Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/md/md.c
15109 views
1
/*
2
md.c : Multiple Devices driver for Linux
3
Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5
completely rewritten, based on the MD driver code from Marc Zyngier
6
7
Changes:
8
9
- RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10
- RAID-6 extensions by H. Peter Anvin <[email protected]>
11
- boot support for linear and striped mode by Harald Hoyer <[email protected]>
12
- kerneld support by Boris Tobotras <[email protected]>
13
- kmod support by: Cyrus Durgin
14
- RAID0 bugfixes: Mark Anthony Lisher <[email protected]>
15
- Devfs support by Richard Gooch <[email protected]>
16
17
- lots of fixes and improvements to the RAID1/RAID5 and generic
18
RAID code (such as request based resynchronization):
19
20
Neil Brown <[email protected]>.
21
22
- persistent bitmap code
23
Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25
This program is free software; you can redistribute it and/or modify
26
it under the terms of the GNU General Public License as published by
27
the Free Software Foundation; either version 2, or (at your option)
28
any later version.
29
30
You should have received a copy of the GNU General Public License
31
(for example /usr/src/linux/COPYING); if not, write to the Free
32
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33
*/
34
35
#include <linux/kthread.h>
36
#include <linux/blkdev.h>
37
#include <linux/sysctl.h>
38
#include <linux/seq_file.h>
39
#include <linux/mutex.h>
40
#include <linux/buffer_head.h> /* for invalidate_bdev */
41
#include <linux/poll.h>
42
#include <linux/ctype.h>
43
#include <linux/string.h>
44
#include <linux/hdreg.h>
45
#include <linux/proc_fs.h>
46
#include <linux/random.h>
47
#include <linux/reboot.h>
48
#include <linux/file.h>
49
#include <linux/compat.h>
50
#include <linux/delay.h>
51
#include <linux/raid/md_p.h>
52
#include <linux/raid/md_u.h>
53
#include <linux/slab.h>
54
#include "md.h"
55
#include "bitmap.h"
56
57
#define DEBUG 0
58
#define dprintk(x...) ((void)(DEBUG && printk(x)))
59
60
#ifndef MODULE
61
static void autostart_arrays(int part);
62
#endif
63
64
static LIST_HEAD(pers_list);
65
static DEFINE_SPINLOCK(pers_lock);
66
67
static void md_print_devices(void);
68
69
static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70
static struct workqueue_struct *md_wq;
71
static struct workqueue_struct *md_misc_wq;
72
73
#define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
74
75
/*
76
* Default number of read corrections we'll attempt on an rdev
77
* before ejecting it from the array. We divide the read error
78
* count by 2 for every hour elapsed between read errors.
79
*/
80
#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
81
/*
82
* Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83
* is 1000 KB/sec, so the extra system load does not show up that much.
84
* Increase it if you want to have more _guaranteed_ speed. Note that
85
* the RAID driver will use the maximum available bandwidth if the IO
86
* subsystem is idle. There is also an 'absolute maximum' reconstruction
87
* speed limit - in case reconstruction slows down your system despite
88
* idle IO detection.
89
*
90
* you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91
* or /sys/block/mdX/md/sync_speed_{min,max}
92
*/
93
94
static int sysctl_speed_limit_min = 1000;
95
static int sysctl_speed_limit_max = 200000;
96
static inline int speed_min(mddev_t *mddev)
97
{
98
return mddev->sync_speed_min ?
99
mddev->sync_speed_min : sysctl_speed_limit_min;
100
}
101
102
static inline int speed_max(mddev_t *mddev)
103
{
104
return mddev->sync_speed_max ?
105
mddev->sync_speed_max : sysctl_speed_limit_max;
106
}
107
108
static struct ctl_table_header *raid_table_header;
109
110
static ctl_table raid_table[] = {
111
{
112
.procname = "speed_limit_min",
113
.data = &sysctl_speed_limit_min,
114
.maxlen = sizeof(int),
115
.mode = S_IRUGO|S_IWUSR,
116
.proc_handler = proc_dointvec,
117
},
118
{
119
.procname = "speed_limit_max",
120
.data = &sysctl_speed_limit_max,
121
.maxlen = sizeof(int),
122
.mode = S_IRUGO|S_IWUSR,
123
.proc_handler = proc_dointvec,
124
},
125
{ }
126
};
127
128
static ctl_table raid_dir_table[] = {
129
{
130
.procname = "raid",
131
.maxlen = 0,
132
.mode = S_IRUGO|S_IXUGO,
133
.child = raid_table,
134
},
135
{ }
136
};
137
138
static ctl_table raid_root_table[] = {
139
{
140
.procname = "dev",
141
.maxlen = 0,
142
.mode = 0555,
143
.child = raid_dir_table,
144
},
145
{ }
146
};
147
148
static const struct block_device_operations md_fops;
149
150
static int start_readonly;
151
152
/* bio_clone_mddev
153
* like bio_clone, but with a local bio set
154
*/
155
156
static void mddev_bio_destructor(struct bio *bio)
157
{
158
mddev_t *mddev, **mddevp;
159
160
mddevp = (void*)bio;
161
mddev = mddevp[-1];
162
163
bio_free(bio, mddev->bio_set);
164
}
165
166
struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
167
mddev_t *mddev)
168
{
169
struct bio *b;
170
mddev_t **mddevp;
171
172
if (!mddev || !mddev->bio_set)
173
return bio_alloc(gfp_mask, nr_iovecs);
174
175
b = bio_alloc_bioset(gfp_mask, nr_iovecs,
176
mddev->bio_set);
177
if (!b)
178
return NULL;
179
mddevp = (void*)b;
180
mddevp[-1] = mddev;
181
b->bi_destructor = mddev_bio_destructor;
182
return b;
183
}
184
EXPORT_SYMBOL_GPL(bio_alloc_mddev);
185
186
struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
187
mddev_t *mddev)
188
{
189
struct bio *b;
190
mddev_t **mddevp;
191
192
if (!mddev || !mddev->bio_set)
193
return bio_clone(bio, gfp_mask);
194
195
b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
196
mddev->bio_set);
197
if (!b)
198
return NULL;
199
mddevp = (void*)b;
200
mddevp[-1] = mddev;
201
b->bi_destructor = mddev_bio_destructor;
202
__bio_clone(b, bio);
203
if (bio_integrity(bio)) {
204
int ret;
205
206
ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
207
208
if (ret < 0) {
209
bio_put(b);
210
return NULL;
211
}
212
}
213
214
return b;
215
}
216
EXPORT_SYMBOL_GPL(bio_clone_mddev);
217
218
/*
219
* We have a system wide 'event count' that is incremented
220
* on any 'interesting' event, and readers of /proc/mdstat
221
* can use 'poll' or 'select' to find out when the event
222
* count increases.
223
*
224
* Events are:
225
* start array, stop array, error, add device, remove device,
226
* start build, activate spare
227
*/
228
static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
229
static atomic_t md_event_count;
230
void md_new_event(mddev_t *mddev)
231
{
232
atomic_inc(&md_event_count);
233
wake_up(&md_event_waiters);
234
}
235
EXPORT_SYMBOL_GPL(md_new_event);
236
237
/* Alternate version that can be called from interrupts
238
* when calling sysfs_notify isn't needed.
239
*/
240
static void md_new_event_inintr(mddev_t *mddev)
241
{
242
atomic_inc(&md_event_count);
243
wake_up(&md_event_waiters);
244
}
245
246
/*
247
* Enables to iterate over all existing md arrays
248
* all_mddevs_lock protects this list.
249
*/
250
static LIST_HEAD(all_mddevs);
251
static DEFINE_SPINLOCK(all_mddevs_lock);
252
253
254
/*
255
* iterates through all used mddevs in the system.
256
* We take care to grab the all_mddevs_lock whenever navigating
257
* the list, and to always hold a refcount when unlocked.
258
* Any code which breaks out of this loop while own
259
* a reference to the current mddev and must mddev_put it.
260
*/
261
#define for_each_mddev(mddev,tmp) \
262
\
263
for (({ spin_lock(&all_mddevs_lock); \
264
tmp = all_mddevs.next; \
265
mddev = NULL;}); \
266
({ if (tmp != &all_mddevs) \
267
mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
268
spin_unlock(&all_mddevs_lock); \
269
if (mddev) mddev_put(mddev); \
270
mddev = list_entry(tmp, mddev_t, all_mddevs); \
271
tmp != &all_mddevs;}); \
272
({ spin_lock(&all_mddevs_lock); \
273
tmp = tmp->next;}) \
274
)
275
276
277
/* Rather than calling directly into the personality make_request function,
278
* IO requests come here first so that we can check if the device is
279
* being suspended pending a reconfiguration.
280
* We hold a refcount over the call to ->make_request. By the time that
281
* call has finished, the bio has been linked into some internal structure
282
* and so is visible to ->quiesce(), so we don't need the refcount any more.
283
*/
284
static int md_make_request(struct request_queue *q, struct bio *bio)
285
{
286
const int rw = bio_data_dir(bio);
287
mddev_t *mddev = q->queuedata;
288
int rv;
289
int cpu;
290
unsigned int sectors;
291
292
if (mddev == NULL || mddev->pers == NULL
293
|| !mddev->ready) {
294
bio_io_error(bio);
295
return 0;
296
}
297
smp_rmb(); /* Ensure implications of 'active' are visible */
298
rcu_read_lock();
299
if (mddev->suspended) {
300
DEFINE_WAIT(__wait);
301
for (;;) {
302
prepare_to_wait(&mddev->sb_wait, &__wait,
303
TASK_UNINTERRUPTIBLE);
304
if (!mddev->suspended)
305
break;
306
rcu_read_unlock();
307
schedule();
308
rcu_read_lock();
309
}
310
finish_wait(&mddev->sb_wait, &__wait);
311
}
312
atomic_inc(&mddev->active_io);
313
rcu_read_unlock();
314
315
/*
316
* save the sectors now since our bio can
317
* go away inside make_request
318
*/
319
sectors = bio_sectors(bio);
320
rv = mddev->pers->make_request(mddev, bio);
321
322
cpu = part_stat_lock();
323
part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
324
part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
325
part_stat_unlock();
326
327
if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
328
wake_up(&mddev->sb_wait);
329
330
return rv;
331
}
332
333
/* mddev_suspend makes sure no new requests are submitted
334
* to the device, and that any requests that have been submitted
335
* are completely handled.
336
* Once ->stop is called and completes, the module will be completely
337
* unused.
338
*/
339
void mddev_suspend(mddev_t *mddev)
340
{
341
BUG_ON(mddev->suspended);
342
mddev->suspended = 1;
343
synchronize_rcu();
344
wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
345
mddev->pers->quiesce(mddev, 1);
346
}
347
EXPORT_SYMBOL_GPL(mddev_suspend);
348
349
void mddev_resume(mddev_t *mddev)
350
{
351
mddev->suspended = 0;
352
wake_up(&mddev->sb_wait);
353
mddev->pers->quiesce(mddev, 0);
354
355
md_wakeup_thread(mddev->thread);
356
md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
357
}
358
EXPORT_SYMBOL_GPL(mddev_resume);
359
360
int mddev_congested(mddev_t *mddev, int bits)
361
{
362
return mddev->suspended;
363
}
364
EXPORT_SYMBOL(mddev_congested);
365
366
/*
367
* Generic flush handling for md
368
*/
369
370
static void md_end_flush(struct bio *bio, int err)
371
{
372
mdk_rdev_t *rdev = bio->bi_private;
373
mddev_t *mddev = rdev->mddev;
374
375
rdev_dec_pending(rdev, mddev);
376
377
if (atomic_dec_and_test(&mddev->flush_pending)) {
378
/* The pre-request flush has finished */
379
queue_work(md_wq, &mddev->flush_work);
380
}
381
bio_put(bio);
382
}
383
384
static void md_submit_flush_data(struct work_struct *ws);
385
386
static void submit_flushes(struct work_struct *ws)
387
{
388
mddev_t *mddev = container_of(ws, mddev_t, flush_work);
389
mdk_rdev_t *rdev;
390
391
INIT_WORK(&mddev->flush_work, md_submit_flush_data);
392
atomic_set(&mddev->flush_pending, 1);
393
rcu_read_lock();
394
list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
395
if (rdev->raid_disk >= 0 &&
396
!test_bit(Faulty, &rdev->flags)) {
397
/* Take two references, one is dropped
398
* when request finishes, one after
399
* we reclaim rcu_read_lock
400
*/
401
struct bio *bi;
402
atomic_inc(&rdev->nr_pending);
403
atomic_inc(&rdev->nr_pending);
404
rcu_read_unlock();
405
bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
406
bi->bi_end_io = md_end_flush;
407
bi->bi_private = rdev;
408
bi->bi_bdev = rdev->bdev;
409
atomic_inc(&mddev->flush_pending);
410
submit_bio(WRITE_FLUSH, bi);
411
rcu_read_lock();
412
rdev_dec_pending(rdev, mddev);
413
}
414
rcu_read_unlock();
415
if (atomic_dec_and_test(&mddev->flush_pending))
416
queue_work(md_wq, &mddev->flush_work);
417
}
418
419
static void md_submit_flush_data(struct work_struct *ws)
420
{
421
mddev_t *mddev = container_of(ws, mddev_t, flush_work);
422
struct bio *bio = mddev->flush_bio;
423
424
if (bio->bi_size == 0)
425
/* an empty barrier - all done */
426
bio_endio(bio, 0);
427
else {
428
bio->bi_rw &= ~REQ_FLUSH;
429
if (mddev->pers->make_request(mddev, bio))
430
generic_make_request(bio);
431
}
432
433
mddev->flush_bio = NULL;
434
wake_up(&mddev->sb_wait);
435
}
436
437
void md_flush_request(mddev_t *mddev, struct bio *bio)
438
{
439
spin_lock_irq(&mddev->write_lock);
440
wait_event_lock_irq(mddev->sb_wait,
441
!mddev->flush_bio,
442
mddev->write_lock, /*nothing*/);
443
mddev->flush_bio = bio;
444
spin_unlock_irq(&mddev->write_lock);
445
446
INIT_WORK(&mddev->flush_work, submit_flushes);
447
queue_work(md_wq, &mddev->flush_work);
448
}
449
EXPORT_SYMBOL(md_flush_request);
450
451
/* Support for plugging.
452
* This mirrors the plugging support in request_queue, but does not
453
* require having a whole queue or request structures.
454
* We allocate an md_plug_cb for each md device and each thread it gets
455
* plugged on. This links tot the private plug_handle structure in the
456
* personality data where we keep a count of the number of outstanding
457
* plugs so other code can see if a plug is active.
458
*/
459
struct md_plug_cb {
460
struct blk_plug_cb cb;
461
mddev_t *mddev;
462
};
463
464
static void plugger_unplug(struct blk_plug_cb *cb)
465
{
466
struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
467
if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
468
md_wakeup_thread(mdcb->mddev->thread);
469
kfree(mdcb);
470
}
471
472
/* Check that an unplug wakeup will come shortly.
473
* If not, wakeup the md thread immediately
474
*/
475
int mddev_check_plugged(mddev_t *mddev)
476
{
477
struct blk_plug *plug = current->plug;
478
struct md_plug_cb *mdcb;
479
480
if (!plug)
481
return 0;
482
483
list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
484
if (mdcb->cb.callback == plugger_unplug &&
485
mdcb->mddev == mddev) {
486
/* Already on the list, move to top */
487
if (mdcb != list_first_entry(&plug->cb_list,
488
struct md_plug_cb,
489
cb.list))
490
list_move(&mdcb->cb.list, &plug->cb_list);
491
return 1;
492
}
493
}
494
/* Not currently on the callback list */
495
mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
496
if (!mdcb)
497
return 0;
498
499
mdcb->mddev = mddev;
500
mdcb->cb.callback = plugger_unplug;
501
atomic_inc(&mddev->plug_cnt);
502
list_add(&mdcb->cb.list, &plug->cb_list);
503
return 1;
504
}
505
EXPORT_SYMBOL_GPL(mddev_check_plugged);
506
507
static inline mddev_t *mddev_get(mddev_t *mddev)
508
{
509
atomic_inc(&mddev->active);
510
return mddev;
511
}
512
513
static void mddev_delayed_delete(struct work_struct *ws);
514
515
static void mddev_put(mddev_t *mddev)
516
{
517
struct bio_set *bs = NULL;
518
519
if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
520
return;
521
if (!mddev->raid_disks && list_empty(&mddev->disks) &&
522
mddev->ctime == 0 && !mddev->hold_active) {
523
/* Array is not configured at all, and not held active,
524
* so destroy it */
525
list_del(&mddev->all_mddevs);
526
bs = mddev->bio_set;
527
mddev->bio_set = NULL;
528
if (mddev->gendisk) {
529
/* We did a probe so need to clean up. Call
530
* queue_work inside the spinlock so that
531
* flush_workqueue() after mddev_find will
532
* succeed in waiting for the work to be done.
533
*/
534
INIT_WORK(&mddev->del_work, mddev_delayed_delete);
535
queue_work(md_misc_wq, &mddev->del_work);
536
} else
537
kfree(mddev);
538
}
539
spin_unlock(&all_mddevs_lock);
540
if (bs)
541
bioset_free(bs);
542
}
543
544
void mddev_init(mddev_t *mddev)
545
{
546
mutex_init(&mddev->open_mutex);
547
mutex_init(&mddev->reconfig_mutex);
548
mutex_init(&mddev->bitmap_info.mutex);
549
INIT_LIST_HEAD(&mddev->disks);
550
INIT_LIST_HEAD(&mddev->all_mddevs);
551
init_timer(&mddev->safemode_timer);
552
atomic_set(&mddev->active, 1);
553
atomic_set(&mddev->openers, 0);
554
atomic_set(&mddev->active_io, 0);
555
atomic_set(&mddev->plug_cnt, 0);
556
spin_lock_init(&mddev->write_lock);
557
atomic_set(&mddev->flush_pending, 0);
558
init_waitqueue_head(&mddev->sb_wait);
559
init_waitqueue_head(&mddev->recovery_wait);
560
mddev->reshape_position = MaxSector;
561
mddev->resync_min = 0;
562
mddev->resync_max = MaxSector;
563
mddev->level = LEVEL_NONE;
564
}
565
EXPORT_SYMBOL_GPL(mddev_init);
566
567
static mddev_t * mddev_find(dev_t unit)
568
{
569
mddev_t *mddev, *new = NULL;
570
571
if (unit && MAJOR(unit) != MD_MAJOR)
572
unit &= ~((1<<MdpMinorShift)-1);
573
574
retry:
575
spin_lock(&all_mddevs_lock);
576
577
if (unit) {
578
list_for_each_entry(mddev, &all_mddevs, all_mddevs)
579
if (mddev->unit == unit) {
580
mddev_get(mddev);
581
spin_unlock(&all_mddevs_lock);
582
kfree(new);
583
return mddev;
584
}
585
586
if (new) {
587
list_add(&new->all_mddevs, &all_mddevs);
588
spin_unlock(&all_mddevs_lock);
589
new->hold_active = UNTIL_IOCTL;
590
return new;
591
}
592
} else if (new) {
593
/* find an unused unit number */
594
static int next_minor = 512;
595
int start = next_minor;
596
int is_free = 0;
597
int dev = 0;
598
while (!is_free) {
599
dev = MKDEV(MD_MAJOR, next_minor);
600
next_minor++;
601
if (next_minor > MINORMASK)
602
next_minor = 0;
603
if (next_minor == start) {
604
/* Oh dear, all in use. */
605
spin_unlock(&all_mddevs_lock);
606
kfree(new);
607
return NULL;
608
}
609
610
is_free = 1;
611
list_for_each_entry(mddev, &all_mddevs, all_mddevs)
612
if (mddev->unit == dev) {
613
is_free = 0;
614
break;
615
}
616
}
617
new->unit = dev;
618
new->md_minor = MINOR(dev);
619
new->hold_active = UNTIL_STOP;
620
list_add(&new->all_mddevs, &all_mddevs);
621
spin_unlock(&all_mddevs_lock);
622
return new;
623
}
624
spin_unlock(&all_mddevs_lock);
625
626
new = kzalloc(sizeof(*new), GFP_KERNEL);
627
if (!new)
628
return NULL;
629
630
new->unit = unit;
631
if (MAJOR(unit) == MD_MAJOR)
632
new->md_minor = MINOR(unit);
633
else
634
new->md_minor = MINOR(unit) >> MdpMinorShift;
635
636
mddev_init(new);
637
638
goto retry;
639
}
640
641
static inline int mddev_lock(mddev_t * mddev)
642
{
643
return mutex_lock_interruptible(&mddev->reconfig_mutex);
644
}
645
646
static inline int mddev_is_locked(mddev_t *mddev)
647
{
648
return mutex_is_locked(&mddev->reconfig_mutex);
649
}
650
651
static inline int mddev_trylock(mddev_t * mddev)
652
{
653
return mutex_trylock(&mddev->reconfig_mutex);
654
}
655
656
static struct attribute_group md_redundancy_group;
657
658
static void mddev_unlock(mddev_t * mddev)
659
{
660
if (mddev->to_remove) {
661
/* These cannot be removed under reconfig_mutex as
662
* an access to the files will try to take reconfig_mutex
663
* while holding the file unremovable, which leads to
664
* a deadlock.
665
* So hold set sysfs_active while the remove in happeing,
666
* and anything else which might set ->to_remove or my
667
* otherwise change the sysfs namespace will fail with
668
* -EBUSY if sysfs_active is still set.
669
* We set sysfs_active under reconfig_mutex and elsewhere
670
* test it under the same mutex to ensure its correct value
671
* is seen.
672
*/
673
struct attribute_group *to_remove = mddev->to_remove;
674
mddev->to_remove = NULL;
675
mddev->sysfs_active = 1;
676
mutex_unlock(&mddev->reconfig_mutex);
677
678
if (mddev->kobj.sd) {
679
if (to_remove != &md_redundancy_group)
680
sysfs_remove_group(&mddev->kobj, to_remove);
681
if (mddev->pers == NULL ||
682
mddev->pers->sync_request == NULL) {
683
sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
684
if (mddev->sysfs_action)
685
sysfs_put(mddev->sysfs_action);
686
mddev->sysfs_action = NULL;
687
}
688
}
689
mddev->sysfs_active = 0;
690
} else
691
mutex_unlock(&mddev->reconfig_mutex);
692
693
md_wakeup_thread(mddev->thread);
694
}
695
696
static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
697
{
698
mdk_rdev_t *rdev;
699
700
list_for_each_entry(rdev, &mddev->disks, same_set)
701
if (rdev->desc_nr == nr)
702
return rdev;
703
704
return NULL;
705
}
706
707
static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
708
{
709
mdk_rdev_t *rdev;
710
711
list_for_each_entry(rdev, &mddev->disks, same_set)
712
if (rdev->bdev->bd_dev == dev)
713
return rdev;
714
715
return NULL;
716
}
717
718
static struct mdk_personality *find_pers(int level, char *clevel)
719
{
720
struct mdk_personality *pers;
721
list_for_each_entry(pers, &pers_list, list) {
722
if (level != LEVEL_NONE && pers->level == level)
723
return pers;
724
if (strcmp(pers->name, clevel)==0)
725
return pers;
726
}
727
return NULL;
728
}
729
730
/* return the offset of the super block in 512byte sectors */
731
static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
732
{
733
sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
734
return MD_NEW_SIZE_SECTORS(num_sectors);
735
}
736
737
static int alloc_disk_sb(mdk_rdev_t * rdev)
738
{
739
if (rdev->sb_page)
740
MD_BUG();
741
742
rdev->sb_page = alloc_page(GFP_KERNEL);
743
if (!rdev->sb_page) {
744
printk(KERN_ALERT "md: out of memory.\n");
745
return -ENOMEM;
746
}
747
748
return 0;
749
}
750
751
static void free_disk_sb(mdk_rdev_t * rdev)
752
{
753
if (rdev->sb_page) {
754
put_page(rdev->sb_page);
755
rdev->sb_loaded = 0;
756
rdev->sb_page = NULL;
757
rdev->sb_start = 0;
758
rdev->sectors = 0;
759
}
760
}
761
762
763
static void super_written(struct bio *bio, int error)
764
{
765
mdk_rdev_t *rdev = bio->bi_private;
766
mddev_t *mddev = rdev->mddev;
767
768
if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
769
printk("md: super_written gets error=%d, uptodate=%d\n",
770
error, test_bit(BIO_UPTODATE, &bio->bi_flags));
771
WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
772
md_error(mddev, rdev);
773
}
774
775
if (atomic_dec_and_test(&mddev->pending_writes))
776
wake_up(&mddev->sb_wait);
777
bio_put(bio);
778
}
779
780
void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
781
sector_t sector, int size, struct page *page)
782
{
783
/* write first size bytes of page to sector of rdev
784
* Increment mddev->pending_writes before returning
785
* and decrement it on completion, waking up sb_wait
786
* if zero is reached.
787
* If an error occurred, call md_error
788
*/
789
struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
790
791
bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
792
bio->bi_sector = sector;
793
bio_add_page(bio, page, size, 0);
794
bio->bi_private = rdev;
795
bio->bi_end_io = super_written;
796
797
atomic_inc(&mddev->pending_writes);
798
submit_bio(REQ_WRITE | REQ_SYNC | REQ_FLUSH | REQ_FUA, bio);
799
}
800
801
void md_super_wait(mddev_t *mddev)
802
{
803
/* wait for all superblock writes that were scheduled to complete */
804
DEFINE_WAIT(wq);
805
for(;;) {
806
prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
807
if (atomic_read(&mddev->pending_writes)==0)
808
break;
809
schedule();
810
}
811
finish_wait(&mddev->sb_wait, &wq);
812
}
813
814
static void bi_complete(struct bio *bio, int error)
815
{
816
complete((struct completion*)bio->bi_private);
817
}
818
819
int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
820
struct page *page, int rw, bool metadata_op)
821
{
822
struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
823
struct completion event;
824
int ret;
825
826
rw |= REQ_SYNC;
827
828
bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
829
rdev->meta_bdev : rdev->bdev;
830
if (metadata_op)
831
bio->bi_sector = sector + rdev->sb_start;
832
else
833
bio->bi_sector = sector + rdev->data_offset;
834
bio_add_page(bio, page, size, 0);
835
init_completion(&event);
836
bio->bi_private = &event;
837
bio->bi_end_io = bi_complete;
838
submit_bio(rw, bio);
839
wait_for_completion(&event);
840
841
ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
842
bio_put(bio);
843
return ret;
844
}
845
EXPORT_SYMBOL_GPL(sync_page_io);
846
847
static int read_disk_sb(mdk_rdev_t * rdev, int size)
848
{
849
char b[BDEVNAME_SIZE];
850
if (!rdev->sb_page) {
851
MD_BUG();
852
return -EINVAL;
853
}
854
if (rdev->sb_loaded)
855
return 0;
856
857
858
if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
859
goto fail;
860
rdev->sb_loaded = 1;
861
return 0;
862
863
fail:
864
printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
865
bdevname(rdev->bdev,b));
866
return -EINVAL;
867
}
868
869
static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
870
{
871
return sb1->set_uuid0 == sb2->set_uuid0 &&
872
sb1->set_uuid1 == sb2->set_uuid1 &&
873
sb1->set_uuid2 == sb2->set_uuid2 &&
874
sb1->set_uuid3 == sb2->set_uuid3;
875
}
876
877
static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
878
{
879
int ret;
880
mdp_super_t *tmp1, *tmp2;
881
882
tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
883
tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
884
885
if (!tmp1 || !tmp2) {
886
ret = 0;
887
printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
888
goto abort;
889
}
890
891
*tmp1 = *sb1;
892
*tmp2 = *sb2;
893
894
/*
895
* nr_disks is not constant
896
*/
897
tmp1->nr_disks = 0;
898
tmp2->nr_disks = 0;
899
900
ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
901
abort:
902
kfree(tmp1);
903
kfree(tmp2);
904
return ret;
905
}
906
907
908
static u32 md_csum_fold(u32 csum)
909
{
910
csum = (csum & 0xffff) + (csum >> 16);
911
return (csum & 0xffff) + (csum >> 16);
912
}
913
914
static unsigned int calc_sb_csum(mdp_super_t * sb)
915
{
916
u64 newcsum = 0;
917
u32 *sb32 = (u32*)sb;
918
int i;
919
unsigned int disk_csum, csum;
920
921
disk_csum = sb->sb_csum;
922
sb->sb_csum = 0;
923
924
for (i = 0; i < MD_SB_BYTES/4 ; i++)
925
newcsum += sb32[i];
926
csum = (newcsum & 0xffffffff) + (newcsum>>32);
927
928
929
#ifdef CONFIG_ALPHA
930
/* This used to use csum_partial, which was wrong for several
931
* reasons including that different results are returned on
932
* different architectures. It isn't critical that we get exactly
933
* the same return value as before (we always csum_fold before
934
* testing, and that removes any differences). However as we
935
* know that csum_partial always returned a 16bit value on
936
* alphas, do a fold to maximise conformity to previous behaviour.
937
*/
938
sb->sb_csum = md_csum_fold(disk_csum);
939
#else
940
sb->sb_csum = disk_csum;
941
#endif
942
return csum;
943
}
944
945
946
/*
947
* Handle superblock details.
948
* We want to be able to handle multiple superblock formats
949
* so we have a common interface to them all, and an array of
950
* different handlers.
951
* We rely on user-space to write the initial superblock, and support
952
* reading and updating of superblocks.
953
* Interface methods are:
954
* int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
955
* loads and validates a superblock on dev.
956
* if refdev != NULL, compare superblocks on both devices
957
* Return:
958
* 0 - dev has a superblock that is compatible with refdev
959
* 1 - dev has a superblock that is compatible and newer than refdev
960
* so dev should be used as the refdev in future
961
* -EINVAL superblock incompatible or invalid
962
* -othererror e.g. -EIO
963
*
964
* int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
965
* Verify that dev is acceptable into mddev.
966
* The first time, mddev->raid_disks will be 0, and data from
967
* dev should be merged in. Subsequent calls check that dev
968
* is new enough. Return 0 or -EINVAL
969
*
970
* void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
971
* Update the superblock for rdev with data in mddev
972
* This does not write to disc.
973
*
974
*/
975
976
struct super_type {
977
char *name;
978
struct module *owner;
979
int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
980
int minor_version);
981
int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
982
void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
983
unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
984
sector_t num_sectors);
985
};
986
987
/*
988
* Check that the given mddev has no bitmap.
