Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/md/raid1.c
15109 views
1
/*
2
* raid1.c : Multiple Devices driver for Linux
3
*
4
* Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5
*
6
* Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7
*
8
* RAID-1 management functions.
9
*
10
* Better read-balancing code written by Mika Kuoppala <[email protected]>, 2000
11
*
12
* Fixes to reconstruction by Jakob Østergaard" <[email protected]>
13
* Various fixes by Neil Brown <[email protected]>
14
*
15
* Changes by Peter T. Breuer <[email protected]> 31/1/2003 to support
16
* bitmapped intelligence in resync:
17
*
18
* - bitmap marked during normal i/o
19
* - bitmap used to skip nondirty blocks during sync
20
*
21
* Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22
* - persistent bitmap code
23
*
24
* This program is free software; you can redistribute it and/or modify
25
* it under the terms of the GNU General Public License as published by
26
* the Free Software Foundation; either version 2, or (at your option)
27
* any later version.
28
*
29
* You should have received a copy of the GNU General Public License
30
* (for example /usr/src/linux/COPYING); if not, write to the Free
31
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32
*/
33
34
#include <linux/slab.h>
35
#include <linux/delay.h>
36
#include <linux/blkdev.h>
37
#include <linux/seq_file.h>
38
#include "md.h"
39
#include "raid1.h"
40
#include "bitmap.h"
41
42
#define DEBUG 0
43
#if DEBUG
44
#define PRINTK(x...) printk(x)
45
#else
46
#define PRINTK(x...)
47
#endif
48
49
/*
50
* Number of guaranteed r1bios in case of extreme VM load:
51
*/
52
#define NR_RAID1_BIOS 256
53
54
55
static void allow_barrier(conf_t *conf);
56
static void lower_barrier(conf_t *conf);
57
58
static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59
{
60
struct pool_info *pi = data;
61
int size = offsetof(r1bio_t, bios[pi->raid_disks]);
62
63
/* allocate a r1bio with room for raid_disks entries in the bios array */
64
return kzalloc(size, gfp_flags);
65
}
66
67
static void r1bio_pool_free(void *r1_bio, void *data)
68
{
69
kfree(r1_bio);
70
}
71
72
#define RESYNC_BLOCK_SIZE (64*1024)
73
//#define RESYNC_BLOCK_SIZE PAGE_SIZE
74
#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75
#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76
#define RESYNC_WINDOW (2048*1024)
77
78
static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
79
{
80
struct pool_info *pi = data;
81
struct page *page;
82
r1bio_t *r1_bio;
83
struct bio *bio;
84
int i, j;
85
86
r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87
if (!r1_bio)
88
return NULL;
89
90
/*
91
* Allocate bios : 1 for reading, n-1 for writing
92
*/
93
for (j = pi->raid_disks ; j-- ; ) {
94
bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95
if (!bio)
96
goto out_free_bio;
97
r1_bio->bios[j] = bio;
98
}
99
/*
100
* Allocate RESYNC_PAGES data pages and attach them to
101
* the first bio.
102
* If this is a user-requested check/repair, allocate
103
* RESYNC_PAGES for each bio.
104
*/
105
if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106
j = pi->raid_disks;
107
else
108
j = 1;
109
while(j--) {
110
bio = r1_bio->bios[j];
111
for (i = 0; i < RESYNC_PAGES; i++) {
112
page = alloc_page(gfp_flags);
113
if (unlikely(!page))
114
goto out_free_pages;
115
116
bio->bi_io_vec[i].bv_page = page;
117
bio->bi_vcnt = i+1;
118
}
119
}
120
/* If not user-requests, copy the page pointers to all bios */
121
if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122
for (i=0; i<RESYNC_PAGES ; i++)
123
for (j=1; j<pi->raid_disks; j++)
124
r1_bio->bios[j]->bi_io_vec[i].bv_page =
125
r1_bio->bios[0]->bi_io_vec[i].bv_page;
126
}
127
128
r1_bio->master_bio = NULL;
129
130
return r1_bio;
131
132
out_free_pages:
133
for (j=0 ; j < pi->raid_disks; j++)
134
for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135
put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136
j = -1;
137
out_free_bio:
138
while ( ++j < pi->raid_disks )
139
bio_put(r1_bio->bios[j]);
140
r1bio_pool_free(r1_bio, data);
141
return NULL;
142
}
143
144
static void r1buf_pool_free(void *__r1_bio, void *data)
145
{
146
struct pool_info *pi = data;
147
int i,j;
148
r1bio_t *r1bio = __r1_bio;
149
150
for (i = 0; i < RESYNC_PAGES; i++)
151
for (j = pi->raid_disks; j-- ;) {
152
if (j == 0 ||
153
r1bio->bios[j]->bi_io_vec[i].bv_page !=
154
r1bio->bios[0]->bi_io_vec[i].bv_page)
155
safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
156
}
157
for (i=0 ; i < pi->raid_disks; i++)
158
bio_put(r1bio->bios[i]);
159
160
r1bio_pool_free(r1bio, data);
161
}
162
163
static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
164
{
165
int i;
166
167
for (i = 0; i < conf->raid_disks; i++) {
168
struct bio **bio = r1_bio->bios + i;
169
if (*bio && *bio != IO_BLOCKED)
170
bio_put(*bio);
171
*bio = NULL;
172
}
173
}
174
175
static void free_r1bio(r1bio_t *r1_bio)
176
{
177
conf_t *conf = r1_bio->mddev->private;
178
179
/*
180
* Wake up any possible resync thread that waits for the device
181
* to go idle.
182
*/
183
allow_barrier(conf);
184
185
put_all_bios(conf, r1_bio);
186
mempool_free(r1_bio, conf->r1bio_pool);
187
}
188
189
static void put_buf(r1bio_t *r1_bio)
190
{
191
conf_t *conf = r1_bio->mddev->private;
192
int i;
193
194
for (i=0; i<conf->raid_disks; i++) {
195
struct bio *bio = r1_bio->bios[i];
196
if (bio->bi_end_io)
197
rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
198
}
199
200
mempool_free(r1_bio, conf->r1buf_pool);
201
202
lower_barrier(conf);
203
}
204
205
static void reschedule_retry(r1bio_t *r1_bio)
206
{
207
unsigned long flags;
208
mddev_t *mddev = r1_bio->mddev;
209
conf_t *conf = mddev->private;
210
211
spin_lock_irqsave(&conf->device_lock, flags);
212
list_add(&r1_bio->retry_list, &conf->retry_list);
213
conf->nr_queued ++;
214
spin_unlock_irqrestore(&conf->device_lock, flags);
215
216
wake_up(&conf->wait_barrier);
217
md_wakeup_thread(mddev->thread);
218
}
219
220
/*
221
* raid_end_bio_io() is called when we have finished servicing a mirrored
222
* operation and are ready to return a success/failure code to the buffer
223
* cache layer.
