1.1
84
* - Add device-tree lookup for fan IDs, should detect liquid cooling
85
* pumps when present
86
* - Enable driver for PowerMac7,3 machines
87
* - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88
* - Add new CPU cooling algorithm for machines with liquid cooling
89
* - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90
* - Fix a signed/unsigned compare issue in some PID loops
91
*
92
* Mar. 10, 2005 : 1.2
93
* - Add basic support for Xserve G5
94
* - Retrieve pumps min/max from EEPROM image in device-tree (broken)
95
* - Use min/max macros here or there
96
* - Latest darwin updated U3H min fan speed to 20% PWM
97
*
98
* July. 06, 2006 : 1.3
99
* - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100
* - Add missing slots fan control loop for Xserve G5
101
* - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102
* still can't properly implement the control loop for these, so let's
103
* reduce the noise a little bit, it appears that 40% still gives us
104
* a pretty good air flow
105
* - Add code to "tickle" the FCU regulary so it doesn't think that
106
* we are gone while in fact, the machine just didn't need any fan
107
* speed change lately
108
*
109
*/
110
111
#include <linux/types.h>
112
#include <linux/module.h>
113
#include <linux/errno.h>
114
#include <linux/kernel.h>
115
#include <linux/delay.h>
116
#include <linux/sched.h>
117
#include <linux/init.h>
118
#include <linux/spinlock.h>
119
#include <linux/wait.h>
120
#include <linux/reboot.h>
121
#include <linux/kmod.h>
122
#include <linux/i2c.h>
123
#include <linux/kthread.h>
124
#include <linux/mutex.h>
125
#include <linux/of_device.h>
126
#include <linux/of_platform.h>
127
#include <asm/prom.h>
128
#include <asm/machdep.h>
129
#include <asm/io.h>
130
#include <asm/system.h>
131
#include <asm/sections.h>
132
#include <asm/macio.h>
133
134
#include "therm_pm72.h"
135
136
#define VERSION "1.3"
137
138
#undef DEBUG
139
140
#ifdef DEBUG
141
#define DBG(args...) printk(args)
142
#else
143
#define DBG(args...) do { } while(0)
144
#endif
145
146
147
/*
148
* Driver statics
149
*/
150
151
static struct platform_device * of_dev;
152
static struct i2c_adapter * u3_0;
153
static struct i2c_adapter * u3_1;
154
static struct i2c_adapter * k2;
155
static struct i2c_client * fcu;
156
static struct cpu_pid_state processor_state[2];
157
static struct basckside_pid_params backside_params;
158
static struct backside_pid_state backside_state;
159
static struct drives_pid_state drives_state;
160
static struct dimm_pid_state dimms_state;
161
static struct slots_pid_state slots_state;
162
static int state;
163
static int cpu_count;
164
static int cpu_pid_type;
165
static struct task_struct *ctrl_task;
166
static struct completion ctrl_complete;
167
static int critical_state;
168
static int rackmac;
169
static s32 dimm_output_clamp;
170
static int fcu_rpm_shift;
171
static int fcu_tickle_ticks;
172
static DEFINE_MUTEX(driver_lock);
173
174
/*
175
* We have 3 types of CPU PID control. One is "split" old style control
176
* for intake & exhaust fans, the other is "combined" control for both
177
* CPUs that also deals with the pumps when present. To be "compatible"
178
* with OS X at this point, we only use "COMBINED" on the machines that
179
* are identified as having the pumps (though that identification is at
180
* least dodgy). Ultimately, we could probably switch completely to this
181
* algorithm provided we hack it to deal with the UP case
182
*/
183
#define CPU_PID_TYPE_SPLIT 0
184
#define CPU_PID_TYPE_COMBINED 1
185
#define CPU_PID_TYPE_RACKMAC 2
186
187
/*
188
* This table describes all fans in the FCU. The "id" and "type" values
189
* are defaults valid for all earlier machines. Newer machines will
190
* eventually override the table content based on the device-tree
191
*/
192
struct fcu_fan_table
193
{
194
char* loc; /* location code */
195
int type; /* 0 = rpm, 1 = pwm, 2 = pump */
196
int id; /* id or -1 */
197
};
198
199
#define FCU_FAN_RPM 0
200
#define FCU_FAN_PWM 1
201
202
#define FCU_FAN_ABSENT_ID -1
203
204
#define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
205
206
struct fcu_fan_table fcu_fans[] = {
207
[BACKSIDE_FAN_PWM_INDEX] = {
208
.loc = "BACKSIDE,SYS CTRLR FAN",
209
.type = FCU_FAN_PWM,
210
.id = BACKSIDE_FAN_PWM_DEFAULT_ID,
211
},
212
[DRIVES_FAN_RPM_INDEX] = {
213
.loc = "DRIVE BAY",
214
.type = FCU_FAN_RPM,
215
.id = DRIVES_FAN_RPM_DEFAULT_ID,
216
},
217
[SLOTS_FAN_PWM_INDEX] = {
218
.loc = "SLOT,PCI FAN",
219
.type = FCU_FAN_PWM,
220
.id = SLOTS_FAN_PWM_DEFAULT_ID,
221
},
222
[CPUA_INTAKE_FAN_RPM_INDEX] = {
223
.loc = "CPU A INTAKE",
224
.type = FCU_FAN_RPM,
225
.id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
226
},
227
[CPUA_EXHAUST_FAN_RPM_INDEX] = {
228
.loc = "CPU A EXHAUST",
229
.type = FCU_FAN_RPM,
230
.id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
231
},
232
[CPUB_INTAKE_FAN_RPM_INDEX] = {
233
.loc = "CPU B INTAKE",
234
.type = FCU_FAN_RPM,
235
.id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
236
},
237
[CPUB_EXHAUST_FAN_RPM_INDEX] = {
238
.loc = "CPU B EXHAUST",
239
.type = FCU_FAN_RPM,
240
.id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
241
},
242
/* pumps aren't present by default, have to be looked up in the
243
* device-tree
244
*/
245
[CPUA_PUMP_RPM_INDEX] = {
246
.loc = "CPU A PUMP",
247
.type = FCU_FAN_RPM,
248
.id = FCU_FAN_ABSENT_ID,
249
},
250
[CPUB_PUMP_RPM_INDEX] = {
251
.loc = "CPU B PUMP",
252
.type = FCU_FAN_RPM,
253
.id = FCU_FAN_ABSENT_ID,
254
},
255
/* Xserve fans */
256
[CPU_A1_FAN_RPM_INDEX] = {
257
.loc = "CPU A 1",
258
.type = FCU_FAN_RPM,
259
.id = FCU_FAN_ABSENT_ID,
260
},
261
[CPU_A2_FAN_RPM_INDEX] = {
262
.loc = "CPU A 2",
263
.type = FCU_FAN_RPM,
264
.id = FCU_FAN_ABSENT_ID,
265
},
266
[CPU_A3_FAN_RPM_INDEX] = {
267
.loc = "CPU A 3",
268
.type = FCU_FAN_RPM,
269
.id = FCU_FAN_ABSENT_ID,
270
},
271
[CPU_B1_FAN_RPM_INDEX] = {
272
.loc = "CPU B 1",
273
.type = FCU_FAN_RPM,
274
.id = FCU_FAN_ABSENT_ID,
275
},
276
[CPU_B2_FAN_RPM_INDEX] = {
277
.loc = "CPU B 2",
278
.type = FCU_FAN_RPM,
279
.id = FCU_FAN_ABSENT_ID,
280
},
281
[CPU_B3_FAN_RPM_INDEX] = {
282
.loc = "CPU B 3",
283
.type = FCU_FAN_RPM,
284
.id = FCU_FAN_ABSENT_ID,
285
},
286
};
287
288
static struct i2c_driver therm_pm72_driver;
289
290
/*
291
* Utility function to create an i2c_client structure and
292
* attach it to one of u3 adapters
293
*/
294
static struct i2c_client *attach_i2c_chip(int id, const char *name)
295
{
296
struct i2c_client *clt;
297
struct i2c_adapter *adap;
298
struct i2c_board_info info;
299
300
if (id & 0x200)
301
adap = k2;
302
else if (id & 0x100)
303
adap = u3_1;
304
else
305
adap = u3_0;
306
if (adap == NULL)
307
return NULL;
308
309
memset(&info, 0, sizeof(struct i2c_board_info));
310
info.addr = (id >> 1) & 0x7f;
311
strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
312
clt = i2c_new_device(adap, &info);
313
if (!clt) {
314
printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
315
return NULL;
316
}
317
318
/*
319
* Let i2c-core delete that device on driver removal.
