Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/macintosh/windfarm_pm112.c
15109 views
1
/*
2
* Windfarm PowerMac thermal control.
3
* Control loops for machines with SMU and PPC970MP processors.
4
*
5
* Copyright (C) 2005 Paul Mackerras, IBM Corp. <[email protected]>
6
* Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
7
*
8
* Use and redistribute under the terms of the GNU GPL v2.
9
*/
10
#include <linux/types.h>
11
#include <linux/errno.h>
12
#include <linux/kernel.h>
13
#include <linux/device.h>
14
#include <linux/platform_device.h>
15
#include <linux/reboot.h>
16
#include <asm/prom.h>
17
#include <asm/smu.h>
18
19
#include "windfarm.h"
20
#include "windfarm_pid.h"
21
22
#define VERSION "0.2"
23
24
#define DEBUG
25
#undef LOTSA_DEBUG
26
27
#ifdef DEBUG
28
#define DBG(args...) printk(args)
29
#else
30
#define DBG(args...) do { } while(0)
31
#endif
32
33
#ifdef LOTSA_DEBUG
34
#define DBG_LOTS(args...) printk(args)
35
#else
36
#define DBG_LOTS(args...) do { } while(0)
37
#endif
38
39
/* define this to force CPU overtemp to 60 degree, useful for testing
40
* the overtemp code
41
*/
42
#undef HACKED_OVERTEMP
43
44
/* We currently only handle 2 chips, 4 cores... */
45
#define NR_CHIPS 2
46
#define NR_CORES 4
47
#define NR_CPU_FANS 3 * NR_CHIPS
48
49
/* Controls and sensors */
50
static struct wf_sensor *sens_cpu_temp[NR_CORES];
51
static struct wf_sensor *sens_cpu_power[NR_CORES];
52
static struct wf_sensor *hd_temp;
53
static struct wf_sensor *slots_power;
54
static struct wf_sensor *u4_temp;
55
56
static struct wf_control *cpu_fans[NR_CPU_FANS];
57
static char *cpu_fan_names[NR_CPU_FANS] = {
58
"cpu-rear-fan-0",
59
"cpu-rear-fan-1",
60
"cpu-front-fan-0",
61
"cpu-front-fan-1",
62
"cpu-pump-0",
63
"cpu-pump-1",
64
};
65
static struct wf_control *cpufreq_clamp;
66
67
/* Second pump isn't required (and isn't actually present) */
68
#define CPU_FANS_REQD (NR_CPU_FANS - 2)
69
#define FIRST_PUMP 4
70
#define LAST_PUMP 5
71
72
/* We keep a temperature history for average calculation of 180s */
73
#define CPU_TEMP_HIST_SIZE 180
74
75
/* Scale factor for fan speed, *100 */
76
static int cpu_fan_scale[NR_CPU_FANS] = {
77
100,
78
100,
79
97, /* inlet fans run at 97% of exhaust fan */
80
97,
81
100, /* updated later */
82
100, /* updated later */
83
};
84
85
static struct wf_control *backside_fan;
86
static struct wf_control *slots_fan;
87
static struct wf_control *drive_bay_fan;
88
89
/* PID loop state */
90
static struct wf_cpu_pid_state cpu_pid[NR_CORES];
91
static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
92
static int cpu_thist_pt;
93
static s64 cpu_thist_total;
94
static s32 cpu_all_tmax = 100 << 16;
95
static int cpu_last_target;
96
static struct wf_pid_state backside_pid;
97
static int backside_tick;
98
static struct wf_pid_state slots_pid;
99
static int slots_started;
100
static struct wf_pid_state drive_bay_pid;
101
static int drive_bay_tick;
102
103
static int nr_cores;
104
static int have_all_controls;
105
static int have_all_sensors;
106
static int started;
107
108
static int failure_state;
109
#define FAILURE_SENSOR 1
110
#define FAILURE_FAN 2
111
#define FAILURE_PERM 4
112
#define FAILURE_LOW_OVERTEMP 8
113
#define FAILURE_HIGH_OVERTEMP 16
114
115
/* Overtemp values */
116
#define LOW_OVER_AVERAGE 0
117
#define LOW_OVER_IMMEDIATE (10 << 16)
118
#define LOW_OVER_CLEAR ((-10) << 16)
119
#define HIGH_OVER_IMMEDIATE (14 << 16)
120
#define HIGH_OVER_AVERAGE (10 << 16)
121
#define HIGH_OVER_IMMEDIATE (14 << 16)
122
123
124
/* Implementation... */
125
static int create_cpu_loop(int cpu)
126
{
127
int chip = cpu / 2;
128
int core = cpu & 1;
129
struct smu_sdbp_header *hdr;
130
struct smu_sdbp_cpupiddata *piddata;
131
struct wf_cpu_pid_param pid;
132
struct wf_control *main_fan = cpu_fans[0];
133
s32 tmax;
134
int fmin;
135
136
