Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/md/dm-table.c
15109 views
1
/*
2
* Copyright (C) 2001 Sistina Software (UK) Limited.
3
* Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4
*
5
* This file is released under the GPL.
6
*/
7
8
#include "dm.h"
9
10
#include <linux/module.h>
11
#include <linux/vmalloc.h>
12
#include <linux/blkdev.h>
13
#include <linux/namei.h>
14
#include <linux/ctype.h>
15
#include <linux/string.h>
16
#include <linux/slab.h>
17
#include <linux/interrupt.h>
18
#include <linux/mutex.h>
19
#include <linux/delay.h>
20
#include <asm/atomic.h>
21
22
#define DM_MSG_PREFIX "table"
23
24
#define MAX_DEPTH 16
25
#define NODE_SIZE L1_CACHE_BYTES
26
#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27
#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29
/*
30
* The table has always exactly one reference from either mapped_device->map
31
* or hash_cell->new_map. This reference is not counted in table->holders.
32
* A pair of dm_create_table/dm_destroy_table functions is used for table
33
* creation/destruction.
34
*
35
* Temporary references from the other code increase table->holders. A pair
36
* of dm_table_get/dm_table_put functions is used to manipulate it.
37
*
38
* When the table is about to be destroyed, we wait for table->holders to
39
* drop to zero.
40
*/
41
42
struct dm_table {
43
struct mapped_device *md;
44
atomic_t holders;
45
unsigned type;
46
47
/* btree table */
48
unsigned int depth;
49
unsigned int counts[MAX_DEPTH]; /* in nodes */
50
sector_t *index[MAX_DEPTH];
51
52
unsigned int num_targets;
53
unsigned int num_allocated;
54
sector_t *highs;
55
struct dm_target *targets;
56
57
unsigned discards_supported:1;
58
unsigned integrity_supported:1;
59
60
/*
61
* Indicates the rw permissions for the new logical
62
* device. This should be a combination of FMODE_READ
63
* and FMODE_WRITE.
64
*/
65
fmode_t mode;
66
67
/* a list of devices used by this table */
68
struct list_head devices;
69
70
/* events get handed up using this callback */
71
void (*event_fn)(void *);
72
void *event_context;
73
74
struct dm_md_mempools *mempools;
75
76
struct list_head target_callbacks;
77
};
78
79
/*
80
* Similar to ceiling(log_size(n))
81
*/
82
static unsigned int int_log(unsigned int n, unsigned int base)
83
{
84
int result = 0;
85
86
while (n > 1) {
87
n = dm_div_up(n, base);
88
result++;
89
}
90
91
return result;
92
}
93
94
/*
95
* Calculate the index of the child node of the n'th node k'th key.
96
*/
97
static inline unsigned int get_child(unsigned int n, unsigned int k)
98
{
99
return (n * CHILDREN_PER_NODE) + k;
100
}
101
102
/*
103
* Return the n'th node of level l from table t.
104
*/
105
static inline sector_t *get_node(struct dm_table *t,
106
unsigned int l, unsigned int n)
107
{
108
return t->index[l] + (n * KEYS_PER_NODE);
109
}
110
111
/*
112
* Return the highest key that you could lookup from the n'th
113
* node on level l of the btree.
114
*/
115
static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
116
{
117
for (; l < t->depth - 1; l++)
118
n = get_child(n, CHILDREN_PER_NODE - 1);
119
120
if (n >= t->counts[l])
121
return (sector_t) - 1;
122
123
return get_node(t, l, n)[KEYS_PER_NODE - 1];
124
}
125
126
/*
127
* Fills in a level of the btree based on the highs of the level
128
* below it.
129
*/
130
static int setup_btree_index(unsigned int l, struct dm_table *t)
131
{
132
unsigned int n, k;
133
sector_t *node;
134
135
for (n = 0U; n < t->counts[l]; n++) {
136
node = get_node(t, l, n);
137
138
for (k = 0U; k < KEYS_PER_NODE; k++)
139
node[k] = high(t, l + 1, get_child(n, k));
140
}
141
142
return 0;
143
}
144
145
void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
146
{
147
unsigned long size;
148
void *addr;
149
150
/*
151
* Check that we're not going to overflow.
152
*/
153
if (nmemb > (ULONG_MAX / elem_size))
154
return NULL;
155
156
size = nmemb * elem_size;
157
addr = vmalloc(size);
158
if (addr)
159
memset(addr, 0, size);
160
161
return addr;
162
}
163
164
/*
165
* highs, and targets are managed as dynamic arrays during a
166
* table load.
167
*/
168
static int alloc_targets(struct dm_table *t, unsigned int num)
169
{
170
sector_t *n_highs;
171
struct dm_target *n_targets;
172
int n = t->num_targets;
173
174
/*
175
* Allocate both the target array and offset array at once.
176
* Append an empty entry to catch sectors beyond the end of
177
* the device.
