Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/macintosh/windfarm_pm81.c
15109 views
1
/*
2
* Windfarm PowerMac thermal control. iMac G5
3
*
4
* (c) Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
5
* <[email protected]>
6
*
7
* Released under the term of the GNU GPL v2.
8
*
9
* The algorithm used is the PID control algorithm, used the same
10
* way the published Darwin code does, using the same values that
11
* are present in the Darwin 8.2 snapshot property lists (note however
12
* that none of the code has been re-used, it's a complete re-implementation
13
*
14
* The various control loops found in Darwin config file are:
15
*
16
* PowerMac8,1 and PowerMac8,2
17
* ===========================
18
*
19
* System Fans control loop. Different based on models. In addition to the
20
* usual PID algorithm, the control loop gets 2 additional pairs of linear
21
* scaling factors (scale/offsets) expressed as 4.12 fixed point values
22
* signed offset, unsigned scale)
23
*
24
* The targets are modified such as:
25
* - the linked control (second control) gets the target value as-is
26
* (typically the drive fan)
27
* - the main control (first control) gets the target value scaled with
28
* the first pair of factors, and is then modified as below
29
* - the value of the target of the CPU Fan control loop is retrieved,
30
* scaled with the second pair of factors, and the max of that and
31
* the scaled target is applied to the main control.
32
*
33
* # model_id: 2
34
* controls : system-fan, drive-bay-fan
35
* sensors : hd-temp
36
* PID params : G_d = 0x15400000
37
* G_p = 0x00200000
38
* G_r = 0x000002fd
39
* History = 2 entries
40
* Input target = 0x3a0000
41
* Interval = 5s
42
* linear-factors : offset = 0xff38 scale = 0x0ccd
43
* offset = 0x0208 scale = 0x07ae
44
*
45
* # model_id: 3
46
* controls : system-fan, drive-bay-fan
47
* sensors : hd-temp
48
* PID params : G_d = 0x08e00000
49
* G_p = 0x00566666
50
* G_r = 0x0000072b
51
* History = 2 entries
52
* Input target = 0x350000
53
* Interval = 5s
54
* linear-factors : offset = 0xff38 scale = 0x0ccd
55
* offset = 0x0000 scale = 0x0000
56
*
57
* # model_id: 5
58
* controls : system-fan
59
* sensors : hd-temp
60
* PID params : G_d = 0x15400000
61
* G_p = 0x00233333
62
* G_r = 0x000002fd
63
* History = 2 entries
64
* Input target = 0x3a0000
65
* Interval = 5s
66
* linear-factors : offset = 0x0000 scale = 0x1000
67
* offset = 0x0091 scale = 0x0bae
68
*
69
* CPU Fan control loop. The loop is identical for all models. it
70
* has an additional pair of scaling factor. This is used to scale the
71
* systems fan control loop target result (the one before it gets scaled
72
* by the System Fans control loop itself). Then, the max value of the
73
* calculated target value and system fan value is sent to the fans
74
*
75
* controls : cpu-fan
76
* sensors : cpu-temp cpu-power
77
* PID params : From SMU sdb partition
78
* linear-factors : offset = 0xfb50 scale = 0x1000
79
*
80
* CPU Slew control loop. Not implemented. The cpufreq driver in linux is
81
* completely separate for now, though we could find a way to link it, either
82
* as a client reacting to overtemp notifications, or directling monitoring
83
* the CPU temperature
84
*
85
* WARNING ! The CPU control loop requires the CPU tmax for the current
86
* operating point. However, we currently are completely separated from
87
* the cpufreq driver and thus do not know what the current operating