224
*/
225
static void raid_end_bio_io(r1bio_t *r1_bio)
226
{
227
struct bio *bio = r1_bio->master_bio;
228
229
/* if nobody has done the final endio yet, do it now */
230
if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
231
PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
232
(bio_data_dir(bio) == WRITE) ? "write" : "read",
233
(unsigned long long) bio->bi_sector,
234
(unsigned long long) bio->bi_sector +
235
(bio->bi_size >> 9) - 1);
236
237
bio_endio(bio,
238
test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
239
}
240
free_r1bio(r1_bio);
241
}
242
243
/*
244
* Update disk head position estimator based on IRQ completion info.
245
*/
246
static inline void update_head_pos(int disk, r1bio_t *r1_bio)
247
{
248
conf_t *conf = r1_bio->mddev->private;
249
250
conf->mirrors[disk].head_position =
251
r1_bio->sector + (r1_bio->sectors);
252
}
253
254
static void raid1_end_read_request(struct bio *bio, int error)
255
{
256
int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
257
r1bio_t *r1_bio = bio->bi_private;
258
int mirror;
259
conf_t *conf = r1_bio->mddev->private;
260
261
mirror = r1_bio->read_disk;
262
/*
263
* this branch is our 'one mirror IO has finished' event handler:
264
*/
265
update_head_pos(mirror, r1_bio);
266
267
if (uptodate)
268
set_bit(R1BIO_Uptodate, &r1_bio->state);
269
else {
270
/* If all other devices have failed, we want to return
271
* the error upwards rather than fail the last device.
272
* Here we redefine "uptodate" to mean "Don't want to retry"
273
*/
274
unsigned long flags;
275
spin_lock_irqsave(&conf->device_lock, flags);
276
if (r1_bio->mddev->degraded == conf->raid_disks ||
277
(r1_bio->mddev->degraded == conf->raid_disks-1 &&
278
!test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
279
uptodate = 1;
280
spin_unlock_irqrestore(&conf->device_lock, flags);
281
}
282
283
if (uptodate)
284
raid_end_bio_io(r1_bio);
285
else {
286
/*
287
* oops, read error:
288
*/
289
char b[BDEVNAME_SIZE];
290
if (printk_ratelimit())
291
printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
292
mdname(conf->mddev),
293
bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
294
reschedule_retry(r1_bio);
295
}
296
297
rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
298
}
299
300
static void r1_bio_write_done(r1bio_t *r1_bio)
301
{
302
if (atomic_dec_and_test(&r1_bio->remaining))
303
{
304
/* it really is the end of this request */
305
if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
306
/* free extra copy of the data pages */
307
int i = r1_bio->behind_page_count;
308
while (i--)
309
safe_put_page(r1_bio->behind_pages[i]);
310
kfree(r1_bio->behind_pages);
311
r1_bio->behind_pages = NULL;
312
}
313
/* clear the bitmap if all writes complete successfully */
314
bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
315
r1_bio->sectors,
316
!test_bit(R1BIO_Degraded, &r1_bio->state),
317
test_bit(R1BIO_BehindIO, &r1_bio->state));
318
md_write_end(r1_bio->mddev);
319
raid_end_bio_io(r1_bio);
320
}
321
}
322
323
static void raid1_end_write_request(struct bio *bio, int error)
324
{
325
int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
326
r1bio_t *r1_bio = bio->bi_private;
327
int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
328
conf_t *conf = r1_bio->mddev->private;
329
struct bio *to_put = NULL;
330
331
332
for (mirror = 0; mirror < conf->raid_disks; mirror++)
333
if (r1_bio->bios[mirror] == bio)
334
break;
335
336
/*
337
* 'one mirror IO has finished' event handler:
338
*/
339
r1_bio->bios[mirror] = NULL;
340
to_put = bio;
341
if (!uptodate) {
342
md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
343
/* an I/O failed, we can't clear the bitmap */
344
set_bit(R1BIO_Degraded, &r1_bio->state);
345
} else
346
/*
347
* Set R1BIO_Uptodate in our master bio, so that we
348
* will return a good error code for to the higher
349
* levels even if IO on some other mirrored buffer
350
* fails.
351
*
352
* The 'master' represents the composite IO operation
353
* to user-side. So if something waits for IO, then it
354
* will wait for the 'master' bio.
355
*/
356
set_bit(R1BIO_Uptodate, &r1_bio->state);
357
358
update_head_pos(mirror, r1_bio);
359
360
if (behind) {
361
if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
362
atomic_dec(&r1_bio->behind_remaining);
363
364
/*
365
* In behind mode, we ACK the master bio once the I/O
366
* has safely reached all non-writemostly
367
* disks. Setting the Returned bit ensures that this
368
* gets done only once -- we don't ever want to return
369
* -EIO here, instead we'll wait
370
*/
371
if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
372
test_bit(R1BIO_Uptodate, &r1_bio->state)) {
373
/* Maybe we can return now */
374
if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
375
struct bio *mbio = r1_bio->master_bio;
376
PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
377
(unsigned long long) mbio->bi_sector,
378
(unsigned long long) mbio->bi_sector +
379
(mbio->bi_size >> 9) - 1);
380
bio_endio(mbio, 0);
381
}
382
}
383
}
384
rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
385
386
/*
387
* Let's see if all mirrored write operations have finished
388
* already.
389
*/
390
r1_bio_write_done(r1_bio);
391
392
if (to_put)
393
bio_put(to_put);
394
}
395
396
397
/*
398
* This routine returns the disk from which the requested read should
399
* be done. There is a per-array 'next expected sequential IO' sector
400
* number - if this matches on the next IO then we use the last disk.