989
*
990
* This function is called from the run method of all personalities that do not
991
* support bitmaps. It prints an error message and returns non-zero if mddev
992
* has a bitmap. Otherwise, it returns 0.
993
*
994
*/
995
int md_check_no_bitmap(mddev_t *mddev)
996
{
997
if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
998
return 0;
999
printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1000
mdname(mddev), mddev->pers->name);
1001
return 1;
1002
}
1003
EXPORT_SYMBOL(md_check_no_bitmap);
1004
1005
/*
1006
* load_super for 0.90.0
1007
*/
1008
static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1009
{
1010
char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1011
mdp_super_t *sb;
1012
int ret;
1013
1014
/*
1015
* Calculate the position of the superblock (512byte sectors),
1016
* it's at the end of the disk.
1017
*
1018
* It also happens to be a multiple of 4Kb.
1019
*/
1020
rdev->sb_start = calc_dev_sboffset(rdev);
1021
1022
ret = read_disk_sb(rdev, MD_SB_BYTES);
1023
if (ret) return ret;
1024
1025
ret = -EINVAL;
1026
1027
bdevname(rdev->bdev, b);
1028
sb = (mdp_super_t*)page_address(rdev->sb_page);
1029
1030
if (sb->md_magic != MD_SB_MAGIC) {
1031
printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1032
b);
1033
goto abort;
1034
}
1035
1036
if (sb->major_version != 0 ||
1037
sb->minor_version < 90 ||
1038
sb->minor_version > 91) {
1039
printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1040
sb->major_version, sb->minor_version,
1041
b);
1042
goto abort;
1043
}
1044
1045
if (sb->raid_disks <= 0)
1046
goto abort;
1047
1048
if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1049
printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1050
b);
1051
goto abort;
1052
}
1053
1054
rdev->preferred_minor = sb->md_minor;
1055
rdev->data_offset = 0;
1056
rdev->sb_size = MD_SB_BYTES;
1057
1058
if (sb->level == LEVEL_MULTIPATH)
1059
rdev->desc_nr = -1;
1060
else
1061
rdev->desc_nr = sb->this_disk.number;
1062
1063
if (!refdev) {
1064
ret = 1;
1065
} else {
1066
__u64 ev1, ev2;
1067
mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1068
if (!uuid_equal(refsb, sb)) {
1069
printk(KERN_WARNING "md: %s has different UUID to %s\n",
1070
b, bdevname(refdev->bdev,b2));
1071
goto abort;
1072
}
1073
if (!sb_equal(refsb, sb)) {
1074
printk(KERN_WARNING "md: %s has same UUID"
1075
" but different superblock to %s\n",
1076
b, bdevname(refdev->bdev, b2));
1077
goto abort;
1078
}
1079
ev1 = md_event(sb);
1080
ev2 = md_event(refsb);
1081
if (ev1 > ev2)
1082
ret = 1;
1083
else
1084
ret = 0;
1085
}
1086
rdev->sectors = rdev->sb_start;
1087
1088
if (rdev->sectors < sb->size * 2 && sb->level > 1)
1089
/* "this cannot possibly happen" ... */
1090
ret = -EINVAL;
1091
1092
abort:
1093
return ret;
1094
}
1095
1096
/*
1097
* validate_super for 0.90.0
1098
*/
1099
static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1100
{
1101
mdp_disk_t *desc;
1102
mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1103
__u64 ev1 = md_event(sb);
1104
1105
rdev->raid_disk = -1;
1106
clear_bit(Faulty, &rdev->flags);
1107
clear_bit(In_sync, &rdev->flags);
1108
clear_bit(WriteMostly, &rdev->flags);
1109
1110
if (mddev->raid_disks == 0) {
1111
mddev->major_version = 0;
1112
mddev->minor_version = sb->minor_version;
1113
mddev->patch_version = sb->patch_version;
1114
mddev->external = 0;
1115
mddev->chunk_sectors = sb->chunk_size >> 9;
1116
mddev->ctime = sb->ctime;
1117
mddev->utime = sb->utime;
1118
mddev->level = sb->level;
1119
mddev->clevel[0] = 0;
1120
mddev->layout = sb->layout;
1121
mddev->raid_disks = sb->raid_disks;
1122
mddev->dev_sectors = sb->size * 2;
1123
mddev->events = ev1;
1124
mddev->bitmap_info.offset = 0;
1125
mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1126
1127
if (mddev->minor_version >= 91) {
1128
mddev->reshape_position = sb->reshape_position;
1129
mddev->delta_disks = sb->delta_disks;
1130
mddev->new_level = sb->new_level;
1131
mddev->new_layout = sb->new_layout;
1132
mddev->new_chunk_sectors = sb->new_chunk >> 9;
1133
} else {
1134
mddev->reshape_position = MaxSector;
1135
mddev->delta_disks = 0;
1136
mddev->new_level = mddev->level;
1137
mddev->new_layout = mddev->layout;
1138
mddev->new_chunk_sectors = mddev->chunk_sectors;
1139
}
1140
1141
if (sb->state & (1<<MD_SB_CLEAN))
1142
mddev->recovery_cp = MaxSector;
1143
else {
1144
if (sb->events_hi == sb->cp_events_hi &&
1145
sb->events_lo == sb->cp_events_lo) {
1146
mddev->recovery_cp = sb->recovery_cp;
1147
} else
1148
mddev->recovery_cp = 0;
1149
}
1150
1151
memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1152
memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1153
memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1154
memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1155
1156
mddev->max_disks = MD_SB_DISKS;
1157
1158
if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1159
mddev->bitmap_info.file == NULL)
1160
mddev->bitmap_info.offset =
1161
mddev->bitmap_info.default_offset;
1162
1163
} else if (mddev->pers == NULL) {
1164
/* Insist on good event counter while assembling, except
1165
* for spares (which don't need an event count) */
1166
++ev1;
1167
if (sb->disks[rdev->desc_nr].state & (
1168
(1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1169
if (ev1 < mddev->events)
1170
return -EINVAL;
1171
} else if (mddev->bitmap) {
1172
/* if adding to array with a bitmap, then we can accept an
1173
* older device ... but not too old.
1174
*/
1175
if (ev1 < mddev->bitmap->events_cleared)
1176
return 0;
1177
} else {
1178
if (ev1 < mddev->events)
1179
/* just a hot-add of a new device, leave raid_disk at -1 */
1180
return 0;
1181
}
1182
1183
if (mddev->level != LEVEL_MULTIPATH) {
1184
desc = sb->disks + rdev->desc_nr;
1185
1186
if (desc->state & (1<<MD_DISK_FAULTY))
1187
set_bit(Faulty, &rdev->flags);
1188
else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1189
desc->raid_disk < mddev->raid_disks */) {
1190
set_bit(In_sync, &rdev->flags);
1191
rdev->raid_disk = desc->raid_disk;
1192
} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1193
/* active but not in sync implies recovery up to
1194
* reshape position. We don't know exactly where
1195
* that is, so set to zero for now */
1196
if (mddev->minor_version >= 91) {
1197
rdev->recovery_offset = 0;
1198
rdev->raid_disk = desc->raid_disk;
1199
}
1200
}
1201
if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1202
set_bit(WriteMostly, &rdev->flags);
1203
} else /* MULTIPATH are always insync */
1204
set_bit(In_sync, &rdev->flags);
1205
return 0;
1206
}
1207
1208
/*
1209
* sync_super for 0.90.0
1210
*/
1211
static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1212
{
1213
mdp_super_t *sb;
1214
mdk_rdev_t *rdev2;
1215
int next_spare = mddev->raid_disks;
1216
1217
1218
/* make rdev->sb match mddev data..
1219
*
1220
* 1/ zero out disks
1221
* 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1222
* 3/ any empty disks < next_spare become removed
1223
*
1224
* disks[0] gets initialised to REMOVED because
1225
* we cannot be sure from other fields if it has
1226
* been initialised or not.
1227
*/
1228
int i;
1229
int active=0, working=0,failed=0,spare=0,nr_disks=0;
1230
1231
rdev->sb_size = MD_SB_BYTES;
1232
1233
sb = (mdp_super_t*)page_address(rdev->sb_page);
1234
1235
memset(sb, 0, sizeof(*sb));
1236
1237
sb->md_magic = MD_SB_MAGIC;
1238
sb->major_version = mddev->major_version;
1239
sb->patch_version = mddev->patch_version;
1240
sb->gvalid_words = 0; /* ignored */
1241
memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1242
memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1243
memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1244
memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1245
1246
sb->ctime = mddev->ctime;
1247
sb->level = mddev->level;
1248
sb->size = mddev->dev_sectors / 2;
1249
sb->raid_disks = mddev->raid_disks;
1250
sb->md_minor = mddev->md_minor;
1251
sb->not_persistent = 0;
1252
sb->utime = mddev->utime;
1253
sb->state = 0;
1254
sb->events_hi = (mddev->events>>32);
1255
sb->events_lo = (u32)mddev->events;
1256
1257
if (mddev->reshape_position == MaxSector)
1258
sb->minor_version = 90;
1259
else {
1260
sb->minor_version = 91;
1261
sb->reshape_position = mddev->reshape_position;
1262
sb->new_level = mddev->new_level;
1263
sb->delta_disks = mddev->delta_disks;
1264
sb->new_layout = mddev->new_layout;
1265
sb->new_chunk = mddev->new_chunk_sectors << 9;
1266
}
1267
mddev->minor_version = sb->minor_version;
1268
if (mddev->in_sync)
1269
{
1270
sb->recovery_cp = mddev->recovery_cp;
1271
sb->cp_events_hi = (mddev->events>>32);
1272
sb->cp_events_lo = (u32)mddev->events;
1273
if (mddev->recovery_cp == MaxSector)
1274
sb->state = (1<< MD_SB_CLEAN);
1275
} else
1276
sb->recovery_cp = 0;
1277
1278
sb->layout = mddev->layout;
1279
sb->chunk_size = mddev->chunk_sectors << 9;
1280
1281
if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1282
sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1283
1284
sb->disks[0].state = (1<<MD_DISK_REMOVED);
1285
list_for_each_entry(rdev2, &mddev->disks, same_set) {
1286
mdp_disk_t *d;
1287
int desc_nr;
1288
int is_active = test_bit(In_sync, &rdev2->flags);
1289
1290
if (rdev2->raid_disk >= 0 &&
1291
sb->minor_version >= 91)
1292
/* we have nowhere to store the recovery_offset,
1293
* but if it is not below the reshape_position,
1294
* we can piggy-back on that.
1295
*/
1296
is_active = 1;
1297
if (rdev2->raid_disk < 0 ||
1298
test_bit(Faulty, &rdev2->flags))
1299
is_active = 0;
1300
if (is_active)
1301
desc_nr = rdev2->raid_disk;
1302
else
1303
desc_nr = next_spare++;
1304
rdev2->desc_nr = desc_nr;
1305
d = &sb->disks[rdev2->desc_nr];
1306
nr_disks++;
1307
d->number = rdev2->desc_nr;
1308
d->major = MAJOR(rdev2->bdev->bd_dev);
1309
d->minor = MINOR(rdev2->bdev->bd_dev);
1310
if (is_active)
1311
d->raid_disk = rdev2->raid_disk;
1312
else
1313
d->raid_disk = rdev2->desc_nr; /* compatibility */
1314
if (test_bit(Faulty, &rdev2->flags))
1315
d->state = (1<<MD_DISK_FAULTY);
1316
else if (is_active) {
1317
d->state = (1<<MD_DISK_ACTIVE);
1318
if (test_bit(In_sync, &rdev2->flags))
1319
d->state |= (1<<MD_DISK_SYNC);
1320
active++;
1321
working++;
1322
} else {
1323
d->state = 0;
1324
spare++;
1325
working++;
1326
}
1327
if (test_bit(WriteMostly, &rdev2->flags))
1328
d->state |= (1<<MD_DISK_WRITEMOSTLY);
1329
}
1330
/* now set the "removed" and "faulty" bits on any missing devices */
1331
for (i=0 ; i < mddev->raid_disks ; i++) {
1332
mdp_disk_t *d = &sb->disks[i];
1333
if (d->state == 0 && d->number == 0) {
1334
d->number = i;
1335
d->raid_disk = i;
1336
d->state = (1<<MD_DISK_REMOVED);
1337
d->state |= (1<<MD_DISK_FAULTY);
1338
failed++;
1339
}
1340
}
1341
sb->nr_disks = nr_disks;
1342
sb->active_disks = active;
1343
sb->working_disks = working;
1344
sb->failed_disks = failed;
1345
sb->spare_disks = spare;
1346
1347
sb->this_disk = sb->disks[rdev->desc_nr];
1348
sb->sb_csum = calc_sb_csum(sb);
1349
}
1350
1351
/*
1352
* rdev_size_change for 0.90.0
1353
*/
1354
static unsigned long long
1355
super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1356
{
1357
if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1358
return 0; /* component must fit device */
1359
if (rdev->mddev->bitmap_info.offset)
1360
return 0; /* can't move bitmap */
1361
rdev->sb_start = calc_dev_sboffset(rdev);
1362
if (!num_sectors || num_sectors > rdev->sb_start)
1363
num_sectors = rdev->sb_start;
1364
md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1365
rdev->sb_page);
1366
md_super_wait(rdev->mddev);
1367
return num_sectors;
1368
}
1369
1370
1371
/*
1372
* version 1 superblock
1373
*/
1374
1375
static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1376
{
1377
__le32 disk_csum;
1378
u32 csum;
1379
unsigned long long newcsum;
1380
int size = 256 + le32_to_cpu(sb->max_dev)*2;
1381
__le32 *isuper = (__le32*)sb;
1382
int i;
1383
1384
disk_csum = sb->sb_csum;
1385
sb->sb_csum = 0;
1386
newcsum = 0;
1387
for (i=0; size>=4; size -= 4 )
1388
newcsum += le32_to_cpu(*isuper++);
1389
1390
if (size == 2)
1391
newcsum += le16_to_cpu(*(__le16*) isuper);
1392
1393
csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1394
sb->sb_csum = disk_csum;
1395
return cpu_to_le32(csum);
1396
}
1397
1398
static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1399
{
1400
struct mdp_superblock_1 *sb;
1401
int ret;
1402
sector_t sb_start;
1403
char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1404
int bmask;
1405
1406
/*
1407
* Calculate the position of the superblock in 512byte sectors.
1408
* It is always aligned to a 4K boundary and
1409
* depeding on minor_version, it can be:
1410
* 0: At least 8K, but less than 12K, from end of device
1411
* 1: At start of device
1412
* 2: 4K from start of device.
1413
*/
1414
switch(minor_version) {
1415
case 0:
1416
sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1417
sb_start -= 8*2;
1418
sb_start &= ~(sector_t)(4*2-1);
1419
break;
1420
case 1:
1421
sb_start = 0;
1422
break;
1423
case 2:
1424
sb_start = 8;
1425
break;
1426
default:
1427
return -EINVAL;
1428
}
1429
rdev->sb_start = sb_start;
1430
1431
/* superblock is rarely larger than 1K, but it can be larger,
1432
* and it is safe to read 4k, so we do that
1433
*/
1434
ret = read_disk_sb(rdev, 4096);
1435
if (ret) return ret;
1436
1437
1438
sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1439
1440
if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1441
sb->major_version != cpu_to_le32(1) ||
1442
le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1443
le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1444
(le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1445
return -EINVAL;
1446
1447
if (calc_sb_1_csum(sb) != sb->sb_csum) {
1448
printk("md: invalid superblock checksum on %s\n",
1449
bdevname(rdev->bdev,b));
1450
return -EINVAL;
1451
}
1452
if (le64_to_cpu(sb->data_size) < 10) {
1453
printk("md: data_size too small on %s\n",
1454
bdevname(rdev->bdev,b));
1455
return -EINVAL;
1456
}
1457
1458
rdev->preferred_minor = 0xffff;
1459
rdev->data_offset = le64_to_cpu(sb->data_offset);
1460
atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1461
1462
rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1463
bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1464
if (rdev->sb_size & bmask)
1465
rdev->sb_size = (rdev->sb_size | bmask) + 1;
1466
1467
if (minor_version
1468
&& rdev->data_offset < sb_start + (rdev->sb_size/512))
1469
return -EINVAL;
1470
1471
if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1472
rdev->desc_nr = -1;
1473
else
1474
rdev->desc_nr = le32_to_cpu(sb->dev_number);
1475
1476
if (!refdev) {
1477
ret = 1;
1478
} else {
1479
__u64 ev1, ev2;
1480
struct mdp_superblock_1 *refsb =
1481
(struct mdp_superblock_1*)page_address(refdev->sb_page);
1482
1483
if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1484
sb->level != refsb->level ||
1485
sb->layout != refsb->layout ||
1486
sb->chunksize != refsb->chunksize) {
1487
printk(KERN_WARNING "md: %s has strangely different"
1488
" superblock to %s\n",
1489
bdevname(rdev->bdev,b),
1490
bdevname(refdev->bdev,b2));
1491
return -EINVAL;
1492
}
1493
ev1 = le64_to_cpu(sb->events);
1494
ev2 = le64_to_cpu(refsb->events);
1495
1496
if (ev1 > ev2)
1497
ret = 1;
1498
else
1499
ret = 0;
1500
}
1501
if (minor_version)
1502
rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1503
le64_to_cpu(sb->data_offset);
1504
else
1505
rdev->sectors = rdev->sb_start;
1506
if (rdev->sectors < le64_to_cpu(sb->data_size))
1507
return -EINVAL;
1508
rdev->sectors = le64_to_cpu(sb->data_size);
1509
if (le64_to_cpu(sb->size) > rdev->sectors)
1510
return -EINVAL;
1511
return ret;
1512
}
1513
1514
static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1515
{
1516
struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1517
__u64 ev1 = le64_to_cpu(sb->events);
1518
1519
rdev->raid_disk = -1;
1520
clear_bit(Faulty, &rdev->flags);
1521
clear_bit(In_sync, &rdev->flags);
1522
clear_bit(WriteMostly, &rdev->flags);
1523
1524
if (mddev->raid_disks == 0) {
1525
mddev->major_version = 1;
1526
mddev->patch_version = 0;
1527
mddev->external = 0;
1528
mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1529
mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1530
mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1531
mddev->level = le32_to_cpu(sb->level);
1532
mddev->clevel[0] = 0;
1533
mddev->layout = le32_to_cpu(sb->layout);
1534
mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1535
mddev->dev_sectors = le64_to_cpu(sb->size);
1536
mddev->events = ev1;
1537
mddev->bitmap_info.offset = 0;
1538
mddev->bitmap_info.default_offset = 1024 >> 9;
1539
1540
mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1541
memcpy(mddev->uuid, sb->set_uuid, 16);
1542
1543
mddev->max_disks = (4096-256)/2;
1544
1545
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1546
mddev->bitmap_info.file == NULL )
1547
mddev->bitmap_info.offset =
1548
(__s32)le32_to_cpu(sb->bitmap_offset);
1549
1550
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1551
mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1552
mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1553
mddev->new_level = le32_to_cpu(sb->new_level);
1554
mddev->new_layout = le32_to_cpu(sb->new_layout);
1555
mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1556
} else {
1557
mddev->reshape_position = MaxSector;
1558
mddev->delta_disks = 0;
1559
mddev->new_level = mddev->level;
1560
mddev->new_layout = mddev->layout;
1561
mddev->new_chunk_sectors = mddev->chunk_sectors;
1562
}
1563
1564
} else if (mddev->pers == NULL) {
1565
/* Insist of good event counter while assembling, except for
1566
* spares (which don't need an event count) */
1567
++ev1;
1568
if (rdev->desc_nr >= 0 &&
1569
rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1570
le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1571
if (ev1 < mddev->events)
1572
return -EINVAL;
1573
} else if (mddev->bitmap) {
1574
/* If adding to array with a bitmap, then we can accept an
1575
* older device, but not too old.
1576
*/
1577
if (ev1 < mddev->bitmap->events_cleared)
1578
return 0;
1579
} else {
1580
if (ev1 < mddev->events)
1581
/* just a hot-add of a new device, leave raid_disk at -1 */
1582
return 0;
1583
}
1584
if (mddev->level != LEVEL_MULTIPATH) {
1585
int role;
1586
if (rdev->desc_nr < 0 ||
1587
rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1588
role = 0xffff;
1589
rdev->desc_nr = -1;
1590
} else
1591
role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1592
switch(role) {
1593
case 0xffff: /* spare */
1594
break;
1595
case 0xfffe: /* faulty */
1596
set_bit(Faulty, &rdev->flags);
1597
break;
1598
default:
1599
if ((le32_to_cpu(sb->feature_map) &
1600
MD_FEATURE_RECOVERY_OFFSET))
1601
rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1602
else
1603
set_bit(In_sync, &rdev->flags);
1604
rdev->raid_disk = role;
1605
break;
1606
}
1607
if (sb->devflags & WriteMostly1)
1608
set_bit(WriteMostly, &rdev->flags);
1609
} else /* MULTIPATH are always insync */
1610
set_bit(In_sync, &rdev->flags);
1611
1612
return 0;
1613
}
1614
1615
static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1616
{
1617
struct mdp_superblock_1 *sb;
1618
mdk_rdev_t *rdev2;
1619
int max_dev, i;
1620
/* make rdev->sb match mddev and rdev data. */
1621
1622
sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1623
1624
sb->feature_map = 0;
1625
sb->pad0 = 0;
1626
sb->recovery_offset = cpu_to_le64(0);
1627
memset(sb->pad1, 0, sizeof(sb->pad1));
1628
memset(sb->pad2, 0, sizeof(sb->pad2));
1629
memset(sb->pad3, 0, sizeof(sb->pad3));
1630
1631
sb->utime = cpu_to_le64((__u64)mddev->utime);
1632
sb->events = cpu_to_le64(mddev->events);
1633
if (mddev->in_sync)
1634
sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1635
else
1636
sb->resync_offset = cpu_to_le64(0);
1637
1638
sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1639
1640
sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1641
sb->size = cpu_to_le64(mddev->dev_sectors);
1642
sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1643
sb->level = cpu_to_le32(mddev->level);
1644
sb->layout = cpu_to_le32(mddev->layout);
1645
1646
if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1647
sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1648
sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1649
}
1650
1651
if (rdev->raid_disk >= 0 &&
1652
!test_bit(In_sync, &rdev->flags)) {
1653
sb->feature_map |=
1654
cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1655
sb->recovery_offset =
1656
cpu_to_le64(rdev->recovery_offset);
1657
}
1658
1659
if (mddev->reshape_position != MaxSector) {
1660
sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1661
sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1662
sb->new_layout = cpu_to_le32(mddev->new_layout);
1663
sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1664
sb->new_level = cpu_to_le32(mddev->new_level);
1665
sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1666
}
1667
1668
max_dev = 0;
1669
list_for_each_entry(rdev2, &mddev->disks, same_set)
1670
if (rdev2->desc_nr+1 > max_dev)
1671
max_dev = rdev2->desc_nr+1;
1672
1673
if (max_dev > le32_to_cpu(sb->max_dev)) {
1674
int bmask;
1675
sb->max_dev = cpu_to_le32(max_dev);
1676
rdev->sb_size = max_dev * 2 + 256;
1677
bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1678
if (rdev->sb_size & bmask)
1679
rdev->sb_size = (rdev->sb_size | bmask) + 1;
1680
} else
1681
max_dev = le32_to_cpu(sb->max_dev);
1682
1683
for (i=0; i<max_dev;i++)
1684
sb->dev_roles[i] = cpu_to_le16(0xfffe);
1685
1686
list_for_each_entry(rdev2, &mddev->disks, same_set) {
1687
i = rdev2->desc_nr;
1688
if (test_bit(Faulty, &rdev2->flags))
1689
sb->dev_roles[i] = cpu_to_le16(0xfffe);
1690
else if (test_bit(In_sync, &rdev2->flags))
1691
sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1692
else if (rdev2->raid_disk >= 0)
1693
sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1694
else
1695
sb->dev_roles[i] = cpu_to_le16(0xffff);
1696
}
1697
1698
sb->sb_csum = calc_sb_1_csum(sb);
1699
}
1700
1701
static unsigned long long
1702
super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1703
{
1704
struct mdp_superblock_1 *sb;
1705
sector_t max_sectors;
1706
if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1707
return 0; /* component must fit device */
1708
if (rdev->sb_start < rdev->data_offset) {
1709
/* minor versions 1 and 2; superblock before data */
1710
max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1711
max_sectors -= rdev->data_offset;
1712
if (!num_sectors || num_sectors > max_sectors)
1713
num_sectors = max_sectors;
1714
} else if (rdev->mddev->bitmap_info.offset) {
1715
/* minor version 0 with bitmap we can't move */
1716
return 0;
1717
} else {
1718
/* minor version 0; superblock after data */
1719
sector_t sb_start;
1720
sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1721
sb_start &= ~(sector_t)(4*2 - 1);
1722
max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1723
if (!num_sectors || num_sectors > max_sectors)
1724
num_sectors = max_sectors;
1725
rdev->sb_start = sb_start;
1726
}
1727
sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1728
sb->data_size = cpu_to_le64(num_sectors);
1729
sb->super_offset = rdev->sb_start;
1730
sb->sb_csum = calc_sb_1_csum(sb);
1731
md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1732
rdev->sb_page);
1733
md_super_wait(rdev->mddev);
1734
return num_sectors;
1735
}
1736
1737
static struct super_type super_types[] = {
1738
[0] = {
1739
.name = "0.90.0",
1740
.owner = THIS_MODULE,
1741
.load_super = super_90_load,
1742
.validate_super = super_90_validate,
1743
.sync_super = super_90_sync,
1744
.rdev_size_change = super_90_rdev_size_change,
1745
},
1746
[1] = {
1747
.name = "md-1",
1748
.owner = THIS_MODULE,
1749
.load_super = super_1_load,
1750
.validate_super = super_1_validate,
1751
.sync_super = super_1_sync,
1752
.rdev_size_change = super_1_rdev_size_change,
1753
},
1754
};
1755
1756
static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev)
1757
{
1758
if (mddev->sync_super) {
1759
mddev->sync_super(mddev, rdev);
1760
return;
1761
}
1762
1763
BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1764
1765
super_types[mddev->major_version].sync_super(mddev, rdev);
1766
}
1767
1768
static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1769
{
1770
mdk_rdev_t *rdev, *rdev2;
1771
1772
rcu_read_lock();
1773
rdev_for_each_rcu(rdev, mddev1)
1774
rdev_for_each_rcu(rdev2, mddev2)
1775
if (rdev->bdev->bd_contains ==
1776
rdev2->bdev->bd_contains) {
1777
rcu_read_unlock();
1778
return 1;
1779
}
1780
rcu_read_unlock();
1781
return 0;
1782
}
1783
1784
static LIST_HEAD(pending_raid_disks);
1785
1786
/*
1787
* Try to register data integrity profile for an mddev
1788
*
1789
* This is called when an array is started and after a disk has been kicked
1790
* from the array. It only succeeds if all working and active component devices
1791
* are integrity capable with matching profiles.
1792
*/
1793
int md_integrity_register(mddev_t *mddev)
1794
{
1795
mdk_rdev_t *rdev, *reference = NULL;
1796
1797
if (list_empty(&mddev->disks))
1798
return 0; /* nothing to do */
1799
if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1800
return 0; /* shouldn't register, or already is */
1801
list_for_each_entry(rdev, &mddev->disks, same_set) {
1802
/* skip spares and non-functional disks */
1803
if (test_bit(Faulty, &rdev->flags))
1804
continue;
1805
if (rdev->raid_disk < 0)
1806
continue;
1807
if (!reference) {
1808
/* Use the first rdev as the reference */
1809
reference = rdev;
1810
continue;
1811
}
1812
/* does this rdev's profile match the reference profile? */
1813
if (blk_integrity_compare(reference->bdev->bd_disk,
1814
rdev->bdev->bd_disk) < 0)
1815
return -EINVAL;
1816
}
1817
if (!reference || !bdev_get_integrity(reference->bdev))
1818
return 0;
1819
/*
1820
* All component devices are integrity capable and have matching
1821
* profiles, register the common profile for the md device.
1822
*/
1823
if (blk_integrity_register(mddev->gendisk,
1824
bdev_get_integrity(reference->bdev)) != 0) {
1825
printk(KERN_ERR "md: failed to register integrity for %s\n",
1826
mdname(mddev));
1827
return -EINVAL;
1828
}
1829
printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1830
if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1831
printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1832
mdname(mddev));
1833
return -EINVAL;
1834
}
1835
return 0;
1836
}
1837
EXPORT_SYMBOL(md_integrity_register);
1838
1839
/* Disable data integrity if non-capable/non-matching disk is being added */
1840
void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1841
{
1842
struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1843
struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1844
1845
if (!bi_mddev) /* nothing to do */
1846
return;
1847
if (rdev->raid_disk < 0) /* skip spares */
1848
return;
1849
if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1850
rdev->bdev->bd_disk) >= 0)
1851
return;
1852
printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1853
blk_integrity_unregister(mddev->gendisk);
1854
}
1855
EXPORT_SYMBOL(md_integrity_add_rdev);
1856
1857
static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1858
{
1859
char b[BDEVNAME_SIZE];
1860
struct kobject *ko;
1861
char *s;
1862
int err;
1863
1864
if (rdev->mddev) {
1865
MD_BUG();
1866
return -EINVAL;
1867
}
1868
1869
/* prevent duplicates */
1870
if (find_rdev(mddev, rdev->bdev->bd_dev))
1871
return -EEXIST;
1872
1873
/* make sure rdev->sectors exceeds mddev->dev_sectors */
1874
if (rdev->sectors && (mddev->dev_sectors == 0 ||
1875
rdev->sectors < mddev->dev_sectors)) {
1876
if (mddev->pers) {
1877
/* Cannot change size, so fail
1878
* If mddev->level <= 0, then we don't care
1879
* about aligning sizes (e.g. linear)
1880
*/
1881
if (mddev->level > 0)
1882
return -ENOSPC;
1883
} else
1884
mddev->dev_sectors = rdev->sectors;
1885
}
1886
1887
/* Verify rdev->desc_nr is unique.