88
* point is. Fortunately, we also do not have any hardware supporting anything
89
* but operating point 0 at the moment, thus we just peek that value directly
90
* from the SDB partition. If we ever end up with actually slewing the system
91
* clock and thus changing operating points, we'll have to find a way to
92
* communicate with the CPU freq driver;
93
*
94
*/
95
96
#include <linux/types.h>
97
#include <linux/errno.h>
98
#include <linux/kernel.h>
99
#include <linux/delay.h>
100
#include <linux/slab.h>
101
#include <linux/init.h>
102
#include <linux/spinlock.h>
103
#include <linux/wait.h>
104
#include <linux/kmod.h>
105
#include <linux/device.h>
106
#include <linux/platform_device.h>
107
#include <asm/prom.h>
108
#include <asm/machdep.h>
109
#include <asm/io.h>
110
#include <asm/system.h>
111
#include <asm/sections.h>
112
#include <asm/smu.h>
113
114
#include "windfarm.h"
115
#include "windfarm_pid.h"
116
117
#define VERSION "0.4"
118
119
#undef DEBUG
120
121
#ifdef DEBUG
122
#define DBG(args...) printk(args)
123
#else
124
#define DBG(args...) do { } while(0)
125
#endif
126
127
/* define this to force CPU overtemp to 74 degree, useful for testing
128
* the overtemp code
129
*/
130
#undef HACKED_OVERTEMP
131
132
static int wf_smu_mach_model; /* machine model id */
133
134
/* Controls & sensors */
135
static struct wf_sensor *sensor_cpu_power;
136
static struct wf_sensor *sensor_cpu_temp;
137
static struct wf_sensor *sensor_hd_temp;
138
static struct wf_control *fan_cpu_main;
139
static struct wf_control *fan_hd;
140
static struct wf_control *fan_system;
141
static struct wf_control *cpufreq_clamp;
142
143
/* Set to kick the control loop into life */
144
static int wf_smu_all_controls_ok, wf_smu_all_sensors_ok, wf_smu_started;
145
146
/* Failure handling.. could be nicer */
147
#define FAILURE_FAN 0x01
148
#define FAILURE_SENSOR 0x02
149
#define FAILURE_OVERTEMP 0x04
150
151
static unsigned int wf_smu_failure_state;
152
static int wf_smu_readjust, wf_smu_skipping;
153
154
/*
155
* ****** System Fans Control Loop ******
156
*
157
*/
158
159
/* Parameters for the System Fans control loop. Parameters
160
* not in this table such as interval, history size, ...
161
* are common to all versions and thus hard coded for now.
162
*/
163
struct wf_smu_sys_fans_param {
164
int model_id;
165
s32 itarget;
166
s32 gd, gp, gr;
167
168
s16 offset0;
169
u16 scale0;
170
s16 offset1;
171
u16 scale1;
172
};
173
174
#define WF_SMU_SYS_FANS_INTERVAL 5
175
#define WF_SMU_SYS_FANS_HISTORY_SIZE 2
176
177
/* State data used by the system fans control loop
178
*/
179
struct wf_smu_sys_fans_state {
180
int ticks;
181
s32 sys_setpoint;
182
s32 hd_setpoint;
183
s16 offset0;
184
u16 scale0;
185
s16 offset1;
186
u16 scale1;
187
struct wf_pid_state pid;
188
};
189
190
/*
191
* Configs for SMU System Fan control loop
192
*/
193
static struct wf_smu_sys_fans_param wf_smu_sys_all_params[] = {
194
/* Model ID 2 */
195
{
196
.model_id = 2,
197
.itarget = 0x3a0000,
198
.gd = 0x15400000,
199
.gp = 0x00200000,
200
.gr = 0x000002fd,
201
.offset0 = 0xff38,
202
.scale0 = 0x0ccd,
203
.offset1 = 0x0208,
204
.scale1 = 0x07ae,
205
},
206
/* Model ID 3 */
207
{
208
.model_id = 3,
209
.itarget = 0x350000,
210
.gd = 0x08e00000,
211
.gp = 0x00566666,
212
.gr = 0x0000072b,
213
.offset0 = 0xff38,
214
.scale0 = 0x0ccd,
215
.offset1 = 0x0000,
216
.scale1 = 0x0000,
217
},
218
/* Model ID 5 */