401
* There is also a per-disk 'last know head position' sector that is
402
* maintained from IRQ contexts, both the normal and the resync IO
403
* completion handlers update this position correctly. If there is no
404
* perfect sequential match then we pick the disk whose head is closest.
405
*
406
* If there are 2 mirrors in the same 2 devices, performance degrades
407
* because position is mirror, not device based.
408
*
409
* The rdev for the device selected will have nr_pending incremented.
410
*/
411
static int read_balance(conf_t *conf, r1bio_t *r1_bio)
412
{
413
const sector_t this_sector = r1_bio->sector;
414
const int sectors = r1_bio->sectors;
415
int start_disk;
416
int best_disk;
417
int i;
418
sector_t best_dist;
419
mdk_rdev_t *rdev;
420
int choose_first;
421
422
rcu_read_lock();
423
/*
424
* Check if we can balance. We can balance on the whole
425
* device if no resync is going on, or below the resync window.
426
* We take the first readable disk when above the resync window.
427
*/
428
retry:
429
best_disk = -1;
430
best_dist = MaxSector;
431
if (conf->mddev->recovery_cp < MaxSector &&
432
(this_sector + sectors >= conf->next_resync)) {
433
choose_first = 1;
434
start_disk = 0;
435
} else {
436
choose_first = 0;
437
start_disk = conf->last_used;
438
}
439
440
for (i = 0 ; i < conf->raid_disks ; i++) {
441
sector_t dist;
442
int disk = start_disk + i;
443
if (disk >= conf->raid_disks)
444
disk -= conf->raid_disks;
445
446
rdev = rcu_dereference(conf->mirrors[disk].rdev);
447
if (r1_bio->bios[disk] == IO_BLOCKED
448
|| rdev == NULL
449
|| test_bit(Faulty, &rdev->flags))
450
continue;
451
if (!test_bit(In_sync, &rdev->flags) &&
452
rdev->recovery_offset < this_sector + sectors)
453
continue;
454
if (test_bit(WriteMostly, &rdev->flags)) {
455
/* Don't balance among write-mostly, just
456
* use the first as a last resort */
457
if (best_disk < 0)
458
best_disk = disk;
459
continue;
460
}
461
/* This is a reasonable device to use. It might
462
* even be best.
463
*/
464
dist = abs(this_sector - conf->mirrors[disk].head_position);
465
if (choose_first
466
/* Don't change to another disk for sequential reads */
467
|| conf->next_seq_sect == this_sector
468
|| dist == 0
469
/* If device is idle, use it */
470
|| atomic_read(&rdev->nr_pending) == 0) {
471
best_disk = disk;
472
break;
473
}
474
if (dist < best_dist) {
475
best_dist = dist;
476
best_disk = disk;
477
}
478
}
479
480
if (best_disk >= 0) {
481
rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
482
if (!rdev)
483
goto retry;
484
atomic_inc(&rdev->nr_pending);
485
if (test_bit(Faulty, &rdev->flags)) {
486
/* cannot risk returning a device that failed
487
* before we inc'ed nr_pending
488
*/
489
rdev_dec_pending(rdev, conf->mddev);
490
goto retry;
491
}
492
conf->next_seq_sect = this_sector + sectors;
493
conf->last_used = best_disk;
494
}
495
rcu_read_unlock();
496
497
return best_disk;
498
}
499
500
int md_raid1_congested(mddev_t *mddev, int bits)
501
{
502
conf_t *conf = mddev->private;
503
int i, ret = 0;
504
505
rcu_read_lock();
506
for (i = 0; i < mddev->raid_disks; i++) {
507
mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
508
if (rdev && !test_bit(Faulty, &rdev->flags)) {
509
struct request_queue *q = bdev_get_queue(rdev->bdev);
510
511
BUG_ON(!q);
512
513
/* Note the '|| 1' - when read_balance prefers
514
* non-congested targets, it can be removed
515
*/
516
if ((bits & (1<<BDI_async_congested)) || 1)
517
ret |= bdi_congested(&q->backing_dev_info, bits);
518
else
519
ret &= bdi_congested(&q->backing_dev_info, bits);
520
}
521
}
522
rcu_read_unlock();
523
return ret;
524
}
525
EXPORT_SYMBOL_GPL(md_raid1_congested);
526
527
static int raid1_congested(void *data, int bits)
528
{
529
mddev_t *mddev = data;
530
531
return mddev_congested(mddev, bits) ||
532
md_raid1_congested(mddev, bits);
533
}
534
535
static void flush_pending_writes(conf_t *conf)
536
{
537
/* Any writes that have been queued but are awaiting
538
* bitmap updates get flushed here.
539
*/
540
spin_lock_irq(&conf->device_lock);
541
542
if (conf->pending_bio_list.head) {
543
struct bio *bio;
544
bio = bio_list_get(&conf->pending_bio_list);
545
spin_unlock_irq(&conf->device_lock);
546
/* flush any pending bitmap writes to
547
* disk before proceeding w/ I/O */
548
bitmap_unplug(conf->mddev->bitmap);
549
550
while (bio) { /* submit pending writes */
551
struct bio *next = bio->bi_next;
552
bio->bi_next = NULL;
553
generic_make_request(bio);
554
bio = next;
555
}
556
} else
557
spin_unlock_irq(&conf->device_lock);
558
}
559
560
/* Barriers....
561
* Sometimes we need to suspend IO while we do something else,
562
* either some resync/recovery, or reconfigure the array.
563
* To do this we raise a 'barrier'.
564
* The 'barrier' is a counter that can be raised multiple times
565
* to count how many activities are happening which preclude
566
* normal IO.
567
* We can only raise the barrier if there is no pending IO.
568
* i.e. if nr_pending == 0.
569
* We choose only to raise the barrier if no-one is waiting for the
570
* barrier to go down. This means that as soon as an IO request
571
* is ready, no other operations which require a barrier will start
572
* until the IO request has had a chance.
573
*
574
* So: regular IO calls 'wait_barrier'. When that returns there
575
* is no backgroup IO happening, It must arrange to call
576
* allow_barrier when it has finished its IO.