/* Get PID params from the appropriate SAT */
137
hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
138
if (hdr == NULL) {
139
printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
140
return -EINVAL;
141
}
142
piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
143
144
/* Get FVT params to get Tmax; if not found, assume default */
145
hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
146
if (hdr) {
147
struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
148
tmax = fvt->maxtemp << 16;
149
} else
150
tmax = 95 << 16; /* default to 95 degrees C */
151
152
/* We keep a global tmax for overtemp calculations */
153
if (tmax < cpu_all_tmax)
154
cpu_all_tmax = tmax;
155
156
/*
157
* Darwin has a minimum fan speed of 1000 rpm for the 4-way and
158
* 515 for the 2-way. That appears to be overkill, so for now,
159
* impose a minimum of 750 or 515.
160
*/
161
fmin = (nr_cores > 2) ? 750 : 515;
162
163
/* Initialize PID loop */
164
pid.interval = 1; /* seconds */
165
pid.history_len = piddata->history_len;
166
pid.gd = piddata->gd;
167
pid.gp = piddata->gp;
168
pid.gr = piddata->gr / piddata->history_len;
169
pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
170
pid.ttarget = tmax - (piddata->target_temp_delta << 16);
171
pid.tmax = tmax;
172
pid.min = main_fan->ops->get_min(main_fan);
173
pid.max = main_fan->ops->get_max(main_fan);
174
if (pid.min < fmin)
175
pid.min = fmin;
176
177
wf_cpu_pid_init(&cpu_pid[cpu], &pid);
178
return 0;
179
}
180
181
static void cpu_max_all_fans(void)
182
{
183
int i;
184
185
/* We max all CPU fans in case of a sensor error. We also do the
186
* cpufreq clamping now, even if it's supposedly done later by the
187
* generic code anyway, we do it earlier here to react faster
188
*/
189
if (cpufreq_clamp)
190
wf_control_set_max(cpufreq_clamp);
191
for (i = 0; i < NR_CPU_FANS; ++i)
192
if (cpu_fans[i])
193
wf_control_set_max(cpu_fans[i]);
194
}
195
196
static int cpu_check_overtemp(s32 temp)
197
{
198
int new_state = 0;
199
s32 t_avg, t_old;
200
201
/* First check for immediate overtemps */
202
if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
203
new_state |= FAILURE_LOW_OVERTEMP;
204
if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
205
printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
206
" temperature !\n");
207
}
208
if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
209
new_state |= FAILURE_HIGH_OVERTEMP;
210
if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
211
printk(KERN_ERR "windfarm: Critical overtemp due to"
212
" immediate CPU temperature !\n");
213
}
214
215
/* We calculate a history of max temperatures and use that for the
216
* overtemp management
217
*/
218
t_old = cpu_thist[cpu_thist_pt];
219
cpu_thist[cpu_thist_pt] = temp;
220
cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
221
cpu_thist_total -= t_old;
222
cpu_thist_total += temp;
223
t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
224
225
DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
226
FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
227
228
/* Now check for average overtemps */
229
if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
230
new_state |= FAILURE_LOW_OVERTEMP;
231
if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
232
printk(KERN_ERR "windfarm: Overtemp due to average CPU"
233
" temperature !\n");
234
}
235
if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
236
new_state |= FAILURE_HIGH_OVERTEMP;
237
if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
238
printk(KERN_ERR "windfarm: Critical overtemp due to"
239
" average CPU temperature !\n");
240
}
241
242
/* Now handle overtemp conditions. We don't currently use the windfarm
243
* overtemp handling core as it's not fully suited to the needs of those
244
* new machine. This will be fixed later.