178
*/
179
n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
180
sizeof(sector_t));
181
if (!n_highs)
182
return -ENOMEM;
183
184
n_targets = (struct dm_target *) (n_highs + num);
185
186
if (n) {
187
memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
188
memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
189
}
190
191
memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
192
vfree(t->highs);
193
194
t->num_allocated = num;
195
t->highs = n_highs;
196
t->targets = n_targets;
197
198
return 0;
199
}
200
201
int dm_table_create(struct dm_table **result, fmode_t mode,
202
unsigned num_targets, struct mapped_device *md)
203
{
204
struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
205
206
if (!t)
207
return -ENOMEM;
208
209
INIT_LIST_HEAD(&t->devices);
210
INIT_LIST_HEAD(&t->target_callbacks);
211
atomic_set(&t->holders, 0);
212
t->discards_supported = 1;
213
214
if (!num_targets)
215
num_targets = KEYS_PER_NODE;
216
217
num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
218
219
if (alloc_targets(t, num_targets)) {
220
kfree(t);
221
t = NULL;
222
return -ENOMEM;
223
}
224
225
t->mode = mode;
226
t->md = md;
227
*result = t;
228
return 0;
229
}
230
231
static void free_devices(struct list_head *devices)
232
{
233
struct list_head *tmp, *next;
234
235
list_for_each_safe(tmp, next, devices) {
236
struct dm_dev_internal *dd =
237
list_entry(tmp, struct dm_dev_internal, list);
238
DMWARN("dm_table_destroy: dm_put_device call missing for %s",
239
dd->dm_dev.name);
240
kfree(dd);
241
}
242
}
243
244
void dm_table_destroy(struct dm_table *t)
245
{
246
unsigned int i;
247
248
if (!t)
249
return;
250
251
while (atomic_read(&t->holders))
252
msleep(1);
253
smp_mb();
254
255
/* free the indexes */
256
if (t->depth >= 2)
257
vfree(t->index[t->depth - 2]);
258
259
/* free the targets */
260
for (i = 0; i < t->num_targets; i++) {
261
struct dm_target *tgt = t->targets + i;
262
263
if (tgt->type->dtr)
264
tgt->type->dtr(tgt);
265
266
dm_put_target_type(tgt->type);
267
}
268
269
vfree(t->highs);
270
271
/* free the device list */
272
if (t->devices.next != &t->devices)
273
free_devices(&t->devices);
274
275
dm_free_md_mempools(t->mempools);
276
277
kfree(t);
278
}
279
280
void dm_table_get(struct dm_table *t)
281
{
282
atomic_inc(&t->holders);
283
}
284
285
void dm_table_put(struct dm_table *t)
286
{
287
if (!t)
288
return;
289
290
smp_mb__before_atomic_dec();
291
atomic_dec(&t->holders);
292
}
293
294
/*
295
* Checks to see if we need to extend highs or targets.
296
*/
297
static inline int check_space(struct dm_table *t)
298
{
299
if (t->num_targets >= t->num_allocated)
300
return alloc_targets(t, t->num_allocated * 2);
301
302
return 0;
303
}
304
305
/*
306
* See if we've already got a device in the list.
307
*/
308
static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
309
{
310
struct dm_dev_internal *dd;
311
312
list_for_each_entry (dd, l, list)
313
if (dd->dm_dev.bdev->bd_dev == dev)
314
return dd;
315
316
return NULL;
317
}
318
319
/*
320
* Open a device so we can use it as a map destination.
321
*/
322
static int open_dev(struct dm_dev_internal *d, dev_t dev,
323
struct mapped_device *md)
324
{
325
static char *_claim_ptr = "I belong to device-mapper";
326
struct block_device *bdev;
327
328
int r;
329
330
BUG_ON(d->dm_dev.bdev);
331
332
bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
333
if (IS_ERR(bdev))
334
return PTR_ERR(bdev);
335
336
r = bd_link_disk_holder(bdev, dm_disk(md));
337
if (r) {
338
blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
339
return r;
340
}
341
342
d->dm_dev.bdev = bdev;
343
return 0;
344
}
345
346
/*
347
* Close a device that we've been using.
348
*/
349
static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
350
{
351
if (!d->dm_dev.bdev)
352
return;
353
354
bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
355
blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
356
d->dm_dev.bdev = NULL;
357
}
358
359
/*
360
* If possible, this checks an area of a destination device is invalid.
361
*/
362
static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
363
sector_t start, sector_t len, void *data)
364
{
365
struct request_queue *q;
366
struct queue_limits *limits = data;
367
struct block_device *bdev = dev->bdev;
368
sector_t dev_size =
369
i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
370
unsigned short logical_block_size_sectors =
371
limits->logical_block_size >> SECTOR_SHIFT;
372
char b[BDEVNAME_SIZE];
373
374
/*
375
* Some devices exist without request functions,
376
* such as loop devices not yet bound to backing files.
377
* Forbid the use of such devices.