577
* backgroup IO calls must call raise_barrier. Once that returns
578
* there is no normal IO happeing. It must arrange to call
579
* lower_barrier when the particular background IO completes.
580
*/
581
#define RESYNC_DEPTH 32
582
583
static void raise_barrier(conf_t *conf)
584
{
585
spin_lock_irq(&conf->resync_lock);
586
587
/* Wait until no block IO is waiting */
588
wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
589
conf->resync_lock, );
590
591
/* block any new IO from starting */
592
conf->barrier++;
593
594
/* Now wait for all pending IO to complete */
595
wait_event_lock_irq(conf->wait_barrier,
596
!conf->nr_pending && conf->barrier < RESYNC_DEPTH,
597
conf->resync_lock, );
598
599
spin_unlock_irq(&conf->resync_lock);
600
}
601
602
static void lower_barrier(conf_t *conf)
603
{
604
unsigned long flags;
605
BUG_ON(conf->barrier <= 0);
606
spin_lock_irqsave(&conf->resync_lock, flags);
607
conf->barrier--;
608
spin_unlock_irqrestore(&conf->resync_lock, flags);
609
wake_up(&conf->wait_barrier);
610
}
611
612
static void wait_barrier(conf_t *conf)
613
{
614
spin_lock_irq(&conf->resync_lock);
615
if (conf->barrier) {
616
conf->nr_waiting++;
617
wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
618
conf->resync_lock,
619
);
620
conf->nr_waiting--;
621
}
622
conf->nr_pending++;
623
spin_unlock_irq(&conf->resync_lock);
624
}
625
626
static void allow_barrier(conf_t *conf)
627
{
628
unsigned long flags;
629
spin_lock_irqsave(&conf->resync_lock, flags);
630
conf->nr_pending--;
631
spin_unlock_irqrestore(&conf->resync_lock, flags);
632
wake_up(&conf->wait_barrier);
633
}
634
635
static void freeze_array(conf_t *conf)
636
{
637
/* stop syncio and normal IO and wait for everything to
638
* go quite.
639
* We increment barrier and nr_waiting, and then
640
* wait until nr_pending match nr_queued+1
641
* This is called in the context of one normal IO request
642
* that has failed. Thus any sync request that might be pending
643
* will be blocked by nr_pending, and we need to wait for
644
* pending IO requests to complete or be queued for re-try.
645
* Thus the number queued (nr_queued) plus this request (1)
646
* must match the number of pending IOs (nr_pending) before
647
* we continue.
648
*/
649
spin_lock_irq(&conf->resync_lock);
650
conf->barrier++;
651
conf->nr_waiting++;
652
wait_event_lock_irq(conf->wait_barrier,
653
conf->nr_pending == conf->nr_queued+1,
654
conf->resync_lock,
655
flush_pending_writes(conf));
656
spin_unlock_irq(&conf->resync_lock);
657
}
658
static void unfreeze_array(conf_t *conf)
659
{
660
/* reverse the effect of the freeze */
661
spin_lock_irq(&conf->resync_lock);
662
conf->barrier--;
663
conf->nr_waiting--;
664
wake_up(&conf->wait_barrier);
665
spin_unlock_irq(&conf->resync_lock);
666
}
667
668
669
/* duplicate the data pages for behind I/O
670
*/
671
static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
672
{
673
int i;
674
struct bio_vec *bvec;
675
struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page*),
676
GFP_NOIO);
677
if (unlikely(!pages))
678
return;
679
680
bio_for_each_segment(bvec, bio, i) {
681
pages[i] = alloc_page(GFP_NOIO);
682
if (unlikely(!pages[i]))
683
goto do_sync_io;
684
memcpy(kmap(pages[i]) + bvec->bv_offset,
685
kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
686
kunmap(pages[i]);
687
kunmap(bvec->bv_page);
688
}
689
r1_bio->behind_pages = pages;
690
r1_bio->behind_page_count = bio->bi_vcnt;
691
set_bit(R1BIO_BehindIO, &r1_bio->state);
692
return;
693
694
do_sync_io:
695
for (i = 0; i < bio->bi_vcnt; i++)
696
if (pages[i])
697
put_page(pages[i]);
698
kfree(pages);
699
PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
700
}
701
702
static int make_request(mddev_t *mddev, struct bio * bio)
703
{
704
conf_t *conf = mddev->private;
705
mirror_info_t *mirror;
706
r1bio_t *r1_bio;
707
struct bio *read_bio;
708
int i, targets = 0, disks;
709
struct bitmap *bitmap;
710
unsigned long flags;
711
const int rw = bio_data_dir(bio);
712
const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
713
const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
714
mdk_rdev_t *blocked_rdev;
715
int plugged;
716
717
/*
718
* Register the new request and wait if the reconstruction
719
* thread has put up a bar for new requests.
720
* Continue immediately if no resync is active currently.
721
*/
722
723
md_write_start(mddev, bio); /* wait on superblock update early */
724
725
if (bio_data_dir(bio) == WRITE &&
726
bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
727
bio->bi_sector < mddev->suspend_hi) {
728
/* As the suspend_* range is controlled by
729
* userspace, we want an interruptible
730
* wait.
731
*/
732
DEFINE_WAIT(w);
733
for (;;) {
734
flush_signals(current);
735
prepare_to_wait(&conf->wait_barrier,
736
&w, TASK_INTERRUPTIBLE);
737
if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
738
bio->bi_sector >= mddev->suspend_hi)
739
break;
740
schedule();
741
}
742
finish_wait(&conf->wait_barrier, &w);
743
}
744
745
wait_barrier(conf);
746
747
bitmap = mddev->bitmap;
748
749
/*
750
* make_request() can abort the operation when READA is being
751
* used and no empty request is available.