245
*/
246
if (new_state) {
247
/* High overtemp -> immediate shutdown */
248
if (new_state & FAILURE_HIGH_OVERTEMP)
249
machine_power_off();
250
if ((failure_state & new_state) != new_state)
251
cpu_max_all_fans();
252
failure_state |= new_state;
253
} else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
254
(temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
255
printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
256
failure_state &= ~FAILURE_LOW_OVERTEMP;
257
}
258
259
return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
260
}
261
262
static void cpu_fans_tick(void)
263
{
264
int err, cpu;
265
s32 greatest_delta = 0;
266
s32 temp, power, t_max = 0;
267
int i, t, target = 0;
268
struct wf_sensor *sr;
269
struct wf_control *ct;
270
struct wf_cpu_pid_state *sp;
271
272
DBG_LOTS(KERN_DEBUG);
273
for (cpu = 0; cpu < nr_cores; ++cpu) {
274
/* Get CPU core temperature */
275
sr = sens_cpu_temp[cpu];
276
err = sr->ops->get_value(sr, &temp);
277
if (err) {
278
DBG("\n");
279
printk(KERN_WARNING "windfarm: CPU %d temperature "
280
"sensor error %d\n", cpu, err);
281
failure_state |= FAILURE_SENSOR;
282
cpu_max_all_fans();
283
return;
284
}
285
286
/* Keep track of highest temp */
287
t_max = max(t_max, temp);
288
289
/* Get CPU power */
290
sr = sens_cpu_power[cpu];
291
err = sr->ops->get_value(sr, &power);
292
if (err) {
293
DBG("\n");
294
printk(KERN_WARNING "windfarm: CPU %d power "
295
"sensor error %d\n", cpu, err);
296
failure_state |= FAILURE_SENSOR;
297
cpu_max_all_fans();
298
return;
299
}
300
301
/* Run PID */
302
sp = &cpu_pid[cpu];
303
t = wf_cpu_pid_run(sp, power, temp);
304
305
if (cpu == 0 || sp->last_delta > greatest_delta) {
306
greatest_delta = sp->last_delta;
307
target = t;
308
}
309
DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
310
cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
311
}
312
DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
313
314
/* Darwin limits decrease to 20 per iteration */
315
if (target < (cpu_last_target - 20))
316
target = cpu_last_target - 20;
317
cpu_last_target = target;
318
for (cpu = 0; cpu < nr_cores; ++cpu)
319
cpu_pid[cpu].target = target;
320
321
/* Handle possible overtemps */
322
if (cpu_check_overtemp(t_max))
323
return;
324
325
/* Set fans */
326
for (i = 0; i < NR_CPU_FANS; ++i) {
327
ct = cpu_fans[i];
328
if (ct == NULL)
329
continue;
330
err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
331
if (err) {
332
printk(KERN_WARNING "windfarm: fan %s reports "
333
"error %d\n", ct->name, err);
334
failure_state |= FAILURE_FAN;
335
break;
336
}
337
}
338
}
339
340
/* Backside/U4 fan */
341
static struct wf_pid_param backside_param = {
342
.interval = 5,
343
.history_len = 2,
344
.gd = 48 << 20,
345
.gp = 5 << 20,
346
.gr = 0,
347
.itarget = 64 << 16,
348
.additive = 1,
349
};
350
351
static void backside_fan_tick(void)
352
{
353
s32 temp;
354
int speed;
355
int err;
356
357
if (!backside_fan || !u4_temp)
358
return;
359
if (!backside_tick) {
360
/* first time; initialize things */
361
printk(KERN_INFO "windfarm: Backside control loop started.\n");
362
backside_param.min = backside_fan->ops->get_min(backside_fan);
363