378
*/
379
q = bdev_get_queue(bdev);
380
if (!q || !q->make_request_fn) {
381
DMWARN("%s: %s is not yet initialised: "
382
"start=%llu, len=%llu, dev_size=%llu",
383
dm_device_name(ti->table->md), bdevname(bdev, b),
384
(unsigned long long)start,
385
(unsigned long long)len,
386
(unsigned long long)dev_size);
387
return 1;
388
}
389
390
if (!dev_size)
391
return 0;
392
393
if ((start >= dev_size) || (start + len > dev_size)) {
394
DMWARN("%s: %s too small for target: "
395
"start=%llu, len=%llu, dev_size=%llu",
396
dm_device_name(ti->table->md), bdevname(bdev, b),
397
(unsigned long long)start,
398
(unsigned long long)len,
399
(unsigned long long)dev_size);
400
return 1;
401
}
402
403
if (logical_block_size_sectors <= 1)
404
return 0;
405
406
if (start & (logical_block_size_sectors - 1)) {
407
DMWARN("%s: start=%llu not aligned to h/w "
408
"logical block size %u of %s",
409
dm_device_name(ti->table->md),
410
(unsigned long long)start,
411
limits->logical_block_size, bdevname(bdev, b));
412
return 1;
413
}
414
415
if (len & (logical_block_size_sectors - 1)) {
416
DMWARN("%s: len=%llu not aligned to h/w "
417
"logical block size %u of %s",
418
dm_device_name(ti->table->md),
419
(unsigned long long)len,
420
limits->logical_block_size, bdevname(bdev, b));
421
return 1;
422
}
423
424
return 0;
425
}
426
427
/*
428
* This upgrades the mode on an already open dm_dev, being
429
* careful to leave things as they were if we fail to reopen the
430
* device and not to touch the existing bdev field in case
431
* it is accessed concurrently inside dm_table_any_congested().
432
*/
433
static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
434
struct mapped_device *md)
435
{
436
int r;
437
struct dm_dev_internal dd_new, dd_old;
438
439
dd_new = dd_old = *dd;
440
441
dd_new.dm_dev.mode |= new_mode;
442
dd_new.dm_dev.bdev = NULL;
443
444
r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
445
if (r)
446
return r;
447
448
dd->dm_dev.mode |= new_mode;
449
close_dev(&dd_old, md);
450
451
return 0;
452
}
453
454
/*
455
* Add a device to the list, or just increment the usage count if
456
* it's already present.
457
*/
458
static int __table_get_device(struct dm_table *t, struct dm_target *ti,
459
const char *path, fmode_t mode, struct dm_dev **result)
460
{
461
int r;
462
dev_t uninitialized_var(dev);
463
struct dm_dev_internal *dd;
464
unsigned int major, minor;
465
466
BUG_ON(!t);
467
468
if (sscanf(path, "%u:%u", &major, &minor) == 2) {
469
/* Extract the major/minor numbers */
470
dev = MKDEV(major, minor);
471
if (MAJOR(dev) != major || MINOR(dev) != minor)
472
return -EOVERFLOW;
473
} else {
474
/* convert the path to a device */
475
struct block_device *bdev = lookup_bdev(path);
476
477
if (IS_ERR(bdev))
478
return PTR_ERR(bdev);
479
dev = bdev->bd_dev;
480
bdput(bdev);
481
}
482
483
dd = find_device(&t->devices, dev);
484
if (!dd) {
485
dd = kmalloc(sizeof(*dd), GFP_KERNEL);
486
if (!dd)
487
return -ENOMEM;
488
489
dd->dm_dev.mode = mode;
490
dd->dm_dev.bdev = NULL;
491
492
if ((r = open_dev(dd, dev, t->md))) {
493
kfree(dd);
494
return r;
495
}
496
497
format_dev_t(dd->dm_dev.name, dev);
498
499
atomic_set(&dd->count, 0);
500
list_add(&dd->list, &t->devices);
501
502
} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
503
r = upgrade_mode(dd, mode, t->md);
504
if (r)
505
return r;
506
}
507
atomic_inc(&dd->count);
508
509
*result = &dd->dm_dev;
510
return 0;
511
}
512
513
int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
514
sector_t start, sector_t len, void *data)
515
{
516
struct queue_limits *limits = data;
517
struct block_device *bdev = dev->bdev;
518
struct request_queue *q = bdev_get_queue(bdev);
519
char b[BDEVNAME_SIZE];
520
521
if (unlikely(!q)) {
522
DMWARN("%s: Cannot set limits for nonexistent device %s",
523
dm_device_name(ti->table->md), bdevname(bdev, b));
524
return 0;
525
}
526
527
if (bdev_stack_limits(limits, bdev, start) < 0)
528
DMWARN("%s: adding target device %s caused an alignment inconsistency: "
529
"physical_block_size=%u, logical_block_size=%u, "
530
"alignment_offset=%u, start=%llu",
531
dm_device_name(ti->table->md), bdevname(bdev, b),
532
q->limits.physical_block_size,
533
q->limits.logical_block_size,
534
q->limits.alignment_offset,
535
(unsigned long long) start << SECTOR_SHIFT);
536
537
/*
538
* Check if merge fn is supported.