752
*
753
*/
754
r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
755
756
r1_bio->master_bio = bio;
757
r1_bio->sectors = bio->bi_size >> 9;
758
r1_bio->state = 0;
759
r1_bio->mddev = mddev;
760
r1_bio->sector = bio->bi_sector;
761
762
if (rw == READ) {
763
/*
764
* read balancing logic:
765
*/
766
int rdisk = read_balance(conf, r1_bio);
767
768
if (rdisk < 0) {
769
/* couldn't find anywhere to read from */
770
raid_end_bio_io(r1_bio);
771
return 0;
772
}
773
mirror = conf->mirrors + rdisk;
774
775
if (test_bit(WriteMostly, &mirror->rdev->flags) &&
776
bitmap) {
777
/* Reading from a write-mostly device must
778
* take care not to over-take any writes
779
* that are 'behind'
780
*/
781
wait_event(bitmap->behind_wait,
782
atomic_read(&bitmap->behind_writes) == 0);
783
}
784
r1_bio->read_disk = rdisk;
785
786
read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
787
788
r1_bio->bios[rdisk] = read_bio;
789
790
read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
791
read_bio->bi_bdev = mirror->rdev->bdev;
792
read_bio->bi_end_io = raid1_end_read_request;
793
read_bio->bi_rw = READ | do_sync;
794
read_bio->bi_private = r1_bio;
795
796
generic_make_request(read_bio);
797
return 0;
798
}
799
800
/*
801
* WRITE:
802
*/
803
/* first select target devices under spinlock and
804
* inc refcount on their rdev. Record them by setting
805
* bios[x] to bio
806
*/
807
plugged = mddev_check_plugged(mddev);
808
809
disks = conf->raid_disks;
810
retry_write:
811
blocked_rdev = NULL;
812
rcu_read_lock();
813
for (i = 0; i < disks; i++) {
814
mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
815
if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
816
atomic_inc(&rdev->nr_pending);
817
blocked_rdev = rdev;
818
break;
819
}
820
if (rdev && !test_bit(Faulty, &rdev->flags)) {
821
atomic_inc(&rdev->nr_pending);
822
if (test_bit(Faulty, &rdev->flags)) {
823
rdev_dec_pending(rdev, mddev);
824
r1_bio->bios[i] = NULL;
825
} else {
826
r1_bio->bios[i] = bio;
827
targets++;
828
}
829
} else
830
r1_bio->bios[i] = NULL;
831
}
832
rcu_read_unlock();
833
834
if (unlikely(blocked_rdev)) {
835
/* Wait for this device to become unblocked */
836
int j;
837
838
for (j = 0; j < i; j++)
839
if (r1_bio->bios[j])
840
rdev_dec_pending(conf->mirrors[j].rdev, mddev);
841
842
allow_barrier(conf);
843
md_wait_for_blocked_rdev(blocked_rdev, mddev);
844
wait_barrier(conf);
845
goto retry_write;
846
}
847
848
BUG_ON(targets == 0); /* we never fail the last device */
849
850
if (targets < conf->raid_disks) {
851
/* array is degraded, we will not clear the bitmap
852
* on I/O completion (see raid1_end_write_request) */
853
set_bit(R1BIO_Degraded, &r1_bio->state);
854
}
855
856
/* do behind I/O ?
857
* Not if there are too many, or cannot allocate memory,
858
* or a reader on WriteMostly is waiting for behind writes
859
* to flush */
860
if (bitmap &&
861
(atomic_read(&bitmap->behind_writes)
862
< mddev->bitmap_info.max_write_behind) &&
863
!waitqueue_active(&bitmap->behind_wait))
864
alloc_behind_pages(bio, r1_bio);
865
866
atomic_set(&r1_bio->remaining, 1);
867
atomic_set(&r1_bio->behind_remaining, 0);
868
869
bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
870
test_bit(R1BIO_BehindIO, &r1_bio->state));
871
for (i = 0; i < disks; i++) {
872
struct bio *mbio;
873
if (!r1_bio->bios[i])
874
continue;
875
876
mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
877
r1_bio->bios[i] = mbio;
878
879
mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
880
mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
881
mbio->bi_end_io = raid1_end_write_request;
882
mbio->bi_rw = WRITE | do_flush_fua | do_sync;
883
mbio->bi_private = r1_bio;
884
885
if (r1_bio->behind_pages) {
886
struct bio_vec *bvec;
887
int j;
888
889
/* Yes, I really want the '__' version so that
890
* we clear any unused pointer in the io_vec, rather
891
* than leave them unchanged. This is important
892
* because when we come to free the pages, we won't
893
* know the original bi_idx, so we just free
894
* them all
895
*/
896
__bio_for_each_segment(bvec, mbio, j, 0)
897
bvec->bv_page = r1_bio->behind_pages[j];
898
if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
899
atomic_inc(&r1_bio->behind_remaining);
900
}
901
902
atomic_inc(&r1_bio->remaining);
903
spin_lock_irqsave(&conf->device_lock, flags);
904
bio_list_add(&conf->pending_bio_list, mbio);
905
spin_unlock_irqrestore(&conf->device_lock, flags);
906
}
907
r1_bio_write_done(r1_bio);
908
909
/* In case raid1d snuck in to freeze_array */
910
wake_up(&conf->wait_barrier);
911
912
if (do_sync || !bitmap || !plugged)
913
md_wakeup_thread(mddev->thread);
914
915
return 0;
916
}
917
918
static void status(struct seq_file *seq, mddev_t *mddev)
919
{
920
conf_t *conf = mddev->private;
921
int i;
922
923
seq_printf(seq, " [%d/%d] [", conf->raid_disks,
924
conf->raid_disks - mddev->degraded);
925
rcu_read_lock();
926
for (i = 0; i < conf->raid_disks; i++) {
927
mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
928
seq_printf(seq, "%s",
929
rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
930
}
931
rcu_read_unlock();
932
seq_printf(seq, "]");
933
}
934
935
936
static void error(mddev_t *mddev, mdk_rdev_t *rdev)
937
{
938
char b[BDEVNAME_SIZE];
939
conf_t *conf = mddev->private;
940
941
/*
942
* If it is not operational, then we have already marked it as dead
943
* else if it is the last working disks, ignore the error, let the
944
* next level up know.
945
* else mark the drive as failed
946
*/
947
if (test_bit(In_sync, &rdev->flags)
948
&& (conf->raid_disks - mddev->degraded) == 1) {
949
/*
950
* Don't fail the drive, act as though we were just a
951
* normal single drive.
952
* However don't try a recovery from this drive as
953
* it is very likely to fail.