backside_param.max = backside_fan->ops->get_max(backside_fan);
364
wf_pid_init(&backside_pid, &backside_param);
365
backside_tick = 1;
366
}
367
if (--backside_tick > 0)
368
return;
369
backside_tick = backside_pid.param.interval;
370
371
err = u4_temp->ops->get_value(u4_temp, &temp);
372
if (err) {
373
printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
374
err);
375
failure_state |= FAILURE_SENSOR;
376
wf_control_set_max(backside_fan);
377
return;
378
}
379
speed = wf_pid_run(&backside_pid, temp);
380
DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
381
FIX32TOPRINT(temp), speed);
382
383
err = backside_fan->ops->set_value(backside_fan, speed);
384
if (err) {
385
printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
386
failure_state |= FAILURE_FAN;
387
}
388
}
389
390
/* Drive bay fan */
391
static struct wf_pid_param drive_bay_prm = {
392
.interval = 5,
393
.history_len = 2,
394
.gd = 30 << 20,
395
.gp = 5 << 20,
396
.gr = 0,
397
.itarget = 40 << 16,
398
.additive = 1,
399
};
400
401
static void drive_bay_fan_tick(void)
402
{
403
s32 temp;
404
int speed;
405
int err;
406
407
if (!drive_bay_fan || !hd_temp)
408
return;
409
if (!drive_bay_tick) {
410
/* first time; initialize things */
411
printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
412
drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
413
drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
414
wf_pid_init(&drive_bay_pid, &drive_bay_prm);
415
drive_bay_tick = 1;
416
}
417
if (--drive_bay_tick > 0)
418
return;
419
drive_bay_tick = drive_bay_pid.param.interval;
420
421
err = hd_temp->ops->get_value(hd_temp, &temp);
422
if (err) {
423
printk(KERN_WARNING "windfarm: drive bay temp sensor "
424
"error %d\n", err);
425
failure_state |= FAILURE_SENSOR;
426
wf_control_set_max(drive_bay_fan);
427
return;
428
}
429
speed = wf_pid_run(&drive_bay_pid, temp);
430
DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
431
FIX32TOPRINT(temp), speed);
432
433
err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
434
if (err) {
435
printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
436
failure_state |= FAILURE_FAN;
437
}
438
}
439
440
/* PCI slots area fan */
441
/* This makes the fan speed proportional to the power consumed */
442
static struct wf_pid_param slots_param = {
443
.interval = 1,
444
.history_len = 2,
445
.gd = 0,
446
.gp = 0,
447
.gr = 0x1277952,
448
.itarget = 0,
449
.min = 1560,
450
.max = 3510,
451
};
452
453
static void slots_fan_tick(void)
454
{
455
s32 power;
456
int speed;
457
int err;
458
459
if (!slots_fan || !slots_power)
460
return;
461
if (!slots_started) {
462
/* first time; initialize things */
463
printk(KERN_INFO "windfarm: Slots control loop started.\n");
464
wf_pid_init(&slots_pid, &slots_param);
465
slots_started = 1;
466
}
467
468
err = slots_power->ops->get_value(slots_power, &power);
469
if (err) {
470
printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
471
err);
472
failure_state |= FAILURE_SENSOR;
473
wf_control_set_max(slots_fan);
474
return;
475
}
476
speed = wf_pid_run(&slots_pid, power);
477
DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
478
FIX32TOPRINT(power), speed);
479
480
err = slots_fan->ops->set_value(slots_fan, speed);