219
{
220
.model_id = 5,
221
.itarget = 0x3a0000,
222
.gd = 0x15400000,
223
.gp = 0x00233333,
224
.gr = 0x000002fd,
225
.offset0 = 0x0000,
226
.scale0 = 0x1000,
227
.offset1 = 0x0091,
228
.scale1 = 0x0bae,
229
},
230
};
231
#define WF_SMU_SYS_FANS_NUM_CONFIGS ARRAY_SIZE(wf_smu_sys_all_params)
232
233
static struct wf_smu_sys_fans_state *wf_smu_sys_fans;
234
235
/*
236
* ****** CPU Fans Control Loop ******
237
*
238
*/
239
240
241
#define WF_SMU_CPU_FANS_INTERVAL 1
242
#define WF_SMU_CPU_FANS_MAX_HISTORY 16
243
#define WF_SMU_CPU_FANS_SIBLING_SCALE 0x00001000
244
#define WF_SMU_CPU_FANS_SIBLING_OFFSET 0xfffffb50
245
246
/* State data used by the cpu fans control loop
247
*/
248
struct wf_smu_cpu_fans_state {
249
int ticks;
250
s32 cpu_setpoint;
251
s32 scale;
252
s32 offset;
253
struct wf_cpu_pid_state pid;
254
};
255
256
static struct wf_smu_cpu_fans_state *wf_smu_cpu_fans;
257
258
259
260
/*
261
* ***** Implementation *****
262
*
263
*/
264
265
static void wf_smu_create_sys_fans(void)
266
{
267
struct wf_smu_sys_fans_param *param = NULL;
268
struct wf_pid_param pid_param;
269
int i;
270
271
/* First, locate the params for this model */
272
for (i = 0; i < WF_SMU_SYS_FANS_NUM_CONFIGS; i++)
273
if (wf_smu_sys_all_params[i].model_id == wf_smu_mach_model) {
274
param = &wf_smu_sys_all_params[i];
275
break;
276
}
277
278
/* No params found, put fans to max */
279
if (param == NULL) {
280
printk(KERN_WARNING "windfarm: System fan config not found "
281
"for this machine model, max fan speed\n");
282
goto fail;
283
}
284
285
/* Alloc & initialize state */
286
wf_smu_sys_fans = kmalloc(sizeof(struct wf_smu_sys_fans_state),
287
GFP_KERNEL);
288
if (wf_smu_sys_fans == NULL) {
289
printk(KERN_WARNING "windfarm: Memory allocation error"
290
" max fan speed\n");
291
goto fail;
292
}
293
wf_smu_sys_fans->ticks = 1;
294
wf_smu_sys_fans->scale0 = param->scale0;
295
wf_smu_sys_fans->offset0 = param->offset0;
296
wf_smu_sys_fans->scale1 = param->scale1;
297
wf_smu_sys_fans->offset1 = param->offset1;
298
299
/* Fill PID params */
300
pid_param.gd = param->gd;
301
pid_param.gp = param->gp;
302
pid_param.gr = param->gr;
303
pid_param.interval = WF_SMU_SYS_FANS_INTERVAL;
304
pid_param.history_len = WF_SMU_SYS_FANS_HISTORY_SIZE;
305
pid_param.itarget = param->itarget;
306
pid_param.min = fan_system->ops->get_min(fan_system);
307
pid_param.max = fan_system->ops->get_max(fan_system);
308
if (fan_hd) {
309
pid_param.min =
310
max(pid_param.min,fan_hd->ops->get_min(fan_hd));
311
pid_param.max =
312
min(pid_param.max,fan_hd->ops->get_max(fan_hd));
313
}
314
wf_pid_init(&wf_smu_sys_fans->pid, &pid_param);
315
316
DBG("wf: System Fan control initialized.\n");
317
DBG(" itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
318
FIX32TOPRINT(pid_param.itarget), pid_param.min, pid_param.max);
319
return;
320
321
fail:
322
323
if (fan_system)
324
wf_control_set_max(fan_system);
325
if (fan_hd)
326
wf_control_set_max(fan_hd);
327
}
328
329
static void wf_smu_sys_fans_tick(struct wf_smu_sys_fans_state *st)
330
{
331
s32 new_setpoint, temp, scaled, cputarget;
332
int rc;
333
334
if (--st->ticks != 0) {
335
if (wf_smu_readjust)
336
goto readjust;
337
return;
338
}
339
st->ticks = WF_SMU_SYS_FANS_INTERVAL;
340
341
rc = sensor_hd_temp->ops->get_value(sensor_hd_temp, &temp);
342
if (rc) {
343
printk(KERN_WARNING "windfarm: HD temp sensor error %d\n",
344
rc);
345
wf_smu_failure_state |= FAILURE_SENSOR;