320
* This is safe because i2c-core holds the core_lock mutex for us.
321
*/
322
list_add_tail(&clt->detected, &therm_pm72_driver.clients);
323
return clt;
324
}
325
326
/*
327
* Here are the i2c chip access wrappers
328
*/
329
330
static void initialize_adc(struct cpu_pid_state *state)
331
{
332
int rc;
333
u8 buf[2];
334
335
/* Read ADC the configuration register and cache it. We
336
* also make sure Config2 contains proper values, I've seen
337
* cases where we got stale grabage in there, thus preventing
338
* proper reading of conv. values
339
*/
340
341
/* Clear Config2 */
342
buf[0] = 5;
343
buf[1] = 0;
344
i2c_master_send(state->monitor, buf, 2);
345
346
/* Read & cache Config1 */
347
buf[0] = 1;
348
rc = i2c_master_send(state->monitor, buf, 1);
349
if (rc > 0) {
350
rc = i2c_master_recv(state->monitor, buf, 1);
351
if (rc > 0) {
352
state->adc_config = buf[0];
353
DBG("ADC config reg: %02x\n", state->adc_config);
354
/* Disable shutdown mode */
355
state->adc_config &= 0xfe;
356
buf[0] = 1;
357
buf[1] = state->adc_config;
358
rc = i2c_master_send(state->monitor, buf, 2);
359
}
360
}
361
if (rc <= 0)
362
printk(KERN_ERR "therm_pm72: Error reading ADC config"
363
" register !\n");
364
}
365
366
static int read_smon_adc(struct cpu_pid_state *state, int chan)
367
{
368
int rc, data, tries = 0;
369
u8 buf[2];
370
371
for (;;) {
372
/* Set channel */
373
buf[0] = 1;
374
buf[1] = (state->adc_config & 0x1f) | (chan << 5);
375
rc = i2c_master_send(state->monitor, buf, 2);
376
if (rc <= 0)
377
goto error;
378
/* Wait for conversion */
379
msleep(1);
380
/* Switch to data register */
381
buf[0] = 4;
382
rc = i2c_master_send(state->monitor, buf, 1);
383
if (rc <= 0)
384
goto error;
385
/* Read result */
386
rc = i2c_master_recv(state->monitor, buf, 2);
387
if (rc < 0)
388
goto error;
389
data = ((u16)buf[0]) << 8 | (u16)buf[1];
390
return data >> 6;
391
error:
392
DBG("Error reading ADC, retrying...\n");
393
if (++tries > 10) {
394
printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
395
return -1;
396
}
397
msleep(10);
398
}
399
}
400
401
static int read_lm87_reg(struct i2c_client * chip, int reg)
402
{
403
int rc, tries = 0;
404
u8 buf;
405
406
for (;;) {
407
/* Set address */
408
buf = (u8)reg;
409
rc = i2c_master_send(chip, &buf, 1);
410
if (rc <= 0)
411
goto error;
412
rc = i2c_master_recv(chip, &buf, 1);
413
if (rc <= 0)
414
goto error;
415
return (int)buf;
416
error:
417
DBG("Error reading LM87, retrying...\n");
418
if (++tries > 10) {
419
printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
420
return -1;
421
}
422
msleep(10);
423
}
424
}
425
426
static int fan_read_reg(int reg, unsigned char *buf, int nb)
427
{
428
int tries, nr, nw;
429
430
buf[0] = reg;
431
tries = 0;
432
for (;;) {
433
nw = i2c_master_send(fcu, buf, 1);
434
if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
435
break;
436
msleep(10);
437
++tries;
438
}
439
if (nw <= 0) {
440
printk(KERN_ERR "Failure writing address to FCU: %d", nw);
441
return -EIO;
442
}
443
tries = 0;
444
for (;;) {
445
nr = i2c_master_recv(fcu, buf, nb);
446
if (nr > 0 || (nr < 0 && nr != -ENODEV) || tries >= 100)
447
break;
448
msleep(10);
449
++tries;
450
}
451
if (nr <= 0)
452
printk(KERN_ERR "Failure reading data from FCU: %d", nw);
453
return nr;
454
}
455
456
static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
457
{
458
int tries, nw;
459
unsigned char buf[16];
460
461
buf[0] = reg;
462
memcpy(buf+1, ptr, nb);
463
++nb;
464
tries = 0;
465
for (;;) {
466
nw = i2c_master_send(fcu, buf, nb);
467
if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
468
break;
469
msleep(10);
470
++tries;
471
}
472
if (nw < 0)
473
printk(KERN_ERR "Failure writing to FCU: %d", nw);
474
return nw;
475
}
476
477
static int start_fcu(void)
478
{
479
unsigned char buf = 0xff;
480
int rc;
481
482
rc = fan_write_reg(0xe, &buf, 1);
483
if (rc < 0)
484
return -EIO;
485
rc = fan_write_reg(0x2e, &buf, 1);
486
if (rc < 0)
487
return -EIO;
488
rc = fan_read_reg(0, &buf, 1);
489
if (rc < 0)
490
return -EIO;
491
fcu_rpm_shift = (buf == 1) ? 2 : 3;
492
printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
493
fcu_rpm_shift);
494
495
return 0;
496
}
497
498
static int set_rpm_fan(int fan_index, int rpm)
499
{
500
unsigned char buf[2];
501
int rc, id, min, max;
502
503
if (fcu_fans[fan_index].type != FCU_FAN_RPM)
504
return -EINVAL;
505
id = fcu_fans[fan_index].id;
506
if (id == FCU_FAN_ABSENT_ID)
507
return -EINVAL;
508
509
min = 2400 >> fcu_rpm_shift;
510
max = 56000 >> fcu_rpm_shift;
511
512
if (rpm < min)
513
rpm = min;
514
else if (rpm > max)
515
rpm = max;
516
buf[0] = rpm >> (8 - fcu_rpm_shift);
517
buf[1] = rpm << fcu_rpm_shift;
518
rc = fan_write_reg(0x10 + (id * 2), buf, 2);
519
if (rc < 0)
520
return -EIO;
521
return 0;
522
}
523
524
static int get_rpm_fan(int fan_index, int programmed)
525
{
526
unsigned char failure;
527
unsigned char active;
528
unsigned char buf[2];
529
int rc, id, reg_base;
530
531
if (fcu_fans[fan_index].type != FCU_FAN_RPM)
532
return -EINVAL;
533
id = fcu_fans[fan_index].id;
534
if (id == FCU_FAN_ABSENT_ID)
535
return -EINVAL;
536
537
rc = fan_read_reg(0xb, &failure, 1);
538
if (rc != 1)
539
return -EIO;
540
if ((failure & (1 << id)) != 0)
541
return -EFAULT;
542
rc = fan_read_reg(0xd, &active, 1);
543
if (rc != 1)
544
return -EIO;
545
if ((active & (1 << id)) == 0)
546
return -ENXIO;
547
548
/* Programmed value or real current speed */
549
reg_base = programmed ? 0x10 : 0x11;
550
rc = fan_read_reg(reg_base + (id * 2), buf, 2);
551
if (rc != 2)
552
return -EIO;
553
554
return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
555
}
556
557
static int set_pwm_fan(int fan_index, int pwm)
558
{
559
unsigned char buf[2];
560
int rc, id;
561
562
if (fcu_fans[fan_index].type != FCU_FAN_PWM)
563
return -EINVAL;
564
id = fcu_fans[fan_index].id;
565
if (id == FCU_FAN_ABSENT_ID)
566
return -EINVAL;
567
568
if (pwm < 10)
569
pwm = 10;
570
else if (pwm > 100)
571
pwm = 100;
572
pwm = (pwm * 2559) / 1000;
573
buf[0] = pwm;
574
rc = fan_write_reg(0x30 + (id * 2), buf, 1);
575
if (rc < 0)
576
return rc;
577
return 0;
578
}
579
580
static int get_pwm_fan(int fan_index)
581
{
582
unsigned char failure;
583
unsigned char active;
584
unsigned char buf[2];
585
int rc, id;
586
587
if (fcu_fans[fan_index].type != FCU_FAN_PWM)
588
return -EINVAL;
589
id = fcu_fans[fan_index].id;
590
if (id == FCU_FAN_ABSENT_ID)
591
return -EINVAL;
592
593
rc = fan_read_reg(0x2b, &failure, 1);
594
if (rc != 1)
595
return -EIO;
596
if ((failure & (1 << id)) != 0)
597
return -EFAULT;
598
rc = fan_read_reg(0x2d, &active, 1);
599
if (rc != 1)
600
return -EIO;
601
if ((active & (1 << id)) == 0)
602
return -ENXIO;
603
604
/* Programmed value or real current speed */
605
rc = fan_read_reg(0x30 + (id * 2), buf, 1);
606
if (rc != 1)
607
return -EIO;
608
609
return (buf[0] * 1000) / 2559;
610
}
611
612
static void tickle_fcu(void)
613
{
614
int pwm;
615
616
pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
617
618
DBG("FCU Tickle, slots fan is: %d\n", pwm);
619
if (pwm < 0)
620
pwm = 100;
621
622
if (!rackmac) {
623
pwm = SLOTS_FAN_DEFAULT_PWM;
624
} else if (pwm < SLOTS_PID_OUTPUT_MIN)
625
pwm = SLOTS_PID_OUTPUT_MIN;
626
627
/* That is hopefully enough to make the FCU happy */
628
set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
629
}
630
631
632
/*
633
* Utility routine to read the CPU calibration EEPROM data
634
* from the device-tree
635
*/
636
static int read_eeprom(int cpu, struct mpu_data *out)
637
{
638
struct device_node *np;
639
char nodename[64];
640
const u8 *data;
641
int len;
642
643
/* prom.c routine for finding a node by path is a bit brain dead
644
* and requires exact @xxx unit numbers. This is a bit ugly but
645
* will work for these machines
646
*/
647
sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
648
np = of_find_node_by_path(nodename);
649
if (np == NULL) {
650
printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
651
return -ENODEV;
652
}
653
data = of_get_property(np, "cpuid", &len);
654
if (data == NULL) {
655
printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
656
of_node_put(np);
657
return -ENODEV;
658
}
659