954
*/
955
mddev->recovery_disabled = 1;
956
return;
957
}
958
if (test_and_clear_bit(In_sync, &rdev->flags)) {
959
unsigned long flags;
960
spin_lock_irqsave(&conf->device_lock, flags);
961
mddev->degraded++;
962
set_bit(Faulty, &rdev->flags);
963
spin_unlock_irqrestore(&conf->device_lock, flags);
964
/*
965
* if recovery is running, make sure it aborts.
966
*/
967
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
968
} else
969
set_bit(Faulty, &rdev->flags);
970
set_bit(MD_CHANGE_DEVS, &mddev->flags);
971
printk(KERN_ALERT
972
"md/raid1:%s: Disk failure on %s, disabling device.\n"
973
"md/raid1:%s: Operation continuing on %d devices.\n",
974
mdname(mddev), bdevname(rdev->bdev, b),
975
mdname(mddev), conf->raid_disks - mddev->degraded);
976
}
977
978
static void print_conf(conf_t *conf)
979
{
980
int i;
981
982
printk(KERN_DEBUG "RAID1 conf printout:\n");
983
if (!conf) {
984
printk(KERN_DEBUG "(!conf)\n");
985
return;
986
}
987
printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
988
conf->raid_disks);
989
990
rcu_read_lock();
991
for (i = 0; i < conf->raid_disks; i++) {
992
char b[BDEVNAME_SIZE];
993
mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
994
if (rdev)
995
printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
996
i, !test_bit(In_sync, &rdev->flags),
997
!test_bit(Faulty, &rdev->flags),
998
bdevname(rdev->bdev,b));
999
}
1000
rcu_read_unlock();
1001
}
1002
1003
static void close_sync(conf_t *conf)
1004
{
1005
wait_barrier(conf);
1006
allow_barrier(conf);
1007
1008
mempool_destroy(conf->r1buf_pool);
1009
conf->r1buf_pool = NULL;
1010
}
1011
1012
static int raid1_spare_active(mddev_t *mddev)
1013
{
1014
int i;
1015
conf_t *conf = mddev->private;
1016
int count = 0;
1017
unsigned long flags;
1018
1019
/*
1020
* Find all failed disks within the RAID1 configuration
1021
* and mark them readable.
1022
* Called under mddev lock, so rcu protection not needed.
1023
*/
1024
for (i = 0; i < conf->raid_disks; i++) {
1025
mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1026
if (rdev
1027
&& !test_bit(Faulty, &rdev->flags)
1028
&& !test_and_set_bit(In_sync, &rdev->flags)) {
1029
count++;
1030
sysfs_notify_dirent(rdev->sysfs_state);
1031
}
1032
}
1033
spin_lock_irqsave(&conf->device_lock, flags);
1034
mddev->degraded -= count;
1035
spin_unlock_irqrestore(&conf->device_lock, flags);
1036
1037
print_conf(conf);
1038
return count;
1039
}
1040
1041
1042
static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1043
{
1044
conf_t *conf = mddev->private;
1045
int err = -EEXIST;
1046
int mirror = 0;
1047
mirror_info_t *p;
1048
int first = 0;
1049
int last = mddev->raid_disks - 1;
1050
1051
if (rdev->raid_disk >= 0)
1052
first = last = rdev->raid_disk;
1053
1054
for (mirror = first; mirror <= last; mirror++)
1055
if ( !(p=conf->mirrors+mirror)->rdev) {
1056
1057
disk_stack_limits(mddev->gendisk, rdev->bdev,
1058
rdev->data_offset << 9);
1059
/* as we don't honour merge_bvec_fn, we must
1060
* never risk violating it, so limit
1061
* ->max_segments to one lying with a single
1062
* page, as a one page request is never in
1063
* violation.
1064
*/
1065
if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1066
blk_queue_max_segments(mddev->queue, 1);
1067
blk_queue_segment_boundary(mddev->queue,
1068
PAGE_CACHE_SIZE - 1);
1069
}
1070
1071
p->head_position = 0;
1072
rdev->raid_disk = mirror;
1073
err = 0;
1074
/* As all devices are equivalent, we don't need a full recovery
1075
* if this was recently any drive of the array
1076
*/
1077
if (rdev->saved_raid_disk < 0)
1078
conf->fullsync = 1;
1079
rcu_assign_pointer(p->rdev, rdev);
1080
break;
1081
}
1082
md_integrity_add_rdev(rdev, mddev);
1083
print_conf(conf);
1084
return err;
1085
}
1086
1087
static int raid1_remove_disk(mddev_t *mddev, int number)
1088
{
1089
conf_t *conf = mddev->private;
1090
int err = 0;
1091
mdk_rdev_t *rdev;
1092
mirror_info_t *p = conf->mirrors+ number;
1093
1094
print_conf(conf);
1095
rdev = p->rdev;
1096
if (rdev) {
1097
if (test_bit(In_sync, &rdev->flags) ||
1098
atomic_read(&rdev->nr_pending)) {
1099
err = -EBUSY;
1100
goto abort;
1101
}
1102
/* Only remove non-faulty devices if recovery
1103
* is not possible.
1104
*/
1105
if (!test_bit(Faulty, &rdev->flags) &&
1106
!mddev->recovery_disabled &&
1107
mddev->degraded < conf->raid_disks) {
1108
err = -EBUSY;
1109
goto abort;
1110
}
1111
p->rdev = NULL;
1112
synchronize_rcu();
1113
if (atomic_read(&rdev->nr_pending)) {
1114
/* lost the race, try later */
1115
err = -EBUSY;
1116
p->rdev = rdev;
1117
goto abort;
1118
}
1119
err = md_integrity_register(mddev);
1120
}
1121
abort:
1122
1123
print_conf(conf);
1124
return err;
1125
}
1126
1127
1128
static void end_sync_read(struct bio *bio, int error)
1129
{
1130
r1bio_t *r1_bio = bio->bi_private;
1131
int i;
1132
1133
for (i=r1_bio->mddev->raid_disks; i--; )
1134
if (r1_bio->bios[i] == bio)
1135
break;
1136
BUG_ON(i < 0);
1137
update_head_pos(i, r1_bio);
1138
/*
1139
* we have read a block, now it needs to be re-written,
1140
* or re-read if the read failed.