346
return;
347
}
348
349
DBG("wf_smu: System Fans tick ! HD temp: %d.%03d\n",
350
FIX32TOPRINT(temp));
351
352
if (temp > (st->pid.param.itarget + 0x50000))
353
wf_smu_failure_state |= FAILURE_OVERTEMP;
354
355
new_setpoint = wf_pid_run(&st->pid, temp);
356
357
DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);
358
359
scaled = ((((s64)new_setpoint) * (s64)st->scale0) >> 12) + st->offset0;
360
361
DBG("wf_smu: scaled setpoint: %d RPM\n", (int)scaled);
362
363
cputarget = wf_smu_cpu_fans ? wf_smu_cpu_fans->pid.target : 0;
364
cputarget = ((((s64)cputarget) * (s64)st->scale1) >> 12) + st->offset1;
365
scaled = max(scaled, cputarget);
366
scaled = max(scaled, st->pid.param.min);
367
scaled = min(scaled, st->pid.param.max);
368
369
DBG("wf_smu: adjusted setpoint: %d RPM\n", (int)scaled);
370
371
if (st->sys_setpoint == scaled && new_setpoint == st->hd_setpoint)
372
return;
373
st->sys_setpoint = scaled;
374
st->hd_setpoint = new_setpoint;
375
readjust:
376
if (fan_system && wf_smu_failure_state == 0) {
377
rc = fan_system->ops->set_value(fan_system, st->sys_setpoint);
378
if (rc) {
379
printk(KERN_WARNING "windfarm: Sys fan error %d\n",
380
rc);
381
wf_smu_failure_state |= FAILURE_FAN;
382
}
383
}
384
if (fan_hd && wf_smu_failure_state == 0) {
385
rc = fan_hd->ops->set_value(fan_hd, st->hd_setpoint);
386
if (rc) {
387
printk(KERN_WARNING "windfarm: HD fan error %d\n",
388
rc);
389
wf_smu_failure_state |= FAILURE_FAN;
390
}
391
}
392
}
393
394
static void wf_smu_create_cpu_fans(void)
395
{
396
struct wf_cpu_pid_param pid_param;
397
const struct smu_sdbp_header *hdr;
398
struct smu_sdbp_cpupiddata *piddata;
399
struct smu_sdbp_fvt *fvt;
400
s32 tmax, tdelta, maxpow, powadj;
401
402
/* First, locate the PID params in SMU SBD */
403
hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
404
if (hdr == 0) {
405
printk(KERN_WARNING "windfarm: CPU PID fan config not found "
406
"max fan speed\n");
407
goto fail;
408
}
409
piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
410
411
/* Get the FVT params for operating point 0 (the only supported one
412
* for now) in order to get tmax
413
*/
414
hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
415
if (hdr) {
416
fvt = (struct smu_sdbp_fvt *)&hdr[1];
417
tmax = ((s32)fvt->maxtemp) << 16;
418
} else
419
tmax = 0x5e0000; /* 94 degree default */
420
421
/* Alloc & initialize state */
422
wf_smu_cpu_fans = kmalloc(sizeof(struct wf_smu_cpu_fans_state),
423
GFP_KERNEL);
424
if (wf_smu_cpu_fans == NULL)
425
goto fail;
426
wf_smu_cpu_fans->ticks = 1;
427
428
wf_smu_cpu_fans->scale = WF_SMU_CPU_FANS_SIBLING_SCALE;
429
wf_smu_cpu_fans->offset = WF_SMU_CPU_FANS_SIBLING_OFFSET;
430
431
/* Fill PID params */
432
pid_param.interval = WF_SMU_CPU_FANS_INTERVAL;
433
pid_param.history_len = piddata->history_len;
434
if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
435
printk(KERN_WARNING "windfarm: History size overflow on "
436
"CPU control loop (%d)\n", piddata->history_len);
437
pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
438
}
439
pid_param.gd = piddata->gd;
440
pid_param.gp = piddata->gp;
441
pid_param.gr = piddata->gr / pid_param.history_len;
442
443
tdelta = ((s32)piddata->target_temp_delta) << 16;
444
maxpow = ((s32)piddata->max_power) << 16;
445
powadj = ((s32)piddata->power_adj) << 16;
446
447
pid_param.tmax = tmax;
448
pid_param.ttarget = tmax - tdelta;
449
pid_param.pmaxadj = maxpow - powadj;