memcpy(out, data, sizeof(struct mpu_data));
660
of_node_put(np);
661
662
return 0;
663
}
664
665
static void fetch_cpu_pumps_minmax(void)
666
{
667
struct cpu_pid_state *state0 = &processor_state[0];
668
struct cpu_pid_state *state1 = &processor_state[1];
669
u16 pump_min = 0, pump_max = 0xffff;
670
u16 tmp[4];
671
672
/* Try to fetch pumps min/max infos from eeprom */
673
674
memcpy(&tmp, &state0->mpu.processor_part_num, 8);
675
if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
676
pump_min = max(pump_min, tmp[0]);
677
pump_max = min(pump_max, tmp[1]);
678
}
679
if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
680
pump_min = max(pump_min, tmp[2]);
681
pump_max = min(pump_max, tmp[3]);
682
}
683
684
/* Double check the values, this _IS_ needed as the EEPROM on
685
* some dual 2.5Ghz G5s seem, at least, to have both min & max
686
* same to the same value ... (grrrr)
687
*/
688
if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
689
pump_min = CPU_PUMP_OUTPUT_MIN;
690
pump_max = CPU_PUMP_OUTPUT_MAX;
691
}
692
693
state0->pump_min = state1->pump_min = pump_min;
694
state0->pump_max = state1->pump_max = pump_max;
695
}
696
697
/*
698
* Now, unfortunately, sysfs doesn't give us a nice void * we could
699
* pass around to the attribute functions, so we don't really have
700
* choice but implement a bunch of them...
701
*
702
* That sucks a bit, we take the lock because FIX32TOPRINT evaluates
703
* the input twice... I accept patches :)
704
*/
705
#define BUILD_SHOW_FUNC_FIX(name, data) \
706
static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
707
{ \
708
ssize_t r; \
709
mutex_lock(&driver_lock); \
710
r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
711
mutex_unlock(&driver_lock); \
712
return r; \
713
}
714
#define BUILD_SHOW_FUNC_INT(name, data) \
715
static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
716
{ \
717
return sprintf(buf, "%d", data); \
718
}
719
720
BUILD_SHOW_FUNC_FIX(cpu0_temperature, processor_state[0].last_temp)
721
BUILD_SHOW_FUNC_FIX(cpu0_voltage, processor_state[0].voltage)
722
BUILD_SHOW_FUNC_FIX(cpu0_current, processor_state[0].current_a)
723
BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, processor_state[0].rpm)
724
BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, processor_state[0].intake_rpm)
725
726
BUILD_SHOW_FUNC_FIX(cpu1_temperature, processor_state[1].last_temp)
727
BUILD_SHOW_FUNC_FIX(cpu1_voltage, processor_state[1].voltage)
728
BUILD_SHOW_FUNC_FIX(cpu1_current, processor_state[1].current_a)
729
BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, processor_state[1].rpm)
730
BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, processor_state[1].intake_rpm)
731
732
BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
733
BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
734
735
BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
736
BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
737
738
BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
739
BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
740
741
BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
742
743
static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
744
static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
745
static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
746
static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
747
static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
748
749
static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
750
static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
751
static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
752
static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
753
static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
754
755
static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
756
static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
757
758
static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
759
static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
760
761
static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
762
static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
763
764
static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
765
766
/*
767
* CPUs fans control loop
768
*/
769
770
static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
771
{
772
s32 ltemp, volts, amps;
773
int index, rc = 0;
774
775
/* Default (in case of error) */
776
*temp = state->cur_temp;
777
*power = state->cur_power;
778
779
if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
780
index = (state->index == 0) ?
781
CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
782
else
783
index = (state->index == 0) ?
784
CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
785
786
/* Read current fan status */
787
rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
788
if (rc < 0) {
789
/* XXX What do we do now ? Nothing for now, keep old value, but
790
* return error upstream
791
*/
792
DBG(" cpu %d, fan reading error !\n", state->index);
793
} else {
794
state->rpm = rc;
795
DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
796
}
797
798
/* Get some sensor readings and scale it */
799
ltemp = read_smon_adc(state, 1);
800
if (ltemp == -1) {
801
/* XXX What do we do now ? */
802
state->overtemp++;
803
if (rc == 0)
804
rc = -EIO;
805
DBG(" cpu %d, temp reading error !\n", state->index);
806
} else {
807
/* Fixup temperature according to diode calibration
808
*/
809
DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
810
state->index,
811
ltemp, state->mpu.mdiode, state->mpu.bdiode);
812
*temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
813
state->last_temp = *temp;
814
DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp)));
815
}
816
817
/*
818
* Read voltage & current and calculate power
819
*/
820
volts = read_smon_adc(state, 3);
821
amps = read_smon_adc(state, 4);
822
823
/* Scale voltage and current raw sensor values according to fixed scales
824
* obtained in Darwin and calculate power from I and V
825
*/
826
volts *= ADC_CPU_VOLTAGE_SCALE;
827
amps *= ADC_CPU_CURRENT_SCALE;
828
*power = (((u64)volts) * ((u64)amps)) >> 16;
829
state->voltage = volts;
830
state->current_a = amps;
831
state->last_power = *power;
832
833
DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
834
state->index, FIX32TOPRINT(state->current_a),
835
FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
836
837
return 0;
838
}
839
840
static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
841
{
842
s32 power_target, integral, derivative, proportional, adj_in_target, sval;
843
s64 integ_p, deriv_p, prop_p, sum;
844
int i;
845
846
/* Calculate power target value (could be done once for all)
847
* and convert to a 16.16 fp number
848
*/
849
power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
850
DBG(" power target: %d.%03d, error: %d.%03d\n",
851
FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
852
853
/* Store temperature and power in history array */
854
state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
855
state->temp_history[state->cur_temp] = temp;
856
state->cur_power = (state->cur_power + 1) % state->count_power;
857
state->power_history[state->cur_power] = power;
858
state->error_history[state->cur_power] = power_target - power;
859
860
/* If first loop, fill the history table */
861
if (state->first) {
862
for (i = 0; i < (state->count_power - 1); i++) {
863
state->cur_power = (state->cur_power + 1) % state->count_power;
864
state->power_history[state->cur_power] = power;
865
state->error_history[state->cur_power] = power_target - power;
866
}
867
for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
868
state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
869
state->temp_history[state->cur_temp] = temp;
870
}
871
state->first = 0;
872
}
873
874
/* Calculate the integral term normally based on the "power" values */
875
sum = 0;
876
integral = 0;
877
for (i = 0; i < state->count_power; i++)
878
integral += state->error_history[i];
879
integral *= CPU_PID_INTERVAL;
880
DBG(" integral: %08x\n", integral);
881
882
/* Calculate the adjusted input (sense value).