539
* If not we'll force DM to use PAGE_SIZE or
540
* smaller I/O, just to be safe.
541
*/
542
543
if (q->merge_bvec_fn && !ti->type->merge)
544
blk_limits_max_hw_sectors(limits,
545
(unsigned int) (PAGE_SIZE >> 9));
546
return 0;
547
}
548
EXPORT_SYMBOL_GPL(dm_set_device_limits);
549
550
int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
551
struct dm_dev **result)
552
{
553
return __table_get_device(ti->table, ti, path, mode, result);
554
}
555
556
557
/*
558
* Decrement a devices use count and remove it if necessary.
559
*/
560
void dm_put_device(struct dm_target *ti, struct dm_dev *d)
561
{
562
struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
563
dm_dev);
564
565
if (atomic_dec_and_test(&dd->count)) {
566
close_dev(dd, ti->table->md);
567
list_del(&dd->list);
568
kfree(dd);
569
}
570
}
571
572
/*
573
* Checks to see if the target joins onto the end of the table.
574
*/
575
static int adjoin(struct dm_table *table, struct dm_target *ti)
576
{
577
struct dm_target *prev;
578
579
if (!table->num_targets)
580
return !ti->begin;
581
582
prev = &table->targets[table->num_targets - 1];
583
return (ti->begin == (prev->begin + prev->len));
584
}
585
586
/*
587
* Used to dynamically allocate the arg array.
588
*/
589
static char **realloc_argv(unsigned *array_size, char **old_argv)
590
{
591
char **argv;
592
unsigned new_size;
593
594
new_size = *array_size ? *array_size * 2 : 64;
595
argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
596
if (argv) {
597
memcpy(argv, old_argv, *array_size * sizeof(*argv));
598
*array_size = new_size;
599
}
600
601
kfree(old_argv);
602
return argv;
603
}
604
605
/*
606
* Destructively splits up the argument list to pass to ctr.
607
*/
608
int dm_split_args(int *argc, char ***argvp, char *input)
609
{
610
char *start, *end = input, *out, **argv = NULL;
611
unsigned array_size = 0;
612
613
*argc = 0;
614
615
if (!input) {
616
*argvp = NULL;
617
return 0;
618
}
619
620
argv = realloc_argv(&array_size, argv);
621
if (!argv)
622
return -ENOMEM;
623
624
while (1) {
625
/* Skip whitespace */
626
start = skip_spaces(end);
627
628
if (!*start)
629
break; /* success, we hit the end */
630
631
/* 'out' is used to remove any back-quotes */
632
end = out = start;
633
while (*end) {
634
/* Everything apart from '\0' can be quoted */
635
if (*end == '\\' && *(end + 1)) {
636
*out++ = *(end + 1);
637
end += 2;
638
continue;
639
}
640
641
if (isspace(*end))
642
break; /* end of token */
643
644
*out++ = *end++;
645
}
646
647
/* have we already filled the array ? */
648
if ((*argc + 1) > array_size) {
649
argv = realloc_argv(&array_size, argv);
650
if (!argv)
651
return -ENOMEM;
652
}
653
654
/* we know this is whitespace */
655
if (*end)
656
end++;
657
658
/* terminate the string and put it in the array */
659
*out = '\0';
660
argv[*argc] = start;
661
(*argc)++;
662
}
663
664
*argvp = argv;
665
return 0;
666
}
667
668
/*
669
* Impose necessary and sufficient conditions on a devices's table such
670
* that any incoming bio which respects its logical_block_size can be
671
* processed successfully. If it falls across the boundary between
672
* two or more targets, the size of each piece it gets split into must
673
* be compatible with the logical_block_size of the target processing it.
674
*/
675
static int validate_hardware_logical_block_alignment(struct dm_table *table,
676
struct queue_limits *limits)
677
{
678
/*
679
* This function uses arithmetic modulo the logical_block_size
680
* (in units of 512-byte sectors).
681
*/
682
unsigned short device_logical_block_size_sects =
683
limits->logical_block_size >> SECTOR_SHIFT;
684
685
/*
686
* Offset of the start of the next table entry, mod logical_block_size.
687
*/
688
unsigned short next_target_start = 0;
689
690
/*
691
* Given an aligned bio that extends beyond the end of a
692
* target, how many sectors must the next target handle?
693
*/
694
unsigned short remaining = 0;
695
696
struct dm_target *uninitialized_var(ti);
697
struct queue_limits ti_limits;
698
unsigned i = 0;
699
700
/*
701
* Check each entry in the table in turn.
702
*/
703
while (i < dm_table_get_num_targets(table)) {
704
ti = dm_table_get_target(table, i++);
705
706
blk_set_default_limits(&ti_limits);
707
708
/* combine all target devices' limits */
709
if (ti->type->iterate_devices)
710
ti->type->iterate_devices(ti, dm_set_device_limits,
711
&ti_limits);
712
713
/*
714
* If the remaining sectors fall entirely within this
715
* table entry are they compatible with its logical_block_size?