450
451
pid_param.min = fan_cpu_main->ops->get_min(fan_cpu_main);
452
pid_param.max = fan_cpu_main->ops->get_max(fan_cpu_main);
453
454
wf_cpu_pid_init(&wf_smu_cpu_fans->pid, &pid_param);
455
456
DBG("wf: CPU Fan control initialized.\n");
457
DBG(" ttarged=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM\n",
458
FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
459
pid_param.min, pid_param.max);
460
461
return;
462
463
fail:
464
printk(KERN_WARNING "windfarm: CPU fan config not found\n"
465
"for this machine model, max fan speed\n");
466
467
if (cpufreq_clamp)
468
wf_control_set_max(cpufreq_clamp);
469
if (fan_cpu_main)
470
wf_control_set_max(fan_cpu_main);
471
}
472
473
static void wf_smu_cpu_fans_tick(struct wf_smu_cpu_fans_state *st)
474
{
475
s32 new_setpoint, temp, power, systarget;
476
int rc;
477
478
if (--st->ticks != 0) {
479
if (wf_smu_readjust)
480
goto readjust;
481
return;
482
}
483
st->ticks = WF_SMU_CPU_FANS_INTERVAL;
484
485
rc = sensor_cpu_temp->ops->get_value(sensor_cpu_temp, &temp);
486
if (rc) {
487
printk(KERN_WARNING "windfarm: CPU temp sensor error %d\n",
488
rc);
489
wf_smu_failure_state |= FAILURE_SENSOR;
490
return;
491
}
492
493
rc = sensor_cpu_power->ops->get_value(sensor_cpu_power, &power);
494
if (rc) {
495
printk(KERN_WARNING "windfarm: CPU power sensor error %d\n",
496
rc);
497
wf_smu_failure_state |= FAILURE_SENSOR;
498
return;
499
}
500
501
DBG("wf_smu: CPU Fans tick ! CPU temp: %d.%03d, power: %d.%03d\n",
502
FIX32TOPRINT(temp), FIX32TOPRINT(power));
503
504
#ifdef HACKED_OVERTEMP
505
if (temp > 0x4a0000)
506
wf_smu_failure_state |= FAILURE_OVERTEMP;
507
#else
508
if (temp > st->pid.param.tmax)
509
wf_smu_failure_state |= FAILURE_OVERTEMP;
510
#endif
511
new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);
512
513
DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);
514
515
systarget = wf_smu_sys_fans ? wf_smu_sys_fans->pid.target : 0;
516
systarget = ((((s64)systarget) * (s64)st->scale) >> 12)
517
+ st->offset;
518
new_setpoint = max(new_setpoint, systarget);
519
new_setpoint = max(new_setpoint, st->pid.param.min);
520
new_setpoint = min(new_setpoint, st->pid.param.max);
521
522
DBG("wf_smu: adjusted setpoint: %d RPM\n", (int)new_setpoint);
523
524
if (st->cpu_setpoint == new_setpoint)
525
return;
526
st->cpu_setpoint = new_setpoint;
527
readjust:
528
if (fan_cpu_main && wf_smu_failure_state == 0) {
529
rc = fan_cpu_main->ops->set_value(fan_cpu_main,
530
st->cpu_setpoint);
531
if (rc) {
532
printk(KERN_WARNING "windfarm: CPU main fan"
533
" error %d\n", rc);
534
wf_smu_failure_state |= FAILURE_FAN;
535
}
536
}
537
}
538
539
/*
540
* ****** Setup / Init / Misc ... ******
541
*
542
*/
543
544
static void wf_smu_tick(void)
545
{
546
unsigned int last_failure = wf_smu_failure_state;
547
unsigned int new_failure;
548
549
if (!wf_smu_started) {
550
DBG("wf: creating control loops !\n");
551
wf_smu_create_sys_fans();
552
wf_smu_create_cpu_fans();
553
wf_smu_started = 1;
554
}
555
556
/* Skipping ticks */
557
if (wf_smu_skipping && --wf_smu_skipping)
558
return;
559
560
wf_smu_failure_state = 0;
561
if (wf_smu_sys_fans)
562
wf_smu_sys_fans_tick(wf_smu_sys_fans);
563
if (wf_smu_cpu_fans)
564
wf_smu_cpu_fans_tick(wf_smu_cpu_fans);
565
566
wf_smu_readjust = 0;
567
new_failure = wf_smu_failure_state & ~last_failure;
568
569
/* If entering failure mode, clamp cpufreq and ramp all
570
* fans to full speed.