481
if (err) {
482
printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
483
failure_state |= FAILURE_FAN;
484
}
485
}
486
487
static void set_fail_state(void)
488
{
489
int i;
490
491
if (cpufreq_clamp)
492
wf_control_set_max(cpufreq_clamp);
493
for (i = 0; i < NR_CPU_FANS; ++i)
494
if (cpu_fans[i])
495
wf_control_set_max(cpu_fans[i]);
496
if (backside_fan)
497
wf_control_set_max(backside_fan);
498
if (slots_fan)
499
wf_control_set_max(slots_fan);
500
if (drive_bay_fan)
501
wf_control_set_max(drive_bay_fan);
502
}
503
504
static void pm112_tick(void)
505
{
506
int i, last_failure;
507
508
if (!started) {
509
started = 1;
510
printk(KERN_INFO "windfarm: CPUs control loops started.\n");
511
for (i = 0; i < nr_cores; ++i) {
512
if (create_cpu_loop(i) < 0) {
513
failure_state = FAILURE_PERM;
514
set_fail_state();
515
break;
516
}
517
}
518
DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
519
520
#ifdef HACKED_OVERTEMP
521
cpu_all_tmax = 60 << 16;
522
#endif
523
}
524
525
/* Permanent failure, bail out */
526
if (failure_state & FAILURE_PERM)
527
return;
528
/* Clear all failure bits except low overtemp which will be eventually
529
* cleared by the control loop itself
530
*/
531
last_failure = failure_state;
532
failure_state &= FAILURE_LOW_OVERTEMP;
533
cpu_fans_tick();
534
backside_fan_tick();
535
slots_fan_tick();
536
drive_bay_fan_tick();
537
538
DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
539
last_failure, failure_state);
540
541
/* Check for failures. Any failure causes cpufreq clamping */
542
if (failure_state && last_failure == 0 && cpufreq_clamp)
543
wf_control_set_max(cpufreq_clamp);
544
if (failure_state == 0 && last_failure && cpufreq_clamp)
545
wf_control_set_min(cpufreq_clamp);
546
547
/* That's it for now, we might want to deal with other failures
548
* differently in the future though
549
*/
550
}
551
552
static void pm112_new_control(struct wf_control *ct)
553
{
554
int i, max_exhaust;
555
556
if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
557
if (wf_get_control(ct) == 0)
558
cpufreq_clamp = ct;
559
}
560
561
for (i = 0; i < NR_CPU_FANS; ++i) {
562
if (!strcmp(ct->name, cpu_fan_names[i])) {
563
if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
564
cpu_fans[i] = ct;
565
break;
566
}
567
}
568
if (i >= NR_CPU_FANS) {
569
/* not a CPU fan, try the others */
570
if (!strcmp(ct->name, "backside-fan")) {
571
if (backside_fan == NULL && wf_get_control(ct) == 0)
572
backside_fan = ct;
573
} else if (!strcmp(ct->name, "slots-fan")) {
574
if (slots_fan == NULL && wf_get_control(ct) == 0)
575
slots_fan = ct;
576
} else if (!strcmp(ct->name, "drive-bay-fan")) {
577
if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
578
drive_bay_fan = ct;
579
}
580
return;
581
}
582
583
for (i = 0; i < CPU_FANS_REQD; ++i)
584
if (cpu_fans[i] == NULL)
585
return;
586
587
/* work out pump scaling factors */
588
max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
589
for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
590
if ((ct = cpu_fans[i]) != NULL)
591
cpu_fan_scale[i] =
592
ct->ops->get_max(ct) * 100 / max_exhaust;
593
594
have_all_controls = 1;
595
}
596
597
static void pm112_new_sensor(struct wf_sensor *sr)