716
*/
717
if (remaining < ti->len &&
718
remaining & ((ti_limits.logical_block_size >>
719
SECTOR_SHIFT) - 1))
720
break; /* Error */
721
722
next_target_start =
723
(unsigned short) ((next_target_start + ti->len) &
724
(device_logical_block_size_sects - 1));
725
remaining = next_target_start ?
726
device_logical_block_size_sects - next_target_start : 0;
727
}
728
729
if (remaining) {
730
DMWARN("%s: table line %u (start sect %llu len %llu) "
731
"not aligned to h/w logical block size %u",
732
dm_device_name(table->md), i,
733
(unsigned long long) ti->begin,
734
(unsigned long long) ti->len,
735
limits->logical_block_size);
736
return -EINVAL;
737
}
738
739
return 0;
740
}
741
742
int dm_table_add_target(struct dm_table *t, const char *type,
743
sector_t start, sector_t len, char *params)
744
{
745
int r = -EINVAL, argc;
746
char **argv;
747
struct dm_target *tgt;
748
749
if ((r = check_space(t)))
750
return r;
751
752
tgt = t->targets + t->num_targets;
753
memset(tgt, 0, sizeof(*tgt));
754
755
if (!len) {
756
DMERR("%s: zero-length target", dm_device_name(t->md));
757
return -EINVAL;
758
}
759
760
tgt->type = dm_get_target_type(type);
761
if (!tgt->type) {
762
DMERR("%s: %s: unknown target type", dm_device_name(t->md),
763
type);
764
return -EINVAL;
765
}
766
767
tgt->table = t;
768
tgt->begin = start;
769
tgt->len = len;
770
tgt->error = "Unknown error";
771
772
/*
773
* Does this target adjoin the previous one ?
774
*/
775
if (!adjoin(t, tgt)) {
776
tgt->error = "Gap in table";
777
r = -EINVAL;
778
goto bad;
779
}
780
781
r = dm_split_args(&argc, &argv, params);
782
if (r) {
783
tgt->error = "couldn't split parameters (insufficient memory)";
784
goto bad;
785
}
786
787
r = tgt->type->ctr(tgt, argc, argv);
788
kfree(argv);
789
if (r)
790
goto bad;
791
792
t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
793
794
if (!tgt->num_discard_requests)
795
t->discards_supported = 0;
796
797
return 0;
798
799
bad:
800
DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
801
dm_put_target_type(tgt->type);
802
return r;
803
}
804
805
static int dm_table_set_type(struct dm_table *t)
806
{
807
unsigned i;
808
unsigned bio_based = 0, request_based = 0;
809
struct dm_target *tgt;
810
struct dm_dev_internal *dd;
811
struct list_head *devices;
812
813
for (i = 0; i < t->num_targets; i++) {
814
tgt = t->targets + i;
815
if (dm_target_request_based(tgt))
816
request_based = 1;
817
else
818
bio_based = 1;
819
820
if (bio_based && request_based) {
821
DMWARN("Inconsistent table: different target types"
822
" can't be mixed up");
823
return -EINVAL;
824
}
825
}
826
827
if (bio_based) {
828
/* We must use this table as bio-based */
829
t->type = DM_TYPE_BIO_BASED;
830
return 0;
831
}
832
833
BUG_ON(!request_based); /* No targets in this table */
834
835
/* Non-request-stackable devices can't be used for request-based dm */
836
devices = dm_table_get_devices(t);
837
list_for_each_entry(dd, devices, list) {
838
if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
839
DMWARN("table load rejected: including"
840
" non-request-stackable devices");
841
return -EINVAL;
842
}
843
}
844
845
/*
846
* Request-based dm supports only tables that have a single target now.
847
* To support multiple targets, request splitting support is needed,
848
* and that needs lots of changes in the block-layer.
849
* (e.g. request completion process for partial completion.)
850
*/
851
if (t->num_targets > 1) {
852
DMWARN("Request-based dm doesn't support multiple targets yet");
853
return -EINVAL;
854
}
855
856
t->type = DM_TYPE_REQUEST_BASED;
857
858
return 0;
859
}
860
861
unsigned dm_table_get_type(struct dm_table *t)
862
{
863
return t->type;
864
}
865
866
bool dm_table_request_based(struct dm_table *t)
867
{
868
return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
869
}
870
871
int dm_table_alloc_md_mempools(struct dm_table *t)
872
{
873
unsigned type = dm_table_get_type(t);
874
875
if (unlikely(type == DM_TYPE_NONE)) {
876
DMWARN("no table type is set, can't allocate mempools");
877
return -EINVAL;
878
}
879
880
t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
881
if (!t->mempools)
882
return -ENOMEM;
883
884
return 0;
885
}
886
887
void dm_table_free_md_mempools(struct dm_table *t)
888
{
889
dm_free_md_mempools(t->mempools);
890
t->mempools = NULL;
891
}
892
893
struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
894
{
895
return t->mempools;
896
}
897
898
static int setup_indexes(struct dm_table *t)
899
{
900
int i;
901
unsigned int total = 0;
902
sector_t *indexes;
903
904
/* allocate the space for *all* the indexes */
905
for (i = t->depth - 2; i >= 0; i--) {
906
t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
907
total += t->counts[i];
908
}
909
910
indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
911
if (!indexes)
912
return -ENOMEM;
913
914
/* set up internal nodes, bottom-up */
915
for (i = t->depth - 2; i >= 0; i--) {
916
t->index[i] = indexes;
917
indexes += (KEYS_PER_NODE * t->counts[i]);
918
setup_btree_index(i, t);
919
}
920
921
return 0;
922
}
923
924
/*
925
* Builds the btree to index the map.