571
*/
572
if (wf_smu_failure_state && !last_failure) {
573
if (cpufreq_clamp)
574
wf_control_set_max(cpufreq_clamp);
575
if (fan_system)
576
wf_control_set_max(fan_system);
577
if (fan_cpu_main)
578
wf_control_set_max(fan_cpu_main);
579
if (fan_hd)
580
wf_control_set_max(fan_hd);
581
}
582
583
/* If leaving failure mode, unclamp cpufreq and readjust
584
* all fans on next iteration
585
*/
586
if (!wf_smu_failure_state && last_failure) {
587
if (cpufreq_clamp)
588
wf_control_set_min(cpufreq_clamp);
589
wf_smu_readjust = 1;
590
}
591
592
/* Overtemp condition detected, notify and start skipping a couple
593
* ticks to let the temperature go down
594
*/
595
if (new_failure & FAILURE_OVERTEMP) {
596
wf_set_overtemp();
597
wf_smu_skipping = 2;
598
}
599
600
/* We only clear the overtemp condition if overtemp is cleared
601
* _and_ no other failure is present. Since a sensor error will
602
* clear the overtemp condition (can't measure temperature) at
603
* the control loop levels, but we don't want to keep it clear
604
* here in this case
605
*/
606
if (new_failure == 0 && last_failure & FAILURE_OVERTEMP)
607
wf_clear_overtemp();
608
}
609
610
static void wf_smu_new_control(struct wf_control *ct)
611
{
612
if (wf_smu_all_controls_ok)
613
return;
614
615
if (fan_cpu_main == NULL && !strcmp(ct->name, "cpu-fan")) {
616
if (wf_get_control(ct) == 0)
617
fan_cpu_main = ct;
618
}
619
620
if (fan_system == NULL && !strcmp(ct->name, "system-fan")) {
621
if (wf_get_control(ct) == 0)
622
fan_system = ct;
623
}
624
625
if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
626
if (wf_get_control(ct) == 0)
627
cpufreq_clamp = ct;
628
}
629
630
/* Darwin property list says the HD fan is only for model ID
631
* 0, 1, 2 and 3
632
*/
633
634
if (wf_smu_mach_model > 3) {
635
if (fan_system && fan_cpu_main && cpufreq_clamp)
636
wf_smu_all_controls_ok = 1;
637
return;
638
}
639
640
if (fan_hd == NULL && !strcmp(ct->name, "drive-bay-fan")) {
641
if (wf_get_control(ct) == 0)
642
fan_hd = ct;
643
}
644
645
if (fan_system && fan_hd && fan_cpu_main && cpufreq_clamp)
646
wf_smu_all_controls_ok = 1;
647
}
648
649
static void wf_smu_new_sensor(struct wf_sensor *sr)
650
{
651
if (wf_smu_all_sensors_ok)
652
return;
653
654
if (sensor_cpu_power == NULL && !strcmp(sr->name, "cpu-power")) {
655
if (wf_get_sensor(sr) == 0)
656
sensor_cpu_power = sr;
657
}
658
659
if (sensor_cpu_temp == NULL && !strcmp(sr->name, "cpu-temp")) {
660
if (wf_get_sensor(sr) == 0)
661
sensor_cpu_temp = sr;
662
}
663
664
if (sensor_hd_temp == NULL && !strcmp(sr->name, "hd-temp")) {
665
if (wf_get_sensor(sr) == 0)
666
sensor_hd_temp = sr;
667
}
668
669
if (sensor_cpu_power && sensor_cpu_temp && sensor_hd_temp)
670
wf_smu_all_sensors_ok = 1;
671
}
672
673
674
static int wf_smu_notify(struct notifier_block *self,
675
unsigned long event, void *data)
676
{
677
switch(event) {
678
case WF_EVENT_NEW_CONTROL:
679
DBG("wf: new control %s detected\n",
680
((struct wf_control *)data)->name);
681
wf_smu_new_control(data);
682
wf_smu_readjust = 1;
683
break;
684
case WF_EVENT_NEW_SENSOR:
685
DBG("wf: new sensor %s detected\n",
686
((struct wf_sensor *)data)->name);
687
wf_smu_new_sensor(data);