883
* G_r is 12.20
884
* integ is 16.16
885
* so the result is 28.36
886
*
887
* input target is mpu.ttarget, input max is mpu.tmax
888
*/
889
integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
890
DBG(" integ_p: %d\n", (int)(integ_p >> 36));
891
sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
892
adj_in_target = (state->mpu.ttarget << 16);
893
if (adj_in_target > sval)
894
adj_in_target = sval;
895
DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
896
state->mpu.ttarget);
897
898
/* Calculate the derivative term */
899
derivative = state->temp_history[state->cur_temp] -
900
state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
901
% CPU_TEMP_HISTORY_SIZE];
902
derivative /= CPU_PID_INTERVAL;
903
deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
904
DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
905
sum += deriv_p;
906
907
/* Calculate the proportional term */
908
proportional = temp - adj_in_target;
909
prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
910
DBG(" prop_p: %d\n", (int)(prop_p >> 36));
911
sum += prop_p;
912
913
/* Scale sum */
914
sum >>= 36;
915
916
DBG(" sum: %d\n", (int)sum);
917
state->rpm += (s32)sum;
918
}
919
920
static void do_monitor_cpu_combined(void)
921
{
922
struct cpu_pid_state *state0 = &processor_state[0];
923
struct cpu_pid_state *state1 = &processor_state[1];
924
s32 temp0, power0, temp1, power1;
925
s32 temp_combi, power_combi;
926
int rc, intake, pump;
927
928
rc = do_read_one_cpu_values(state0, &temp0, &power0);
929
if (rc < 0) {
930
/* XXX What do we do now ? */
931
}
932
state1->overtemp = 0;
933
rc = do_read_one_cpu_values(state1, &temp1, &power1);
934
if (rc < 0) {
935
/* XXX What do we do now ? */
936
}
937
if (state1->overtemp)
938
state0->overtemp++;
939
940
temp_combi = max(temp0, temp1);
941
power_combi = max(power0, power1);
942
943
/* Check tmax, increment overtemp if we are there. At tmax+8, we go
944
* full blown immediately and try to trigger a shutdown
945
*/
946
if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
947
printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
948
temp_combi >> 16);
949
state0->overtemp += CPU_MAX_OVERTEMP / 4;
950
} else if (temp_combi > (state0->mpu.tmax << 16)) {
951
state0->overtemp++;
952
printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
953
temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
954
} else {
955
if (state0->overtemp)
956
printk(KERN_WARNING "Temperature back down to %d\n",
957
temp_combi >> 16);
958
state0->overtemp = 0;
959
}
960
if (state0->overtemp >= CPU_MAX_OVERTEMP)
961
critical_state = 1;
962
if (state0->overtemp > 0) {
963
state0->rpm = state0->mpu.rmaxn_exhaust_fan;
964
state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
965
pump = state0->pump_max;
966
goto do_set_fans;
967
}
968
969
/* Do the PID */
970
do_cpu_pid(state0, temp_combi, power_combi);
971
972
/* Range check */
973
state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
974
state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
975
976
/* Calculate intake fan speed */
977
intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
978
intake = max(intake, (int)state0->mpu.rminn_intake_fan);
979
intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
980
state0->intake_rpm = intake;
981
982
/* Calculate pump speed */
983
pump = (state0->rpm * state0->pump_max) /
984
state0->mpu.rmaxn_exhaust_fan;
985
pump = min(pump, state0->pump_max);
986
pump = max(pump, state0->pump_min);
987
988
do_set_fans:
989
/* We copy values from state 0 to state 1 for /sysfs */
990
state1->rpm = state0->rpm;
991
state1->intake_rpm = state0->intake_rpm;
992
993
DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
994
state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
995
996
/* We should check for errors, shouldn't we ? But then, what
997
* do we do once the error occurs ? For FCU notified fan
998
* failures (-EFAULT) we probably want to notify userland
999
* some way...
1000
*/
1001
set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1002
set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1003
set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1004
set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1005
1006
if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1007
set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1008
if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1009
set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1010
}
1011
1012
static void do_monitor_cpu_split(struct cpu_pid_state *state)
1013
{
1014
s32 temp, power;
1015
int rc, intake;
1016
1017
/* Read current fan status */
1018
rc = do_read_one_cpu_values(state, &temp, &power);
1019
if (rc < 0) {
1020
/* XXX What do we do now ? */
1021
}
1022
1023
/* Check tmax, increment overtemp if we are there. At tmax+8, we go
1024
* full blown immediately and try to trigger a shutdown
1025
*/
1026
if (temp >= ((state->mpu.tmax + 8) << 16)) {
1027
printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1028
" (%d) !\n",
1029
state->index, temp >> 16);
1030
state->overtemp += CPU_MAX_OVERTEMP / 4;
1031
} else if (temp > (state->mpu.tmax << 16)) {
1032
state->overtemp++;
1033
printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1034
state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1035
} else {
1036
if (state->overtemp)
1037
printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1038
state->index, temp >> 16);
1039
state->overtemp = 0;
1040
}
1041
if (state->overtemp >= CPU_MAX_OVERTEMP)
1042
critical_state = 1;
1043
if (state->overtemp > 0) {
1044
state->rpm = state->mpu.rmaxn_exhaust_fan;
1045
state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1046
goto do_set_fans;
1047
}
1048
1049
/* Do the PID */
1050
do_cpu_pid(state, temp, power);
1051
1052
/* Range check */
1053
state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1054
state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1055
1056
/* Calculate intake fan */
1057
intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1058
intake = max(intake, (int)state->mpu.rminn_intake_fan);
1059
intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1060
state->intake_rpm = intake;
1061
1062
do_set_fans:
1063
DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1064
state->index, (int)state->rpm, intake, state->overtemp);
1065
1066
/* We should check for errors, shouldn't we ? But then, what
1067
* do we do once the error occurs ? For FCU notified fan
1068
* failures (-EFAULT) we probably want to notify userland
1069
* some way...
1070
*/
1071
if (state->index == 0) {
1072
set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1073
set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1074
} else {
1075
set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1076
set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1077
}
1078
}
1079
1080
static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1081
{
1082
s32 temp, power, fan_min;
1083
int rc;
1084
1085
/* Read current fan status */
1086
rc = do_read_one_cpu_values(state, &temp, &power);
1087
if (rc < 0) {
1088
/* XXX What do we do now ? */
1089
}
1090
1091
/* Check tmax, increment overtemp if we are there. At tmax+8, we go
1092
* full blown immediately and try to trigger a shutdown
1093
*/
1094
if (temp >= ((state->mpu.tmax + 8) << 16)) {
1095
printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1096
" (%d) !\n",
1097
state->index, temp >> 16);
1098
state->overtemp = CPU_MAX_OVERTEMP / 4;
1099
} else if (temp > (state->mpu.tmax << 16)) {
1100
state->overtemp++;
1101
printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1102
state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1103
} else {
1104
if (state->overtemp)
1105
printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1106
state->index, temp >> 16);
1107
state->overtemp = 0;
1108
}
1109
if (state->overtemp >= CPU_MAX_OVERTEMP)
1110
critical_state = 1;
1111
if (state->overtemp > 0) {
1112
state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1113
goto do_set_fans;
1114
}
1115
1116
/* Do the PID */
1117
do_cpu_pid(state, temp, power);
1118
1119
/* Check clamp from dimms */
1120
fan_min = dimm_output_clamp;
1121
fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1122
1123
DBG(" CPU min mpu = %d, min dimm = %d\n",
1124
state->mpu.rminn_intake_fan, dimm_output_clamp);
1125
1126
state->rpm = max(state->rpm, (int)fan_min);
1127
state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1128
state->intake_rpm = state->rpm;
1129
1130
do_set_fans:
1131
DBG("** CPU %d RPM: %d overtemp: %d\n",
1132
state->index, (int)state->rpm, state->overtemp);
1133
1134
/* We should check for errors, shouldn't we ? But then, what
1135
* do we do once the error occurs ? For FCU notified fan
1136
* failures (-EFAULT) we probably want to notify userland
1137
* some way...