1888
* If it is -1, assign a free number, else
1889
* check number is not in use
1890
*/
1891
if (rdev->desc_nr < 0) {
1892
int choice = 0;
1893
if (mddev->pers) choice = mddev->raid_disks;
1894
while (find_rdev_nr(mddev, choice))
1895
choice++;
1896
rdev->desc_nr = choice;
1897
} else {
1898
if (find_rdev_nr(mddev, rdev->desc_nr))
1899
return -EBUSY;
1900
}
1901
if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1902
printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1903
mdname(mddev), mddev->max_disks);
1904
return -EBUSY;
1905
}
1906
bdevname(rdev->bdev,b);
1907
while ( (s=strchr(b, '/')) != NULL)
1908
*s = '!';
1909
1910
rdev->mddev = mddev;
1911
printk(KERN_INFO "md: bind<%s>\n", b);
1912
1913
if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1914
goto fail;
1915
1916
ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1917
if (sysfs_create_link(&rdev->kobj, ko, "block"))
1918
/* failure here is OK */;
1919
rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1920
1921
list_add_rcu(&rdev->same_set, &mddev->disks);
1922
bd_link_disk_holder(rdev->bdev, mddev->gendisk);
1923
1924
/* May as well allow recovery to be retried once */
1925
mddev->recovery_disabled = 0;
1926
1927
return 0;
1928
1929
fail:
1930
printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1931
b, mdname(mddev));
1932
return err;
1933
}
1934
1935
static void md_delayed_delete(struct work_struct *ws)
1936
{
1937
mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1938
kobject_del(&rdev->kobj);
1939
kobject_put(&rdev->kobj);
1940
}
1941
1942
static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1943
{
1944
char b[BDEVNAME_SIZE];
1945
if (!rdev->mddev) {
1946
MD_BUG();
1947
return;
1948
}
1949
bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
1950
list_del_rcu(&rdev->same_set);
1951
printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1952
rdev->mddev = NULL;
1953
sysfs_remove_link(&rdev->kobj, "block");
1954
sysfs_put(rdev->sysfs_state);
1955
rdev->sysfs_state = NULL;
1956
/* We need to delay this, otherwise we can deadlock when
1957
* writing to 'remove' to "dev/state". We also need
1958
* to delay it due to rcu usage.
1959
*/
1960
synchronize_rcu();
1961
INIT_WORK(&rdev->del_work, md_delayed_delete);
1962
kobject_get(&rdev->kobj);
1963
queue_work(md_misc_wq, &rdev->del_work);
1964
}
1965
1966
/*
1967
* prevent the device from being mounted, repartitioned or
1968
* otherwise reused by a RAID array (or any other kernel
1969
* subsystem), by bd_claiming the device.
1970
*/
1971
static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1972
{
1973
int err = 0;
1974
struct block_device *bdev;
1975
char b[BDEVNAME_SIZE];
1976
1977
bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1978
shared ? (mdk_rdev_t *)lock_rdev : rdev);
1979
if (IS_ERR(bdev)) {
1980
printk(KERN_ERR "md: could not open %s.\n",
1981
__bdevname(dev, b));
1982
return PTR_ERR(bdev);
1983
}
1984
rdev->bdev = bdev;
1985
return err;
1986
}
1987
1988
static void unlock_rdev(mdk_rdev_t *rdev)
1989
{
1990
struct block_device *bdev = rdev->bdev;
1991
rdev->bdev = NULL;
1992
if (!bdev)
1993
MD_BUG();
1994
blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1995
}
1996
1997
void md_autodetect_dev(dev_t dev);
1998
1999
static void export_rdev(mdk_rdev_t * rdev)
2000
{
2001
char b[BDEVNAME_SIZE];
2002
printk(KERN_INFO "md: export_rdev(%s)\n",
2003
bdevname(rdev->bdev,b));
2004
if (rdev->mddev)
2005
MD_BUG();
2006
free_disk_sb(rdev);
2007
#ifndef MODULE
2008
if (test_bit(AutoDetected, &rdev->flags))
2009
md_autodetect_dev(rdev->bdev->bd_dev);
2010
#endif
2011
unlock_rdev(rdev);
2012
kobject_put(&rdev->kobj);
2013
}
2014
2015
static void kick_rdev_from_array(mdk_rdev_t * rdev)
2016
{
2017
unbind_rdev_from_array(rdev);
2018
export_rdev(rdev);
2019
}
2020
2021
static void export_array(mddev_t *mddev)
2022
{
2023
mdk_rdev_t *rdev, *tmp;
2024
2025
rdev_for_each(rdev, tmp, mddev) {
2026
if (!rdev->mddev) {
2027
MD_BUG();
2028
continue;
2029
}
2030
kick_rdev_from_array(rdev);
2031
}
2032
if (!list_empty(&mddev->disks))
2033
MD_BUG();
2034
mddev->raid_disks = 0;
2035
mddev->major_version = 0;
2036
}
2037
2038
static void print_desc(mdp_disk_t *desc)
2039
{
2040
printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2041
desc->major,desc->minor,desc->raid_disk,desc->state);
2042
}
2043
2044
static void print_sb_90(mdp_super_t *sb)
2045
{
2046
int i;
2047
2048
printk(KERN_INFO
2049
"md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2050
sb->major_version, sb->minor_version, sb->patch_version,
2051
sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2052
sb->ctime);
2053
printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2054
sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2055
sb->md_minor, sb->layout, sb->chunk_size);
2056
printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2057
" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2058
sb->utime, sb->state, sb->active_disks, sb->working_disks,
2059
sb->failed_disks, sb->spare_disks,
2060
sb->sb_csum, (unsigned long)sb->events_lo);
2061
2062
printk(KERN_INFO);
2063
for (i = 0; i < MD_SB_DISKS; i++) {
2064
mdp_disk_t *desc;
2065
2066
desc = sb->disks + i;
2067
if (desc->number || desc->major || desc->minor ||
2068
desc->raid_disk || (desc->state && (desc->state != 4))) {
2069
printk(" D %2d: ", i);
2070
print_desc(desc);
2071
}
2072
}
2073
printk(KERN_INFO "md: THIS: ");
2074
print_desc(&sb->this_disk);
2075
}
2076
2077
static void print_sb_1(struct mdp_superblock_1 *sb)
2078
{
2079
__u8 *uuid;
2080
2081
uuid = sb->set_uuid;
2082
printk(KERN_INFO
2083
"md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2084
"md: Name: \"%s\" CT:%llu\n",
2085
le32_to_cpu(sb->major_version),
2086
le32_to_cpu(sb->feature_map),
2087
uuid,
2088
sb->set_name,
2089
(unsigned long long)le64_to_cpu(sb->ctime)
2090
& MD_SUPERBLOCK_1_TIME_SEC_MASK);
2091
2092
uuid = sb->device_uuid;
2093
printk(KERN_INFO
2094
"md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2095
" RO:%llu\n"
2096
"md: Dev:%08x UUID: %pU\n"
2097
"md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2098
"md: (MaxDev:%u) \n",
2099
le32_to_cpu(sb->level),
2100
(unsigned long long)le64_to_cpu(sb->size),
2101
le32_to_cpu(sb->raid_disks),
2102
le32_to_cpu(sb->layout),
2103
le32_to_cpu(sb->chunksize),
2104
(unsigned long long)le64_to_cpu(sb->data_offset),
2105
(unsigned long long)le64_to_cpu(sb->data_size),
2106
(unsigned long long)le64_to_cpu(sb->super_offset),
2107
(unsigned long long)le64_to_cpu(sb->recovery_offset),
2108
le32_to_cpu(sb->dev_number),
2109
uuid,
2110
sb->devflags,
2111
(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2112
(unsigned long long)le64_to_cpu(sb->events),
2113
(unsigned long long)le64_to_cpu(sb->resync_offset),
2114
le32_to_cpu(sb->sb_csum),
2115
le32_to_cpu(sb->max_dev)
2116
);
2117
}
2118
2119
static void print_rdev(mdk_rdev_t *rdev, int major_version)
2120
{
2121
char b[BDEVNAME_SIZE];
2122
printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2123
bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2124
test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2125
rdev->desc_nr);
2126
if (rdev->sb_loaded) {
2127
printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2128
switch (major_version) {
2129
case 0:
2130
print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2131
break;
2132
case 1:
2133
print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2134
break;
2135
}
2136
} else
2137
printk(KERN_INFO "md: no rdev superblock!\n");
2138
}
2139
2140
static void md_print_devices(void)
2141
{
2142
struct list_head *tmp;
2143
mdk_rdev_t *rdev;
2144
mddev_t *mddev;
2145
char b[BDEVNAME_SIZE];
2146
2147
printk("\n");
2148
printk("md: **********************************\n");
2149
printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2150
printk("md: **********************************\n");
2151
for_each_mddev(mddev, tmp) {
2152
2153
if (mddev->bitmap)
2154
bitmap_print_sb(mddev->bitmap);
2155
else
2156
printk("%s: ", mdname(mddev));
2157
list_for_each_entry(rdev, &mddev->disks, same_set)
2158
printk("<%s>", bdevname(rdev->bdev,b));
2159
printk("\n");
2160
2161
list_for_each_entry(rdev, &mddev->disks, same_set)
2162
print_rdev(rdev, mddev->major_version);
2163
}
2164
printk("md: **********************************\n");
2165
printk("\n");
2166
}
2167
2168
2169
static void sync_sbs(mddev_t * mddev, int nospares)
2170
{
2171
/* Update each superblock (in-memory image), but
2172
* if we are allowed to, skip spares which already
2173
* have the right event counter, or have one earlier
2174
* (which would mean they aren't being marked as dirty
2175
* with the rest of the array)
2176
*/
2177
mdk_rdev_t *rdev;
2178
list_for_each_entry(rdev, &mddev->disks, same_set) {
2179
if (rdev->sb_events == mddev->events ||
2180
(nospares &&
2181
rdev->raid_disk < 0 &&
2182
rdev->sb_events+1 == mddev->events)) {
2183
/* Don't update this superblock */
2184
rdev->sb_loaded = 2;
2185
} else {
2186
sync_super(mddev, rdev);
2187
rdev->sb_loaded = 1;
2188
}
2189
}
2190
}
2191
2192
static void md_update_sb(mddev_t * mddev, int force_change)
2193
{
2194
mdk_rdev_t *rdev;
2195
int sync_req;
2196
int nospares = 0;
2197
2198
repeat:
2199
/* First make sure individual recovery_offsets are correct */
2200
list_for_each_entry(rdev, &mddev->disks, same_set) {
2201
if (rdev->raid_disk >= 0 &&
2202
mddev->delta_disks >= 0 &&
2203
!test_bit(In_sync, &rdev->flags) &&
2204
mddev->curr_resync_completed > rdev->recovery_offset)
2205
rdev->recovery_offset = mddev->curr_resync_completed;
2206
2207
}
2208
if (!mddev->persistent) {
2209
clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2210
clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2211
if (!mddev->external)
2212
clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2213
wake_up(&mddev->sb_wait);
2214
return;
2215
}
2216
2217
spin_lock_irq(&mddev->write_lock);
2218
2219
mddev->utime = get_seconds();
2220
2221
if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2222
force_change = 1;
2223
if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2224
/* just a clean<-> dirty transition, possibly leave spares alone,
2225
* though if events isn't the right even/odd, we will have to do
2226
* spares after all
2227
*/
2228
nospares = 1;
2229
if (force_change)
2230
nospares = 0;
2231
if (mddev->degraded)
2232
/* If the array is degraded, then skipping spares is both
2233
* dangerous and fairly pointless.
2234
* Dangerous because a device that was removed from the array
2235
* might have a event_count that still looks up-to-date,
2236
* so it can be re-added without a resync.
2237
* Pointless because if there are any spares to skip,
2238
* then a recovery will happen and soon that array won't
2239
* be degraded any more and the spare can go back to sleep then.
2240
*/
2241
nospares = 0;
2242
2243
sync_req = mddev->in_sync;
2244
2245
/* If this is just a dirty<->clean transition, and the array is clean
2246
* and 'events' is odd, we can roll back to the previous clean state */
2247
if (nospares
2248
&& (mddev->in_sync && mddev->recovery_cp == MaxSector)
2249
&& mddev->can_decrease_events
2250
&& mddev->events != 1) {
2251
mddev->events--;
2252
mddev->can_decrease_events = 0;
2253
} else {
2254
/* otherwise we have to go forward and ... */
2255
mddev->events ++;
2256
mddev->can_decrease_events = nospares;
2257
}
2258
2259
if (!mddev->events) {
2260
/*
2261
* oops, this 64-bit counter should never wrap.
2262
* Either we are in around ~1 trillion A.C., assuming
2263
* 1 reboot per second, or we have a bug:
2264
*/
2265
MD_BUG();
2266
mddev->events --;
2267
}
2268
sync_sbs(mddev, nospares);
2269
spin_unlock_irq(&mddev->write_lock);
2270
2271
dprintk(KERN_INFO
2272
"md: updating %s RAID superblock on device (in sync %d)\n",
2273
mdname(mddev),mddev->in_sync);
2274
2275
bitmap_update_sb(mddev->bitmap);
2276
list_for_each_entry(rdev, &mddev->disks, same_set) {
2277
char b[BDEVNAME_SIZE];
2278
dprintk(KERN_INFO "md: ");
2279
if (rdev->sb_loaded != 1)
2280
continue; /* no noise on spare devices */
2281
if (test_bit(Faulty, &rdev->flags))
2282
dprintk("(skipping faulty ");
2283
2284
dprintk("%s ", bdevname(rdev->bdev,b));
2285
if (!test_bit(Faulty, &rdev->flags)) {
2286
md_super_write(mddev,rdev,
2287
rdev->sb_start, rdev->sb_size,
2288
rdev->sb_page);
2289
dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2290
bdevname(rdev->bdev,b),
2291
(unsigned long long)rdev->sb_start);
2292
rdev->sb_events = mddev->events;
2293
2294
} else
2295
dprintk(")\n");
2296
if (mddev->level == LEVEL_MULTIPATH)
2297
/* only need to write one superblock... */
2298
break;
2299
}
2300
md_super_wait(mddev);
2301
/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2302
2303
spin_lock_irq(&mddev->write_lock);
2304
if (mddev->in_sync != sync_req ||
2305
test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2306
/* have to write it out again */
2307
spin_unlock_irq(&mddev->write_lock);
2308
goto repeat;
2309
}
2310
clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2311
spin_unlock_irq(&mddev->write_lock);
2312
wake_up(&mddev->sb_wait);
2313
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2314
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2315
2316
}
2317
2318
/* words written to sysfs files may, or may not, be \n terminated.
2319
* We want to accept with case. For this we use cmd_match.
2320
*/
2321
static int cmd_match(const char *cmd, const char *str)
2322
{
2323
/* See if cmd, written into a sysfs file, matches
2324
* str. They must either be the same, or cmd can
2325
* have a trailing newline
2326
*/
2327
while (*cmd && *str && *cmd == *str) {
2328
cmd++;
2329
str++;
2330
}
2331
if (*cmd == '\n')
2332
cmd++;
2333
if (*str || *cmd)
2334
return 0;
2335
return 1;
2336
}
2337
2338
struct rdev_sysfs_entry {
2339
struct attribute attr;
2340
ssize_t (*show)(mdk_rdev_t *, char *);
2341
ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2342
};
2343
2344
static ssize_t
2345
state_show(mdk_rdev_t *rdev, char *page)
2346
{
2347
char *sep = "";
2348
size_t len = 0;
2349
2350
if (test_bit(Faulty, &rdev->flags)) {
2351
len+= sprintf(page+len, "%sfaulty",sep);
2352
sep = ",";
2353
}
2354
if (test_bit(In_sync, &rdev->flags)) {
2355
len += sprintf(page+len, "%sin_sync",sep);
2356
sep = ",";
2357
}
2358
if (test_bit(WriteMostly, &rdev->flags)) {
2359
len += sprintf(page+len, "%swrite_mostly",sep);
2360
sep = ",";
2361
}
2362
if (test_bit(Blocked, &rdev->flags)) {
2363
len += sprintf(page+len, "%sblocked", sep);
2364
sep = ",";
2365
}
2366
if (!test_bit(Faulty, &rdev->flags) &&
2367
!test_bit(In_sync, &rdev->flags)) {
2368
len += sprintf(page+len, "%sspare", sep);
2369
sep = ",";
2370
}
2371
return len+sprintf(page+len, "\n");
2372
}
2373
2374
static ssize_t
2375
state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2376
{
2377
/* can write
2378
* faulty - simulates and error
2379
* remove - disconnects the device
2380
* writemostly - sets write_mostly
2381
* -writemostly - clears write_mostly
2382
* blocked - sets the Blocked flag
2383
* -blocked - clears the Blocked flag
2384
* insync - sets Insync providing device isn't active
2385
*/
2386
int err = -EINVAL;
2387
if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2388
md_error(rdev->mddev, rdev);
2389
err = 0;
2390
} else if (cmd_match(buf, "remove")) {
2391
if (rdev->raid_disk >= 0)
2392
err = -EBUSY;
2393
else {
2394
mddev_t *mddev = rdev->mddev;
2395
kick_rdev_from_array(rdev);
2396
if (mddev->pers)
2397
md_update_sb(mddev, 1);
2398
md_new_event(mddev);
2399
err = 0;
2400
}
2401
} else if (cmd_match(buf, "writemostly")) {
2402
set_bit(WriteMostly, &rdev->flags);
2403
err = 0;
2404
} else if (cmd_match(buf, "-writemostly")) {
2405
clear_bit(WriteMostly, &rdev->flags);
2406
err = 0;
2407
} else if (cmd_match(buf, "blocked")) {
2408
set_bit(Blocked, &rdev->flags);
2409
err = 0;
2410
} else if (cmd_match(buf, "-blocked")) {
2411
clear_bit(Blocked, &rdev->flags);
2412
wake_up(&rdev->blocked_wait);
2413
set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2414
md_wakeup_thread(rdev->mddev->thread);
2415
2416
err = 0;
2417
} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2418
set_bit(In_sync, &rdev->flags);
2419
err = 0;
2420
}
2421
if (!err)
2422
sysfs_notify_dirent_safe(rdev->sysfs_state);
2423
return err ? err : len;
2424
}
2425
static struct rdev_sysfs_entry rdev_state =
2426
__ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2427
2428
static ssize_t
2429
errors_show(mdk_rdev_t *rdev, char *page)
2430
{
2431
return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2432
}
2433
2434
static ssize_t
2435
errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2436
{
2437
char *e;
2438
unsigned long n = simple_strtoul(buf, &e, 10);
2439
if (*buf && (*e == 0 || *e == '\n')) {
2440
atomic_set(&rdev->corrected_errors, n);
2441
return len;
2442
}
2443
return -EINVAL;
2444
}
2445
static struct rdev_sysfs_entry rdev_errors =
2446
__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2447
2448
static ssize_t
2449
slot_show(mdk_rdev_t *rdev, char *page)
2450
{
2451
if (rdev->raid_disk < 0)
2452
return sprintf(page, "none\n");
2453
else
2454
return sprintf(page, "%d\n", rdev->raid_disk);
2455
}
2456
2457
static ssize_t
2458
slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2459
{
2460
char *e;
2461
int err;
2462
char nm[20];
2463
int slot = simple_strtoul(buf, &e, 10);
2464
if (strncmp(buf, "none", 4)==0)
2465
slot = -1;
2466
else if (e==buf || (*e && *e!= '\n'))
2467
return -EINVAL;
2468
if (rdev->mddev->pers && slot == -1) {
2469
/* Setting 'slot' on an active array requires also
2470
* updating the 'rd%d' link, and communicating
2471
* with the personality with ->hot_*_disk.
2472
* For now we only support removing
2473
* failed/spare devices. This normally happens automatically,
2474
* but not when the metadata is externally managed.
2475
*/
2476
if (rdev->raid_disk == -1)
2477
return -EEXIST;
2478
/* personality does all needed checks */
2479
if (rdev->mddev->pers->hot_remove_disk == NULL)
2480
return -EINVAL;
2481
err = rdev->mddev->pers->
2482
hot_remove_disk(rdev->mddev, rdev->raid_disk);
2483
if (err)
2484
return err;
2485
sprintf(nm, "rd%d", rdev->raid_disk);
2486
sysfs_remove_link(&rdev->mddev->kobj, nm);
2487
rdev->raid_disk = -1;
2488
set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2489
md_wakeup_thread(rdev->mddev->thread);
2490
} else if (rdev->mddev->pers) {
2491
mdk_rdev_t *rdev2;
2492
/* Activating a spare .. or possibly reactivating
2493
* if we ever get bitmaps working here.
2494
*/
2495
2496
if (rdev->raid_disk != -1)
2497
return -EBUSY;
2498
2499
if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2500
return -EBUSY;
2501
2502
if (rdev->mddev->pers->hot_add_disk == NULL)
2503
return -EINVAL;
2504
2505
list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2506
if (rdev2->raid_disk == slot)
2507
return -EEXIST;
2508
2509
if (slot >= rdev->mddev->raid_disks &&
2510
slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2511
return -ENOSPC;
2512
2513
rdev->raid_disk = slot;
2514
if (test_bit(In_sync, &rdev->flags))
2515
rdev->saved_raid_disk = slot;
2516
else
2517
rdev->saved_raid_disk = -1;
2518
err = rdev->mddev->pers->
2519
hot_add_disk(rdev->mddev, rdev);
2520
if (err) {
2521
rdev->raid_disk = -1;
2522
return err;
2523
} else
2524
sysfs_notify_dirent_safe(rdev->sysfs_state);
2525
sprintf(nm, "rd%d", rdev->raid_disk);
2526
if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2527
/* failure here is OK */;
2528
/* don't wakeup anyone, leave that to userspace. */
2529
} else {
2530
if (slot >= rdev->mddev->raid_disks &&
2531
slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2532
return -ENOSPC;
2533
rdev->raid_disk = slot;
2534
/* assume it is working */
2535
clear_bit(Faulty, &rdev->flags);
2536
clear_bit(WriteMostly, &rdev->flags);
2537
set_bit(In_sync, &rdev->flags);
2538
sysfs_notify_dirent_safe(rdev->sysfs_state);
2539
}
2540
return len;
2541
}
2542
2543
2544
static struct rdev_sysfs_entry rdev_slot =
2545
__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2546
2547
static ssize_t
2548
offset_show(mdk_rdev_t *rdev, char *page)
2549
{
2550
return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2551
}
2552
2553
static ssize_t
2554
offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2555
{
2556
char *e;
2557
unsigned long long offset = simple_strtoull(buf, &e, 10);
2558
if (e==buf || (*e && *e != '\n'))
2559
return -EINVAL;
2560
if (rdev->mddev->pers && rdev->raid_disk >= 0)
2561
return -EBUSY;
2562
if (rdev->sectors && rdev->mddev->external)
2563
/* Must set offset before size, so overlap checks
2564
* can be sane */
2565
return -EBUSY;
2566
rdev->data_offset = offset;
2567
return len;
2568
}
2569
2570
static struct rdev_sysfs_entry rdev_offset =
2571
__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2572
2573
static ssize_t
2574
rdev_size_show(mdk_rdev_t *rdev, char *page)
2575
{
2576
return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2577
}
2578
2579
static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2580
{
2581
/* check if two start/length pairs overlap */
2582
if (s1+l1 <= s2)
2583
return 0;
2584
if (s2+l2 <= s1)
2585
return 0;
2586
return 1;
2587
}
2588
2589
static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2590
{
2591
unsigned long long blocks;
2592
sector_t new;
2593
2594
if (strict_strtoull(buf, 10, &blocks) < 0)
2595
return -EINVAL;
2596
2597
if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2598
return -EINVAL; /* sector conversion overflow */
2599
2600
new = blocks * 2;
2601
if (new != blocks * 2)
2602
return -EINVAL; /* unsigned long long to sector_t overflow */
2603
2604
*sectors = new;
2605
return 0;
2606
}
2607
2608
static ssize_t
2609
rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2610
{
2611
mddev_t *my_mddev = rdev->mddev;
2612
sector_t oldsectors = rdev->sectors;
2613
sector_t sectors;
2614
2615
if (strict_blocks_to_sectors(buf, &sectors) < 0)
2616
return -EINVAL;
2617
if (my_mddev->pers && rdev->raid_disk >= 0) {
2618
if (my_mddev->persistent) {
2619
sectors = super_types[my_mddev->major_version].
2620
rdev_size_change(rdev, sectors);
2621
if (!sectors)
2622
return -EBUSY;
2623
} else if (!sectors)
2624
sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2625
rdev->data_offset;
2626
}
2627
if (sectors < my_mddev->dev_sectors)
2628
return -EINVAL; /* component must fit device */
2629
2630
rdev->sectors = sectors;
2631
if (sectors > oldsectors && my_mddev->external) {
2632
/* need to check that all other rdevs with the same ->bdev
2633
* do not overlap. We need to unlock the mddev to avoid
2634
* a deadlock. We have already changed rdev->sectors, and if
2635
* we have to change it back, we will have the lock again.
2636
*/
2637
mddev_t *mddev;
2638
int overlap = 0;
2639
struct list_head *tmp;
2640
2641
mddev_unlock(my_mddev);
2642
for_each_mddev(mddev, tmp) {
2643
mdk_rdev_t *rdev2;
2644
2645
mddev_lock(mddev);
2646
list_for_each_entry(rdev2, &mddev->disks, same_set)
2647
if (rdev->bdev == rdev2->bdev &&
2648
rdev != rdev2 &&
2649
overlaps(rdev->data_offset, rdev->sectors,
2650
rdev2->data_offset,
2651
rdev2->sectors)) {
2652
overlap = 1;
2653
break;
2654
}
2655
mddev_unlock(mddev);
2656
if (overlap) {
2657
mddev_put(mddev);
2658
break;
2659
}
2660
}
2661
mddev_lock(my_mddev);
2662
if (overlap) {
2663
/* Someone else could have slipped in a size
2664
* change here, but doing so is just silly.
2665
* We put oldsectors back because we *know* it is
2666
* safe, and trust userspace not to race with
2667
* itself
2668
*/
2669
rdev->sectors = oldsectors;
2670
return -EBUSY;
2671
}
2672
}
2673
return len;
2674
}
2675
2676
static struct rdev_sysfs_entry rdev_size =
2677
__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2678
2679
2680
static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2681
{
2682
unsigned long long recovery_start = rdev->recovery_offset;
2683
2684
if (test_bit(In_sync, &rdev->flags) ||
2685
recovery_start == MaxSector)
2686
return sprintf(page, "none\n");
2687
2688
return sprintf(page, "%llu\n", recovery_start);
2689
}
2690
2691
static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2692
{
2693
unsigned long long recovery_start;
2694
2695
if (cmd_match(buf, "none"))
2696
recovery_start = MaxSector;
2697
else if (strict_strtoull(buf, 10, &recovery_start))
2698
return -EINVAL;
2699
2700
if (rdev->mddev->pers &&
2701
rdev->raid_disk >= 0)
2702
return -EBUSY;
2703
2704
rdev->recovery_offset = recovery_start;
2705
if (recovery_start == MaxSector)
2706
set_bit(In_sync, &rdev->flags);
2707
else
2708
clear_bit(In_sync, &rdev->flags);
2709
return len;
2710
}
2711
2712
static struct rdev_sysfs_entry rdev_recovery_start =
2713
__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2714
2715
static struct attribute *rdev_default_attrs[] = {
2716
&rdev_state.attr,
2717
&rdev_errors.attr,
2718
&rdev_slot.attr,
2719
&rdev_offset.attr,
2720
&rdev_size.attr,
2721
&rdev_recovery_start.attr,
2722
NULL,
2723
};
2724
static ssize_t
2725
rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2726
{
2727
struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2728
mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2729
mddev_t *mddev = rdev->mddev;
2730
ssize_t rv;
2731
2732
if (!entry->show)
2733
return -EIO;
2734
2735
rv = mddev ? mddev_lock(mddev) : -EBUSY;
2736
if (!rv) {
2737
if (rdev->mddev == NULL)
2738
rv = -EBUSY;
2739
else
2740
rv = entry->show(rdev, page);
2741
mddev_unlock(mddev);
2742
}
2743
return rv;
2744
}
2745
2746
static ssize_t
2747
rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2748
const char *page, size_t length)
2749
{
2750
struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2751
mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2752
ssize_t rv;
2753
mddev_t *mddev = rdev->mddev;
2754
2755
if (!entry->store)
2756
return -EIO;
2757
if (!capable(CAP_SYS_ADMIN))
2758
return -EACCES;
2759
rv = mddev ? mddev_lock(mddev): -EBUSY;
2760
if (!rv) {
2761
if (rdev->mddev == NULL)
2762
rv = -EBUSY;
2763
else
2764
rv = entry->store(rdev, page, length);
2765
mddev_unlock(mddev);
2766
}
2767
return rv;
2768
}
2769
2770
static void rdev_free(struct kobject *ko)
2771
{
2772
mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2773
kfree(rdev);
2774
}
2775
static const struct sysfs_ops rdev_sysfs_ops = {
2776
.show = rdev_attr_show,
2777
.store = rdev_attr_store,
2778
};
2779
static struct kobj_type rdev_ktype = {
2780
.release = rdev_free,
2781
.sysfs_ops = &rdev_sysfs_ops,
2782
.default_attrs = rdev_default_attrs,
2783
};
2784
2785
void md_rdev_init(mdk_rdev_t *rdev)
2786
{
2787
rdev->desc_nr = -1;
2788
rdev->saved_raid_disk = -1;
2789
rdev->raid_disk = -1;
2790
rdev->flags = 0;
2791
rdev->data_offset = 0;
2792
rdev->sb_events = 0;
2793
rdev->last_read_error.tv_sec = 0;
2794
rdev->last_read_error.tv_nsec = 0;
2795
atomic_set(&rdev->nr_pending, 0);
2796
atomic_set(&rdev->read_errors, 0);
2797
atomic_set(&rdev->corrected_errors, 0);
2798
2799
INIT_LIST_HEAD(&rdev->same_set);
2800
init_waitqueue_head(&rdev->blocked_wait);
2801
}
2802
EXPORT_SYMBOL_GPL(md_rdev_init);
2803
/*
2804
* Import a device. If 'super_format' >= 0, then sanity check the superblock
2805
*
2806
* mark the device faulty if:
2807
*
2808
* - the device is nonexistent (zero size)
2809
* - the device has no valid superblock
2810
*
2811
* a faulty rdev _never_ has rdev->sb set.