688
break;
689
case WF_EVENT_TICK:
690
if (wf_smu_all_controls_ok && wf_smu_all_sensors_ok)
691
wf_smu_tick();
692
}
693
694
return 0;
695
}
696
697
static struct notifier_block wf_smu_events = {
698
.notifier_call = wf_smu_notify,
699
};
700
701
static int wf_init_pm(void)
702
{
703
const struct smu_sdbp_header *hdr;
704
705
hdr = smu_get_sdb_partition(SMU_SDB_SENSORTREE_ID, NULL);
706
if (hdr != 0) {
707
struct smu_sdbp_sensortree *st =
708
(struct smu_sdbp_sensortree *)&hdr[1];
709
wf_smu_mach_model = st->model_id;
710
}
711
712
printk(KERN_INFO "windfarm: Initializing for iMacG5 model ID %d\n",
713
wf_smu_mach_model);
714
715
return 0;
716
}
717
718
static int wf_smu_probe(struct platform_device *ddev)
719
{
720
wf_register_client(&wf_smu_events);
721
722
return 0;
723
}
724
725
static int __devexit wf_smu_remove(struct platform_device *ddev)
726
{
727
wf_unregister_client(&wf_smu_events);
728
729
/* XXX We don't have yet a guarantee that our callback isn't
730
* in progress when returning from wf_unregister_client, so
731
* we add an arbitrary delay. I'll have to fix that in the core
732
*/
733
msleep(1000);
734
735
/* Release all sensors */
736
/* One more crappy race: I don't think we have any guarantee here
737
* that the attribute callback won't race with the sensor beeing
738
* disposed of, and I'm not 100% certain what best way to deal
739
* with that except by adding locks all over... I'll do that
740
* eventually but heh, who ever rmmod this module anyway ?
741
*/
742
if (sensor_cpu_power)
743
wf_put_sensor(sensor_cpu_power);
744
if (sensor_cpu_temp)
745
wf_put_sensor(sensor_cpu_temp);
746
if (sensor_hd_temp)
747
wf_put_sensor(sensor_hd_temp);
748
749
/* Release all controls */
750
if (fan_cpu_main)
751
wf_put_control(fan_cpu_main);
752
if (fan_hd)
753
wf_put_control(fan_hd);
754
if (fan_system)
755
wf_put_control(fan_system);
756
if (cpufreq_clamp)
757
wf_put_control(cpufreq_clamp);
758
759
/* Destroy control loops state structures */
760
kfree(wf_smu_sys_fans);
761
kfree(wf_smu_cpu_fans);
762
763
return 0;
764
}
765
766
static struct platform_driver wf_smu_driver = {
767
.probe = wf_smu_probe,
768
.remove = __devexit_p(wf_smu_remove),
769
.driver = {
770
.name = "windfarm",
771
.owner = THIS_MODULE,
772
},
773
};
774
775
776
static int __init wf_smu_init(void)
777
{
778
int rc = -ENODEV;
779
780
if (of_machine_is_compatible("PowerMac8,1") ||
781
of_machine_is_compatible("PowerMac8,2"))
782
rc = wf_init_pm();
783
784
if (rc == 0) {
785
#ifdef MODULE
786
request_module("windfarm_smu_controls");
787
request_module("windfarm_smu_sensors");
788
request_module("windfarm_lm75_sensor");
789
request_module("windfarm_cpufreq_clamp");
790
791
#endif /* MODULE */
792
platform_driver_register(&wf_smu_driver);
793
}
794
795
return rc;
796
}
797
798
static void __exit wf_smu_exit(void)
799
{
800
801
platform_driver_unregister(&wf_smu_driver);
802
}
803
804
805
module_init(wf_smu_init);
806
module_exit(wf_smu_exit);
807
808
MODULE_AUTHOR("Benjamin Herrenschmidt <[email protected]>");
809
MODULE_DESCRIPTION("Thermal control logic for iMac G5");
810
MODULE_LICENSE("GPL");
811
MODULE_ALIAS("platform:windfarm");
812
813