598
{
599
unsigned int i;
600
601
if (!strncmp(sr->name, "cpu-temp-", 9)) {
602
i = sr->name[9] - '0';
603
if (sr->name[10] == 0 && i < NR_CORES &&
604
sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
605
sens_cpu_temp[i] = sr;
606
607
} else if (!strncmp(sr->name, "cpu-power-", 10)) {
608
i = sr->name[10] - '0';
609
if (sr->name[11] == 0 && i < NR_CORES &&
610
sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
611
sens_cpu_power[i] = sr;
612
} else if (!strcmp(sr->name, "hd-temp")) {
613
if (hd_temp == NULL && wf_get_sensor(sr) == 0)
614
hd_temp = sr;
615
} else if (!strcmp(sr->name, "slots-power")) {
616
if (slots_power == NULL && wf_get_sensor(sr) == 0)
617
slots_power = sr;
618
} else if (!strcmp(sr->name, "backside-temp")) {
619
if (u4_temp == NULL && wf_get_sensor(sr) == 0)
620
u4_temp = sr;
621
} else
622
return;
623
624
/* check if we have all the sensors we need */
625
for (i = 0; i < nr_cores; ++i)
626
if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
627
return;
628
629
have_all_sensors = 1;
630
}
631
632
static int pm112_wf_notify(struct notifier_block *self,
633
unsigned long event, void *data)
634
{
635
switch (event) {
636
case WF_EVENT_NEW_SENSOR:
637
pm112_new_sensor(data);
638
break;
639
case WF_EVENT_NEW_CONTROL:
640
pm112_new_control(data);
641
break;
642
case WF_EVENT_TICK:
643
if (have_all_controls && have_all_sensors)
644
pm112_tick();
645
}
646
return 0;
647
}
648
649
static struct notifier_block pm112_events = {
650
.notifier_call = pm112_wf_notify,
651
};
652
653
static int wf_pm112_probe(struct platform_device *dev)
654
{
655
wf_register_client(&pm112_events);
656
return 0;
657
}
658
659
static int __devexit wf_pm112_remove(struct platform_device *dev)
660
{
661
wf_unregister_client(&pm112_events);
662
/* should release all sensors and controls */
663
return 0;
664
}
665
666
static struct platform_driver wf_pm112_driver = {
667
.probe = wf_pm112_probe,
668
.remove = __devexit_p(wf_pm112_remove),
669
.driver = {
670
.name = "windfarm",
671
.owner = THIS_MODULE,
672
},
673
};
674
675
static int __init wf_pm112_init(void)
676
{
677
struct device_node *cpu;
678
679
if (!of_machine_is_compatible("PowerMac11,2"))
680
return -ENODEV;
681
682
/* Count the number of CPU cores */
683
nr_cores = 0;
684
for (cpu = NULL; (cpu = of_find_node_by_type(cpu, "cpu")) != NULL; )
685
++nr_cores;
686
687
printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
688
689
#ifdef MODULE
690
request_module("windfarm_smu_controls");
691
request_module("windfarm_smu_sensors");
692
request_module("windfarm_smu_sat");
693
request_module("windfarm_lm75_sensor");
694
request_module("windfarm_max6690_sensor");
695
request_module("windfarm_cpufreq_clamp");
696
697
#endif /* MODULE */
698
699
platform_driver_register(&wf_pm112_driver);
700
return 0;
701
}
702
703
static void __exit wf_pm112_exit(void)
704
{
705
platform_driver_unregister(&wf_pm112_driver);
706
}
707
708
module_init(wf_pm112_init);
709
module_exit(wf_pm112_exit);
710
711
MODULE_AUTHOR("Paul Mackerras <[email protected]>");
712
MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
713
MODULE_LICENSE("GPL");
714
MODULE_ALIAS("platform:windfarm");
715
716