2812
*/
2813
static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2814
{
2815
char b[BDEVNAME_SIZE];
2816
int err;
2817
mdk_rdev_t *rdev;
2818
sector_t size;
2819
2820
rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2821
if (!rdev) {
2822
printk(KERN_ERR "md: could not alloc mem for new device!\n");
2823
return ERR_PTR(-ENOMEM);
2824
}
2825
2826
md_rdev_init(rdev);
2827
if ((err = alloc_disk_sb(rdev)))
2828
goto abort_free;
2829
2830
err = lock_rdev(rdev, newdev, super_format == -2);
2831
if (err)
2832
goto abort_free;
2833
2834
kobject_init(&rdev->kobj, &rdev_ktype);
2835
2836
size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
2837
if (!size) {
2838
printk(KERN_WARNING
2839
"md: %s has zero or unknown size, marking faulty!\n",
2840
bdevname(rdev->bdev,b));
2841
err = -EINVAL;
2842
goto abort_free;
2843
}
2844
2845
if (super_format >= 0) {
2846
err = super_types[super_format].
2847
load_super(rdev, NULL, super_minor);
2848
if (err == -EINVAL) {
2849
printk(KERN_WARNING
2850
"md: %s does not have a valid v%d.%d "
2851
"superblock, not importing!\n",
2852
bdevname(rdev->bdev,b),
2853
super_format, super_minor);
2854
goto abort_free;
2855
}
2856
if (err < 0) {
2857
printk(KERN_WARNING
2858
"md: could not read %s's sb, not importing!\n",
2859
bdevname(rdev->bdev,b));
2860
goto abort_free;
2861
}
2862
}
2863
2864
return rdev;
2865
2866
abort_free:
2867
if (rdev->sb_page) {
2868
if (rdev->bdev)
2869
unlock_rdev(rdev);
2870
free_disk_sb(rdev);
2871
}
2872
kfree(rdev);
2873
return ERR_PTR(err);
2874
}
2875
2876
/*
2877
* Check a full RAID array for plausibility
2878
*/
2879
2880
2881
static void analyze_sbs(mddev_t * mddev)
2882
{
2883
int i;
2884
mdk_rdev_t *rdev, *freshest, *tmp;
2885
char b[BDEVNAME_SIZE];
2886
2887
freshest = NULL;
2888
rdev_for_each(rdev, tmp, mddev)
2889
switch (super_types[mddev->major_version].
2890
load_super(rdev, freshest, mddev->minor_version)) {
2891
case 1:
2892
freshest = rdev;
2893
break;
2894
case 0:
2895
break;
2896
default:
2897
printk( KERN_ERR \
2898
"md: fatal superblock inconsistency in %s"
2899
" -- removing from array\n",
2900
bdevname(rdev->bdev,b));
2901
kick_rdev_from_array(rdev);
2902
}
2903
2904
2905
super_types[mddev->major_version].
2906
validate_super(mddev, freshest);
2907
2908
i = 0;
2909
rdev_for_each(rdev, tmp, mddev) {
2910
if (mddev->max_disks &&
2911
(rdev->desc_nr >= mddev->max_disks ||
2912
i > mddev->max_disks)) {
2913
printk(KERN_WARNING
2914
"md: %s: %s: only %d devices permitted\n",
2915
mdname(mddev), bdevname(rdev->bdev, b),
2916
mddev->max_disks);
2917
kick_rdev_from_array(rdev);
2918
continue;
2919
}
2920
if (rdev != freshest)
2921
if (super_types[mddev->major_version].
2922
validate_super(mddev, rdev)) {
2923
printk(KERN_WARNING "md: kicking non-fresh %s"
2924
" from array!\n",
2925
bdevname(rdev->bdev,b));
2926
kick_rdev_from_array(rdev);
2927
continue;
2928
}
2929
if (mddev->level == LEVEL_MULTIPATH) {
2930
rdev->desc_nr = i++;
2931
rdev->raid_disk = rdev->desc_nr;
2932
set_bit(In_sync, &rdev->flags);
2933
} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2934
rdev->raid_disk = -1;
2935
clear_bit(In_sync, &rdev->flags);
2936
}
2937
}
2938
}
2939
2940
/* Read a fixed-point number.
2941
* Numbers in sysfs attributes should be in "standard" units where
2942
* possible, so time should be in seconds.
2943
* However we internally use a a much smaller unit such as
2944
* milliseconds or jiffies.
2945
* This function takes a decimal number with a possible fractional
2946
* component, and produces an integer which is the result of
2947
* multiplying that number by 10^'scale'.
2948
* all without any floating-point arithmetic.
2949
*/
2950
int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2951
{
2952
unsigned long result = 0;
2953
long decimals = -1;
2954
while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2955
if (*cp == '.')
2956
decimals = 0;
2957
else if (decimals < scale) {
2958
unsigned int value;
2959
value = *cp - '0';
2960
result = result * 10 + value;
2961
if (decimals >= 0)
2962
decimals++;
2963
}
2964
cp++;
2965
}
2966
if (*cp == '\n')
2967
cp++;
2968
if (*cp)
2969
return -EINVAL;
2970
if (decimals < 0)
2971
decimals = 0;
2972
while (decimals < scale) {
2973
result *= 10;
2974
decimals ++;
2975
}
2976
*res = result;
2977
return 0;
2978
}
2979
2980
2981
static void md_safemode_timeout(unsigned long data);
2982
2983
static ssize_t
2984
safe_delay_show(mddev_t *mddev, char *page)
2985
{
2986
int msec = (mddev->safemode_delay*1000)/HZ;
2987
return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2988
}
2989
static ssize_t
2990
safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2991
{
2992
unsigned long msec;
2993
2994
if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2995
return -EINVAL;
2996
if (msec == 0)
2997
mddev->safemode_delay = 0;
2998
else {
2999
unsigned long old_delay = mddev->safemode_delay;
3000
mddev->safemode_delay = (msec*HZ)/1000;
3001
if (mddev->safemode_delay == 0)
3002
mddev->safemode_delay = 1;
3003
if (mddev->safemode_delay < old_delay)
3004
md_safemode_timeout((unsigned long)mddev);
3005
}
3006
return len;
3007
}
3008
static struct md_sysfs_entry md_safe_delay =
3009
__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3010
3011
static ssize_t
3012
level_show(mddev_t *mddev, char *page)
3013
{
3014
struct mdk_personality *p = mddev->pers;
3015
if (p)
3016
return sprintf(page, "%s\n", p->name);
3017
else if (mddev->clevel[0])
3018
return sprintf(page, "%s\n", mddev->clevel);
3019
else if (mddev->level != LEVEL_NONE)
3020
return sprintf(page, "%d\n", mddev->level);
3021
else
3022
return 0;
3023
}
3024
3025
static ssize_t
3026
level_store(mddev_t *mddev, const char *buf, size_t len)
3027
{
3028
char clevel[16];
3029
ssize_t rv = len;
3030
struct mdk_personality *pers;
3031
long level;
3032
void *priv;
3033
mdk_rdev_t *rdev;
3034
3035
if (mddev->pers == NULL) {
3036
if (len == 0)
3037
return 0;
3038
if (len >= sizeof(mddev->clevel))
3039
return -ENOSPC;
3040
strncpy(mddev->clevel, buf, len);
3041
if (mddev->clevel[len-1] == '\n')
3042
len--;
3043
mddev->clevel[len] = 0;
3044
mddev->level = LEVEL_NONE;
3045
return rv;
3046
}
3047
3048
/* request to change the personality. Need to ensure:
3049
* - array is not engaged in resync/recovery/reshape
3050
* - old personality can be suspended
3051
* - new personality will access other array.
3052
*/
3053
3054
if (mddev->sync_thread ||
3055
mddev->reshape_position != MaxSector ||
3056
mddev->sysfs_active)
3057
return -EBUSY;
3058
3059
if (!mddev->pers->quiesce) {
3060
printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3061
mdname(mddev), mddev->pers->name);
3062
return -EINVAL;
3063
}
3064
3065
/* Now find the new personality */
3066
if (len == 0 || len >= sizeof(clevel))
3067
return -EINVAL;
3068
strncpy(clevel, buf, len);
3069
if (clevel[len-1] == '\n')
3070
len--;
3071
clevel[len] = 0;
3072
if (strict_strtol(clevel, 10, &level))
3073
level = LEVEL_NONE;
3074
3075
if (request_module("md-%s", clevel) != 0)
3076
request_module("md-level-%s", clevel);
3077
spin_lock(&pers_lock);
3078
pers = find_pers(level, clevel);
3079
if (!pers || !try_module_get(pers->owner)) {
3080
spin_unlock(&pers_lock);
3081
printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3082
return -EINVAL;
3083
}
3084
spin_unlock(&pers_lock);
3085
3086
if (pers == mddev->pers) {
3087
/* Nothing to do! */
3088
module_put(pers->owner);
3089
return rv;
3090
}
3091
if (!pers->takeover) {
3092
module_put(pers->owner);
3093
printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3094
mdname(mddev), clevel);
3095
return -EINVAL;
3096
}
3097
3098
list_for_each_entry(rdev, &mddev->disks, same_set)
3099
rdev->new_raid_disk = rdev->raid_disk;
3100
3101
/* ->takeover must set new_* and/or delta_disks
3102
* if it succeeds, and may set them when it fails.
3103
*/
3104
priv = pers->takeover(mddev);
3105
if (IS_ERR(priv)) {
3106
mddev->new_level = mddev->level;
3107
mddev->new_layout = mddev->layout;
3108
mddev->new_chunk_sectors = mddev->chunk_sectors;
3109
mddev->raid_disks -= mddev->delta_disks;
3110
mddev->delta_disks = 0;
3111
module_put(pers->owner);
3112
printk(KERN_WARNING "md: %s: %s would not accept array\n",
3113
mdname(mddev), clevel);
3114
return PTR_ERR(priv);
3115
}
3116
3117
/* Looks like we have a winner */
3118
mddev_suspend(mddev);
3119
mddev->pers->stop(mddev);
3120
3121
if (mddev->pers->sync_request == NULL &&
3122
pers->sync_request != NULL) {
3123
/* need to add the md_redundancy_group */
3124
if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3125
printk(KERN_WARNING
3126
"md: cannot register extra attributes for %s\n",
3127
mdname(mddev));
3128
mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3129
}
3130
if (mddev->pers->sync_request != NULL &&
3131
pers->sync_request == NULL) {
3132
/* need to remove the md_redundancy_group */
3133
if (mddev->to_remove == NULL)
3134
mddev->to_remove = &md_redundancy_group;
3135
}
3136
3137
if (mddev->pers->sync_request == NULL &&
3138
mddev->external) {
3139
/* We are converting from a no-redundancy array
3140
* to a redundancy array and metadata is managed
3141
* externally so we need to be sure that writes
3142
* won't block due to a need to transition
3143
* clean->dirty
3144
* until external management is started.
3145
*/
3146
mddev->in_sync = 0;
3147
mddev->safemode_delay = 0;
3148
mddev->safemode = 0;
3149
}
3150
3151
list_for_each_entry(rdev, &mddev->disks, same_set) {
3152
char nm[20];
3153
if (rdev->raid_disk < 0)
3154
continue;
3155
if (rdev->new_raid_disk >= mddev->raid_disks)
3156
rdev->new_raid_disk = -1;
3157
if (rdev->new_raid_disk == rdev->raid_disk)
3158
continue;
3159
sprintf(nm, "rd%d", rdev->raid_disk);
3160
sysfs_remove_link(&mddev->kobj, nm);
3161
}
3162
list_for_each_entry(rdev, &mddev->disks, same_set) {
3163
if (rdev->raid_disk < 0)
3164
continue;
3165
if (rdev->new_raid_disk == rdev->raid_disk)
3166
continue;
3167
rdev->raid_disk = rdev->new_raid_disk;
3168
if (rdev->raid_disk < 0)
3169
clear_bit(In_sync, &rdev->flags);
3170
else {
3171
char nm[20];
3172
sprintf(nm, "rd%d", rdev->raid_disk);
3173
if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3174
printk("md: cannot register %s for %s after level change\n",
3175
nm, mdname(mddev));
3176
}
3177
}
3178
3179
module_put(mddev->pers->owner);
3180
mddev->pers = pers;
3181
mddev->private = priv;
3182
strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3183
mddev->level = mddev->new_level;
3184
mddev->layout = mddev->new_layout;
3185
mddev->chunk_sectors = mddev->new_chunk_sectors;
3186
mddev->delta_disks = 0;
3187
mddev->degraded = 0;
3188
if (mddev->pers->sync_request == NULL) {
3189
/* this is now an array without redundancy, so
3190
* it must always be in_sync
3191
*/
3192
mddev->in_sync = 1;
3193
del_timer_sync(&mddev->safemode_timer);
3194
}
3195
pers->run(mddev);
3196
mddev_resume(mddev);
3197
set_bit(MD_CHANGE_DEVS, &mddev->flags);
3198
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3199
md_wakeup_thread(mddev->thread);
3200
sysfs_notify(&mddev->kobj, NULL, "level");
3201
md_new_event(mddev);
3202
return rv;
3203
}
3204
3205
static struct md_sysfs_entry md_level =
3206
__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3207
3208
3209
static ssize_t
3210
layout_show(mddev_t *mddev, char *page)
3211
{
3212
/* just a number, not meaningful for all levels */
3213
if (mddev->reshape_position != MaxSector &&
3214
mddev->layout != mddev->new_layout)
3215
return sprintf(page, "%d (%d)\n",
3216
mddev->new_layout, mddev->layout);
3217
return sprintf(page, "%d\n", mddev->layout);
3218
}
3219
3220
static ssize_t
3221
layout_store(mddev_t *mddev, const char *buf, size_t len)
3222
{
3223
char *e;
3224
unsigned long n = simple_strtoul(buf, &e, 10);
3225
3226
if (!*buf || (*e && *e != '\n'))
3227
return -EINVAL;
3228
3229
if (mddev->pers) {
3230
int err;
3231
if (mddev->pers->check_reshape == NULL)
3232
return -EBUSY;
3233
mddev->new_layout = n;
3234
err = mddev->pers->check_reshape(mddev);
3235
if (err) {
3236
mddev->new_layout = mddev->layout;
3237
return err;
3238
}
3239
} else {
3240
mddev->new_layout = n;
3241
if (mddev->reshape_position == MaxSector)
3242
mddev->layout = n;
3243
}
3244
return len;
3245
}
3246
static struct md_sysfs_entry md_layout =
3247
__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3248
3249
3250
static ssize_t
3251
raid_disks_show(mddev_t *mddev, char *page)
3252
{
3253
if (mddev->raid_disks == 0)
3254
return 0;
3255
if (mddev->reshape_position != MaxSector &&
3256
mddev->delta_disks != 0)
3257
return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3258
mddev->raid_disks - mddev->delta_disks);
3259
return sprintf(page, "%d\n", mddev->raid_disks);
3260
}
3261
3262
static int update_raid_disks(mddev_t *mddev, int raid_disks);
3263
3264
static ssize_t
3265
raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3266
{
3267
char *e;
3268
int rv = 0;
3269
unsigned long n = simple_strtoul(buf, &e, 10);
3270
3271
if (!*buf || (*e && *e != '\n'))
3272
return -EINVAL;
3273
3274
if (mddev->pers)
3275
rv = update_raid_disks(mddev, n);
3276
else if (mddev->reshape_position != MaxSector) {
3277
int olddisks = mddev->raid_disks - mddev->delta_disks;
3278
mddev->delta_disks = n - olddisks;
3279
mddev->raid_disks = n;
3280
} else
3281
mddev->raid_disks = n;
3282
return rv ? rv : len;
3283
}
3284
static struct md_sysfs_entry md_raid_disks =
3285
__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3286
3287
static ssize_t
3288
chunk_size_show(mddev_t *mddev, char *page)
3289
{
3290
if (mddev->reshape_position != MaxSector &&
3291
mddev->chunk_sectors != mddev->new_chunk_sectors)
3292
return sprintf(page, "%d (%d)\n",
3293
mddev->new_chunk_sectors << 9,
3294
mddev->chunk_sectors << 9);
3295
return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3296
}
3297
3298
static ssize_t
3299
chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3300
{
3301
char *e;
3302
unsigned long n = simple_strtoul(buf, &e, 10);
3303
3304
if (!*buf || (*e && *e != '\n'))
3305
return -EINVAL;
3306
3307
if (mddev->pers) {
3308
int err;
3309
if (mddev->pers->check_reshape == NULL)
3310
return -EBUSY;
3311
mddev->new_chunk_sectors = n >> 9;
3312
err = mddev->pers->check_reshape(mddev);
3313
if (err) {
3314
mddev->new_chunk_sectors = mddev->chunk_sectors;
3315
return err;
3316
}
3317
} else {
3318
mddev->new_chunk_sectors = n >> 9;
3319
if (mddev->reshape_position == MaxSector)
3320
mddev->chunk_sectors = n >> 9;
3321
}
3322
return len;
3323
}
3324
static struct md_sysfs_entry md_chunk_size =
3325
__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3326
3327
static ssize_t
3328
resync_start_show(mddev_t *mddev, char *page)
3329
{
3330
if (mddev->recovery_cp == MaxSector)
3331
return sprintf(page, "none\n");
3332
return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3333
}
3334
3335
static ssize_t
3336
resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3337
{
3338
char *e;
3339
unsigned long long n = simple_strtoull(buf, &e, 10);
3340
3341
if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3342
return -EBUSY;
3343
if (cmd_match(buf, "none"))
3344
n = MaxSector;
3345
else if (!*buf || (*e && *e != '\n'))
3346
return -EINVAL;
3347
3348
mddev->recovery_cp = n;
3349
return len;
3350
}
3351
static struct md_sysfs_entry md_resync_start =
3352
__ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3353
3354
/*
3355
* The array state can be:
3356
*
3357
* clear
3358
* No devices, no size, no level
3359
* Equivalent to STOP_ARRAY ioctl
3360
* inactive
3361
* May have some settings, but array is not active
3362
* all IO results in error
3363
* When written, doesn't tear down array, but just stops it
3364
* suspended (not supported yet)
3365
* All IO requests will block. The array can be reconfigured.
3366
* Writing this, if accepted, will block until array is quiescent
3367
* readonly
3368
* no resync can happen. no superblocks get written.
3369
* write requests fail
3370
* read-auto
3371
* like readonly, but behaves like 'clean' on a write request.
3372
*
3373
* clean - no pending writes, but otherwise active.
3374
* When written to inactive array, starts without resync
3375
* If a write request arrives then
3376
* if metadata is known, mark 'dirty' and switch to 'active'.
3377
* if not known, block and switch to write-pending
3378
* If written to an active array that has pending writes, then fails.
3379
* active
3380
* fully active: IO and resync can be happening.
3381
* When written to inactive array, starts with resync
3382
*
3383
* write-pending
3384
* clean, but writes are blocked waiting for 'active' to be written.
3385
*
3386
* active-idle
3387
* like active, but no writes have been seen for a while (100msec).
3388
*
3389
*/
3390
enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3391
write_pending, active_idle, bad_word};
3392
static char *array_states[] = {
3393
"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3394
"write-pending", "active-idle", NULL };
3395
3396
static int match_word(const char *word, char **list)
3397
{
3398
int n;
3399
for (n=0; list[n]; n++)
3400
if (cmd_match(word, list[n]))
3401
break;
3402
return n;
3403
}
3404
3405
static ssize_t
3406
array_state_show(mddev_t *mddev, char *page)
3407
{
3408
enum array_state st = inactive;
3409
3410
if (mddev->pers)
3411
switch(mddev->ro) {
3412
case 1:
3413
st = readonly;
3414
break;
3415
case 2:
3416
st = read_auto;
3417
break;
3418
case 0:
3419
if (mddev->in_sync)
3420
st = clean;
3421
else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3422
st = write_pending;
3423
else if (mddev->safemode)
3424
st = active_idle;
3425
else
3426
st = active;
3427
}
3428
else {
3429
if (list_empty(&mddev->disks) &&
3430
mddev->raid_disks == 0 &&
3431
mddev->dev_sectors == 0)
3432
st = clear;
3433
else
3434
st = inactive;
3435
}
3436
return sprintf(page, "%s\n", array_states[st]);
3437
}
3438
3439
static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3440
static int md_set_readonly(mddev_t * mddev, int is_open);
3441
static int do_md_run(mddev_t * mddev);
3442
static int restart_array(mddev_t *mddev);
3443
3444
static ssize_t
3445
array_state_store(mddev_t *mddev, const char *buf, size_t len)
3446
{
3447
int err = -EINVAL;
3448
enum array_state st = match_word(buf, array_states);
3449
switch(st) {
3450
case bad_word:
3451
break;
3452
case clear:
3453
/* stopping an active array */
3454
if (atomic_read(&mddev->openers) > 0)
3455
return -EBUSY;
3456
err = do_md_stop(mddev, 0, 0);
3457
break;
3458
case inactive:
3459
/* stopping an active array */
3460
if (mddev->pers) {
3461
if (atomic_read(&mddev->openers) > 0)
3462
return -EBUSY;
3463
err = do_md_stop(mddev, 2, 0);
3464
} else
3465
err = 0; /* already inactive */
3466
break;
3467
case suspended:
3468
break; /* not supported yet */
3469
case readonly:
3470
if (mddev->pers)
3471
err = md_set_readonly(mddev, 0);
3472
else {
3473
mddev->ro = 1;
3474
set_disk_ro(mddev->gendisk, 1);
3475
err = do_md_run(mddev);
3476
}
3477
break;
3478
case read_auto:
3479
if (mddev->pers) {
3480
if (mddev->ro == 0)
3481
err = md_set_readonly(mddev, 0);
3482
else if (mddev->ro == 1)
3483
err = restart_array(mddev);
3484
if (err == 0) {
3485
mddev->ro = 2;
3486
set_disk_ro(mddev->gendisk, 0);
3487
}
3488
} else {
3489
mddev->ro = 2;
3490
err = do_md_run(mddev);
3491
}
3492
break;
3493
case clean:
3494
if (mddev->pers) {
3495
restart_array(mddev);
3496
spin_lock_irq(&mddev->write_lock);
3497
if (atomic_read(&mddev->writes_pending) == 0) {
3498
if (mddev->in_sync == 0) {
3499
mddev->in_sync = 1;
3500
if (mddev->safemode == 1)
3501
mddev->safemode = 0;
3502
set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3503
}
3504
err = 0;
3505
} else
3506
err = -EBUSY;
3507
spin_unlock_irq(&mddev->write_lock);
3508
} else
3509
err = -EINVAL;
3510
break;
3511
case active:
3512
if (mddev->pers) {
3513
restart_array(mddev);
3514
clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3515
wake_up(&mddev->sb_wait);
3516
err = 0;
3517
} else {
3518
mddev->ro = 0;
3519
set_disk_ro(mddev->gendisk, 0);
3520
err = do_md_run(mddev);
3521
}
3522
break;
3523
case write_pending:
3524
case active_idle:
3525
/* these cannot be set */
3526
break;
3527
}
3528
if (err)
3529
return err;
3530
else {
3531
sysfs_notify_dirent_safe(mddev->sysfs_state);
3532
return len;
3533
}
3534
}
3535
static struct md_sysfs_entry md_array_state =
3536
__ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3537
3538
static ssize_t
3539
max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3540
return sprintf(page, "%d\n",
3541
atomic_read(&mddev->max_corr_read_errors));
3542
}
3543
3544
static ssize_t
3545
max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3546
{
3547
char *e;
3548
unsigned long n = simple_strtoul(buf, &e, 10);
3549
3550
if (*buf && (*e == 0 || *e == '\n')) {
3551
atomic_set(&mddev->max_corr_read_errors, n);
3552
return len;
3553
}
3554
return -EINVAL;
3555
}
3556
3557
static struct md_sysfs_entry max_corr_read_errors =
3558
__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3559
max_corrected_read_errors_store);
3560
3561
static ssize_t
3562
null_show(mddev_t *mddev, char *page)
3563
{
3564
return -EINVAL;
3565
}
3566
3567
static ssize_t
3568
new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3569
{
3570
/* buf must be %d:%d\n? giving major and minor numbers */
3571
/* The new device is added to the array.
3572
* If the array has a persistent superblock, we read the
3573
* superblock to initialise info and check validity.
3574
* Otherwise, only checking done is that in bind_rdev_to_array,
3575
* which mainly checks size.
3576
*/
3577
char *e;
3578
int major = simple_strtoul(buf, &e, 10);
3579
int minor;
3580
dev_t dev;
3581
mdk_rdev_t *rdev;
3582
int err;
3583
3584
if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3585
return -EINVAL;
3586
minor = simple_strtoul(e+1, &e, 10);
3587
if (*e && *e != '\n')
3588
return -EINVAL;
3589
dev = MKDEV(major, minor);
3590
if (major != MAJOR(dev) ||
3591
minor != MINOR(dev))
3592
return -EOVERFLOW;
3593
3594
3595
if (mddev->persistent) {
3596
rdev = md_import_device(dev, mddev->major_version,
3597
mddev->minor_version);
3598
if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3599
mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3600
mdk_rdev_t, same_set);
3601
err = super_types[mddev->major_version]
3602
.load_super(rdev, rdev0, mddev->minor_version);
3603
if (err < 0)
3604
goto out;
3605
}
3606
} else if (mddev->external)
3607
rdev = md_import_device(dev, -2, -1);
3608
else
3609
rdev = md_import_device(dev, -1, -1);
3610
3611
if (IS_ERR(rdev))
3612
return PTR_ERR(rdev);
3613
err = bind_rdev_to_array(rdev, mddev);
3614
out:
3615
if (err)
3616
export_rdev(rdev);
3617
return err ? err : len;
3618
}
3619
3620
static struct md_sysfs_entry md_new_device =
3621
__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3622
3623
static ssize_t
3624
bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3625
{
3626
char *end;
3627
unsigned long chunk, end_chunk;
3628
3629
if (!mddev->bitmap)
3630
goto out;
3631
/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3632
while (*buf) {
3633
chunk = end_chunk = simple_strtoul(buf, &end, 0);
3634
if (buf == end) break;
3635
if (*end == '-') { /* range */
3636
buf = end + 1;
3637
end_chunk = simple_strtoul(buf, &end, 0);
3638
if (buf == end) break;
3639
}
3640
if (*end && !isspace(*end)) break;
3641
bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3642
buf = skip_spaces(end);
3643
}
3644
bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3645
out:
3646
return len;
3647
}
3648
3649
static struct md_sysfs_entry md_bitmap =
3650
__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3651
3652
static ssize_t
3653
size_show(mddev_t *mddev, char *page)
3654
{
3655
return sprintf(page, "%llu\n",
3656
(unsigned long long)mddev->dev_sectors / 2);
3657
}
3658
3659
static int update_size(mddev_t *mddev, sector_t num_sectors);
3660
3661
static ssize_t
3662
size_store(mddev_t *mddev, const char *buf, size_t len)
3663
{
3664
/* If array is inactive, we can reduce the component size, but
3665
* not increase it (except from 0).
3666
* If array is active, we can try an on-line resize
3667
*/
3668
sector_t sectors;
3669
int err = strict_blocks_to_sectors(buf, &sectors);
3670
3671
if (err < 0)
3672
return err;
3673
if (mddev->pers) {
3674
err = update_size(mddev, sectors);
3675
md_update_sb(mddev, 1);
3676
} else {
3677
if (mddev->dev_sectors == 0 ||
3678
mddev->dev_sectors > sectors)
3679
mddev->dev_sectors = sectors;
3680
else
3681
err = -ENOSPC;
3682
}
3683
return err ? err : len;
3684
}
3685
3686
static struct md_sysfs_entry md_size =
3687
__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3688
3689
3690
/* Metdata version.
3691
* This is one of
3692
* 'none' for arrays with no metadata (good luck...)
3693
* 'external' for arrays with externally managed metadata,
3694
* or N.M for internally known formats
3695
*/
3696
static ssize_t
3697
metadata_show(mddev_t *mddev, char *page)
3698
{
3699
if (mddev->persistent)
3700
return sprintf(page, "%d.%d\n",
3701
mddev->major_version, mddev->minor_version);
3702
else if (mddev->external)
3703
return sprintf(page, "external:%s\n", mddev->metadata_type);
3704
else
3705
return sprintf(page, "none\n");
3706
}
3707
3708
static ssize_t
3709
metadata_store(mddev_t *mddev, const char *buf, size_t len)
3710
{
3711
int major, minor;
3712
char *e;
3713
/* Changing the details of 'external' metadata is
3714
* always permitted. Otherwise there must be
3715
* no devices attached to the array.
3716
*/
3717
if (mddev->external && strncmp(buf, "external:", 9) == 0)
3718
;
3719
else if (!list_empty(&mddev->disks))
3720
return -EBUSY;
3721
3722
if (cmd_match(buf, "none")) {
3723
mddev->persistent = 0;
3724
mddev->external = 0;
3725
mddev->major_version = 0;
3726
mddev->minor_version = 90;
3727
return len;
3728
}
3729
if (strncmp(buf, "external:", 9) == 0) {
3730
size_t namelen = len-9;
3731
if (namelen >= sizeof(mddev->metadata_type))
3732
namelen = sizeof(mddev->metadata_type)-1;
3733
strncpy(mddev->metadata_type, buf+9, namelen);
3734
mddev->metadata_type[namelen] = 0;
3735
if (namelen && mddev->metadata_type[namelen-1] == '\n')
3736
mddev->metadata_type[--namelen] = 0;
3737
mddev->persistent = 0;
3738
mddev->external = 1;
3739
mddev->major_version = 0;
3740
mddev->minor_version = 90;
3741
return len;
3742
}
3743
major = simple_strtoul(buf, &e, 10);
3744
if (e==buf || *e != '.')