1138
*/
1139
if (state->index == 0) {
1140
set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1141
set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1142
set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1143
} else {
1144
set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1145
set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1146
set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1147
}
1148
}
1149
1150
/*
1151
* Initialize the state structure for one CPU control loop
1152
*/
1153
static int init_processor_state(struct cpu_pid_state *state, int index)
1154
{
1155
int err;
1156
1157
state->index = index;
1158
state->first = 1;
1159
state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1160
state->overtemp = 0;
1161
state->adc_config = 0x00;
1162
1163
1164
if (index == 0)
1165
state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1166
else if (index == 1)
1167
state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1168
if (state->monitor == NULL)
1169
goto fail;
1170
1171
if (read_eeprom(index, &state->mpu))
1172
goto fail;
1173
1174
state->count_power = state->mpu.tguardband;
1175
if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1176
printk(KERN_WARNING "Warning ! too many power history slots\n");
1177
state->count_power = CPU_POWER_HISTORY_SIZE;
1178
}
1179
DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1180
1181
if (index == 0) {
1182
err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1183
err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1184
err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1185
err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1186
err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1187
} else {
1188
err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1189
err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1190
err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1191
err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1192
err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1193
}
1194
if (err)
1195
printk(KERN_WARNING "Failed to create some of the attribute"
1196
"files for CPU %d\n", index);
1197
1198
return 0;
1199
fail:
1200
state->monitor = NULL;
1201
1202
return -ENODEV;
1203
}
1204
1205
/*
1206
* Dispose of the state data for one CPU control loop
1207
*/
1208
static void dispose_processor_state(struct cpu_pid_state *state)
1209
{
1210
if (state->monitor == NULL)
1211
return;
1212
1213
if (state->index == 0) {
1214
device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1215
device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1216
device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1217
device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1218
device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1219
} else {
1220
device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1221
device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1222
device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1223
device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1224
device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1225
}
1226
1227
state->monitor = NULL;
1228
}
1229
1230
/*
1231
* Motherboard backside & U3 heatsink fan control loop
1232
*/
1233
static void do_monitor_backside(struct backside_pid_state *state)
1234
{
1235
s32 temp, integral, derivative, fan_min;
1236
s64 integ_p, deriv_p, prop_p, sum;
1237
int i, rc;
1238
1239
if (--state->ticks != 0)
1240
return;
1241
state->ticks = backside_params.interval;
1242
1243
DBG("backside:\n");
1244
1245
/* Check fan status */
1246
rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1247
if (rc < 0) {
1248
printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1249
/* XXX What do we do now ? */
1250
} else
1251
state->pwm = rc;
1252
DBG(" current pwm: %d\n", state->pwm);
1253
1254
/* Get some sensor readings */
1255
temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1256
state->last_temp = temp;
1257
DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1258
FIX32TOPRINT(backside_params.input_target));
1259
1260
/* Store temperature and error in history array */
1261
state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1262
state->sample_history[state->cur_sample] = temp;
1263
state->error_history[state->cur_sample] = temp - backside_params.input_target;
1264
1265
/* If first loop, fill the history table */
1266
if (state->first) {
1267
for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1268
state->cur_sample = (state->cur_sample + 1) %
1269
BACKSIDE_PID_HISTORY_SIZE;
1270
state->sample_history[state->cur_sample] = temp;
1271
state->error_history[state->cur_sample] =
1272
temp - backside_params.input_target;
1273
}
1274
state->first = 0;
1275
}
1276
1277
/* Calculate the integral term */
1278
sum = 0;
1279
integral = 0;
1280
for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1281
integral += state->error_history[i];
1282
integral *= backside_params.interval;
1283
DBG(" integral: %08x\n", integral);
1284
integ_p = ((s64)backside_params.G_r) * (s64)integral;
1285
DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1286
sum += integ_p;
1287
1288
/* Calculate the derivative term */
1289
derivative = state->error_history[state->cur_sample] -
1290
state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1291
% BACKSIDE_PID_HISTORY_SIZE];
1292
derivative /= backside_params.interval;
1293
deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1294
DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1295
sum += deriv_p;
1296
1297
/* Calculate the proportional term */
1298
prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1299
DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1300
sum += prop_p;
1301
1302
/* Scale sum */
1303
sum >>= 36;
1304
1305
DBG(" sum: %d\n", (int)sum);
1306
if (backside_params.additive)
1307
state->pwm += (s32)sum;
1308
else
1309
state->pwm = sum;
1310
1311
/* Check for clamp */
1312
fan_min = (dimm_output_clamp * 100) / 14000;
1313
fan_min = max(fan_min, backside_params.output_min);
1314
1315
state->pwm = max(state->pwm, fan_min);
1316
state->pwm = min(state->pwm, backside_params.output_max);
1317
1318
DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1319
set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1320
}
1321
1322
/*
1323
* Initialize the state structure for the backside fan control loop
1324
*/
1325
static int init_backside_state(struct backside_pid_state *state)
1326
{
1327
struct device_node *u3;
1328
int u3h = 1; /* conservative by default */
1329
int err;
1330
1331
/*
1332
* There are different PID params for machines with U3 and machines
1333
* with U3H, pick the right ones now
1334
*/
1335
u3 = of_find_node_by_path("/u3@0,f8000000");
1336
if (u3 != NULL) {
1337
const u32 *vers = of_get_property(u3, "device-rev", NULL);
1338
if (vers)
1339
if (((*vers) & 0x3f) < 0x34)
1340
u3h = 0;
1341
of_node_put(u3);
1342
}
1343
1344
if (rackmac) {
1345
backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1346
backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1347
backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1348
backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1349
backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1350
backside_params.G_r = BACKSIDE_PID_G_r;
1351
backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1352
backside_params.additive = 0;
1353
} else if (u3h) {
1354
backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1355
backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1356
backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1357
backside_params.interval = BACKSIDE_PID_INTERVAL;
1358
backside_params.G_p = BACKSIDE_PID_G_p;
1359
backside_params.G_r = BACKSIDE_PID_G_r;
1360
backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1361
backside_params.additive = 1;
1362
} else {
1363
backside_params.G_d = BACKSIDE_PID_U3_G_d;
1364
backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1365
backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1366
backside_params.interval = BACKSIDE_PID_INTERVAL;
1367
backside_params.G_p = BACKSIDE_PID_G_p;
1368
backside_params.G_r = BACKSIDE_PID_G_r;
1369
backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1370
backside_params.additive = 1;
1371
}
1372
1373
state->ticks = 1;
1374
state->first = 1;
1375
state->pwm = 50;
1376
1377
state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1378
if (state->monitor == NULL)
1379
return -ENODEV;
1380
1381
err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1382
err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1383
if (err)
1384
printk(KERN_WARNING "Failed to create attribute file(s)"
1385
" for backside fan\n");
1386
1387
return 0;
1388
}
1389
1390
/*
1391
* Dispose of the state data for the backside control loop
1392
*/
1393
static void dispose_backside_state(struct backside_pid_state *state)
1394
{
1395
if (state->monitor == NULL)
1396
return;
1397
1398
device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1399
device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1400
1401
state->monitor = NULL;
1402
}
1403
1404
/*
1405
* Drives bay fan control loop
1406
*/
1407
static void do_monitor_drives(struct drives_pid_state *state)
1408
{
1409
s32 temp, integral, derivative;
1410
s64 integ_p, deriv_p, prop_p, sum;
1411
int i, rc;
1412
1413
if (--state->ticks != 0)
1414
return;
1415
state->ticks = DRIVES_PID_INTERVAL;
1416
1417
DBG("drives:\n");
1418
1419
/* Check fan status */
1420
rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1421
if (rc < 0) {
1422
printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1423
/* XXX What do we do now ? */
1424
} else
1425
state->rpm = rc;
1426
DBG(" current rpm: %d\n", state->rpm);
1427
1428
/* Get some sensor readings */
1429
temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1430
DS1775_TEMP)) << 8;
1431
state->last_temp = temp;
1432
DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1433
FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1434
1435
/* Store temperature and error in history array */
1436
state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1437
state->sample_history[state->cur_sample] = temp;
1438
state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1439
1440
/* If first loop, fill the history table */
1441
if (state->first) {
1442
for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1443
state->cur_sample = (state->cur_sample + 1) %
1444
DRIVES_PID_HISTORY_SIZE;
1445
state->sample_history[state->cur_sample] = temp;
1446
state->error_history[state->cur_sample] =
1447
temp - DRIVES_PID_INPUT_TARGET;
1448
}
1449
state->first = 0;
1450
}
1451
1452
/* Calculate the integral term */
1453
sum = 0;
1454
integral = 0;
1455
for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1456
integral += state->error_history[i];
1457
integral *= DRIVES_PID_INTERVAL;
1458
DBG(" integral: %08x\n", integral);
1459
integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1460
DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1461
sum += integ_p;
1462
1463
/* Calculate the derivative term */
1464
derivative = state->error_history[state->cur_sample] -
1465
state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1466
% DRIVES_PID_HISTORY_SIZE];
1467
derivative /= DRIVES_PID_INTERVAL;
1468
deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1469
DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1470
sum += deriv_p;
1471
1472
/* Calculate the proportional term */
1473
prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1474
DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1475
sum += prop_p;
1476
1477
/* Scale sum */
1478
sum >>= 36;
1479
1480
DBG(" sum: %d\n", (int)sum);
1481
state->rpm += (s32)sum;
1482
1483
state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1484
state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1485
1486
DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1487
set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1488
}
1489
1490
/*
1491
* Initialize the state structure for the drives bay fan control loop
1492
*/
1493
static int init_drives_state(struct drives_pid_state *state)
1494
{
1495
int err;
1496
1497
state->ticks = 1;
1498
state->first = 1;
1499
state->rpm = 1000;
1500
1501
state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1502
if (state->monitor == NULL)
1503
return -ENODEV;
1504
1505
err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1506
err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1507
if (err)
1508
printk(KERN_WARNING "Failed to create attribute file(s)"
1509
" for drives bay fan\n");
1510
1511
return 0;
1512
}
1513
1514
/*
1515
* Dispose of the state data for the drives control loop
1516
*/
1517
static void dispose_drives_state(struct drives_pid_state *state)
1518
{
1519
if (state->monitor == NULL)
1520
return;
1521
1522
device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1523
device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1524
1525
state->monitor = NULL;
1526
}
1527
1528
/*
1529
* DIMMs temp control loop
1530
*/
1531
static void do_monitor_dimms(struct dimm_pid_state *state)
1532
{
1533
s32 temp, integral, derivative, fan_min;
1534
s64 integ_p, deriv_p, prop_p, sum;
1535
int i;
1536
1537
if (--state->ticks != 0)
1538
return;
1539
state->ticks = DIMM_PID_INTERVAL;
1540
1541
DBG("DIMM:\n");
1542
1543
DBG(" current value: %d\n", state->output);
1544
1545
temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1546
if (temp < 0)
1547
return;
1548
temp <<= 16;
1549
state->last_temp = temp;
1550
DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1551
FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1552
1553
/* Store temperature and error in history array */
1554
state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1555
state->sample_history[state->cur_sample] = temp;
1556
state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1557
1558
/* If first loop, fill the history table */
1559
if (state->first) {
1560
for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1561
state->cur_sample = (state->cur_sample + 1) %
1562
DIMM_PID_HISTORY_SIZE;
1563
state->sample_history[state->cur_sample] = temp;
1564
state->error_history[state->cur_sample] =
1565
temp - DIMM_PID_INPUT_TARGET;
1566
}
1567
state->first = 0;
1568
}
1569
1570
/* Calculate the integral term */
1571
sum = 0;
1572
integral = 0;
1573
for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1574
integral += state->error_history[i];
1575
integral *= DIMM_PID_INTERVAL;
1576
DBG(" integral: %08x\n", integral);
1577
integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1578
DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1579
sum += integ_p;
1580
1581
/* Calculate the derivative term */
1582
derivative = state->error_history[state->cur_sample] -
1583
state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1584
% DIMM_PID_HISTORY_SIZE];
1585
derivative /= DIMM_PID_INTERVAL;
1586
deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1587
DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1588
sum += deriv_p;
1589
1590
/* Calculate the proportional term */
1591
prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1592
DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1593
sum += prop_p;
1594
1595
/* Scale sum */
1596
sum >>= 36;
1597
1598
DBG(" sum: %d\n", (int)sum);
1599
state->output = (s32)sum;
1600
state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1601
state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1602
dimm_output_clamp = state->output;
1603
1604
DBG("** DIMM clamp value: %d\n", (int)state->output);
1605
1606
/* Backside PID is only every 5 seconds, force backside fan clamping now */
1607
fan_min = (dimm_output_clamp * 100) / 14000;
1608
fan_min = max(fan_min, backside_params.output_min);
1609
if (backside_state.pwm < fan_min) {
1610
backside_state.pwm = fan_min;
1611
DBG(" -> applying clamp to backside fan now: %d !\n", fan_min);
1612
set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1613
}
1614
}
1615
1616
/*
1617
* Initialize the state structure for the DIMM temp control loop
1618
*/
1619
static int init_dimms_state(struct dimm_pid_state *state)
1620
{
1621
state->ticks = 1;
1622
state->first = 1;
1623
state->output = 4000;
1624
1625
state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1626
if (state->monitor == NULL)
1627
return -ENODEV;
1628
1629
if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1630
printk(KERN_WARNING "Failed to create attribute file"
1631
" for DIMM temperature\n");
1632
1633
return 0;
1634
}
1635
1636
/*
1637
* Dispose of the state data for the DIMM control loop
1638
*/
1639
static void dispose_dimms_state(struct dimm_pid_state *state)
1640
{
1641
if (state->monitor == NULL)
1642
return;
1643
1644
device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1645
1646
state->monitor = NULL;
1647
}
1648
1649
/*
1650
* Slots fan control loop
1651
*/
1652
static void do_monitor_slots(struct slots_pid_state *state)
1653
{
1654
s32 temp, integral, derivative;
1655
s64 integ_p, deriv_p, prop_p, sum;
1656
int i, rc;
1657
1658
if (--state->ticks != 0)
1659
return;
1660
state->ticks = SLOTS_PID_INTERVAL;
1661
1662
DBG("slots:\n");
1663
1664
/* Check fan status */
1665
rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1666
if (rc < 0) {
1667
printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1668
/* XXX What do we do now ? */
1669
} else
1670
state->pwm = rc;
1671
DBG(" current pwm: %d\n", state->pwm);
1672
1673
/* Get some sensor readings */
1674
temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1675
DS1775_TEMP)) << 8;
1676
state->last_temp = temp;
1677
DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1678
FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1679
1680
/* Store temperature and error in history array */
1681
state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1682
state->sample_history[state->cur_sample] = temp;
1683
state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1684
1685
/* If first loop, fill the history table */
1686
if (state->first) {
1687
for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1688
state->cur_sample = (state->cur_sample + 1) %
1689
SLOTS_PID_HISTORY_SIZE;
1690
state->sample_history[state->cur_sample] = temp;
1691
state->error_history[state->cur_sample] =
1692
temp - SLOTS_PID_INPUT_TARGET;
1693
}
1694
state->first = 0;
1695
}
1696
1697
/* Calculate the integral term */
1698
sum = 0;
1699
integral = 0;
1700
for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1701
integral += state->error_history[i];
1702
integral *= SLOTS_PID_INTERVAL;
1703
DBG(" integral: %08x\n", integral);
1704
integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1705
DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1706
sum += integ_p;
1707
1708
/* Calculate the derivative term */
1709
derivative = state->error_history[state->cur_sample] -
1710
state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1711
% SLOTS_PID_HISTORY_SIZE];
1712
derivative /= SLOTS_PID_INTERVAL;
1713
deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1714
DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1715