1141
* We don't do much here, just schedule handling by raid1d
1142
*/
1143
if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1144
set_bit(R1BIO_Uptodate, &r1_bio->state);
1145
1146
if (atomic_dec_and_test(&r1_bio->remaining))
1147
reschedule_retry(r1_bio);
1148
}
1149
1150
static void end_sync_write(struct bio *bio, int error)
1151
{
1152
int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1153
r1bio_t *r1_bio = bio->bi_private;
1154
mddev_t *mddev = r1_bio->mddev;
1155
conf_t *conf = mddev->private;
1156
int i;
1157
int mirror=0;
1158
1159
for (i = 0; i < conf->raid_disks; i++)
1160
if (r1_bio->bios[i] == bio) {
1161
mirror = i;
1162
break;
1163
}
1164
if (!uptodate) {
1165
sector_t sync_blocks = 0;
1166
sector_t s = r1_bio->sector;
1167
long sectors_to_go = r1_bio->sectors;
1168
/* make sure these bits doesn't get cleared. */
1169
do {
1170
bitmap_end_sync(mddev->bitmap, s,
1171
&sync_blocks, 1);
1172
s += sync_blocks;
1173
sectors_to_go -= sync_blocks;
1174
} while (sectors_to_go > 0);
1175
md_error(mddev, conf->mirrors[mirror].rdev);
1176
}
1177
1178
update_head_pos(mirror, r1_bio);
1179
1180
if (atomic_dec_and_test(&r1_bio->remaining)) {
1181
sector_t s = r1_bio->sectors;
1182
put_buf(r1_bio);
1183
md_done_sync(mddev, s, uptodate);
1184
}
1185
}
1186
1187
static int fix_sync_read_error(r1bio_t *r1_bio)
1188
{
1189
/* Try some synchronous reads of other devices to get
1190
* good data, much like with normal read errors. Only
1191
* read into the pages we already have so we don't
1192
* need to re-issue the read request.
1193
* We don't need to freeze the array, because being in an
1194
* active sync request, there is no normal IO, and
1195
* no overlapping syncs.
1196
*/
1197
mddev_t *mddev = r1_bio->mddev;
1198
conf_t *conf = mddev->private;
1199
struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1200
sector_t sect = r1_bio->sector;
1201
int sectors = r1_bio->sectors;
1202
int idx = 0;
1203
1204
while(sectors) {
1205
int s = sectors;
1206
int d = r1_bio->read_disk;
1207
int success = 0;
1208
mdk_rdev_t *rdev;
1209
int start;
1210
1211
if (s > (PAGE_SIZE>>9))
1212
s = PAGE_SIZE >> 9;
1213
do {
1214
if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1215
/* No rcu protection needed here devices
1216
* can only be removed when no resync is
1217
* active, and resync is currently active
1218
*/
1219
rdev = conf->mirrors[d].rdev;
1220
if (sync_page_io(rdev,
1221
sect,
1222
s<<9,
1223
bio->bi_io_vec[idx].bv_page,
1224
READ, false)) {
1225
success = 1;
1226
break;
1227
}
1228
}
1229
d++;
1230
if (d == conf->raid_disks)
1231
d = 0;
1232
} while (!success && d != r1_bio->read_disk);
1233
1234
if (!success) {
1235
char b[BDEVNAME_SIZE];
1236
/* Cannot read from anywhere, array is toast */
1237
md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1238
printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1239
" for block %llu\n",
1240
mdname(mddev),
1241
bdevname(bio->bi_bdev, b),
1242
(unsigned long long)r1_bio->sector);
1243
md_done_sync(mddev, r1_bio->sectors, 0);
1244
put_buf(r1_bio);
1245
return 0;
1246
}
1247
1248
start = d;
1249
/* write it back and re-read */
1250
while (d != r1_bio->read_disk) {
1251
if (d == 0)
1252
d = conf->raid_disks;
1253
d--;
1254
if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1255
continue;
1256
rdev = conf->mirrors[d].rdev;
1257
if (sync_page_io(rdev,
1258
sect,
1259
s<<9,
1260
bio->bi_io_vec[idx].bv_page,
1261
WRITE, false) == 0) {
1262
r1_bio->bios[d]->bi_end_io = NULL;
1263
rdev_dec_pending(rdev, mddev);
1264
md_error(mddev, rdev);
1265
} else
1266
atomic_add(s, &rdev->corrected_errors);
1267
}
1268
d = start;
1269
while (d != r1_bio->read_disk) {
1270
if (d == 0)
1271
d = conf->raid_disks;
1272
d--;
1273
if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1274
continue;
1275
rdev = conf->mirrors[d].rdev;
1276
if (sync_page_io(rdev,
1277
sect,
1278
s<<9,
1279
bio->bi_io_vec[idx].bv_page,
1280
READ, false) == 0)
1281
md_error(mddev, rdev);
1282
}
1283
sectors -= s;
1284
sect += s;
1285
idx ++;
1286
}
1287
set_bit(R1BIO_Uptodate, &r1_bio->state);
1288
set_bit(BIO_UPTODATE, &bio->bi_flags);
1289
return 1;
1290
}
1291
1292
static int process_checks(r1bio_t *r1_bio)
1293
{
1294
/* We have read all readable devices. If we haven't
1295
* got the block, then there is no hope left.
1296
* If we have, then we want to do a comparison
1297
* and skip the write if everything is the same.