3745
return -EINVAL;
3746
buf = e+1;
3747
minor = simple_strtoul(buf, &e, 10);
3748
if (e==buf || (*e && *e != '\n') )
3749
return -EINVAL;
3750
if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3751
return -ENOENT;
3752
mddev->major_version = major;
3753
mddev->minor_version = minor;
3754
mddev->persistent = 1;
3755
mddev->external = 0;
3756
return len;
3757
}
3758
3759
static struct md_sysfs_entry md_metadata =
3760
__ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3761
3762
static ssize_t
3763
action_show(mddev_t *mddev, char *page)
3764
{
3765
char *type = "idle";
3766
if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3767
type = "frozen";
3768
else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3769
(!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3770
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3771
type = "reshape";
3772
else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3773
if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3774
type = "resync";
3775
else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3776
type = "check";
3777
else
3778
type = "repair";
3779
} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3780
type = "recover";
3781
}
3782
return sprintf(page, "%s\n", type);
3783
}
3784
3785
static void reap_sync_thread(mddev_t *mddev);
3786
3787
static ssize_t
3788
action_store(mddev_t *mddev, const char *page, size_t len)
3789
{
3790
if (!mddev->pers || !mddev->pers->sync_request)
3791
return -EINVAL;
3792
3793
if (cmd_match(page, "frozen"))
3794
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3795
else
3796
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3797
3798
if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3799
if (mddev->sync_thread) {
3800
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3801
reap_sync_thread(mddev);
3802
}
3803
} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3804
test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3805
return -EBUSY;
3806
else if (cmd_match(page, "resync"))
3807
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3808
else if (cmd_match(page, "recover")) {
3809
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3810
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3811
} else if (cmd_match(page, "reshape")) {
3812
int err;
3813
if (mddev->pers->start_reshape == NULL)
3814
return -EINVAL;
3815
err = mddev->pers->start_reshape(mddev);
3816
if (err)
3817
return err;
3818
sysfs_notify(&mddev->kobj, NULL, "degraded");
3819
} else {
3820
if (cmd_match(page, "check"))
3821
set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3822
else if (!cmd_match(page, "repair"))
3823
return -EINVAL;
3824
set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3825
set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3826
}
3827
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3828
md_wakeup_thread(mddev->thread);
3829
sysfs_notify_dirent_safe(mddev->sysfs_action);
3830
return len;
3831
}
3832
3833
static ssize_t
3834
mismatch_cnt_show(mddev_t *mddev, char *page)
3835
{
3836
return sprintf(page, "%llu\n",
3837
(unsigned long long) mddev->resync_mismatches);
3838
}
3839
3840
static struct md_sysfs_entry md_scan_mode =
3841
__ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3842
3843
3844
static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3845
3846
static ssize_t
3847
sync_min_show(mddev_t *mddev, char *page)
3848
{
3849
return sprintf(page, "%d (%s)\n", speed_min(mddev),
3850
mddev->sync_speed_min ? "local": "system");
3851
}
3852
3853
static ssize_t
3854
sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3855
{
3856
int min;
3857
char *e;
3858
if (strncmp(buf, "system", 6)==0) {
3859
mddev->sync_speed_min = 0;
3860
return len;
3861
}
3862
min = simple_strtoul(buf, &e, 10);
3863
if (buf == e || (*e && *e != '\n') || min <= 0)
3864
return -EINVAL;
3865
mddev->sync_speed_min = min;
3866
return len;
3867
}
3868
3869
static struct md_sysfs_entry md_sync_min =
3870
__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3871
3872
static ssize_t
3873
sync_max_show(mddev_t *mddev, char *page)
3874
{
3875
return sprintf(page, "%d (%s)\n", speed_max(mddev),
3876
mddev->sync_speed_max ? "local": "system");
3877
}
3878
3879
static ssize_t
3880
sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3881
{
3882
int max;
3883
char *e;
3884
if (strncmp(buf, "system", 6)==0) {
3885
mddev->sync_speed_max = 0;
3886
return len;
3887
}
3888
max = simple_strtoul(buf, &e, 10);
3889
if (buf == e || (*e && *e != '\n') || max <= 0)
3890
return -EINVAL;
3891
mddev->sync_speed_max = max;
3892
return len;
3893
}
3894
3895
static struct md_sysfs_entry md_sync_max =
3896
__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3897
3898
static ssize_t
3899
degraded_show(mddev_t *mddev, char *page)
3900
{
3901
return sprintf(page, "%d\n", mddev->degraded);
3902
}
3903
static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3904
3905
static ssize_t
3906
sync_force_parallel_show(mddev_t *mddev, char *page)
3907
{
3908
return sprintf(page, "%d\n", mddev->parallel_resync);
3909
}
3910
3911
static ssize_t
3912
sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3913
{
3914
long n;
3915
3916
if (strict_strtol(buf, 10, &n))
3917
return -EINVAL;
3918
3919
if (n != 0 && n != 1)
3920
return -EINVAL;
3921
3922
mddev->parallel_resync = n;
3923
3924
if (mddev->sync_thread)
3925
wake_up(&resync_wait);
3926
3927
return len;
3928
}
3929
3930
/* force parallel resync, even with shared block devices */
3931
static struct md_sysfs_entry md_sync_force_parallel =
3932
__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3933
sync_force_parallel_show, sync_force_parallel_store);
3934
3935
static ssize_t
3936
sync_speed_show(mddev_t *mddev, char *page)
3937
{
3938
unsigned long resync, dt, db;
3939
if (mddev->curr_resync == 0)
3940
return sprintf(page, "none\n");
3941
resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3942
dt = (jiffies - mddev->resync_mark) / HZ;
3943
if (!dt) dt++;
3944
db = resync - mddev->resync_mark_cnt;
3945
return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3946
}
3947
3948
static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3949
3950
static ssize_t
3951
sync_completed_show(mddev_t *mddev, char *page)
3952
{
3953
unsigned long long max_sectors, resync;
3954
3955
if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3956
return sprintf(page, "none\n");
3957
3958
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3959
max_sectors = mddev->resync_max_sectors;
3960
else
3961
max_sectors = mddev->dev_sectors;
3962
3963
resync = mddev->curr_resync_completed;
3964
return sprintf(page, "%llu / %llu\n", resync, max_sectors);
3965
}
3966
3967
static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3968
3969
static ssize_t
3970
min_sync_show(mddev_t *mddev, char *page)
3971
{
3972
return sprintf(page, "%llu\n",
3973
(unsigned long long)mddev->resync_min);
3974
}
3975
static ssize_t
3976
min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3977
{
3978
unsigned long long min;
3979
if (strict_strtoull(buf, 10, &min))
3980
return -EINVAL;
3981
if (min > mddev->resync_max)
3982
return -EINVAL;
3983
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3984
return -EBUSY;
3985
3986
/* Must be a multiple of chunk_size */
3987
if (mddev->chunk_sectors) {
3988
sector_t temp = min;
3989
if (sector_div(temp, mddev->chunk_sectors))
3990
return -EINVAL;
3991
}
3992
mddev->resync_min = min;
3993
3994
return len;
3995
}
3996
3997
static struct md_sysfs_entry md_min_sync =
3998
__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3999
4000
static ssize_t
4001
max_sync_show(mddev_t *mddev, char *page)
4002
{
4003
if (mddev->resync_max == MaxSector)
4004
return sprintf(page, "max\n");
4005
else
4006
return sprintf(page, "%llu\n",
4007
(unsigned long long)mddev->resync_max);
4008
}
4009
static ssize_t
4010
max_sync_store(mddev_t *mddev, const char *buf, size_t len)
4011
{
4012
if (strncmp(buf, "max", 3) == 0)
4013
mddev->resync_max = MaxSector;
4014
else {
4015
unsigned long long max;
4016
if (strict_strtoull(buf, 10, &max))
4017
return -EINVAL;
4018
if (max < mddev->resync_min)
4019
return -EINVAL;
4020
if (max < mddev->resync_max &&
4021
mddev->ro == 0 &&
4022
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4023
return -EBUSY;
4024
4025
/* Must be a multiple of chunk_size */
4026
if (mddev->chunk_sectors) {
4027
sector_t temp = max;
4028
if (sector_div(temp, mddev->chunk_sectors))
4029
return -EINVAL;
4030
}
4031
mddev->resync_max = max;
4032
}
4033
wake_up(&mddev->recovery_wait);
4034
return len;
4035
}
4036
4037
static struct md_sysfs_entry md_max_sync =
4038
__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4039
4040
static ssize_t
4041
suspend_lo_show(mddev_t *mddev, char *page)
4042
{
4043
return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4044
}
4045
4046
static ssize_t
4047
suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4048
{
4049
char *e;
4050
unsigned long long new = simple_strtoull(buf, &e, 10);
4051
unsigned long long old = mddev->suspend_lo;
4052
4053
if (mddev->pers == NULL ||
4054
mddev->pers->quiesce == NULL)
4055
return -EINVAL;
4056
if (buf == e || (*e && *e != '\n'))
4057
return -EINVAL;
4058
4059
mddev->suspend_lo = new;
4060
if (new >= old)
4061
/* Shrinking suspended region */
4062
mddev->pers->quiesce(mddev, 2);
4063
else {
4064
/* Expanding suspended region - need to wait */
4065
mddev->pers->quiesce(mddev, 1);
4066
mddev->pers->quiesce(mddev, 0);
4067
}
4068
return len;
4069
}
4070
static struct md_sysfs_entry md_suspend_lo =
4071
__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4072
4073
4074
static ssize_t
4075
suspend_hi_show(mddev_t *mddev, char *page)
4076
{
4077
return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4078
}
4079
4080
static ssize_t
4081
suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4082
{
4083
char *e;
4084
unsigned long long new = simple_strtoull(buf, &e, 10);
4085
unsigned long long old = mddev->suspend_hi;
4086
4087
if (mddev->pers == NULL ||
4088
mddev->pers->quiesce == NULL)
4089
return -EINVAL;
4090
if (buf == e || (*e && *e != '\n'))
4091
return -EINVAL;
4092
4093
mddev->suspend_hi = new;
4094
if (new <= old)
4095
/* Shrinking suspended region */
4096
mddev->pers->quiesce(mddev, 2);
4097
else {
4098
/* Expanding suspended region - need to wait */
4099
mddev->pers->quiesce(mddev, 1);
4100
mddev->pers->quiesce(mddev, 0);
4101
}
4102
return len;
4103
}
4104
static struct md_sysfs_entry md_suspend_hi =
4105
__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4106
4107
static ssize_t
4108
reshape_position_show(mddev_t *mddev, char *page)
4109
{
4110
if (mddev->reshape_position != MaxSector)
4111
return sprintf(page, "%llu\n",
4112
(unsigned long long)mddev->reshape_position);
4113
strcpy(page, "none\n");
4114
return 5;
4115
}
4116
4117
static ssize_t
4118
reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4119
{
4120
char *e;
4121
unsigned long long new = simple_strtoull(buf, &e, 10);
4122
if (mddev->pers)
4123
return -EBUSY;
4124
if (buf == e || (*e && *e != '\n'))
4125
return -EINVAL;
4126
mddev->reshape_position = new;
4127
mddev->delta_disks = 0;
4128
mddev->new_level = mddev->level;
4129
mddev->new_layout = mddev->layout;
4130
mddev->new_chunk_sectors = mddev->chunk_sectors;
4131
return len;
4132
}
4133
4134
static struct md_sysfs_entry md_reshape_position =
4135
__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4136
reshape_position_store);
4137
4138
static ssize_t
4139
array_size_show(mddev_t *mddev, char *page)
4140
{
4141
if (mddev->external_size)
4142
return sprintf(page, "%llu\n",
4143
(unsigned long long)mddev->array_sectors/2);
4144
else
4145
return sprintf(page, "default\n");
4146
}
4147
4148
static ssize_t
4149
array_size_store(mddev_t *mddev, const char *buf, size_t len)
4150
{
4151
sector_t sectors;
4152
4153
if (strncmp(buf, "default", 7) == 0) {
4154
if (mddev->pers)
4155
sectors = mddev->pers->size(mddev, 0, 0);
4156
else
4157
sectors = mddev->array_sectors;
4158
4159
mddev->external_size = 0;
4160
} else {
4161
if (strict_blocks_to_sectors(buf, &sectors) < 0)
4162
return -EINVAL;
4163
if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4164
return -E2BIG;
4165
4166
mddev->external_size = 1;
4167
}
4168
4169
mddev->array_sectors = sectors;
4170
if (mddev->pers) {
4171
set_capacity(mddev->gendisk, mddev->array_sectors);
4172
revalidate_disk(mddev->gendisk);
4173
}
4174
return len;
4175
}
4176
4177
static struct md_sysfs_entry md_array_size =
4178
__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4179
array_size_store);
4180
4181
static struct attribute *md_default_attrs[] = {
4182
&md_level.attr,
4183
&md_layout.attr,
4184
&md_raid_disks.attr,
4185
&md_chunk_size.attr,
4186
&md_size.attr,
4187
&md_resync_start.attr,
4188
&md_metadata.attr,
4189
&md_new_device.attr,
4190
&md_safe_delay.attr,
4191
&md_array_state.attr,
4192
&md_reshape_position.attr,
4193
&md_array_size.attr,
4194
&max_corr_read_errors.attr,
4195
NULL,
4196
};
4197
4198
static struct attribute *md_redundancy_attrs[] = {
4199
&md_scan_mode.attr,
4200
&md_mismatches.attr,
4201
&md_sync_min.attr,
4202
&md_sync_max.attr,
4203
&md_sync_speed.attr,
4204
&md_sync_force_parallel.attr,
4205
&md_sync_completed.attr,
4206
&md_min_sync.attr,
4207
&md_max_sync.attr,
4208
&md_suspend_lo.attr,
4209
&md_suspend_hi.attr,
4210
&md_bitmap.attr,
4211
&md_degraded.attr,
4212
NULL,
4213
};
4214
static struct attribute_group md_redundancy_group = {
4215
.name = NULL,
4216
.attrs = md_redundancy_attrs,
4217
};
4218
4219
4220
static ssize_t
4221
md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4222
{
4223
struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4224
mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4225
ssize_t rv;
4226
4227
if (!entry->show)
4228
return -EIO;
4229
rv = mddev_lock(mddev);
4230
if (!rv) {
4231
rv = entry->show(mddev, page);
4232
mddev_unlock(mddev);
4233
}
4234
return rv;
4235
}
4236
4237
static ssize_t
4238
md_attr_store(struct kobject *kobj, struct attribute *attr,
4239
const char *page, size_t length)
4240
{
4241
struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4242
mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4243
ssize_t rv;
4244
4245
if (!entry->store)
4246
return -EIO;
4247
if (!capable(CAP_SYS_ADMIN))
4248
return -EACCES;
4249
rv = mddev_lock(mddev);
4250
if (mddev->hold_active == UNTIL_IOCTL)
4251
mddev->hold_active = 0;
4252
if (!rv) {
4253
rv = entry->store(mddev, page, length);
4254
mddev_unlock(mddev);
4255
}
4256
return rv;
4257
}
4258
4259
static void md_free(struct kobject *ko)
4260
{
4261
mddev_t *mddev = container_of(ko, mddev_t, kobj);
4262
4263
if (mddev->sysfs_state)
4264
sysfs_put(mddev->sysfs_state);
4265
4266
if (mddev->gendisk) {
4267
del_gendisk(mddev->gendisk);
4268
put_disk(mddev->gendisk);
4269
}
4270
if (mddev->queue)
4271
blk_cleanup_queue(mddev->queue);
4272
4273
kfree(mddev);
4274
}
4275
4276
static const struct sysfs_ops md_sysfs_ops = {
4277
.show = md_attr_show,
4278
.store = md_attr_store,
4279
};
4280
static struct kobj_type md_ktype = {
4281
.release = md_free,
4282
.sysfs_ops = &md_sysfs_ops,
4283
.default_attrs = md_default_attrs,
4284
};
4285
4286
int mdp_major = 0;
4287
4288
static void mddev_delayed_delete(struct work_struct *ws)
4289
{
4290
mddev_t *mddev = container_of(ws, mddev_t, del_work);
4291
4292
sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4293
kobject_del(&mddev->kobj);
4294
kobject_put(&mddev->kobj);
4295
}
4296
4297
static int md_alloc(dev_t dev, char *name)
4298
{
4299
static DEFINE_MUTEX(disks_mutex);
4300
mddev_t *mddev = mddev_find(dev);
4301
struct gendisk *disk;
4302
int partitioned;
4303
int shift;
4304
int unit;
4305
int error;
4306
4307
if (!mddev)
4308
return -ENODEV;
4309
4310
partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4311
shift = partitioned ? MdpMinorShift : 0;
4312
unit = MINOR(mddev->unit) >> shift;
4313
4314
/* wait for any previous instance of this device to be
4315
* completely removed (mddev_delayed_delete).
4316
*/
4317
flush_workqueue(md_misc_wq);
4318
4319
mutex_lock(&disks_mutex);
4320
error = -EEXIST;
4321
if (mddev->gendisk)
4322
goto abort;
4323
4324
if (name) {
4325
/* Need to ensure that 'name' is not a duplicate.
4326
*/
4327
mddev_t *mddev2;
4328
spin_lock(&all_mddevs_lock);
4329
4330
list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4331
if (mddev2->gendisk &&
4332
strcmp(mddev2->gendisk->disk_name, name) == 0) {
4333
spin_unlock(&all_mddevs_lock);
4334
goto abort;
4335
}
4336
spin_unlock(&all_mddevs_lock);
4337
}
4338
4339
error = -ENOMEM;
4340
mddev->queue = blk_alloc_queue(GFP_KERNEL);
4341
if (!mddev->queue)
4342
goto abort;
4343
mddev->queue->queuedata = mddev;
4344
4345
blk_queue_make_request(mddev->queue, md_make_request);
4346
4347
disk = alloc_disk(1 << shift);
4348
if (!disk) {
4349
blk_cleanup_queue(mddev->queue);
4350
mddev->queue = NULL;
4351
goto abort;
4352
}
4353
disk->major = MAJOR(mddev->unit);
4354
disk->first_minor = unit << shift;
4355
if (name)
4356
strcpy(disk->disk_name, name);
4357
else if (partitioned)
4358
sprintf(disk->disk_name, "md_d%d", unit);
4359
else
4360
sprintf(disk->disk_name, "md%d", unit);
4361
disk->fops = &md_fops;
4362
disk->private_data = mddev;
4363
disk->queue = mddev->queue;
4364
blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4365
/* Allow extended partitions. This makes the
4366
* 'mdp' device redundant, but we can't really
4367
* remove it now.
4368
*/
4369
disk->flags |= GENHD_FL_EXT_DEVT;
4370
mddev->gendisk = disk;
4371
/* As soon as we call add_disk(), another thread could get
4372
* through to md_open, so make sure it doesn't get too far
4373
*/
4374
mutex_lock(&mddev->open_mutex);
4375
add_disk(disk);
4376
4377
error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4378
&disk_to_dev(disk)->kobj, "%s", "md");
4379
if (error) {
4380
/* This isn't possible, but as kobject_init_and_add is marked
4381
* __must_check, we must do something with the result
4382
*/
4383
printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4384
disk->disk_name);
4385
error = 0;
4386
}
4387
if (mddev->kobj.sd &&
4388
sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4389
printk(KERN_DEBUG "pointless warning\n");
4390
mutex_unlock(&mddev->open_mutex);
4391
abort:
4392
mutex_unlock(&disks_mutex);
4393
if (!error && mddev->kobj.sd) {
4394
kobject_uevent(&mddev->kobj, KOBJ_ADD);
4395
mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4396
}
4397
mddev_put(mddev);
4398
return error;
4399
}
4400
4401
static struct kobject *md_probe(dev_t dev, int *part, void *data)
4402
{
4403
md_alloc(dev, NULL);
4404
return NULL;
4405
}
4406
4407
static int add_named_array(const char *val, struct kernel_param *kp)
4408
{
4409
/* val must be "md_*" where * is not all digits.
4410
* We allocate an array with a large free minor number, and
4411
* set the name to val. val must not already be an active name.
4412
*/
4413
int len = strlen(val);
4414
char buf[DISK_NAME_LEN];
4415
4416
while (len && val[len-1] == '\n')
4417
len--;
4418
if (len >= DISK_NAME_LEN)
4419
return -E2BIG;
4420
strlcpy(buf, val, len+1);
4421
if (strncmp(buf, "md_", 3) != 0)
4422
return -EINVAL;
4423
return md_alloc(0, buf);
4424
}
4425
4426
static void md_safemode_timeout(unsigned long data)
4427
{
4428
mddev_t *mddev = (mddev_t *) data;
4429
4430
if (!atomic_read(&mddev->writes_pending)) {
4431
mddev->safemode = 1;
4432
if (mddev->external)
4433
sysfs_notify_dirent_safe(mddev->sysfs_state);
4434
}
4435
md_wakeup_thread(mddev->thread);
4436
}
4437
4438
static int start_dirty_degraded;
4439
4440
int md_run(mddev_t *mddev)
4441
{
4442
int err;
4443
mdk_rdev_t *rdev;
4444
struct mdk_personality *pers;
4445
4446
if (list_empty(&mddev->disks))
4447
/* cannot run an array with no devices.. */
4448
return -EINVAL;
4449
4450
if (mddev->pers)
4451
return -EBUSY;
4452
/* Cannot run until previous stop completes properly */
4453
if (mddev->sysfs_active)
4454
return -EBUSY;
4455
4456
/*
4457
* Analyze all RAID superblock(s)
4458
*/
4459
if (!mddev->raid_disks) {
4460
if (!mddev->persistent)
4461
return -EINVAL;
4462
analyze_sbs(mddev);
4463
}
4464
4465
if (mddev->level != LEVEL_NONE)
4466
request_module("md-level-%d", mddev->level);
4467
else if (mddev->clevel[0])
4468
request_module("md-%s", mddev->clevel);
4469
4470
/*
4471
* Drop all container device buffers, from now on
4472
* the only valid external interface is through the md
4473
* device.
4474
*/
4475
list_for_each_entry(rdev, &mddev->disks, same_set) {
4476
if (test_bit(Faulty, &rdev->flags))
4477
continue;
4478
sync_blockdev(rdev->bdev);
4479
invalidate_bdev(rdev->bdev);
4480
4481
/* perform some consistency tests on the device.
4482
* We don't want the data to overlap the metadata,
4483
* Internal Bitmap issues have been handled elsewhere.
4484
*/
4485
if (rdev->meta_bdev) {
4486
/* Nothing to check */;
4487
} else if (rdev->data_offset < rdev->sb_start) {
4488
if (mddev->dev_sectors &&
4489
rdev->data_offset + mddev->dev_sectors
4490
> rdev->sb_start) {
4491
printk("md: %s: data overlaps metadata\n",
4492
mdname(mddev));
4493
return -EINVAL;
4494
}
4495
} else {
4496
if (rdev->sb_start + rdev->sb_size/512
4497
> rdev->data_offset) {
4498
printk("md: %s: metadata overlaps data\n",
4499
mdname(mddev));
4500
return -EINVAL;
4501
}
4502
}
4503
sysfs_notify_dirent_safe(rdev->sysfs_state);
4504
}
4505
4506
if (mddev->bio_set == NULL)
4507
mddev->bio_set = bioset_create(BIO_POOL_SIZE, sizeof(mddev));
4508
4509
spin_lock(&pers_lock);
4510
pers = find_pers(mddev->level, mddev->clevel);
4511
if (!pers || !try_module_get(pers->owner)) {
4512
spin_unlock(&pers_lock);
4513
if (mddev->level != LEVEL_NONE)
4514
printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4515
mddev->level);
4516
else
4517
printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4518
mddev->clevel);
4519
return -EINVAL;
4520
}
4521
mddev->pers = pers;
4522
spin_unlock(&pers_lock);
4523
if (mddev->level != pers->level) {
4524
mddev->level = pers->level;
4525
mddev->new_level = pers->level;
4526
}
4527
strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4528
4529
if (mddev->reshape_position != MaxSector &&
4530
pers->start_reshape == NULL) {
4531
/* This personality cannot handle reshaping... */
4532
mddev->pers = NULL;
4533
module_put(pers->owner);
4534
return -EINVAL;
4535
}
4536
4537
if (pers->sync_request) {
4538
/* Warn if this is a potentially silly
4539
* configuration.
4540
*/
4541
char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4542
mdk_rdev_t *rdev2;
4543
int warned = 0;
4544
4545
list_for_each_entry(rdev, &mddev->disks, same_set)
4546
list_for_each_entry(rdev2, &mddev->disks, same_set) {
4547
if (rdev < rdev2 &&
4548
rdev->bdev->bd_contains ==
4549
rdev2->bdev->bd_contains) {
4550
printk(KERN_WARNING
4551
"%s: WARNING: %s appears to be"
4552
" on the same physical disk as"
4553
" %s.\n",
4554
mdname(mddev),
4555
bdevname(rdev->bdev,b),
4556
bdevname(rdev2->bdev,b2));
4557
warned = 1;
4558
}
4559
}
4560
4561
if (warned)
4562
printk(KERN_WARNING
4563
"True protection against single-disk"
4564
" failure might be compromised.\n");
4565
}
4566
4567
mddev->recovery = 0;
4568
/* may be over-ridden by personality */
4569
mddev->resync_max_sectors = mddev->dev_sectors;
4570
4571
mddev->ok_start_degraded = start_dirty_degraded;
4572
4573
if (start_readonly && mddev->ro == 0)
4574
mddev->ro = 2; /* read-only, but switch on first write */
4575
4576
err = mddev->pers->run(mddev);
4577
if (err)
4578
printk(KERN_ERR "md: pers->run() failed ...\n");
4579
else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4580
WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4581
" but 'external_size' not in effect?\n", __func__);
4582
printk(KERN_ERR
4583
"md: invalid array_size %llu > default size %llu\n",
4584
(unsigned long long)mddev->array_sectors / 2,
4585
(unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4586
err = -EINVAL;
4587
mddev->pers->stop(mddev);
4588
}
4589
if (err == 0 && mddev->pers->sync_request) {
4590
err = bitmap_create(mddev);
4591
if (err) {
4592
printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4593
mdname(mddev), err);
4594
mddev->pers->stop(mddev);
4595
}
4596
}
4597
if (err) {
4598
module_put(mddev->pers->owner);
4599
mddev->pers = NULL;
4600
bitmap_destroy(mddev);
4601
return err;
4602
}
4603
if (mddev->pers->sync_request) {
4604
if (mddev->kobj.sd &&
4605
sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4606
printk(KERN_WARNING
4607
"md: cannot register extra attributes for %s\n",
4608
mdname(mddev));
4609
mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4610
} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4611
mddev->ro = 0;
4612
4613
atomic_set(&mddev->writes_pending,0);
4614
atomic_set(&mddev->max_corr_read_errors,
4615
MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4616
mddev->safemode = 0;
4617
mddev->safemode_timer.function = md_safemode_timeout;
4618
mddev->safemode_timer.data = (unsigned long) mddev;
4619
mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4620
mddev->in_sync = 1;
4621
smp_wmb();
4622
mddev->ready = 1;
4623
list_for_each_entry(rdev, &mddev->disks, same_set)
4624
if (rdev->raid_disk >= 0) {
4625
char nm[20];
4626
sprintf(nm, "rd%d", rdev->raid_disk);
4627
if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4628
/* failure here is OK */;
4629
}
4630
4631
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4632
4633
if (mddev->flags)
4634
md_update_sb(mddev, 0);
4635
4636
md_new_event(mddev);
4637
sysfs_notify_dirent_safe(mddev->sysfs_state);
4638
sysfs_notify_dirent_safe(mddev->sysfs_action);
4639
sysfs_notify(&mddev->kobj, NULL, "degraded");
4640
return 0;
4641
}
4642
EXPORT_SYMBOL_GPL(md_run);
4643
4644
static int do_md_run(mddev_t *mddev)
4645
{
4646
int err;
4647
4648
err = md_run(mddev);
4649
if (err)
4650
goto out;
4651
err = bitmap_load(mddev);
4652
if (err) {
4653
bitmap_destroy(mddev);
4654
goto out;
4655
}
4656
4657
md_wakeup_thread(mddev->thread);
4658
md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4659
4660
set_capacity(mddev->gendisk, mddev->array_sectors);
4661
revalidate_disk(mddev->gendisk);
4662
mddev->changed = 1;
4663
kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4664
out:
4665
return err;
4666
}
4667
4668
static int restart_array(mddev_t *mddev)
4669
{
4670
struct gendisk *disk = mddev->gendisk;
4671
4672
/* Complain if it has no devices */
4673
if (list_empty(&mddev->disks))
4674
return -ENXIO;
4675
if (!mddev->pers)
4676
return -EINVAL;
4677
if (!mddev->ro)
4678
return -EBUSY;
4679
mddev->safemode = 0;
4680
mddev->ro = 0;
4681
set_disk_ro(disk, 0);
4682
printk(KERN_INFO "md: %s switched to read-write mode.\n",
4683
mdname(mddev));
4684
/* Kick recovery or resync if necessary */
4685
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4686
md_wakeup_thread(mddev->thread);
4687
md_wakeup_thread(mddev->sync_thread);
4688
sysfs_notify_dirent_safe(mddev->sysfs_state);
4689
return 0;
4690
}
4691
4692
/* similar to deny_write_access, but accounts for our holding a reference
4693
* to the file ourselves */
4694
static int deny_bitmap_write_access(struct file * file)
4695
{
4696
struct inode *inode = file->f_mapping->host;
4697
4698
spin_lock(&inode->i_lock);
4699
if (atomic_read(&inode->i_writecount) > 1) {
4700
spin_unlock(&inode->i_lock);
4701
return -ETXTBSY;
4702
}
4703
atomic_set(&inode->i_writecount, -1);
4704
spin_unlock(&inode->i_lock);
4705
4706
return 0;
4707
}
4708
4709
void restore_bitmap_write_access(struct file *file)
4710
{
4711
struct inode *inode = file->f_mapping->host;
4712
4713
spin_lock(&inode->i_lock);
4714
atomic_set(&inode->i_writecount, 1);
4715
spin_unlock(&inode->i_lock);
4716
}
4717
4718
static void md_clean(mddev_t *mddev)
4719
{
4720
mddev->array_sectors = 0;
4721
mddev->external_size = 0;
4722
mddev->dev_sectors = 0;
4723
mddev->raid_disks = 0;
4724
mddev->recovery_cp = 0;
4725
mddev->resync_min = 0;
4726
mddev->resync_max = MaxSector;
4727
mddev->reshape_position = MaxSector;
4728
mddev->external = 0;
4729
mddev->persistent = 0;
4730
mddev->level = LEVEL_NONE;
4731
mddev->clevel[0] = 0;
4732
mddev->flags = 0;
4733
mddev->ro = 0;
4734
mddev->metadata_type[0] = 0;
4735
mddev->chunk_sectors = 0;
4736
mddev->ctime = mddev->utime = 0;
4737
mddev->layout = 0;
4738
mddev->max_disks = 0;
4739
mddev->events = 0;
4740
mddev->can_decrease_events = 0;
4741
mddev->delta_disks = 0;
4742
mddev->new_level = LEVEL_NONE;
4743
mddev->new_layout = 0;
4744
mddev->new_chunk_sectors = 0;
4745
mddev->curr_resync = 0;
4746
mddev->resync_mismatches = 0;
4747
mddev->suspend_lo = mddev->suspend_hi = 0;
4748
mddev->sync_speed_min = mddev->sync_speed_max = 0;
4749
mddev->recovery = 0;
4750
mddev->in_sync = 0;
4751
mddev->changed = 0;
4752
mddev->degraded = 0;
4753
mddev->safemode = 0;
4754
mddev->bitmap_info.offset = 0;
4755
mddev->bitmap_info.default_offset = 0;
4756
mddev->bitmap_info.chunksize = 0;
4757
mddev->bitmap_info.daemon_sleep = 0;
4758
mddev->bitmap_info.max_write_behind = 0;
4759
}
4760
4761
static void __md_stop_writes(mddev_t *mddev)
4762
{
4763
if (mddev->sync_thread) {
4764
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4765
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4766
reap_sync_thread(mddev);
4767
}
4768
4769
del_timer_sync(&mddev->safemode_timer);
4770
4771
bitmap_flush(mddev);
4772
md_super_wait(mddev);
4773
4774
if (!mddev->in_sync || mddev->flags) {
4775
/* mark array as shutdown cleanly */
4776
mddev->in_sync = 1;
4777
md_update_sb(mddev, 1);
4778
}
4779
}
4780
4781
void md_stop_writes(mddev_t *mddev)
4782
{
4783
mddev_lock(mddev);
4784
__md_stop_writes(mddev);
4785
mddev_unlock(mddev);
4786
}
4787
EXPORT_SYMBOL_GPL(md_stop_writes);
4788
4789
void md_stop(mddev_t *mddev)
4790
{
4791
mddev->ready = 0;
4792
mddev->pers->stop(mddev);
4793
if (mddev->pers->sync_request && mddev->to_remove == NULL)
4794
mddev->to_remove = &md_redundancy_group;
4795
module_put(mddev->pers->owner);
4796
mddev->pers = NULL;
4797
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4798
}
4799
EXPORT_SYMBOL_GPL(md_stop);
4800
4801
static int md_set_readonly(mddev_t *mddev, int is_open)
4802
{
4803
int err = 0;
4804
mutex_lock(&mddev->open_mutex);
4805
if (atomic_read(&mddev->openers) > is_open) {
4806
printk("md: %s still in use.\n",mdname(mddev));
4807
err = -EBUSY;
4808
goto out;
4809
}
4810
if (mddev->pers) {
4811
__md_stop_writes(mddev);
4812
4813
err = -ENXIO;
4814
if (mddev->ro==1)
4815
goto out;
4816
mddev->ro = 1;
4817
set_disk_ro(mddev->gendisk, 1);
4818
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4819
sysfs_notify_dirent_safe(mddev->sysfs_state);
4820
err = 0;
4821
}
4822
out:
4823
mutex_unlock(&mddev->open_mutex);
4824
return err;
4825
}
4826
4827
/* mode:
4828
* 0 - completely stop and dis-assemble array
4829
* 2 - stop but do not disassemble array
4830
*/
4831
static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4832
{
4833
struct gendisk *disk = mddev->gendisk;
4834
mdk_rdev_t *rdev;
4835
4836
mutex_lock(&mddev->open_mutex);
4837
if (atomic_read(&mddev->openers) > is_open ||
4838
mddev->sysfs_active) {
4839
printk("md: %s still in use.\n",mdname(mddev));
4840
mutex_unlock(&mddev->open_mutex);
4841
return -EBUSY;
4842
}
4843
4844
if (mddev->pers) {
4845
if (mddev->ro)
4846
set_disk_ro(disk, 0);
4847
4848
__md_stop_writes(mddev);
4849
md_stop(mddev);
4850
mddev->queue->merge_bvec_fn = NULL;
4851
mddev->queue->backing_dev_info.congested_fn = NULL;
4852
4853
/* tell userspace to handle 'inactive' */
4854
sysfs_notify_dirent_safe(mddev->sysfs_state);
4855
4856
list_for_each_entry(rdev, &mddev->disks, same_set)
4857
if (rdev->raid_disk >= 0) {
4858
char nm[20];
4859
sprintf(nm, "rd%d", rdev->raid_disk);
4860
sysfs_remove_link(&mddev->kobj, nm);
4861
}
4862
4863
set_capacity(disk, 0);
4864
mutex_unlock(&mddev->open_mutex);
4865
mddev->changed = 1;
4866
revalidate_disk(disk);
4867
4868
if (mddev->ro)
4869
mddev->ro = 0;
4870
} else
4871
mutex_unlock(&mddev->open_mutex);
4872
/*
4873
* Free resources if final stop
4874
*/
4875
if (mode == 0) {
4876
printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4877
4878
bitmap_destroy(mddev);
4879
if (mddev->bitmap_info.file) {
4880
restore_bitmap_write_access(mddev->bitmap_info.file);
4881
fput(mddev->bitmap_info.file);
4882
mddev->bitmap_info.file = NULL;
4883
}
4884
mddev->bitmap_info.offset = 0;
4885
4886
export_array(mddev);
4887
4888
md_clean(mddev);
4889
kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4890
if (mddev->hold_active == UNTIL_STOP)
4891
mddev->hold_active = 0;
4892
}
4893
blk_integrity_unregister(disk);
4894
md_new_event(mddev);
4895
sysfs_notify_dirent_safe(mddev->sysfs_state);
4896
return 0;
4897
}
4898
4899
#ifndef MODULE
4900
static void autorun_array(mddev_t *mddev)
4901
{
4902
mdk_rdev_t *rdev;
4903
int err;
4904
4905
if (list_empty(&mddev->disks))
4906
return;
4907
4908
printk(KERN_INFO "md: running: ");
4909
4910
list_for_each_entry(rdev, &mddev->disks, same_set) {
4911
char b[BDEVNAME_SIZE];
4912
printk("<%s>", bdevname(rdev->bdev,b));
4913
}
4914
printk("\n");
4915
4916
err = do_md_run(mddev);
4917
if (err) {
4918
printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4919
do_md_stop(mddev, 0, 0);
4920
}
4921
}
4922
4923
/*
4924
* lets try to run arrays based on all disks that have arrived
4925
* until now. (those are in pending_raid_disks)
4926
*
4927
* the method: pick the first pending disk, collect all disks with
4928
* the same UUID, remove all from the pending list and put them into
4929
* the 'same_array' list. Then order this list based on superblock
4930
* update time (freshest comes first), kick out 'old' disks and
4931
* compare superblocks. If everything's fine then run it.