sum += deriv_p;
1716
1717
/* Calculate the proportional term */
1718
prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1719
DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1720
sum += prop_p;
1721
1722
/* Scale sum */
1723
sum >>= 36;
1724
1725
DBG(" sum: %d\n", (int)sum);
1726
state->pwm = (s32)sum;
1727
1728
state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1729
state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1730
1731
DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1732
set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1733
}
1734
1735
/*
1736
* Initialize the state structure for the slots bay fan control loop
1737
*/
1738
static int init_slots_state(struct slots_pid_state *state)
1739
{
1740
int err;
1741
1742
state->ticks = 1;
1743
state->first = 1;
1744
state->pwm = 50;
1745
1746
state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1747
if (state->monitor == NULL)
1748
return -ENODEV;
1749
1750
err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1751
err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1752
if (err)
1753
printk(KERN_WARNING "Failed to create attribute file(s)"
1754
" for slots bay fan\n");
1755
1756
return 0;
1757
}
1758
1759
/*
1760
* Dispose of the state data for the slots control loop
1761
*/
1762
static void dispose_slots_state(struct slots_pid_state *state)
1763
{
1764
if (state->monitor == NULL)
1765
return;
1766
1767
device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1768
device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1769
1770
state->monitor = NULL;
1771
}
1772
1773
1774
static int call_critical_overtemp(void)
1775
{
1776
char *argv[] = { critical_overtemp_path, NULL };
1777
static char *envp[] = { "HOME=/",
1778
"TERM=linux",
1779
"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1780
NULL };
1781
1782
return call_usermodehelper(critical_overtemp_path,
1783
argv, envp, UMH_WAIT_EXEC);
1784
}
1785
1786
1787
/*
1788
* Here's the kernel thread that calls the various control loops
1789
*/
1790
static int main_control_loop(void *x)
1791
{
1792
DBG("main_control_loop started\n");
1793
1794
mutex_lock(&driver_lock);
1795
1796
if (start_fcu() < 0) {
1797
printk(KERN_ERR "kfand: failed to start FCU\n");
1798
mutex_unlock(&driver_lock);
1799
goto out;
1800
}
1801
1802
/* Set the PCI fan once for now on non-RackMac */
1803
if (!rackmac)
1804
set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1805
1806
/* Initialize ADCs */
1807
initialize_adc(&processor_state[0]);
1808
if (processor_state[1].monitor != NULL)
1809
initialize_adc(&processor_state[1]);
1810
1811
fcu_tickle_ticks = FCU_TICKLE_TICKS;
1812
1813
mutex_unlock(&driver_lock);
1814
1815
while (state == state_attached) {
1816
unsigned long elapsed, start;
1817
1818
start = jiffies;
1819
1820
mutex_lock(&driver_lock);
1821
1822
/* Tickle the FCU just in case */
1823
if (--fcu_tickle_ticks < 0) {
1824
fcu_tickle_ticks = FCU_TICKLE_TICKS;
1825
tickle_fcu();
1826
}
1827
1828
/* First, we always calculate the new DIMMs state on an Xserve */
1829
if (rackmac)
1830
do_monitor_dimms(&dimms_state);
1831
1832
/* Then, the CPUs */
1833
if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1834
do_monitor_cpu_combined();
1835
else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1836
do_monitor_cpu_rack(&processor_state[0]);
1837
if (processor_state[1].monitor != NULL)
1838
do_monitor_cpu_rack(&processor_state[1]);
1839
// better deal with UP
1840
} else {
1841
do_monitor_cpu_split(&processor_state[0]);
1842
if (processor_state[1].monitor != NULL)
1843
do_monitor_cpu_split(&processor_state[1]);
1844
// better deal with UP
1845
}
1846
/* Then, the rest */
1847
do_monitor_backside(&backside_state);
1848
if (rackmac)
1849
do_monitor_slots(&slots_state);
1850
else
1851
do_monitor_drives(&drives_state);
1852
mutex_unlock(&driver_lock);
1853
1854
if (critical_state == 1) {
1855
printk(KERN_WARNING "Temperature control detected a critical condition\n");
1856
printk(KERN_WARNING "Attempting to shut down...\n");
1857
if (call_critical_overtemp()) {
1858
printk(KERN_WARNING "Can't call %s, power off now!\n",
1859
critical_overtemp_path);
1860
machine_power_off();
1861
}
1862
}
1863
if (critical_state > 0)
1864
critical_state++;
1865
if (critical_state > MAX_CRITICAL_STATE) {
1866
printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1867
machine_power_off();
1868
}
1869
1870
// FIXME: Deal with signals
1871
elapsed = jiffies - start;
1872
if (elapsed < HZ)
1873
schedule_timeout_interruptible(HZ - elapsed);
1874
}
1875
1876
out:
1877
DBG("main_control_loop ended\n");
1878
1879
ctrl_task = 0;
1880
complete_and_exit(&ctrl_complete, 0);
1881
}
1882
1883
/*
1884
* Dispose the control loops when tearing down
1885
*/
1886
static void dispose_control_loops(void)
1887
{
1888
dispose_processor_state(&processor_state[0]);
1889
dispose_processor_state(&processor_state[1]);
1890
dispose_backside_state(&backside_state);
1891
dispose_drives_state(&drives_state);
1892
dispose_slots_state(&slots_state);
1893
dispose_dimms_state(&dimms_state);
1894
}
1895
1896
/*
1897
* Create the control loops. U3-0 i2c bus is up, so we can now
1898
* get to the various sensors
1899
*/
1900
static int create_control_loops(void)
1901
{
1902
struct device_node *np;
1903
1904
/* Count CPUs from the device-tree, we don't care how many are
1905
* actually used by Linux
1906
*/
1907
cpu_count = 0;
1908
for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1909
cpu_count++;
1910
1911
DBG("counted %d CPUs in the device-tree\n", cpu_count);
1912
1913
/* Decide the type of PID algorithm to use based on the presence of
1914
* the pumps, though that may not be the best way, that is good enough
1915
* for now
1916
*/
1917
if (rackmac)
1918
cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1919
else if (of_machine_is_compatible("PowerMac7,3")
1920
&& (cpu_count > 1)
1921
&& fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1922
&& fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1923
printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1924
cpu_pid_type = CPU_PID_TYPE_COMBINED;
1925
} else
1926
cpu_pid_type = CPU_PID_TYPE_SPLIT;
1927
1928
/* Create control loops for everything. If any fail, everything
1929
* fails
1930
*/
1931
if (init_processor_state(&processor_state[0], 0))
1932
goto fail;
1933
if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1934
fetch_cpu_pumps_minmax();
1935
1936
if (cpu_count > 1 && init_processor_state(&processor_state[1], 1))
1937
goto fail;
1938
if (init_backside_state(&backside_state))
1939
goto fail;
1940
if (rackmac && init_dimms_state(&dimms_state))
1941
goto fail;
1942
if (rackmac && init_slots_state(&slots_state))
1943
goto fail;
1944
if (!rackmac && init_drives_state(&drives_state))
1945
goto fail;
1946
1947
DBG("all control loops up !\n");
1948
1949
return 0;
1950
1951
fail:
1952
DBG("failure creating control loops, disposing\n");
1953
1954
dispose_control_loops();
1955
1956
return -ENODEV;
1957
}
1958
1959
/*
1960
* Start the control loops after everything is up, that is create
1961
* the thread that will make them run
1962
*/
1963
static void start_control_loops(void)
1964
{
1965
init_completion(&ctrl_complete);
1966
1967
ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1968
}
1969
1970
/*
1971
* Stop the control loops when tearing down
1972
*/
1973
static void stop_control_loops(void)
1974
{
1975
if (ctrl_task)
1976
wait_for_completion(&ctrl_complete);
1977
}
1978
1979
/*
1980
* Attach to the i2c FCU after detecting U3-1 bus
1981
*/
1982
static int attach_fcu(void)
1983
{
1984
fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1985
if (fcu == NULL)
1986
return -ENODEV;
1987
1988
DBG("FCU attached\n");
1989
1990
return 0;
1991
}
1992
1993
/*
1994
* Detach from the i2c FCU when tearing down
1995
*/
1996
static void detach_fcu(void)
1997
{
1998
fcu = NULL;
1999
}
2000
2001
/*
2002
* Attach to the i2c controller. We probe the various chips based
2003
* on the device-tree nodes and build everything for the driver to
2004
* run, we then kick the driver monitoring thread
2005
*/
2006
static int therm_pm72_attach(struct i2c_adapter *adapter)
2007
{
2008
mutex_lock(&driver_lock);
2009
2010
/* Check state */
2011
if (state == state_detached)
2012
state = state_attaching;
2013
if (state != state_attaching) {
2014
mutex_unlock(&driver_lock);
2015
return 0;
2016
}
2017
2018
/* Check if we are looking for one of these */
2019
if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2020
u3_0 = adapter;
2021
DBG("found U3-0\n");
2022
if (k2 || !rackmac)
2023
if (create_control_loops())
2024
u3_0 = NULL;
2025
} else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2026
u3_1 = adapter;
2027
DBG("found U3-1, attaching FCU\n");
2028
if (attach_fcu())
2029
u3_1 = NULL;
2030
} else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2031
k2 = adapter;
2032
DBG("Found K2\n");
2033
if (u3_0 && rackmac)
2034
if (create_control_loops())
2035
k2 = NULL;
2036
}
2037
/* We got all we need, start control loops */
2038
if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2039
DBG("everything up, starting control loops\n");
2040
state = state_attached;
2041
start_control_loops();
2042
}
2043
mutex_unlock(&driver_lock);
2044
2045
return 0;
2046
}
2047
2048
static int therm_pm72_probe(struct i2c_client *client,
2049
const struct i2c_device_id *id)
2050
{
2051
/* Always succeed, the real work was done in therm_pm72_attach() */
2052
return 0;
2053
}
2054
2055
/*
2056
* Called when any of the devices which participates into thermal management
2057
* is going away.