926
*/
927
static int dm_table_build_index(struct dm_table *t)
928
{
929
int r = 0;
930
unsigned int leaf_nodes;
931
932
/* how many indexes will the btree have ? */
933
leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
934
t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
935
936
/* leaf layer has already been set up */
937
t->counts[t->depth - 1] = leaf_nodes;
938
t->index[t->depth - 1] = t->highs;
939
940
if (t->depth >= 2)
941
r = setup_indexes(t);
942
943
return r;
944
}
945
946
/*
947
* Get a disk whose integrity profile reflects the table's profile.
948
* If %match_all is true, all devices' profiles must match.
949
* If %match_all is false, all devices must at least have an
950
* allocated integrity profile; but uninitialized is ok.
951
* Returns NULL if integrity support was inconsistent or unavailable.
952
*/
953
static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
954
bool match_all)
955
{
956
struct list_head *devices = dm_table_get_devices(t);
957
struct dm_dev_internal *dd = NULL;
958
struct gendisk *prev_disk = NULL, *template_disk = NULL;
959
960
list_for_each_entry(dd, devices, list) {
961
template_disk = dd->dm_dev.bdev->bd_disk;
962
if (!blk_get_integrity(template_disk))
963
goto no_integrity;
964
if (!match_all && !blk_integrity_is_initialized(template_disk))
965
continue; /* skip uninitialized profiles */
966
else if (prev_disk &&
967
blk_integrity_compare(prev_disk, template_disk) < 0)
968
goto no_integrity;
969
prev_disk = template_disk;
970
}
971
972
return template_disk;
973
974
no_integrity:
975
if (prev_disk)
976
DMWARN("%s: integrity not set: %s and %s profile mismatch",
977
dm_device_name(t->md),
978
prev_disk->disk_name,
979
template_disk->disk_name);
980
return NULL;
981
}
982
983
/*
984
* Register the mapped device for blk_integrity support if
985
* the underlying devices have an integrity profile. But all devices
986
* may not have matching profiles (checking all devices isn't reliable
987
* during table load because this table may use other DM device(s) which
988
* must be resumed before they will have an initialized integity profile).
989
* Stacked DM devices force a 2 stage integrity profile validation:
990
* 1 - during load, validate all initialized integrity profiles match
991
* 2 - during resume, validate all integrity profiles match
992
*/
993
static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
994
{
995
struct gendisk *template_disk = NULL;
996
997
template_disk = dm_table_get_integrity_disk(t, false);
998
if (!template_disk)
999
return 0;
1000
1001
if (!blk_integrity_is_initialized(dm_disk(md))) {
1002
t->integrity_supported = 1;
1003
return blk_integrity_register(dm_disk(md), NULL);
1004
}
1005
1006
/*
1007
* If DM device already has an initalized integrity
1008
* profile the new profile should not conflict.
1009
*/
1010
if (blk_integrity_is_initialized(template_disk) &&
1011
blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1012
DMWARN("%s: conflict with existing integrity profile: "
1013
"%s profile mismatch",
1014
dm_device_name(t->md),
1015
template_disk->disk_name);
1016
return 1;
1017
}
1018
1019
/* Preserve existing initialized integrity profile */
1020
t->integrity_supported = 1;
1021
return 0;
1022
}
1023
1024
/*
1025
* Prepares the table for use by building the indices,
1026
* setting the type, and allocating mempools.
1027
*/
1028
int dm_table_complete(struct dm_table *t)
1029
{
1030
int r;
1031
1032
r = dm_table_set_type(t);
1033
if (r) {
1034
DMERR("unable to set table type");
1035
return r;
1036
}
1037
1038
r = dm_table_build_index(t);
1039
if (r) {
1040
DMERR("unable to build btrees");
1041
return r;
1042
}
1043
1044
r = dm_table_prealloc_integrity(t, t->md);
1045
if (r) {
1046
DMERR("could not register integrity profile.");
1047
return r;
1048
}
1049
1050
r = dm_table_alloc_md_mempools(t);
1051
if (r)
1052
DMERR("unable to allocate mempools");
1053
1054
return r;
1055
}
1056
1057
static DEFINE_MUTEX(_event_lock);
1058
void dm_table_event_callback(struct dm_table *t,
1059
void (*fn)(void *), void *context)
1060
{
1061
mutex_lock(&_event_lock);
1062
t->event_fn = fn;
1063
t->event_context = context;
1064
mutex_unlock(&_event_lock);
1065
}
1066
1067
void dm_table_event(struct dm_table *t)
1068
{
1069
/*
1070
* You can no longer call dm_table_event() from interrupt
1071
* context, use a bottom half instead.