4932
*
4933
* If "unit" is allocated, then bump its reference count
4934
*/
4935
static void autorun_devices(int part)
4936
{
4937
mdk_rdev_t *rdev0, *rdev, *tmp;
4938
mddev_t *mddev;
4939
char b[BDEVNAME_SIZE];
4940
4941
printk(KERN_INFO "md: autorun ...\n");
4942
while (!list_empty(&pending_raid_disks)) {
4943
int unit;
4944
dev_t dev;
4945
LIST_HEAD(candidates);
4946
rdev0 = list_entry(pending_raid_disks.next,
4947
mdk_rdev_t, same_set);
4948
4949
printk(KERN_INFO "md: considering %s ...\n",
4950
bdevname(rdev0->bdev,b));
4951
INIT_LIST_HEAD(&candidates);
4952
rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4953
if (super_90_load(rdev, rdev0, 0) >= 0) {
4954
printk(KERN_INFO "md: adding %s ...\n",
4955
bdevname(rdev->bdev,b));
4956
list_move(&rdev->same_set, &candidates);
4957
}
4958
/*
4959
* now we have a set of devices, with all of them having
4960
* mostly sane superblocks. It's time to allocate the
4961
* mddev.
4962
*/
4963
if (part) {
4964
dev = MKDEV(mdp_major,
4965
rdev0->preferred_minor << MdpMinorShift);
4966
unit = MINOR(dev) >> MdpMinorShift;
4967
} else {
4968
dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4969
unit = MINOR(dev);
4970
}
4971
if (rdev0->preferred_minor != unit) {
4972
printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4973
bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4974
break;
4975
}
4976
4977
md_probe(dev, NULL, NULL);
4978
mddev = mddev_find(dev);
4979
if (!mddev || !mddev->gendisk) {
4980
if (mddev)
4981
mddev_put(mddev);
4982
printk(KERN_ERR
4983
"md: cannot allocate memory for md drive.\n");
4984
break;
4985
}
4986
if (mddev_lock(mddev))
4987
printk(KERN_WARNING "md: %s locked, cannot run\n",
4988
mdname(mddev));
4989
else if (mddev->raid_disks || mddev->major_version
4990
|| !list_empty(&mddev->disks)) {
4991
printk(KERN_WARNING
4992
"md: %s already running, cannot run %s\n",
4993
mdname(mddev), bdevname(rdev0->bdev,b));
4994
mddev_unlock(mddev);
4995
} else {
4996
printk(KERN_INFO "md: created %s\n", mdname(mddev));
4997
mddev->persistent = 1;
4998
rdev_for_each_list(rdev, tmp, &candidates) {
4999
list_del_init(&rdev->same_set);
5000
if (bind_rdev_to_array(rdev, mddev))
5001
export_rdev(rdev);
5002
}
5003
autorun_array(mddev);
5004
mddev_unlock(mddev);
5005
}
5006
/* on success, candidates will be empty, on error
5007
* it won't...
5008
*/
5009
rdev_for_each_list(rdev, tmp, &candidates) {
5010
list_del_init(&rdev->same_set);
5011
export_rdev(rdev);
5012
}
5013
mddev_put(mddev);
5014
}
5015
printk(KERN_INFO "md: ... autorun DONE.\n");
5016
}
5017
#endif /* !MODULE */
5018
5019
static int get_version(void __user * arg)
5020
{
5021
mdu_version_t ver;
5022
5023
ver.major = MD_MAJOR_VERSION;
5024
ver.minor = MD_MINOR_VERSION;
5025
ver.patchlevel = MD_PATCHLEVEL_VERSION;
5026
5027
if (copy_to_user(arg, &ver, sizeof(ver)))
5028
return -EFAULT;
5029
5030
return 0;
5031
}
5032
5033
static int get_array_info(mddev_t * mddev, void __user * arg)
5034
{
5035
mdu_array_info_t info;
5036
int nr,working,insync,failed,spare;
5037
mdk_rdev_t *rdev;
5038
5039
nr=working=insync=failed=spare=0;
5040
list_for_each_entry(rdev, &mddev->disks, same_set) {
5041
nr++;
5042
if (test_bit(Faulty, &rdev->flags))
5043
failed++;
5044
else {
5045
working++;
5046
if (test_bit(In_sync, &rdev->flags))
5047
insync++;
5048
else
5049
spare++;
5050
}
5051
}
5052
5053
info.major_version = mddev->major_version;
5054
info.minor_version = mddev->minor_version;
5055
info.patch_version = MD_PATCHLEVEL_VERSION;
5056
info.ctime = mddev->ctime;
5057
info.level = mddev->level;
5058
info.size = mddev->dev_sectors / 2;
5059
if (info.size != mddev->dev_sectors / 2) /* overflow */
5060
info.size = -1;
5061
info.nr_disks = nr;
5062
info.raid_disks = mddev->raid_disks;
5063
info.md_minor = mddev->md_minor;
5064
info.not_persistent= !mddev->persistent;
5065
5066
info.utime = mddev->utime;
5067
info.state = 0;
5068
if (mddev->in_sync)
5069
info.state = (1<<MD_SB_CLEAN);
5070
if (mddev->bitmap && mddev->bitmap_info.offset)
5071
info.state = (1<<MD_SB_BITMAP_PRESENT);
5072
info.active_disks = insync;
5073
info.working_disks = working;
5074
info.failed_disks = failed;
5075
info.spare_disks = spare;
5076
5077
info.layout = mddev->layout;
5078
info.chunk_size = mddev->chunk_sectors << 9;
5079
5080
if (copy_to_user(arg, &info, sizeof(info)))
5081
return -EFAULT;
5082
5083
return 0;
5084
}
5085
5086
static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5087
{
5088
mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5089
char *ptr, *buf = NULL;
5090
int err = -ENOMEM;
5091
5092
if (md_allow_write(mddev))
5093
file = kmalloc(sizeof(*file), GFP_NOIO);
5094
else
5095
file = kmalloc(sizeof(*file), GFP_KERNEL);
5096
5097
if (!file)
5098
goto out;
5099
5100
/* bitmap disabled, zero the first byte and copy out */
5101
if (!mddev->bitmap || !mddev->bitmap->file) {
5102
file->pathname[0] = '\0';
5103
goto copy_out;
5104
}
5105
5106
buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5107
if (!buf)
5108
goto out;
5109
5110
ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5111
if (IS_ERR(ptr))
5112
goto out;
5113
5114
strcpy(file->pathname, ptr);
5115
5116
copy_out:
5117
err = 0;
5118
if (copy_to_user(arg, file, sizeof(*file)))
5119
err = -EFAULT;
5120
out:
5121
kfree(buf);
5122
kfree(file);
5123
return err;
5124
}
5125
5126
static int get_disk_info(mddev_t * mddev, void __user * arg)
5127
{
5128
mdu_disk_info_t info;
5129
mdk_rdev_t *rdev;
5130
5131
if (copy_from_user(&info, arg, sizeof(info)))
5132
return -EFAULT;
5133
5134
rdev = find_rdev_nr(mddev, info.number);
5135
if (rdev) {
5136
info.major = MAJOR(rdev->bdev->bd_dev);
5137
info.minor = MINOR(rdev->bdev->bd_dev);
5138
info.raid_disk = rdev->raid_disk;
5139
info.state = 0;
5140
if (test_bit(Faulty, &rdev->flags))
5141
info.state |= (1<<MD_DISK_FAULTY);
5142
else if (test_bit(In_sync, &rdev->flags)) {
5143
info.state |= (1<<MD_DISK_ACTIVE);
5144
info.state |= (1<<MD_DISK_SYNC);
5145
}
5146
if (test_bit(WriteMostly, &rdev->flags))
5147
info.state |= (1<<MD_DISK_WRITEMOSTLY);
5148
} else {
5149
info.major = info.minor = 0;
5150
info.raid_disk = -1;
5151
info.state = (1<<MD_DISK_REMOVED);
5152
}
5153
5154
if (copy_to_user(arg, &info, sizeof(info)))
5155
return -EFAULT;
5156
5157
return 0;
5158
}
5159
5160
static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5161
{
5162
char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5163
mdk_rdev_t *rdev;
5164
dev_t dev = MKDEV(info->major,info->minor);
5165
5166
if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5167
return -EOVERFLOW;
5168
5169
if (!mddev->raid_disks) {
5170
int err;
5171
/* expecting a device which has a superblock */
5172
rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5173
if (IS_ERR(rdev)) {
5174
printk(KERN_WARNING
5175
"md: md_import_device returned %ld\n",
5176
PTR_ERR(rdev));
5177
return PTR_ERR(rdev);
5178
}
5179
if (!list_empty(&mddev->disks)) {
5180
mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5181
mdk_rdev_t, same_set);
5182
err = super_types[mddev->major_version]
5183
.load_super(rdev, rdev0, mddev->minor_version);
5184
if (err < 0) {
5185
printk(KERN_WARNING
5186
"md: %s has different UUID to %s\n",
5187
bdevname(rdev->bdev,b),
5188
bdevname(rdev0->bdev,b2));
5189
export_rdev(rdev);
5190
return -EINVAL;
5191
}
5192
}
5193
err = bind_rdev_to_array(rdev, mddev);
5194
if (err)
5195
export_rdev(rdev);
5196
return err;
5197
}
5198
5199
/*
5200
* add_new_disk can be used once the array is assembled
5201
* to add "hot spares". They must already have a superblock
5202
* written
5203
*/
5204
if (mddev->pers) {
5205
int err;
5206
if (!mddev->pers->hot_add_disk) {
5207
printk(KERN_WARNING
5208
"%s: personality does not support diskops!\n",
5209
mdname(mddev));
5210
return -EINVAL;
5211
}
5212
if (mddev->persistent)
5213
rdev = md_import_device(dev, mddev->major_version,
5214
mddev->minor_version);
5215
else
5216
rdev = md_import_device(dev, -1, -1);
5217
if (IS_ERR(rdev)) {
5218
printk(KERN_WARNING
5219
"md: md_import_device returned %ld\n",
5220
PTR_ERR(rdev));
5221
return PTR_ERR(rdev);
5222
}
5223
/* set saved_raid_disk if appropriate */
5224
if (!mddev->persistent) {
5225
if (info->state & (1<<MD_DISK_SYNC) &&
5226
info->raid_disk < mddev->raid_disks) {
5227
rdev->raid_disk = info->raid_disk;
5228
set_bit(In_sync, &rdev->flags);
5229
} else
5230
rdev->raid_disk = -1;
5231
} else
5232
super_types[mddev->major_version].
5233
validate_super(mddev, rdev);
5234
if ((info->state & (1<<MD_DISK_SYNC)) &&
5235
(!test_bit(In_sync, &rdev->flags) ||
5236
rdev->raid_disk != info->raid_disk)) {
5237
/* This was a hot-add request, but events doesn't
5238
* match, so reject it.
5239
*/
5240
export_rdev(rdev);
5241
return -EINVAL;
5242
}
5243
5244
if (test_bit(In_sync, &rdev->flags))
5245
rdev->saved_raid_disk = rdev->raid_disk;
5246
else
5247
rdev->saved_raid_disk = -1;
5248
5249
clear_bit(In_sync, &rdev->flags); /* just to be sure */
5250
if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5251
set_bit(WriteMostly, &rdev->flags);
5252
else
5253
clear_bit(WriteMostly, &rdev->flags);
5254
5255
rdev->raid_disk = -1;
5256
err = bind_rdev_to_array(rdev, mddev);
5257
if (!err && !mddev->pers->hot_remove_disk) {
5258
/* If there is hot_add_disk but no hot_remove_disk
5259
* then added disks for geometry changes,
5260
* and should be added immediately.
5261
*/
5262
super_types[mddev->major_version].
5263
validate_super(mddev, rdev);
5264
err = mddev->pers->hot_add_disk(mddev, rdev);
5265
if (err)
5266
unbind_rdev_from_array(rdev);
5267
}
5268
if (err)
5269
export_rdev(rdev);
5270
else
5271
sysfs_notify_dirent_safe(rdev->sysfs_state);
5272
5273
md_update_sb(mddev, 1);
5274
if (mddev->degraded)
5275
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5276
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5277
if (!err)
5278
md_new_event(mddev);
5279
md_wakeup_thread(mddev->thread);
5280
return err;
5281
}
5282
5283
/* otherwise, add_new_disk is only allowed
5284
* for major_version==0 superblocks
5285
*/
5286
if (mddev->major_version != 0) {
5287
printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5288
mdname(mddev));
5289
return -EINVAL;
5290
}
5291
5292
if (!(info->state & (1<<MD_DISK_FAULTY))) {
5293
int err;
5294
rdev = md_import_device(dev, -1, 0);
5295
if (IS_ERR(rdev)) {
5296
printk(KERN_WARNING
5297
"md: error, md_import_device() returned %ld\n",
5298
PTR_ERR(rdev));
5299
return PTR_ERR(rdev);
5300
}
5301
rdev->desc_nr = info->number;
5302
if (info->raid_disk < mddev->raid_disks)
5303
rdev->raid_disk = info->raid_disk;
5304
else
5305
rdev->raid_disk = -1;
5306
5307
if (rdev->raid_disk < mddev->raid_disks)
5308
if (info->state & (1<<MD_DISK_SYNC))
5309
set_bit(In_sync, &rdev->flags);
5310
5311
if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5312
set_bit(WriteMostly, &rdev->flags);
5313
5314
if (!mddev->persistent) {
5315
printk(KERN_INFO "md: nonpersistent superblock ...\n");
5316
rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5317
} else
5318
rdev->sb_start = calc_dev_sboffset(rdev);
5319
rdev->sectors = rdev->sb_start;
5320
5321
err = bind_rdev_to_array(rdev, mddev);
5322
if (err) {
5323
export_rdev(rdev);
5324
return err;
5325
}
5326
}
5327
5328
return 0;
5329
}
5330
5331
static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5332
{
5333
char b[BDEVNAME_SIZE];
5334
mdk_rdev_t *rdev;
5335
5336
rdev = find_rdev(mddev, dev);
5337
if (!rdev)
5338
return -ENXIO;
5339
5340
if (rdev->raid_disk >= 0)
5341
goto busy;
5342
5343
kick_rdev_from_array(rdev);
5344
md_update_sb(mddev, 1);
5345
md_new_event(mddev);
5346
5347
return 0;
5348
busy:
5349
printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5350
bdevname(rdev->bdev,b), mdname(mddev));
5351
return -EBUSY;
5352
}
5353
5354
static int hot_add_disk(mddev_t * mddev, dev_t dev)
5355
{
5356
char b[BDEVNAME_SIZE];
5357
int err;
5358
mdk_rdev_t *rdev;
5359
5360
if (!mddev->pers)
5361
return -ENODEV;
5362
5363
if (mddev->major_version != 0) {
5364
printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5365
" version-0 superblocks.\n",
5366
mdname(mddev));
5367
return -EINVAL;
5368
}
5369
if (!mddev->pers->hot_add_disk) {
5370
printk(KERN_WARNING
5371
"%s: personality does not support diskops!\n",
5372
mdname(mddev));
5373
return -EINVAL;
5374
}
5375
5376
rdev = md_import_device(dev, -1, 0);
5377
if (IS_ERR(rdev)) {
5378
printk(KERN_WARNING
5379
"md: error, md_import_device() returned %ld\n",
5380
PTR_ERR(rdev));
5381
return -EINVAL;
5382
}
5383
5384
if (mddev->persistent)
5385
rdev->sb_start = calc_dev_sboffset(rdev);
5386
else
5387
rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5388
5389
rdev->sectors = rdev->sb_start;
5390
5391
if (test_bit(Faulty, &rdev->flags)) {
5392
printk(KERN_WARNING
5393
"md: can not hot-add faulty %s disk to %s!\n",
5394
bdevname(rdev->bdev,b), mdname(mddev));
5395
err = -EINVAL;
5396
goto abort_export;
5397
}
5398
clear_bit(In_sync, &rdev->flags);
5399
rdev->desc_nr = -1;
5400
rdev->saved_raid_disk = -1;
5401
err = bind_rdev_to_array(rdev, mddev);
5402
if (err)
5403
goto abort_export;
5404
5405
/*
5406
* The rest should better be atomic, we can have disk failures
5407
* noticed in interrupt contexts ...
5408
*/
5409
5410
rdev->raid_disk = -1;
5411
5412
md_update_sb(mddev, 1);
5413
5414
/*
5415
* Kick recovery, maybe this spare has to be added to the
5416
* array immediately.
5417
*/
5418
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5419
md_wakeup_thread(mddev->thread);
5420
md_new_event(mddev);
5421
return 0;
5422
5423
abort_export:
5424
export_rdev(rdev);
5425
return err;
5426
}
5427
5428
static int set_bitmap_file(mddev_t *mddev, int fd)
5429
{
5430
int err;
5431
5432
if (mddev->pers) {
5433
if (!mddev->pers->quiesce)
5434
return -EBUSY;
5435
if (mddev->recovery || mddev->sync_thread)
5436
return -EBUSY;
5437
/* we should be able to change the bitmap.. */
5438
}
5439
5440
5441
if (fd >= 0) {
5442
if (mddev->bitmap)
5443
return -EEXIST; /* cannot add when bitmap is present */
5444
mddev->bitmap_info.file = fget(fd);
5445
5446
if (mddev->bitmap_info.file == NULL) {
5447
printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5448
mdname(mddev));
5449
return -EBADF;
5450
}
5451
5452
err = deny_bitmap_write_access(mddev->bitmap_info.file);
5453
if (err) {
5454
printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5455
mdname(mddev));
5456
fput(mddev->bitmap_info.file);
5457
mddev->bitmap_info.file = NULL;
5458
return err;
5459
}
5460
mddev->bitmap_info.offset = 0; /* file overrides offset */
5461
} else if (mddev->bitmap == NULL)
5462
return -ENOENT; /* cannot remove what isn't there */
5463
err = 0;
5464
if (mddev->pers) {
5465
mddev->pers->quiesce(mddev, 1);
5466
if (fd >= 0) {
5467
err = bitmap_create(mddev);
5468
if (!err)
5469
err = bitmap_load(mddev);
5470
}
5471
if (fd < 0 || err) {
5472
bitmap_destroy(mddev);
5473
fd = -1; /* make sure to put the file */
5474
}
5475
mddev->pers->quiesce(mddev, 0);
5476
}
5477
if (fd < 0) {
5478
if (mddev->bitmap_info.file) {
5479
restore_bitmap_write_access(mddev->bitmap_info.file);
5480
fput(mddev->bitmap_info.file);
5481
}
5482
mddev->bitmap_info.file = NULL;
5483
}
5484
5485
return err;
5486
}
5487
5488
/*
5489
* set_array_info is used two different ways
5490
* The original usage is when creating a new array.
5491
* In this usage, raid_disks is > 0 and it together with
5492
* level, size, not_persistent,layout,chunksize determine the
5493
* shape of the array.
5494
* This will always create an array with a type-0.90.0 superblock.
5495
* The newer usage is when assembling an array.
5496
* In this case raid_disks will be 0, and the major_version field is
5497
* use to determine which style super-blocks are to be found on the devices.
5498
* The minor and patch _version numbers are also kept incase the
5499
* super_block handler wishes to interpret them.
5500
*/
5501
static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5502
{
5503
5504
if (info->raid_disks == 0) {
5505
/* just setting version number for superblock loading */
5506
if (info->major_version < 0 ||
5507
info->major_version >= ARRAY_SIZE(super_types) ||
5508
super_types[info->major_version].name == NULL) {
5509
/* maybe try to auto-load a module? */
5510
printk(KERN_INFO
5511
"md: superblock version %d not known\n",
5512
info->major_version);
5513
return -EINVAL;
5514
}
5515
mddev->major_version = info->major_version;
5516
mddev->minor_version = info->minor_version;
5517
mddev->patch_version = info->patch_version;
5518
mddev->persistent = !info->not_persistent;
5519
/* ensure mddev_put doesn't delete this now that there
5520
* is some minimal configuration.
5521
*/
5522
mddev->ctime = get_seconds();
5523
return 0;
5524
}
5525
mddev->major_version = MD_MAJOR_VERSION;
5526
mddev->minor_version = MD_MINOR_VERSION;
5527
mddev->patch_version = MD_PATCHLEVEL_VERSION;
5528
mddev->ctime = get_seconds();
5529
5530
mddev->level = info->level;
5531
mddev->clevel[0] = 0;
5532
mddev->dev_sectors = 2 * (sector_t)info->size;
5533
mddev->raid_disks = info->raid_disks;
5534
/* don't set md_minor, it is determined by which /dev/md* was
5535
* openned
5536
*/
5537
if (info->state & (1<<MD_SB_CLEAN))
5538
mddev->recovery_cp = MaxSector;
5539
else
5540
mddev->recovery_cp = 0;
5541
mddev->persistent = ! info->not_persistent;
5542
mddev->external = 0;
5543
5544
mddev->layout = info->layout;
5545
mddev->chunk_sectors = info->chunk_size >> 9;
5546
5547
mddev->max_disks = MD_SB_DISKS;
5548
5549
if (mddev->persistent)
5550
mddev->flags = 0;
5551
set_bit(MD_CHANGE_DEVS, &mddev->flags);
5552
5553
mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5554
mddev->bitmap_info.offset = 0;
5555
5556
mddev->reshape_position = MaxSector;
5557
5558
/*
5559
* Generate a 128 bit UUID
5560
*/
5561
get_random_bytes(mddev->uuid, 16);
5562
5563
mddev->new_level = mddev->level;
5564
mddev->new_chunk_sectors = mddev->chunk_sectors;
5565
mddev->new_layout = mddev->layout;
5566
mddev->delta_disks = 0;
5567
5568
return 0;
5569
}
5570
5571
void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5572
{
5573
WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5574
5575
if (mddev->external_size)
5576
return;
5577
5578
mddev->array_sectors = array_sectors;
5579
}
5580
EXPORT_SYMBOL(md_set_array_sectors);
5581
5582
static int update_size(mddev_t *mddev, sector_t num_sectors)
5583
{
5584
mdk_rdev_t *rdev;
5585
int rv;
5586
int fit = (num_sectors == 0);
5587
5588
if (mddev->pers->resize == NULL)
5589
return -EINVAL;
5590
/* The "num_sectors" is the number of sectors of each device that
5591
* is used. This can only make sense for arrays with redundancy.
5592
* linear and raid0 always use whatever space is available. We can only
5593
* consider changing this number if no resync or reconstruction is
5594
* happening, and if the new size is acceptable. It must fit before the
5595
* sb_start or, if that is <data_offset, it must fit before the size
5596
* of each device. If num_sectors is zero, we find the largest size
5597
* that fits.
5598
*/
5599
if (mddev->sync_thread)
5600
return -EBUSY;
5601
if (mddev->bitmap)
5602
/* Sorry, cannot grow a bitmap yet, just remove it,
5603
* grow, and re-add.
5604
*/
5605
return -EBUSY;
5606
list_for_each_entry(rdev, &mddev->disks, same_set) {
5607
sector_t avail = rdev->sectors;
5608
5609
if (fit && (num_sectors == 0 || num_sectors > avail))
5610
num_sectors = avail;
5611
if (avail < num_sectors)
5612
return -ENOSPC;
5613
}
5614
rv = mddev->pers->resize(mddev, num_sectors);
5615
if (!rv)
5616
revalidate_disk(mddev->gendisk);
5617
return rv;
5618
}
5619
5620
static int update_raid_disks(mddev_t *mddev, int raid_disks)
5621
{
5622
int rv;
5623
/* change the number of raid disks */
5624
if (mddev->pers->check_reshape == NULL)
5625
return -EINVAL;
5626
if (raid_disks <= 0 ||
5627
(mddev->max_disks && raid_disks >= mddev->max_disks))
5628
return -EINVAL;
5629
if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5630
return -EBUSY;
5631
mddev->delta_disks = raid_disks - mddev->raid_disks;
5632
5633
rv = mddev->pers->check_reshape(mddev);
5634
if (rv < 0)
5635
mddev->delta_disks = 0;
5636
return rv;
5637
}
5638
5639
5640
/*
5641
* update_array_info is used to change the configuration of an
5642
* on-line array.