2058
*/
2059
static int therm_pm72_remove(struct i2c_client *client)
2060
{
2061
struct i2c_adapter *adapter = client->adapter;
2062
2063
mutex_lock(&driver_lock);
2064
2065
if (state != state_detached)
2066
state = state_detaching;
2067
2068
/* Stop control loops if any */
2069
DBG("stopping control loops\n");
2070
mutex_unlock(&driver_lock);
2071
stop_control_loops();
2072
mutex_lock(&driver_lock);
2073
2074
if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2075
DBG("lost U3-0, disposing control loops\n");
2076
dispose_control_loops();
2077
u3_0 = NULL;
2078
}
2079
2080
if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2081
DBG("lost U3-1, detaching FCU\n");
2082
detach_fcu();
2083
u3_1 = NULL;
2084
}
2085
if (u3_0 == NULL && u3_1 == NULL)
2086
state = state_detached;
2087
2088
mutex_unlock(&driver_lock);
2089
2090
return 0;
2091
}
2092
2093
/*
2094
* i2c_driver structure to attach to the host i2c controller
2095
*/
2096
2097
static const struct i2c_device_id therm_pm72_id[] = {
2098
/*
2099
* Fake device name, thermal management is done by several
2100
* chips but we don't need to differentiate between them at
2101
* this point.
2102
*/
2103
{ "therm_pm72", 0 },
2104
{ }
2105
};
2106
2107
static struct i2c_driver therm_pm72_driver = {
2108
.driver = {
2109
.name = "therm_pm72",
2110
},
2111
.attach_adapter = therm_pm72_attach,
2112
.probe = therm_pm72_probe,
2113
.remove = therm_pm72_remove,
2114
.id_table = therm_pm72_id,
2115
};
2116
2117
static int fan_check_loc_match(const char *loc, int fan)
2118
{
2119
char tmp[64];
2120
char *c, *e;
2121
2122
strlcpy(tmp, fcu_fans[fan].loc, 64);
2123
2124
c = tmp;
2125
for (;;) {
2126
e = strchr(c, ',');
2127
if (e)
2128
*e = 0;
2129
if (strcmp(loc, c) == 0)
2130
return 1;
2131
if (e == NULL)
2132
break;
2133
c = e + 1;
2134
}
2135
return 0;
2136
}
2137
2138
static void fcu_lookup_fans(struct device_node *fcu_node)
2139
{
2140
struct device_node *np = NULL;
2141
int i;
2142
2143
/* The table is filled by default with values that are suitable
2144
* for the old machines without device-tree informations. We scan
2145
* the device-tree and override those values with whatever is
2146
* there
2147
*/
2148
2149
DBG("Looking up FCU controls in device-tree...\n");
2150
2151
while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2152
int type = -1;
2153
const char *loc;
2154
const u32 *reg;
2155
2156
DBG(" control: %s, type: %s\n", np->name, np->type);
2157
2158
/* Detect control type */
2159
if (!strcmp(np->type, "fan-rpm-control") ||
2160
!strcmp(np->type, "fan-rpm"))
2161
type = FCU_FAN_RPM;
2162
if (!strcmp(np->type, "fan-pwm-control") ||
2163
!strcmp(np->type, "fan-pwm"))
2164
type = FCU_FAN_PWM;
2165
/* Only care about fans for now */
2166
if (type == -1)
2167
continue;
2168
2169
/* Lookup for a matching location */
2170
loc = of_get_property(np, "location", NULL);
2171
reg = of_get_property(np, "reg", NULL);
2172
if (loc == NULL || reg == NULL)
2173
continue;
2174
DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2175
2176
for (i = 0; i < FCU_FAN_COUNT; i++) {
2177
int fan_id;
2178
2179
if (!fan_check_loc_match(loc, i))
2180
continue;
2181
DBG(" location match, index: %d\n", i);
2182
fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2183
if (type != fcu_fans[i].type) {
2184
printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2185
"in device-tree for %s\n", np->full_name);
2186
break;
2187
}
2188
if (type == FCU_FAN_RPM)
2189
fan_id = ((*reg) - 0x10) / 2;
2190
else
2191
fan_id = ((*reg) - 0x30) / 2;
2192
if (fan_id > 7) {
2193
printk(KERN_WARNING "therm_pm72: Can't parse "
2194
"fan ID in device-tree for %s\n", np->full_name);
2195
break;
2196
}
2197
DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2198
fcu_fans[i].id = fan_id;
2199
}
2200
}
2201
2202
/* Now dump the array */
2203
printk(KERN_INFO "Detected fan controls:\n");
2204
for (i = 0; i < FCU_FAN_COUNT; i++) {
2205
if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2206
continue;
2207
printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i,
2208
fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2209
fcu_fans[i].id, fcu_fans[i].loc);
2210
}
2211
}
2212
2213
static int fcu_of_probe(struct platform_device* dev)
2214
{
2215
state = state_detached;
2216
of_dev = dev;
2217
2218
dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION);
2219
2220
/* Lookup the fans in the device tree */
2221
fcu_lookup_fans(dev->dev.of_node);
2222
2223
/* Add the driver */
2224
return i2c_add_driver(&therm_pm72_driver);
2225
}
2226
2227
static int fcu_of_remove(struct platform_device* dev)
2228
{
2229
i2c_del_driver(&therm_pm72_driver);
2230
2231
return 0;
2232
}
2233
2234
static const struct of_device_id fcu_match[] =
2235
{
2236
{
2237
.type = "fcu",
2238
},
2239
{},
2240
};
2241
MODULE_DEVICE_TABLE(of, fcu_match);
2242
2243
static struct platform_driver fcu_of_platform_driver =
2244
{
2245
.driver = {
2246
.name = "temperature",
2247
.owner = THIS_MODULE,
2248
.of_match_table = fcu_match,
2249
},
2250
.probe = fcu_of_probe,
2251
.remove = fcu_of_remove
2252
};
2253
2254
/*
2255
* Check machine type, attach to i2c controller
2256
*/
2257
static int __init therm_pm72_init(void)
2258
{
2259
rackmac = of_machine_is_compatible("RackMac3,1");
2260
2261
if (!of_machine_is_compatible("PowerMac7,2") &&
2262
!of_machine_is_compatible("PowerMac7,3") &&
2263
!rackmac)
2264
return -ENODEV;
2265
2266
return platform_driver_register(&fcu_of_platform_driver);
2267
}
2268
2269
static void __exit therm_pm72_exit(void)
2270
{
2271
platform_driver_unregister(&fcu_of_platform_driver);
2272
}
2273
2274
module_init(therm_pm72_init);
2275
module_exit(therm_pm72_exit);
2276
2277
MODULE_AUTHOR("Benjamin Herrenschmidt <[email protected]>");
2278
MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2279
MODULE_LICENSE("GPL");
2280
2281
2282