1072
*/
1073
BUG_ON(in_interrupt());
1074
1075
mutex_lock(&_event_lock);
1076
if (t->event_fn)
1077
t->event_fn(t->event_context);
1078
mutex_unlock(&_event_lock);
1079
}
1080
1081
sector_t dm_table_get_size(struct dm_table *t)
1082
{
1083
return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1084
}
1085
1086
struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1087
{
1088
if (index >= t->num_targets)
1089
return NULL;
1090
1091
return t->targets + index;
1092
}
1093
1094
/*
1095
* Search the btree for the correct target.
1096
*
1097
* Caller should check returned pointer with dm_target_is_valid()
1098
* to trap I/O beyond end of device.
1099
*/
1100
struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1101
{
1102
unsigned int l, n = 0, k = 0;
1103
sector_t *node;
1104
1105
for (l = 0; l < t->depth; l++) {
1106
n = get_child(n, k);
1107
node = get_node(t, l, n);
1108
1109
for (k = 0; k < KEYS_PER_NODE; k++)
1110
if (node[k] >= sector)
1111
break;
1112
}
1113
1114
return &t->targets[(KEYS_PER_NODE * n) + k];
1115
}
1116
1117
/*
1118
* Establish the new table's queue_limits and validate them.
1119
*/
1120
int dm_calculate_queue_limits(struct dm_table *table,
1121
struct queue_limits *limits)
1122
{
1123
struct dm_target *uninitialized_var(ti);
1124
struct queue_limits ti_limits;
1125
unsigned i = 0;
1126
1127
blk_set_default_limits(limits);
1128
1129
while (i < dm_table_get_num_targets(table)) {
1130
blk_set_default_limits(&ti_limits);
1131
1132
ti = dm_table_get_target(table, i++);
1133
1134
if (!ti->type->iterate_devices)
1135
goto combine_limits;
1136
1137
/*
1138
* Combine queue limits of all the devices this target uses.
1139
*/
1140
ti->type->iterate_devices(ti, dm_set_device_limits,
1141
&ti_limits);
1142
1143
/* Set I/O hints portion of queue limits */
1144
if (ti->type->io_hints)
1145
ti->type->io_hints(ti, &ti_limits);
1146
1147
/*
1148
* Check each device area is consistent with the target's
1149
* overall queue limits.
1150
*/
1151
if (ti->type->iterate_devices(ti, device_area_is_invalid,
1152
&ti_limits))
1153
return -EINVAL;
1154
1155
combine_limits:
1156
/*
1157
* Merge this target's queue limits into the overall limits
1158
* for the table.
1159
*/
1160
if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1161
DMWARN("%s: adding target device "
1162
"(start sect %llu len %llu) "
1163
"caused an alignment inconsistency",
1164
dm_device_name(table->md),
1165
(unsigned long long) ti->begin,
1166
(unsigned long long) ti->len);
1167
}
1168
1169
return validate_hardware_logical_block_alignment(table, limits);
1170
}
1171
1172
/*
1173
* Set the integrity profile for this device if all devices used have
1174
* matching profiles. We're quite deep in the resume path but still
1175
* don't know if all devices (particularly DM devices this device
1176
* may be stacked on) have matching profiles. Even if the profiles
1177
* don't match we have no way to fail (to resume) at this point.
1178
*/
1179
static void dm_table_set_integrity(struct dm_table *t)
1180
{
1181
struct gendisk *template_disk = NULL;
1182
1183
if (!blk_get_integrity(dm_disk(t->md)))
1184
return;
1185
1186
template_disk = dm_table_get_integrity_disk(t, true);
1187
if (!template_disk &&
1188
blk_integrity_is_initialized(dm_disk(t->md))) {
1189
DMWARN("%s: device no longer has a valid integrity profile",
1190
dm_device_name(t->md));
1191
return;
1192
}
1193
blk_integrity_register(dm_disk(t->md),
1194
blk_get_integrity(template_disk));
1195
}
1196
1197
void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1198
struct queue_limits *limits)
1199
{
1200
/*
1201
* Copy table's limits to the DM device's request_queue
1202
*/
1203
q->limits = *limits;
1204
1205
if (!dm_table_supports_discards(t))
1206
queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1207
else
1208
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1209
1210
dm_table_set_integrity(t);
1211
1212
/*
1213
* QUEUE_FLAG_STACKABLE must be set after all queue settings are
1214
* visible to other CPUs because, once the flag is set, incoming bios
1215
* are processed by request-based dm, which refers to the queue
1216
* settings.
1217
* Until the flag set, bios are passed to bio-based dm and queued to
1218
* md->deferred where queue settings are not needed yet.
1219
* Those bios are passed to request-based dm at the resume time.