5643
* The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5644
* fields in the info are checked against the array.
5645
* Any differences that cannot be handled will cause an error.
5646
* Normally, only one change can be managed at a time.
5647
*/
5648
static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5649
{
5650
int rv = 0;
5651
int cnt = 0;
5652
int state = 0;
5653
5654
/* calculate expected state,ignoring low bits */
5655
if (mddev->bitmap && mddev->bitmap_info.offset)
5656
state |= (1 << MD_SB_BITMAP_PRESENT);
5657
5658
if (mddev->major_version != info->major_version ||
5659
mddev->minor_version != info->minor_version ||
5660
/* mddev->patch_version != info->patch_version || */
5661
mddev->ctime != info->ctime ||
5662
mddev->level != info->level ||
5663
/* mddev->layout != info->layout || */
5664
!mddev->persistent != info->not_persistent||
5665
mddev->chunk_sectors != info->chunk_size >> 9 ||
5666
/* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5667
((state^info->state) & 0xfffffe00)
5668
)
5669
return -EINVAL;
5670
/* Check there is only one change */
5671
if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5672
cnt++;
5673
if (mddev->raid_disks != info->raid_disks)
5674
cnt++;
5675
if (mddev->layout != info->layout)
5676
cnt++;
5677
if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5678
cnt++;
5679
if (cnt == 0)
5680
return 0;
5681
if (cnt > 1)
5682
return -EINVAL;
5683
5684
if (mddev->layout != info->layout) {
5685
/* Change layout
5686
* we don't need to do anything at the md level, the
5687
* personality will take care of it all.
5688
*/
5689
if (mddev->pers->check_reshape == NULL)
5690
return -EINVAL;
5691
else {
5692
mddev->new_layout = info->layout;
5693
rv = mddev->pers->check_reshape(mddev);
5694
if (rv)
5695
mddev->new_layout = mddev->layout;
5696
return rv;
5697
}
5698
}
5699
if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5700
rv = update_size(mddev, (sector_t)info->size * 2);
5701
5702
if (mddev->raid_disks != info->raid_disks)
5703
rv = update_raid_disks(mddev, info->raid_disks);
5704
5705
if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5706
if (mddev->pers->quiesce == NULL)
5707
return -EINVAL;
5708
if (mddev->recovery || mddev->sync_thread)
5709
return -EBUSY;
5710
if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5711
/* add the bitmap */
5712
if (mddev->bitmap)
5713
return -EEXIST;
5714
if (mddev->bitmap_info.default_offset == 0)
5715
return -EINVAL;
5716
mddev->bitmap_info.offset =
5717
mddev->bitmap_info.default_offset;
5718
mddev->pers->quiesce(mddev, 1);
5719
rv = bitmap_create(mddev);
5720
if (!rv)
5721
rv = bitmap_load(mddev);
5722
if (rv)
5723
bitmap_destroy(mddev);
5724
mddev->pers->quiesce(mddev, 0);
5725
} else {
5726
/* remove the bitmap */
5727
if (!mddev->bitmap)
5728
return -ENOENT;
5729
if (mddev->bitmap->file)
5730
return -EINVAL;
5731
mddev->pers->quiesce(mddev, 1);
5732
bitmap_destroy(mddev);
5733
mddev->pers->quiesce(mddev, 0);
5734
mddev->bitmap_info.offset = 0;
5735
}
5736
}
5737
md_update_sb(mddev, 1);
5738
return rv;
5739
}
5740
5741
static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5742
{
5743
mdk_rdev_t *rdev;
5744
5745
if (mddev->pers == NULL)
5746
return -ENODEV;
5747
5748
rdev = find_rdev(mddev, dev);
5749
if (!rdev)
5750
return -ENODEV;
5751
5752
md_error(mddev, rdev);
5753
return 0;
5754
}
5755
5756
/*
5757
* We have a problem here : there is no easy way to give a CHS
5758
* virtual geometry. We currently pretend that we have a 2 heads
5759
* 4 sectors (with a BIG number of cylinders...). This drives
5760
* dosfs just mad... ;-)
5761
*/
5762
static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5763
{
5764
mddev_t *mddev = bdev->bd_disk->private_data;
5765
5766
geo->heads = 2;
5767
geo->sectors = 4;
5768
geo->cylinders = mddev->array_sectors / 8;
5769
return 0;
5770
}
5771
5772
static int md_ioctl(struct block_device *bdev, fmode_t mode,
5773
unsigned int cmd, unsigned long arg)
5774
{
5775
int err = 0;
5776
void __user *argp = (void __user *)arg;
5777
mddev_t *mddev = NULL;
5778
int ro;
5779
5780
if (!capable(CAP_SYS_ADMIN))
5781
return -EACCES;
5782
5783
/*
5784
* Commands dealing with the RAID driver but not any
5785
* particular array:
5786
*/
5787
switch (cmd)
5788
{
5789
case RAID_VERSION:
5790
err = get_version(argp);
5791
goto done;
5792
5793
case PRINT_RAID_DEBUG:
5794
err = 0;
5795
md_print_devices();
5796
goto done;
5797
5798
#ifndef MODULE
5799
case RAID_AUTORUN:
5800
err = 0;
5801
autostart_arrays(arg);
5802
goto done;
5803
#endif
5804
default:;
5805
}
5806
5807
/*
5808
* Commands creating/starting a new array:
5809
*/
5810
5811
mddev = bdev->bd_disk->private_data;
5812
5813
if (!mddev) {
5814
BUG();
5815
goto abort;
5816
}
5817
5818
err = mddev_lock(mddev);
5819
if (err) {
5820
printk(KERN_INFO
5821
"md: ioctl lock interrupted, reason %d, cmd %d\n",
5822
err, cmd);
5823
goto abort;
5824
}
5825
5826
switch (cmd)
5827
{
5828
case SET_ARRAY_INFO:
5829
{
5830
mdu_array_info_t info;
5831
if (!arg)
5832
memset(&info, 0, sizeof(info));
5833
else if (copy_from_user(&info, argp, sizeof(info))) {
5834
err = -EFAULT;
5835
goto abort_unlock;
5836
}
5837
if (mddev->pers) {
5838
err = update_array_info(mddev, &info);
5839
if (err) {
5840
printk(KERN_WARNING "md: couldn't update"
5841
" array info. %d\n", err);
5842
goto abort_unlock;
5843
}
5844
goto done_unlock;
5845
}
5846
if (!list_empty(&mddev->disks)) {
5847
printk(KERN_WARNING
5848
"md: array %s already has disks!\n",
5849
mdname(mddev));
5850
err = -EBUSY;
5851
goto abort_unlock;
5852
}
5853
if (mddev->raid_disks) {
5854
printk(KERN_WARNING
5855
"md: array %s already initialised!\n",
5856
mdname(mddev));
5857
err = -EBUSY;
5858
goto abort_unlock;
5859
}
5860
err = set_array_info(mddev, &info);
5861
if (err) {
5862
printk(KERN_WARNING "md: couldn't set"
5863
" array info. %d\n", err);
5864
goto abort_unlock;
5865
}
5866
}
5867
goto done_unlock;
5868
5869
default:;
5870
}
5871
5872
/*
5873
* Commands querying/configuring an existing array:
5874
*/
5875
/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5876
* RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5877
if ((!mddev->raid_disks && !mddev->external)
5878
&& cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5879
&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5880
&& cmd != GET_BITMAP_FILE) {
5881
err = -ENODEV;
5882
goto abort_unlock;
5883
}
5884
5885
/*
5886
* Commands even a read-only array can execute:
5887
*/
5888
switch (cmd)
5889
{
5890
case GET_ARRAY_INFO:
5891
err = get_array_info(mddev, argp);
5892
goto done_unlock;
5893
5894
case GET_BITMAP_FILE:
5895
err = get_bitmap_file(mddev, argp);
5896
goto done_unlock;
5897
5898
case GET_DISK_INFO:
5899
err = get_disk_info(mddev, argp);
5900
goto done_unlock;
5901
5902
case RESTART_ARRAY_RW:
5903
err = restart_array(mddev);
5904
goto done_unlock;
5905
5906
case STOP_ARRAY:
5907
err = do_md_stop(mddev, 0, 1);
5908
goto done_unlock;
5909
5910
case STOP_ARRAY_RO:
5911
err = md_set_readonly(mddev, 1);
5912
goto done_unlock;
5913
5914
case BLKROSET:
5915
if (get_user(ro, (int __user *)(arg))) {
5916
err = -EFAULT;
5917
goto done_unlock;
5918
}
5919
err = -EINVAL;
5920
5921
/* if the bdev is going readonly the value of mddev->ro
5922
* does not matter, no writes are coming
5923
*/
5924
if (ro)
5925
goto done_unlock;
5926
5927
/* are we are already prepared for writes? */
5928
if (mddev->ro != 1)
5929
goto done_unlock;
5930
5931
/* transitioning to readauto need only happen for
5932
* arrays that call md_write_start
5933
*/
5934
if (mddev->pers) {
5935
err = restart_array(mddev);
5936
if (err == 0) {
5937
mddev->ro = 2;
5938
set_disk_ro(mddev->gendisk, 0);
5939
}
5940
}
5941
goto done_unlock;
5942
}
5943
5944
/*
5945
* The remaining ioctls are changing the state of the
5946
* superblock, so we do not allow them on read-only arrays.
5947
* However non-MD ioctls (e.g. get-size) will still come through
5948
* here and hit the 'default' below, so only disallow
5949
* 'md' ioctls, and switch to rw mode if started auto-readonly.
5950
*/
5951
if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5952
if (mddev->ro == 2) {
5953
mddev->ro = 0;
5954
sysfs_notify_dirent_safe(mddev->sysfs_state);
5955
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5956
md_wakeup_thread(mddev->thread);
5957
} else {
5958
err = -EROFS;
5959
goto abort_unlock;
5960
}
5961
}
5962
5963
switch (cmd)
5964
{
5965
case ADD_NEW_DISK:
5966
{
5967
mdu_disk_info_t info;
5968
if (copy_from_user(&info, argp, sizeof(info)))
5969
err = -EFAULT;
5970
else
5971
err = add_new_disk(mddev, &info);
5972
goto done_unlock;
5973
}
5974
5975
case HOT_REMOVE_DISK:
5976
err = hot_remove_disk(mddev, new_decode_dev(arg));
5977
goto done_unlock;
5978
5979
case HOT_ADD_DISK:
5980
err = hot_add_disk(mddev, new_decode_dev(arg));
5981
goto done_unlock;
5982
5983
case SET_DISK_FAULTY:
5984
err = set_disk_faulty(mddev, new_decode_dev(arg));
5985
goto done_unlock;
5986
5987
case RUN_ARRAY:
5988
err = do_md_run(mddev);
5989
goto done_unlock;
5990
5991
case SET_BITMAP_FILE:
5992
err = set_bitmap_file(mddev, (int)arg);
5993
goto done_unlock;
5994
5995
default:
5996
err = -EINVAL;
5997
goto abort_unlock;
5998
}
5999
6000
done_unlock:
6001
abort_unlock:
6002
if (mddev->hold_active == UNTIL_IOCTL &&
6003
err != -EINVAL)
6004
mddev->hold_active = 0;
6005
mddev_unlock(mddev);
6006
6007
return err;
6008
done:
6009
if (err)
6010
MD_BUG();
6011
abort:
6012
return err;
6013
}
6014
#ifdef CONFIG_COMPAT
6015
static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6016
unsigned int cmd, unsigned long arg)
6017
{
6018
switch (cmd) {
6019
case HOT_REMOVE_DISK:
6020
case HOT_ADD_DISK:
6021
case SET_DISK_FAULTY:
6022
case SET_BITMAP_FILE:
6023
/* These take in integer arg, do not convert */
6024
break;
6025
default:
6026
arg = (unsigned long)compat_ptr(arg);
6027
break;
6028
}
6029
6030
return md_ioctl(bdev, mode, cmd, arg);
6031
}
6032
#endif /* CONFIG_COMPAT */
6033
6034
static int md_open(struct block_device *bdev, fmode_t mode)
6035
{
6036
/*
6037
* Succeed if we can lock the mddev, which confirms that
6038
* it isn't being stopped right now.
6039
*/
6040
mddev_t *mddev = mddev_find(bdev->bd_dev);
6041
int err;
6042
6043
if (mddev->gendisk != bdev->bd_disk) {
6044
/* we are racing with mddev_put which is discarding this
6045
* bd_disk.
6046
*/
6047
mddev_put(mddev);
6048
/* Wait until bdev->bd_disk is definitely gone */
6049
flush_workqueue(md_misc_wq);
6050
/* Then retry the open from the top */
6051
return -ERESTARTSYS;
6052
}
6053
BUG_ON(mddev != bdev->bd_disk->private_data);
6054
6055
if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6056
goto out;
6057
6058
err = 0;
6059
atomic_inc(&mddev->openers);
6060
mutex_unlock(&mddev->open_mutex);
6061
6062
check_disk_change(bdev);
6063
out:
6064
return err;
6065
}
6066
6067
static int md_release(struct gendisk *disk, fmode_t mode)
6068
{
6069
mddev_t *mddev = disk->private_data;
6070
6071
BUG_ON(!mddev);
6072
atomic_dec(&mddev->openers);
6073
mddev_put(mddev);
6074
6075
return 0;
6076
}
6077
6078
static int md_media_changed(struct gendisk *disk)
6079
{
6080
mddev_t *mddev = disk->private_data;
6081
6082
return mddev->changed;
6083
}
6084
6085
static int md_revalidate(struct gendisk *disk)
6086
{
6087
mddev_t *mddev = disk->private_data;
6088
6089
mddev->changed = 0;
6090
return 0;
6091
}
6092
static const struct block_device_operations md_fops =
6093
{
6094
.owner = THIS_MODULE,
6095
.open = md_open,
6096
.release = md_release,
6097
.ioctl = md_ioctl,
6098
#ifdef CONFIG_COMPAT
6099
.compat_ioctl = md_compat_ioctl,
6100
#endif
6101
.getgeo = md_getgeo,
6102
.media_changed = md_media_changed,
6103
.revalidate_disk= md_revalidate,
6104
};
6105
6106
static int md_thread(void * arg)
6107
{
6108
mdk_thread_t *thread = arg;
6109
6110
/*
6111
* md_thread is a 'system-thread', it's priority should be very
6112
* high. We avoid resource deadlocks individually in each
6113
* raid personality. (RAID5 does preallocation) We also use RR and
6114
* the very same RT priority as kswapd, thus we will never get
6115
* into a priority inversion deadlock.
6116
*
6117
* we definitely have to have equal or higher priority than
6118
* bdflush, otherwise bdflush will deadlock if there are too
6119
* many dirty RAID5 blocks.
6120
*/
6121
6122
allow_signal(SIGKILL);
6123
while (!kthread_should_stop()) {
6124
6125
/* We need to wait INTERRUPTIBLE so that
6126
* we don't add to the load-average.
6127
* That means we need to be sure no signals are
6128
* pending
6129
*/
6130
if (signal_pending(current))
6131
flush_signals(current);
6132
6133
wait_event_interruptible_timeout
6134
(thread->wqueue,
6135
test_bit(THREAD_WAKEUP, &thread->flags)
6136
|| kthread_should_stop(),
6137
thread->timeout);
6138
6139
clear_bit(THREAD_WAKEUP, &thread->flags);
6140
if (!kthread_should_stop())
6141
thread->run(thread->mddev);
6142
}
6143
6144
return 0;
6145
}
6146
6147
void md_wakeup_thread(mdk_thread_t *thread)
6148
{
6149
if (thread) {
6150
dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6151
set_bit(THREAD_WAKEUP, &thread->flags);
6152
wake_up(&thread->wqueue);
6153
}
6154
}
6155
6156
mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6157
const char *name)
6158
{
6159
mdk_thread_t *thread;
6160
6161
thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6162
if (!thread)
6163
return NULL;
6164
6165
init_waitqueue_head(&thread->wqueue);
6166
6167
thread->run = run;
6168
thread->mddev = mddev;
6169
thread->timeout = MAX_SCHEDULE_TIMEOUT;
6170
thread->tsk = kthread_run(md_thread, thread,
6171
"%s_%s",
6172
mdname(thread->mddev),
6173
name ?: mddev->pers->name);
6174
if (IS_ERR(thread->tsk)) {
6175
kfree(thread);
6176
return NULL;
6177
}
6178
return thread;
6179
}
6180
6181
void md_unregister_thread(mdk_thread_t *thread)
6182
{
6183
if (!thread)
6184
return;
6185
dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6186
6187
kthread_stop(thread->tsk);
6188
kfree(thread);
6189
}
6190
6191
void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6192
{
6193
if (!mddev) {
6194
MD_BUG();
6195
return;
6196
}
6197
6198
if (!rdev || test_bit(Faulty, &rdev->flags))
6199
return;
6200
6201
if (mddev->external)
6202
set_bit(Blocked, &rdev->flags);
6203
/*
6204
dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6205
mdname(mddev),
6206
MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6207
__builtin_return_address(0),__builtin_return_address(1),
6208
__builtin_return_address(2),__builtin_return_address(3));
6209
*/
6210
if (!mddev->pers)
6211
return;
6212
if (!mddev->pers->error_handler)
6213
return;
6214
mddev->pers->error_handler(mddev,rdev);
6215
if (mddev->degraded)
6216
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6217
sysfs_notify_dirent_safe(rdev->sysfs_state);
6218
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6219
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6220
md_wakeup_thread(mddev->thread);
6221
if (mddev->event_work.func)
6222
queue_work(md_misc_wq, &mddev->event_work);
6223
md_new_event_inintr(mddev);
6224
}
6225
6226
/* seq_file implementation /proc/mdstat */
6227
6228
static void status_unused(struct seq_file *seq)
6229
{
6230
int i = 0;
6231
mdk_rdev_t *rdev;
6232
6233
seq_printf(seq, "unused devices: ");
6234
6235
list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6236
char b[BDEVNAME_SIZE];
6237
i++;
6238
seq_printf(seq, "%s ",
6239
bdevname(rdev->bdev,b));
6240
}
6241
if (!i)
6242
seq_printf(seq, "<none>");
6243
6244
seq_printf(seq, "\n");
6245
}
6246
6247
6248
static void status_resync(struct seq_file *seq, mddev_t * mddev)
6249
{
6250
sector_t max_sectors, resync, res;
6251
unsigned long dt, db;
6252
sector_t rt;
6253
int scale;
6254
unsigned int per_milli;
6255
6256
resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6257
6258
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6259
max_sectors = mddev->resync_max_sectors;
6260
else
6261
max_sectors = mddev->dev_sectors;
6262
6263
/*
6264
* Should not happen.
6265
*/
6266
if (!max_sectors) {
6267
MD_BUG();
6268
return;
6269
}
6270
/* Pick 'scale' such that (resync>>scale)*1000 will fit
6271
* in a sector_t, and (max_sectors>>scale) will fit in a
6272
* u32, as those are the requirements for sector_div.
6273
* Thus 'scale' must be at least 10
6274
*/
6275
scale = 10;
6276
if (sizeof(sector_t) > sizeof(unsigned long)) {
6277
while ( max_sectors/2 > (1ULL<<(scale+32)))
6278
scale++;
6279
}
6280
res = (resync>>scale)*1000;
6281
sector_div(res, (u32)((max_sectors>>scale)+1));
6282
6283
per_milli = res;
6284
{
6285
int i, x = per_milli/50, y = 20-x;
6286
seq_printf(seq, "[");
6287
for (i = 0; i < x; i++)
6288
seq_printf(seq, "=");
6289
seq_printf(seq, ">");
6290
for (i = 0; i < y; i++)
6291
seq_printf(seq, ".");
6292
seq_printf(seq, "] ");
6293
}
6294
seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6295
(test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6296
"reshape" :
6297
(test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6298
"check" :
6299
(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6300
"resync" : "recovery"))),
6301
per_milli/10, per_milli % 10,
6302
(unsigned long long) resync/2,
6303
(unsigned long long) max_sectors/2);
6304
6305
/*
6306
* dt: time from mark until now
6307
* db: blocks written from mark until now
6308
* rt: remaining time
6309
*
6310
* rt is a sector_t, so could be 32bit or 64bit.
6311
* So we divide before multiply in case it is 32bit and close
6312
* to the limit.
6313
* We scale the divisor (db) by 32 to avoid losing precision
6314
* near the end of resync when the number of remaining sectors
6315
* is close to 'db'.
6316
* We then divide rt by 32 after multiplying by db to compensate.
6317
* The '+1' avoids division by zero if db is very small.
6318
*/
6319
dt = ((jiffies - mddev->resync_mark) / HZ);
6320
if (!dt) dt++;
6321
db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6322
- mddev->resync_mark_cnt;
6323
6324
rt = max_sectors - resync; /* number of remaining sectors */
6325
sector_div(rt, db/32+1);
6326
rt *= dt;
6327
rt >>= 5;
6328
6329
seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6330
((unsigned long)rt % 60)/6);
6331
6332
seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6333
}
6334
6335
static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6336
{
6337
struct list_head *tmp;
6338
loff_t l = *pos;
6339
mddev_t *mddev;
6340
6341
if (l >= 0x10000)
6342
return NULL;
6343
if (!l--)
6344
/* header */
6345
return (void*)1;
6346
6347
spin_lock(&all_mddevs_lock);
6348
list_for_each(tmp,&all_mddevs)
6349
if (!l--) {
6350
mddev = list_entry(tmp, mddev_t, all_mddevs);
6351
mddev_get(mddev);
6352
spin_unlock(&all_mddevs_lock);
6353
return mddev;
6354
}
6355
spin_unlock(&all_mddevs_lock);
6356
if (!l--)
6357
return (void*)2;/* tail */
6358
return NULL;
6359
}
6360
6361
static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6362
{
6363
struct list_head *tmp;
6364
mddev_t *next_mddev, *mddev = v;
6365
6366
++*pos;
6367
if (v == (void*)2)
6368
return NULL;
6369
6370
spin_lock(&all_mddevs_lock);
6371
if (v == (void*)1)
6372
tmp = all_mddevs.next;
6373
else
6374
tmp = mddev->all_mddevs.next;
6375
if (tmp != &all_mddevs)
6376
next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6377
else {
6378
next_mddev = (void*)2;
6379
*pos = 0x10000;
6380
}
6381
spin_unlock(&all_mddevs_lock);
6382
6383
if (v != (void*)1)
6384
mddev_put(mddev);
6385
return next_mddev;
6386
6387
}
6388
6389
static void md_seq_stop(struct seq_file *seq, void *v)
6390
{
6391
mddev_t *mddev = v;
6392
6393
if (mddev && v != (void*)1 && v != (void*)2)
6394
mddev_put(mddev);
6395
}
6396
6397
struct mdstat_info {
6398
int event;
6399
};
6400
6401
static int md_seq_show(struct seq_file *seq, void *v)
6402
{
6403
mddev_t *mddev = v;
6404
sector_t sectors;
6405
mdk_rdev_t *rdev;
6406
struct mdstat_info *mi = seq->private;
6407
struct bitmap *bitmap;
6408
6409
if (v == (void*)1) {
6410
struct mdk_personality *pers;
6411
seq_printf(seq, "Personalities : ");
6412
spin_lock(&pers_lock);
6413
list_for_each_entry(pers, &pers_list, list)
6414
seq_printf(seq, "[%s] ", pers->name);
6415
6416
spin_unlock(&pers_lock);
6417
seq_printf(seq, "\n");
6418
mi->event = atomic_read(&md_event_count);
6419
return 0;
6420
}
6421
if (v == (void*)2) {
6422
status_unused(seq);
6423
return 0;
6424
}
6425
6426
if (mddev_lock(mddev) < 0)
6427
return -EINTR;
6428
6429
if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6430
seq_printf(seq, "%s : %sactive", mdname(mddev),
6431
mddev->pers ? "" : "in");
6432
if (mddev->pers) {
6433
if (mddev->ro==1)
6434
seq_printf(seq, " (read-only)");
6435
if (mddev->ro==2)
6436
seq_printf(seq, " (auto-read-only)");
6437
seq_printf(seq, " %s", mddev->pers->name);
6438
}
6439
6440
sectors = 0;
6441
list_for_each_entry(rdev, &mddev->disks, same_set) {
6442
char b[BDEVNAME_SIZE];
6443
seq_printf(seq, " %s[%d]",
6444
bdevname(rdev->bdev,b), rdev->desc_nr);
6445
if (test_bit(WriteMostly, &rdev->flags))
6446
seq_printf(seq, "(W)");
6447
if (test_bit(Faulty, &rdev->flags)) {
6448
seq_printf(seq, "(F)");
6449
continue;
6450
} else if (rdev->raid_disk < 0)
6451
seq_printf(seq, "(S)"); /* spare */
6452
sectors += rdev->sectors;
6453
}
6454
6455
if (!list_empty(&mddev->disks)) {
6456
if (mddev->pers)
6457
seq_printf(seq, "\n %llu blocks",
6458
(unsigned long long)
6459
mddev->array_sectors / 2);
6460
else
6461
seq_printf(seq, "\n %llu blocks",
6462
(unsigned long long)sectors / 2);
6463
}
6464
if (mddev->persistent) {
6465
if (mddev->major_version != 0 ||
6466
mddev->minor_version != 90) {
6467
seq_printf(seq," super %d.%d",
6468
mddev->major_version,
6469
mddev->minor_version);
6470
}
6471
} else if (mddev->external)
6472
seq_printf(seq, " super external:%s",
6473
mddev->metadata_type);
6474
else
6475
seq_printf(seq, " super non-persistent");
6476
6477
if (mddev->pers) {
6478
mddev->pers->status(seq, mddev);
6479
seq_printf(seq, "\n ");
6480
if (mddev->pers->sync_request) {
6481
if (mddev->curr_resync > 2) {
6482
status_resync(seq, mddev);
6483
seq_printf(seq, "\n ");
6484
} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6485
seq_printf(seq, "\tresync=DELAYED\n ");
6486
else if (mddev->recovery_cp < MaxSector)
6487
seq_printf(seq, "\tresync=PENDING\n ");
6488
}
6489
} else
6490
seq_printf(seq, "\n ");
6491
6492
if ((bitmap = mddev->bitmap)) {
6493
unsigned long chunk_kb;
6494
unsigned long flags;
6495
spin_lock_irqsave(&bitmap->lock, flags);
6496
chunk_kb = mddev->bitmap_info.chunksize >> 10;
6497
seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6498
"%lu%s chunk",
6499
bitmap->pages - bitmap->missing_pages,
6500
bitmap->pages,
6501
(bitmap->pages - bitmap->missing_pages)
6502
<< (PAGE_SHIFT - 10),
6503
chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6504
chunk_kb ? "KB" : "B");
6505
if (bitmap->file) {
6506
seq_printf(seq, ", file: ");
6507
seq_path(seq, &bitmap->file->f_path, " \t\n");
6508
}
6509
6510
seq_printf(seq, "\n");
6511
spin_unlock_irqrestore(&bitmap->lock, flags);
6512
}
6513
6514
seq_printf(seq, "\n");
6515
}
6516
mddev_unlock(mddev);
6517
6518
return 0;
6519
}
6520
6521
static const struct seq_operations md_seq_ops = {
6522
.start = md_seq_start,
6523
.next = md_seq_next,
6524
.stop = md_seq_stop,
6525
.show = md_seq_show,
6526
};
6527
6528
static int md_seq_open(struct inode *inode, struct file *file)
6529
{
6530
int error;
6531
struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6532
if (mi == NULL)
6533
return -ENOMEM;
6534
6535
error = seq_open(file, &md_seq_ops);
6536
if (error)
6537
kfree(mi);
6538
else {
6539
struct seq_file *p = file->private_data;
6540
p->private = mi;
6541
mi->event = atomic_read(&md_event_count);
6542
}
6543
return error;
6544
}
6545
6546
static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6547
{
6548
struct seq_file *m = filp->private_data;
6549
struct mdstat_info *mi = m->private;
6550
int mask;
6551
6552
poll_wait(filp, &md_event_waiters, wait);
6553
6554
/* always allow read */
6555
mask = POLLIN | POLLRDNORM;
6556
6557
if (mi->event != atomic_read(&md_event_count))
6558
mask |= POLLERR | POLLPRI;
6559
return mask;
6560
}
6561
6562
static const struct file_operations md_seq_fops = {
6563
.owner = THIS_MODULE,
6564
.open = md_seq_open,
6565
.read = seq_read,
6566
.llseek = seq_lseek,
6567
.release = seq_release_private,
6568
.poll = mdstat_poll,
6569
};
6570
6571
int register_md_personality(struct mdk_personality *p)
6572
{
6573
spin_lock(&pers_lock);
6574
list_add_tail(&p->list, &pers_list);
6575
printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6576
spin_unlock(&pers_lock);
6577
return 0;
6578
}
6579
6580
int unregister_md_personality(struct mdk_personality *p)
6581
{
6582
printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6583
spin_lock(&pers_lock);
6584
list_del_init(&p->list);
6585
spin_unlock(&pers_lock);
6586
return 0;
6587
}
6588
6589
static int is_mddev_idle(mddev_t *mddev, int init)
6590
{
6591
mdk_rdev_t * rdev;
6592
int idle;
6593
int curr_events;
6594
6595
idle = 1;
6596
rcu_read_lock();
6597
rdev_for_each_rcu(rdev, mddev) {
6598
struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6599
curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6600
(int)part_stat_read(&disk->part0, sectors[1]) -
6601
atomic_read(&disk->sync_io);
6602
/* sync IO will cause sync_io to increase before the disk_stats
6603
* as sync_io is counted when a request starts, and
6604
* disk_stats is counted when it completes.
6605
* So resync activity will cause curr_events to be smaller than
6606
* when there was no such activity.
6607
* non-sync IO will cause disk_stat to increase without
6608
* increasing sync_io so curr_events will (eventually)
6609
* be larger than it was before. Once it becomes
6610
* substantially larger, the test below will cause
6611
* the array to appear non-idle, and resync will slow
6612
* down.