1220
*/
1221
smp_mb();
1222
if (dm_table_request_based(t))
1223
queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1224
}
1225
1226
unsigned int dm_table_get_num_targets(struct dm_table *t)
1227
{
1228
return t->num_targets;
1229
}
1230
1231
struct list_head *dm_table_get_devices(struct dm_table *t)
1232
{
1233
return &t->devices;
1234
}
1235
1236
fmode_t dm_table_get_mode(struct dm_table *t)
1237
{
1238
return t->mode;
1239
}
1240
1241
static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1242
{
1243
int i = t->num_targets;
1244
struct dm_target *ti = t->targets;
1245
1246
while (i--) {
1247
if (postsuspend) {
1248
if (ti->type->postsuspend)
1249
ti->type->postsuspend(ti);
1250
} else if (ti->type->presuspend)
1251
ti->type->presuspend(ti);
1252
1253
ti++;
1254
}
1255
}
1256
1257
void dm_table_presuspend_targets(struct dm_table *t)
1258
{
1259
if (!t)
1260
return;
1261
1262
suspend_targets(t, 0);
1263
}
1264
1265
void dm_table_postsuspend_targets(struct dm_table *t)
1266
{
1267
if (!t)
1268
return;
1269
1270
suspend_targets(t, 1);
1271
}
1272
1273
int dm_table_resume_targets(struct dm_table *t)
1274
{
1275
int i, r = 0;
1276
1277
for (i = 0; i < t->num_targets; i++) {
1278
struct dm_target *ti = t->targets + i;
1279
1280
if (!ti->type->preresume)
1281
continue;
1282
1283
r = ti->type->preresume(ti);
1284
if (r)
1285
return r;
1286
}
1287
1288
for (i = 0; i < t->num_targets; i++) {
1289
struct dm_target *ti = t->targets + i;
1290
1291
if (ti->type->resume)
1292
ti->type->resume(ti);
1293
}
1294
1295
return 0;
1296
}
1297
1298
void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1299
{
1300
list_add(&cb->list, &t->target_callbacks);
1301
}
1302
EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1303
1304
int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1305
{
1306
struct dm_dev_internal *dd;
1307
struct list_head *devices = dm_table_get_devices(t);
1308
struct dm_target_callbacks *cb;
1309
int r = 0;
1310
1311
list_for_each_entry(dd, devices, list) {
1312
struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1313
char b[BDEVNAME_SIZE];
1314
1315
if (likely(q))
1316
r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1317
else
1318
DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1319
dm_device_name(t->md),
1320
bdevname(dd->dm_dev.bdev, b));
1321
}
1322
1323
list_for_each_entry(cb, &t->target_callbacks, list)
1324
if (cb->congested_fn)
1325
r |= cb->congested_fn(cb, bdi_bits);
1326
1327
return r;
1328
}
1329
1330
int dm_table_any_busy_target(struct dm_table *t)
1331
{
1332
unsigned i;
1333
struct dm_target *ti;
1334
1335
for (i = 0; i < t->num_targets; i++) {
1336
ti = t->targets + i;
1337
if (ti->type->busy && ti->type->busy(ti))
1338
return 1;
1339
}
1340
1341
return 0;
1342
}
1343
1344
struct mapped_device *dm_table_get_md(struct dm_table *t)
1345
{
1346
return t->md;
1347
}
1348
1349
static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1350
sector_t start, sector_t len, void *data)
1351
{
1352
struct request_queue *q = bdev_get_queue(dev->bdev);
1353
1354
return q && blk_queue_discard(q);
1355
}
1356
1357
bool dm_table_supports_discards(struct dm_table *t)
1358
{
1359
struct dm_target *ti;
1360
unsigned i = 0;
1361
1362
if (!t->discards_supported)
1363
return 0;
1364
1365
/*
1366
* Unless any target used by the table set discards_supported,
1367
* require at least one underlying device to support discards.
1368
* t->devices includes internal dm devices such as mirror logs
1369
* so we need to use iterate_devices here, which targets
1370
* supporting discard must provide.
1371
*/
1372
while (i < dm_table_get_num_targets(t)) {
1373
ti = dm_table_get_target(t, i++);
1374
1375
if (ti->discards_supported)
1376
return 1;
1377
1378
if (ti->type->iterate_devices &&
1379
ti->type->iterate_devices(ti, device_discard_capable, NULL))
1380
return 1;
1381
}
1382
1383
return 0;
1384
}
1385
1386
EXPORT_SYMBOL(dm_vcalloc);
1387
EXPORT_SYMBOL(dm_get_device);
1388
EXPORT_SYMBOL(dm_put_device);
1389
EXPORT_SYMBOL(dm_table_event);
1390
EXPORT_SYMBOL(dm_table_get_size);
1391
EXPORT_SYMBOL(dm_table_get_mode);
1392
EXPORT_SYMBOL(dm_table_get_md);
1393
EXPORT_SYMBOL(dm_table_put);
1394
EXPORT_SYMBOL(dm_table_get);
1395
1396