6613
* If there is a lot of outstanding resync activity when
6614
* we set last_event to curr_events, then all that activity
6615
* completing might cause the array to appear non-idle
6616
* and resync will be slowed down even though there might
6617
* not have been non-resync activity. This will only
6618
* happen once though. 'last_events' will soon reflect
6619
* the state where there is little or no outstanding
6620
* resync requests, and further resync activity will
6621
* always make curr_events less than last_events.
6622
*
6623
*/
6624
if (init || curr_events - rdev->last_events > 64) {
6625
rdev->last_events = curr_events;
6626
idle = 0;
6627
}
6628
}
6629
rcu_read_unlock();
6630
return idle;
6631
}
6632
6633
void md_done_sync(mddev_t *mddev, int blocks, int ok)
6634
{
6635
/* another "blocks" (512byte) blocks have been synced */
6636
atomic_sub(blocks, &mddev->recovery_active);
6637
wake_up(&mddev->recovery_wait);
6638
if (!ok) {
6639
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6640
md_wakeup_thread(mddev->thread);
6641
// stop recovery, signal do_sync ....
6642
}
6643
}
6644
6645
6646
/* md_write_start(mddev, bi)
6647
* If we need to update some array metadata (e.g. 'active' flag
6648
* in superblock) before writing, schedule a superblock update
6649
* and wait for it to complete.
6650
*/
6651
void md_write_start(mddev_t *mddev, struct bio *bi)
6652
{
6653
int did_change = 0;
6654
if (bio_data_dir(bi) != WRITE)
6655
return;
6656
6657
BUG_ON(mddev->ro == 1);
6658
if (mddev->ro == 2) {
6659
/* need to switch to read/write */
6660
mddev->ro = 0;
6661
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6662
md_wakeup_thread(mddev->thread);
6663
md_wakeup_thread(mddev->sync_thread);
6664
did_change = 1;
6665
}
6666
atomic_inc(&mddev->writes_pending);
6667
if (mddev->safemode == 1)
6668
mddev->safemode = 0;
6669
if (mddev->in_sync) {
6670
spin_lock_irq(&mddev->write_lock);
6671
if (mddev->in_sync) {
6672
mddev->in_sync = 0;
6673
set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6674
set_bit(MD_CHANGE_PENDING, &mddev->flags);
6675
md_wakeup_thread(mddev->thread);
6676
did_change = 1;
6677
}
6678
spin_unlock_irq(&mddev->write_lock);
6679
}
6680
if (did_change)
6681
sysfs_notify_dirent_safe(mddev->sysfs_state);
6682
wait_event(mddev->sb_wait,
6683
!test_bit(MD_CHANGE_PENDING, &mddev->flags));
6684
}
6685
6686
void md_write_end(mddev_t *mddev)
6687
{
6688
if (atomic_dec_and_test(&mddev->writes_pending)) {
6689
if (mddev->safemode == 2)
6690
md_wakeup_thread(mddev->thread);
6691
else if (mddev->safemode_delay)
6692
mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6693
}
6694
}
6695
6696
/* md_allow_write(mddev)
6697
* Calling this ensures that the array is marked 'active' so that writes
6698
* may proceed without blocking. It is important to call this before
6699
* attempting a GFP_KERNEL allocation while holding the mddev lock.
6700
* Must be called with mddev_lock held.
6701
*
6702
* In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6703
* is dropped, so return -EAGAIN after notifying userspace.
6704
*/
6705
int md_allow_write(mddev_t *mddev)
6706
{
6707
if (!mddev->pers)
6708
return 0;
6709
if (mddev->ro)
6710
return 0;
6711
if (!mddev->pers->sync_request)
6712
return 0;
6713
6714
spin_lock_irq(&mddev->write_lock);
6715
if (mddev->in_sync) {
6716
mddev->in_sync = 0;
6717
set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6718
set_bit(MD_CHANGE_PENDING, &mddev->flags);
6719
if (mddev->safemode_delay &&
6720
mddev->safemode == 0)
6721
mddev->safemode = 1;
6722
spin_unlock_irq(&mddev->write_lock);
6723
md_update_sb(mddev, 0);
6724
sysfs_notify_dirent_safe(mddev->sysfs_state);
6725
} else
6726
spin_unlock_irq(&mddev->write_lock);
6727
6728
if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6729
return -EAGAIN;
6730
else
6731
return 0;
6732
}
6733
EXPORT_SYMBOL_GPL(md_allow_write);
6734
6735
#define SYNC_MARKS 10
6736
#define SYNC_MARK_STEP (3*HZ)
6737
void md_do_sync(mddev_t *mddev)
6738
{
6739
mddev_t *mddev2;
6740
unsigned int currspeed = 0,
6741
window;
6742
sector_t max_sectors,j, io_sectors;
6743
unsigned long mark[SYNC_MARKS];
6744
sector_t mark_cnt[SYNC_MARKS];
6745
int last_mark,m;
6746
struct list_head *tmp;
6747
sector_t last_check;
6748
int skipped = 0;
6749
mdk_rdev_t *rdev;
6750
char *desc;
6751
6752
/* just incase thread restarts... */
6753
if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6754
return;
6755
if (mddev->ro) /* never try to sync a read-only array */
6756
return;
6757
6758
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6759
if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6760
desc = "data-check";
6761
else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6762
desc = "requested-resync";
6763
else
6764
desc = "resync";
6765
} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6766
desc = "reshape";
6767
else
6768
desc = "recovery";
6769
6770
/* we overload curr_resync somewhat here.
6771
* 0 == not engaged in resync at all
6772
* 2 == checking that there is no conflict with another sync
6773
* 1 == like 2, but have yielded to allow conflicting resync to
6774
* commense
6775
* other == active in resync - this many blocks
6776
*
6777
* Before starting a resync we must have set curr_resync to
6778
* 2, and then checked that every "conflicting" array has curr_resync
6779
* less than ours. When we find one that is the same or higher
6780
* we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6781
* to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6782
* This will mean we have to start checking from the beginning again.
6783
*
6784
*/
6785
6786
do {
6787
mddev->curr_resync = 2;
6788
6789
try_again:
6790
if (kthread_should_stop())
6791
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6792
6793
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6794
goto skip;
6795
for_each_mddev(mddev2, tmp) {
6796
if (mddev2 == mddev)
6797
continue;
6798
if (!mddev->parallel_resync
6799
&& mddev2->curr_resync
6800
&& match_mddev_units(mddev, mddev2)) {
6801
DEFINE_WAIT(wq);
6802
if (mddev < mddev2 && mddev->curr_resync == 2) {
6803
/* arbitrarily yield */
6804
mddev->curr_resync = 1;
6805
wake_up(&resync_wait);
6806
}
6807
if (mddev > mddev2 && mddev->curr_resync == 1)
6808
/* no need to wait here, we can wait the next
6809
* time 'round when curr_resync == 2
6810
*/
6811
continue;
6812
/* We need to wait 'interruptible' so as not to
6813
* contribute to the load average, and not to
6814
* be caught by 'softlockup'
6815
*/
6816
prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6817
if (!kthread_should_stop() &&
6818
mddev2->curr_resync >= mddev->curr_resync) {
6819
printk(KERN_INFO "md: delaying %s of %s"
6820
" until %s has finished (they"
6821
" share one or more physical units)\n",
6822
desc, mdname(mddev), mdname(mddev2));
6823
mddev_put(mddev2);
6824
if (signal_pending(current))
6825
flush_signals(current);
6826
schedule();
6827
finish_wait(&resync_wait, &wq);
6828
goto try_again;
6829
}
6830
finish_wait(&resync_wait, &wq);
6831
}
6832
}
6833
} while (mddev->curr_resync < 2);
6834
6835
j = 0;
6836
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6837
/* resync follows the size requested by the personality,
6838
* which defaults to physical size, but can be virtual size
6839
*/
6840
max_sectors = mddev->resync_max_sectors;
6841
mddev->resync_mismatches = 0;
6842
/* we don't use the checkpoint if there's a bitmap */
6843
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6844
j = mddev->resync_min;
6845
else if (!mddev->bitmap)
6846
j = mddev->recovery_cp;
6847
6848
} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6849
max_sectors = mddev->dev_sectors;
6850
else {
6851
/* recovery follows the physical size of devices */
6852
max_sectors = mddev->dev_sectors;
6853
j = MaxSector;
6854
rcu_read_lock();
6855
list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6856
if (rdev->raid_disk >= 0 &&
6857
!test_bit(Faulty, &rdev->flags) &&
6858
!test_bit(In_sync, &rdev->flags) &&
6859
rdev->recovery_offset < j)
6860
j = rdev->recovery_offset;
6861
rcu_read_unlock();
6862
}
6863
6864
printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6865
printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6866
" %d KB/sec/disk.\n", speed_min(mddev));
6867
printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6868
"(but not more than %d KB/sec) for %s.\n",
6869
speed_max(mddev), desc);
6870
6871
is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6872
6873
io_sectors = 0;
6874
for (m = 0; m < SYNC_MARKS; m++) {
6875
mark[m] = jiffies;
6876
mark_cnt[m] = io_sectors;
6877
}
6878
last_mark = 0;
6879
mddev->resync_mark = mark[last_mark];
6880
mddev->resync_mark_cnt = mark_cnt[last_mark];
6881
6882
/*
6883
* Tune reconstruction:
6884
*/
6885
window = 32*(PAGE_SIZE/512);
6886
printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
6887
window/2, (unsigned long long)max_sectors/2);
6888
6889
atomic_set(&mddev->recovery_active, 0);
6890
last_check = 0;
6891
6892
if (j>2) {
6893
printk(KERN_INFO
6894
"md: resuming %s of %s from checkpoint.\n",
6895
desc, mdname(mddev));
6896
mddev->curr_resync = j;
6897
}
6898
mddev->curr_resync_completed = j;
6899
6900
while (j < max_sectors) {
6901
sector_t sectors;
6902
6903
skipped = 0;
6904
6905
if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6906
((mddev->curr_resync > mddev->curr_resync_completed &&
6907
(mddev->curr_resync - mddev->curr_resync_completed)
6908
> (max_sectors >> 4)) ||
6909
(j - mddev->curr_resync_completed)*2
6910
>= mddev->resync_max - mddev->curr_resync_completed
6911
)) {
6912
/* time to update curr_resync_completed */
6913
wait_event(mddev->recovery_wait,
6914
atomic_read(&mddev->recovery_active) == 0);
6915
mddev->curr_resync_completed = j;
6916
set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6917
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6918
}
6919
6920
while (j >= mddev->resync_max && !kthread_should_stop()) {
6921
/* As this condition is controlled by user-space,
6922
* we can block indefinitely, so use '_interruptible'
6923
* to avoid triggering warnings.
6924
*/
6925
flush_signals(current); /* just in case */
6926
wait_event_interruptible(mddev->recovery_wait,
6927
mddev->resync_max > j
6928
|| kthread_should_stop());
6929
}
6930
6931
if (kthread_should_stop())
6932
goto interrupted;
6933
6934
sectors = mddev->pers->sync_request(mddev, j, &skipped,
6935
currspeed < speed_min(mddev));
6936
if (sectors == 0) {
6937
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6938
goto out;
6939
}
6940
6941
if (!skipped) { /* actual IO requested */
6942
io_sectors += sectors;
6943
atomic_add(sectors, &mddev->recovery_active);
6944
}
6945
6946
j += sectors;
6947
if (j>1) mddev->curr_resync = j;
6948
mddev->curr_mark_cnt = io_sectors;
6949
if (last_check == 0)
6950
/* this is the earliers that rebuilt will be
6951
* visible in /proc/mdstat
6952
*/
6953
md_new_event(mddev);
6954
6955
if (last_check + window > io_sectors || j == max_sectors)
6956
continue;
6957
6958
last_check = io_sectors;
6959
6960
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6961
break;
6962
6963
repeat:
6964
if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6965
/* step marks */
6966
int next = (last_mark+1) % SYNC_MARKS;
6967
6968
mddev->resync_mark = mark[next];
6969
mddev->resync_mark_cnt = mark_cnt[next];
6970
mark[next] = jiffies;
6971
mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6972
last_mark = next;
6973
}
6974
6975
6976
if (kthread_should_stop())
6977
goto interrupted;
6978
6979
6980
/*
6981
* this loop exits only if either when we are slower than
6982
* the 'hard' speed limit, or the system was IO-idle for
6983
* a jiffy.
6984
* the system might be non-idle CPU-wise, but we only care
6985
* about not overloading the IO subsystem. (things like an
6986
* e2fsck being done on the RAID array should execute fast)
6987
*/
6988
cond_resched();
6989
6990
currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6991
/((jiffies-mddev->resync_mark)/HZ +1) +1;
6992
6993
if (currspeed > speed_min(mddev)) {
6994
if ((currspeed > speed_max(mddev)) ||
6995
!is_mddev_idle(mddev, 0)) {
6996
msleep(500);
6997
goto repeat;
6998
}
6999
}
7000
}
7001
printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7002
/*
7003
* this also signals 'finished resyncing' to md_stop
7004
*/
7005
out:
7006
wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7007
7008
/* tell personality that we are finished */
7009
mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7010
7011
if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7012
mddev->curr_resync > 2) {
7013
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7014
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7015
if (mddev->curr_resync >= mddev->recovery_cp) {
7016
printk(KERN_INFO
7017
"md: checkpointing %s of %s.\n",
7018
desc, mdname(mddev));
7019
mddev->recovery_cp = mddev->curr_resync;
7020
}
7021
} else
7022
mddev->recovery_cp = MaxSector;
7023
} else {
7024
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7025
mddev->curr_resync = MaxSector;
7026
rcu_read_lock();
7027
list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7028
if (rdev->raid_disk >= 0 &&
7029
mddev->delta_disks >= 0 &&
7030
!test_bit(Faulty, &rdev->flags) &&
7031
!test_bit(In_sync, &rdev->flags) &&
7032
rdev->recovery_offset < mddev->curr_resync)
7033
rdev->recovery_offset = mddev->curr_resync;
7034
rcu_read_unlock();
7035
}
7036
}
7037
set_bit(MD_CHANGE_DEVS, &mddev->flags);
7038
7039
skip:
7040
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7041
/* We completed so min/max setting can be forgotten if used. */
7042
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7043
mddev->resync_min = 0;
7044
mddev->resync_max = MaxSector;
7045
} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7046
mddev->resync_min = mddev->curr_resync_completed;
7047
mddev->curr_resync = 0;
7048
wake_up(&resync_wait);
7049
set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7050
md_wakeup_thread(mddev->thread);
7051
return;
7052
7053
interrupted:
7054
/*
7055
* got a signal, exit.
7056
*/
7057
printk(KERN_INFO
7058
"md: md_do_sync() got signal ... exiting\n");
7059
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7060
goto out;
7061
7062
}
7063
EXPORT_SYMBOL_GPL(md_do_sync);
7064
7065
static int remove_and_add_spares(mddev_t *mddev)
7066
{
7067
mdk_rdev_t *rdev;
7068
int spares = 0;
7069
7070
mddev->curr_resync_completed = 0;
7071
7072
list_for_each_entry(rdev, &mddev->disks, same_set)
7073
if (rdev->raid_disk >= 0 &&
7074
!test_bit(Blocked, &rdev->flags) &&
7075
(test_bit(Faulty, &rdev->flags) ||
7076
! test_bit(In_sync, &rdev->flags)) &&
7077
atomic_read(&rdev->nr_pending)==0) {
7078
if (mddev->pers->hot_remove_disk(
7079
mddev, rdev->raid_disk)==0) {
7080
char nm[20];
7081
sprintf(nm,"rd%d", rdev->raid_disk);
7082
sysfs_remove_link(&mddev->kobj, nm);
7083
rdev->raid_disk = -1;
7084
}
7085
}
7086
7087
if (mddev->degraded && !mddev->recovery_disabled) {
7088
list_for_each_entry(rdev, &mddev->disks, same_set) {
7089
if (rdev->raid_disk >= 0 &&
7090
!test_bit(In_sync, &rdev->flags) &&
7091
!test_bit(Faulty, &rdev->flags) &&
7092
!test_bit(Blocked, &rdev->flags))
7093
spares++;
7094
if (rdev->raid_disk < 0
7095
&& !test_bit(Faulty, &rdev->flags)) {
7096
rdev->recovery_offset = 0;
7097
if (mddev->pers->
7098
hot_add_disk(mddev, rdev) == 0) {
7099
char nm[20];
7100
sprintf(nm, "rd%d", rdev->raid_disk);
7101
if (sysfs_create_link(&mddev->kobj,
7102
&rdev->kobj, nm))
7103
/* failure here is OK */;
7104
spares++;
7105
md_new_event(mddev);
7106
set_bit(MD_CHANGE_DEVS, &mddev->flags);
7107
} else
7108
break;
7109
}
7110
}
7111
}
7112
return spares;
7113
}
7114
7115
static void reap_sync_thread(mddev_t *mddev)
7116
{
7117
mdk_rdev_t *rdev;
7118
7119
/* resync has finished, collect result */
7120
md_unregister_thread(mddev->sync_thread);
7121
mddev->sync_thread = NULL;
7122
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7123
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7124
/* success...*/
7125
/* activate any spares */
7126
if (mddev->pers->spare_active(mddev))
7127
sysfs_notify(&mddev->kobj, NULL,
7128
"degraded");
7129
}
7130
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7131
mddev->pers->finish_reshape)
7132
mddev->pers->finish_reshape(mddev);
7133
md_update_sb(mddev, 1);
7134
7135
/* if array is no-longer degraded, then any saved_raid_disk
7136
* information must be scrapped
7137
*/
7138
if (!mddev->degraded)
7139
list_for_each_entry(rdev, &mddev->disks, same_set)
7140
rdev->saved_raid_disk = -1;
7141
7142
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7143
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7144
clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7145
clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7146
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7147
/* flag recovery needed just to double check */
7148
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7149
sysfs_notify_dirent_safe(mddev->sysfs_action);
7150
md_new_event(mddev);
7151
}
7152
7153
/*
7154
* This routine is regularly called by all per-raid-array threads to
7155
* deal with generic issues like resync and super-block update.
7156
* Raid personalities that don't have a thread (linear/raid0) do not
7157
* need this as they never do any recovery or update the superblock.
7158
*
7159
* It does not do any resync itself, but rather "forks" off other threads
7160
* to do that as needed.
7161
* When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7162
* "->recovery" and create a thread at ->sync_thread.
7163
* When the thread finishes it sets MD_RECOVERY_DONE
7164
* and wakeups up this thread which will reap the thread and finish up.
7165
* This thread also removes any faulty devices (with nr_pending == 0).
7166
*
7167
* The overall approach is:
7168
* 1/ if the superblock needs updating, update it.
7169
* 2/ If a recovery thread is running, don't do anything else.
7170
* 3/ If recovery has finished, clean up, possibly marking spares active.
7171
* 4/ If there are any faulty devices, remove them.
7172
* 5/ If array is degraded, try to add spares devices
7173
* 6/ If array has spares or is not in-sync, start a resync thread.
7174
*/
7175
void md_check_recovery(mddev_t *mddev)
7176
{
7177
if (mddev->suspended)
7178
return;
7179
7180
if (mddev->bitmap)
7181
bitmap_daemon_work(mddev);
7182
7183
if (mddev->ro)
7184
return;
7185
7186
if (signal_pending(current)) {
7187
if (mddev->pers->sync_request && !mddev->external) {
7188
printk(KERN_INFO "md: %s in immediate safe mode\n",
7189
mdname(mddev));
7190
mddev->safemode = 2;
7191
}
7192
flush_signals(current);
7193
}
7194
7195
if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7196
return;
7197
if ( ! (
7198
(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7199
test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7200
test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7201
(mddev->external == 0 && mddev->safemode == 1) ||
7202
(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7203
&& !mddev->in_sync && mddev->recovery_cp == MaxSector)
7204
))
7205
return;
7206
7207
if (mddev_trylock(mddev)) {
7208
int spares = 0;
7209
7210
if (mddev->ro) {
7211
/* Only thing we do on a ro array is remove
7212
* failed devices.
7213
*/
7214
mdk_rdev_t *rdev;
7215
list_for_each_entry(rdev, &mddev->disks, same_set)
7216
if (rdev->raid_disk >= 0 &&
7217
!test_bit(Blocked, &rdev->flags) &&
7218
test_bit(Faulty, &rdev->flags) &&
7219
atomic_read(&rdev->nr_pending)==0) {
7220
if (mddev->pers->hot_remove_disk(
7221
mddev, rdev->raid_disk)==0) {
7222
char nm[20];
7223
sprintf(nm,"rd%d", rdev->raid_disk);
7224
sysfs_remove_link(&mddev->kobj, nm);
7225
rdev->raid_disk = -1;
7226
}
7227
}
7228
clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7229
goto unlock;
7230
}
7231
7232
if (!mddev->external) {
7233
int did_change = 0;
7234
spin_lock_irq(&mddev->write_lock);
7235
if (mddev->safemode &&
7236
!atomic_read(&mddev->writes_pending) &&
7237
!mddev->in_sync &&
7238
mddev->recovery_cp == MaxSector) {
7239
mddev->in_sync = 1;
7240
did_change = 1;
7241
set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7242
}
7243
if (mddev->safemode == 1)
7244
mddev->safemode = 0;
7245
spin_unlock_irq(&mddev->write_lock);
7246
if (did_change)
7247
sysfs_notify_dirent_safe(mddev->sysfs_state);
7248
}
7249
7250
if (mddev->flags)
7251
md_update_sb(mddev, 0);
7252
7253
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7254
!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7255
/* resync/recovery still happening */
7256
clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7257
goto unlock;
7258
}
7259
if (mddev->sync_thread) {
7260
reap_sync_thread(mddev);
7261
goto unlock;
7262
}
7263
/* Set RUNNING before clearing NEEDED to avoid
7264
* any transients in the value of "sync_action".
7265
*/
7266
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7267
clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7268
/* Clear some bits that don't mean anything, but
7269
* might be left set
7270
*/
7271
clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7272
clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7273
7274
if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7275
goto unlock;
7276
/* no recovery is running.
7277
* remove any failed drives, then
7278
* add spares if possible.
7279
* Spare are also removed and re-added, to allow
7280
* the personality to fail the re-add.
7281
*/
7282
7283
if (mddev->reshape_position != MaxSector) {
7284
if (mddev->pers->check_reshape == NULL ||
7285
mddev->pers->check_reshape(mddev) != 0)
7286
/* Cannot proceed */
7287
goto unlock;
7288
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7289
clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7290
} else if ((spares = remove_and_add_spares(mddev))) {
7291
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7292
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7293
clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7294
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7295
} else if (mddev->recovery_cp < MaxSector) {
7296
set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7297
clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7298
} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7299
/* nothing to be done ... */
7300
goto unlock;
7301
7302
if (mddev->pers->sync_request) {
7303
if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7304
/* We are adding a device or devices to an array
7305
* which has the bitmap stored on all devices.
7306
* So make sure all bitmap pages get written
7307
*/
7308
bitmap_write_all(mddev->bitmap);
7309
}
7310
mddev->sync_thread = md_register_thread(md_do_sync,
7311
mddev,
7312
"resync");
7313
if (!mddev->sync_thread) {
7314
printk(KERN_ERR "%s: could not start resync"
7315
" thread...\n",
7316
mdname(mddev));
7317
/* leave the spares where they are, it shouldn't hurt */
7318
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7319
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7320
clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7321
clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7322
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7323
} else
7324
md_wakeup_thread(mddev->sync_thread);
7325
sysfs_notify_dirent_safe(mddev->sysfs_action);
7326
md_new_event(mddev);
7327
}
7328
unlock:
7329
if (!mddev->sync_thread) {
7330
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7331
if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7332
&mddev->recovery))
7333
if (mddev->sysfs_action)
7334
sysfs_notify_dirent_safe(mddev->sysfs_action);
7335
}
7336
mddev_unlock(mddev);
7337
}
7338
}
7339
7340
void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7341
{
7342
sysfs_notify_dirent_safe(rdev->sysfs_state);
7343
wait_event_timeout(rdev->blocked_wait,
7344
!test_bit(Blocked, &rdev->flags),
7345
msecs_to_jiffies(5000));
7346
rdev_dec_pending(rdev, mddev);
7347
}
7348
EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7349
7350
static int md_notify_reboot(struct notifier_block *this,
7351
unsigned long code, void *x)
7352
{
7353
struct list_head *tmp;
7354
mddev_t *mddev;
7355
7356
if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7357
7358
printk(KERN_INFO "md: stopping all md devices.\n");
7359
7360
for_each_mddev(mddev, tmp)
7361
if (mddev_trylock(mddev)) {
7362
/* Force a switch to readonly even array
7363
* appears to still be in use. Hence
7364
* the '100'.
7365
*/
7366
md_set_readonly(mddev, 100);
7367
mddev_unlock(mddev);
7368
}
7369
/*
7370
* certain more exotic SCSI devices are known to be
7371
* volatile wrt too early system reboots. While the
7372
* right place to handle this issue is the given
7373
* driver, we do want to have a safe RAID driver ...
7374
*/
7375
mdelay(1000*1);
7376
}
7377
return NOTIFY_DONE;
7378
}
7379
7380
static struct notifier_block md_notifier = {
7381
.notifier_call = md_notify_reboot,
7382
.next = NULL,
7383
.priority = INT_MAX, /* before any real devices */
7384
};
7385
7386
static void md_geninit(void)
7387
{
7388
dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7389
7390
proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7391
}
7392
7393
static int __init md_init(void)
7394
{
7395
int ret = -ENOMEM;
7396
7397
md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
7398
if (!md_wq)
7399
goto err_wq;
7400
7401
md_misc_wq = alloc_workqueue("md_misc", 0, 0);
7402
if (!md_misc_wq)
7403
goto err_misc_wq;
7404
7405
if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
7406
goto err_md;
7407
7408
if ((ret = register_blkdev(0, "mdp")) < 0)
7409
goto err_mdp;
7410
mdp_major = ret;
7411
7412
blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7413
md_probe, NULL, NULL);
7414
blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7415
md_probe, NULL, NULL);
7416
7417
register_reboot_notifier(&md_notifier);
7418
raid_table_header = register_sysctl_table(raid_root_table);
7419
7420
md_geninit();
7421
return 0;
7422
7423
err_mdp:
7424
unregister_blkdev(MD_MAJOR, "md");
7425
err_md:
7426
destroy_workqueue(md_misc_wq);
7427
err_misc_wq:
7428
destroy_workqueue(md_wq);
7429
err_wq:
7430
return ret;
7431
}
7432
7433
#ifndef MODULE
7434
7435
/*
7436
* Searches all registered partitions for autorun RAID arrays
7437
* at boot time.
7438
*/
7439
7440
static LIST_HEAD(all_detected_devices);
7441
struct detected_devices_node {
7442
struct list_head list;
7443
dev_t dev;
7444
};
7445
7446
void md_autodetect_dev(dev_t dev)
7447
{
7448
struct detected_devices_node *node_detected_dev;
7449
7450
node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7451
if (node_detected_dev) {
7452
node_detected_dev->dev = dev;
7453
list_add_tail(&node_detected_dev->list, &all_detected_devices);
7454
} else {
7455
printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7456
", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7457
}
7458
}
7459
7460
7461
static void autostart_arrays(int part)
7462
{
7463
mdk_rdev_t *rdev;
7464
struct detected_devices_node *node_detected_dev;
7465
dev_t dev;
7466
int i_scanned, i_passed;
7467
7468
i_scanned = 0;
7469
i_passed = 0;
7470
7471
printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7472
7473
while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7474
i_scanned++;
7475
node_detected_dev = list_entry(all_detected_devices.next,
7476
struct detected_devices_node, list);
7477
list_del(&node_detected_dev->list);
7478
dev = node_detected_dev->dev;
7479
kfree(node_detected_dev);
7480
rdev = md_import_device(dev,0, 90);
7481
if (IS_ERR(rdev))
7482
continue;
7483
7484
if (test_bit(Faulty, &rdev->flags)) {
7485
MD_BUG();
7486
continue;
7487
}
7488
set_bit(AutoDetected, &rdev->flags);
7489
list_add(&rdev->same_set, &pending_raid_disks);
7490
i_passed++;
7491
}
7492
7493
printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7494
i_scanned, i_passed);
7495
7496
autorun_devices(part);
7497
}
7498
7499
#endif /* !MODULE */
7500
7501
static __exit void md_exit(void)
7502
{
7503
mddev_t *mddev;
7504
struct list_head *tmp;
7505
7506
blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7507
blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7508
7509
unregister_blkdev(MD_MAJOR,"md");
7510
unregister_blkdev(mdp_major, "mdp");
7511
unregister_reboot_notifier(&md_notifier);
7512
unregister_sysctl_table(raid_table_header);
7513
remove_proc_entry("mdstat", NULL);
7514
for_each_mddev(mddev, tmp) {
7515
export_array(mddev);
7516
mddev->hold_active = 0;
7517
}
7518
destroy_workqueue(md_misc_wq);
7519
destroy_workqueue(md_wq);
7520
}
7521
7522
subsys_initcall(md_init);
7523
module_exit(md_exit)
7524
7525
static int get_ro(char *buffer, struct kernel_param *kp)
7526
{
7527
return sprintf(buffer, "%d", start_readonly);
7528
}
7529
static int set_ro(const char *val, struct kernel_param *kp)
7530
{
7531
char *e;
7532
int num = simple_strtoul(val, &e, 10);
7533
if (*val && (*e == '\0' || *e == '\n')) {
7534
start_readonly = num;
7535
return 0;
7536
}
7537
return -EINVAL;
7538
}
7539
7540
module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7541
module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7542
7543
module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7544
7545
EXPORT_SYMBOL(register_md_personality);
7546
EXPORT_SYMBOL(unregister_md_personality);
7547
EXPORT_SYMBOL(md_error);
7548
EXPORT_SYMBOL(md_done_sync);
7549
EXPORT_SYMBOL(md_write_start);
7550
EXPORT_SYMBOL(md_write_end);
7551
EXPORT_SYMBOL(md_register_thread);
7552
EXPORT_SYMBOL(md_unregister_thread);
7553
EXPORT_SYMBOL(md_wakeup_thread);
7554
EXPORT_SYMBOL(md_check_recovery);
7555
MODULE_LICENSE("GPL");
7556
MODULE_DESCRIPTION("MD RAID framework");
7557
MODULE_ALIAS("md");
7558
MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
7559
7560