1298
* If any blocks failed to read, then we need to
1299
* attempt an over-write
1300
*/
1301
mddev_t *mddev = r1_bio->mddev;
1302
conf_t *conf = mddev->private;
1303
int primary;
1304
int i;
1305
1306
for (primary = 0; primary < conf->raid_disks; primary++)
1307
if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1308
test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1309
r1_bio->bios[primary]->bi_end_io = NULL;
1310
rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1311
break;
1312
}
1313
r1_bio->read_disk = primary;
1314
for (i = 0; i < conf->raid_disks; i++) {
1315
int j;
1316
int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1317
struct bio *pbio = r1_bio->bios[primary];
1318
struct bio *sbio = r1_bio->bios[i];
1319
int size;
1320
1321
if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1322
continue;
1323
1324
if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1325
for (j = vcnt; j-- ; ) {
1326
struct page *p, *s;
1327
p = pbio->bi_io_vec[j].bv_page;
1328
s = sbio->bi_io_vec[j].bv_page;
1329
if (memcmp(page_address(p),
1330
page_address(s),
1331
PAGE_SIZE))
1332
break;
1333
}
1334
} else
1335
j = 0;
1336
if (j >= 0)
1337
mddev->resync_mismatches += r1_bio->sectors;
1338
if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1339
&& test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1340
/* No need to write to this device. */
1341
sbio->bi_end_io = NULL;
1342
rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1343
continue;
1344
}
1345
/* fixup the bio for reuse */
1346
sbio->bi_vcnt = vcnt;
1347
sbio->bi_size = r1_bio->sectors << 9;
1348
sbio->bi_idx = 0;
1349
sbio->bi_phys_segments = 0;
1350
sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1351
sbio->bi_flags |= 1 << BIO_UPTODATE;
1352
sbio->bi_next = NULL;
1353
sbio->bi_sector = r1_bio->sector +
1354
conf->mirrors[i].rdev->data_offset;
1355
sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1356
size = sbio->bi_size;
1357
for (j = 0; j < vcnt ; j++) {
1358
struct bio_vec *bi;
1359
bi = &sbio->bi_io_vec[j];
1360
bi->bv_offset = 0;
1361
if (size > PAGE_SIZE)
1362
bi->bv_len = PAGE_SIZE;
1363
else
1364
bi->bv_len = size;
1365
size -= PAGE_SIZE;
1366
memcpy(page_address(bi->bv_page),
1367
page_address(pbio->bi_io_vec[j].bv_page),
1368
PAGE_SIZE);
1369
}
1370
}
1371
return 0;
1372
}
1373
1374
static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1375
{
1376
conf_t *conf = mddev->private;
1377
int i;
1378
int disks = conf->raid_disks;
1379
struct bio *bio, *wbio;
1380
1381
bio = r1_bio->bios[r1_bio->read_disk];
1382
1383
if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1384
/* ouch - failed to read all of that. */
1385
if (!fix_sync_read_error(r1_bio))
1386
return;
1387
1388
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1389
if (process_checks(r1_bio) < 0)
1390
return;
1391
/*
1392
* schedule writes
1393
*/
1394
atomic_set(&r1_bio->remaining, 1);
1395
for (i = 0; i < disks ; i++) {
1396
wbio = r1_bio->bios[i];
1397
if (wbio->bi_end_io == NULL ||
1398
(wbio->bi_end_io == end_sync_read &&
1399
(i == r1_bio->read_disk ||
1400
!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1401
continue;
1402
1403
wbio->bi_rw = WRITE;
1404
wbio->bi_end_io = end_sync_write;
1405
atomic_inc(&r1_bio->remaining);
1406
md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1407
1408
generic_make_request(wbio);
1409
}
1410
1411
if (atomic_dec_and_test(&r1_bio->remaining)) {
1412
/* if we're here, all write(s) have completed, so clean up */
1413
md_done_sync(mddev, r1_bio->sectors, 1);
1414
put_buf(r1_bio);
1415
}
1416
}
1417
1418
/*
1419
* This is a kernel thread which:
1420
*
1421
* 1. Retries failed read operations on working mirrors.
1422
* 2. Updates the raid superblock when problems encounter.
1423
* 3. Performs writes following reads for array syncronising.
1424
*/
1425
1426
static void fix_read_error(conf_t *conf, int read_disk,
1427
sector_t sect, int sectors)
1428
{
1429
mddev_t *mddev = conf->mddev;
1430
while(sectors) {
1431
int s = sectors;
1432
int d = read_disk;
1433
int success = 0;
1434
int start;
1435
mdk_rdev_t *rdev;
1436
1437
if (s > (PAGE_SIZE>>9))
1438
s = PAGE_SIZE >> 9;
1439
1440
do {
1441
/* Note: no rcu protection needed here
1442
* as this is synchronous in the raid1d thread
1443
* which is the thread that might remove
1444
* a device. If raid1d ever becomes multi-threaded....
1445
*/
1446
rdev = conf->mirrors[d].rdev;
1447
if (rdev &&
1448
test_bit(In_sync, &rdev->flags) &&
1449
sync_page_io(rdev, sect, s<<9,
1450
conf->tmppage, READ, false))
1451
success = 1;
1452
else {
1453
d++;
1454
if (d == conf->raid_disks)
1455
d = 0;
1456
}
1457
} while (!success && d != read_disk);
1458
1459
if (!success) {
1460
/* Cannot read from anywhere -- bye bye array */
1461
md_error(mddev, conf->mirrors[read_disk].rdev);
1462
break;
1463
}
1464
/* write it back and re-read */
1465
start = d;
1466
while (d != read_disk) {
1467
if (d==0)
1468
d = conf->raid_disks;
1469
d--;
1470
rdev = conf->mirrors[d].rdev;
1471
if (rdev &&
1472
test_bit(In_sync, &rdev->flags)) {
1473
if (sync_page_io(rdev, sect, s<<9,
1474
conf->tmppage, WRITE, false)
1475
== 0)
1476
/* Well, this device is dead */
1477
md_error(mddev, rdev);
1478
}
1479
}
1480
d = start;
1481
while (d != read_disk) {
1482
char b[BDEVNAME_SIZE];
1483
if (d==0)
1484
d = conf->raid_disks;
1485
d--;
1486
rdev = conf->mirrors[d].rdev;
1487
if (rdev &&
1488
test_bit(In_sync, &rdev->flags)) {
1489
if (sync_page_io(rdev, sect, s<<9,
1490
conf->tmppage, READ, false)
1491
== 0)
1492
/* Well, this device is dead */
1493
md_error(mddev, rdev);
1494
else {
1495
atomic_add(s, &rdev->corrected_errors);
1496
printk(KERN_INFO
1497
"md/raid1:%s: read error corrected "
1498
"(%d sectors at %llu on %s)\n",
1499
mdname(mddev), s,
1500
(unsigned long long)(sect +
1501
rdev->data_offset),
1502
bdevname(rdev->bdev, b));
1503
}
1504
}
1505
}
1506
sectors -= s;
1507
sect += s;
1508
}
1509
}
1510
1511
static void raid1d(mddev_t *mddev)
1512
{
1513
r1bio_t *r1_bio;
1514
struct bio *bio;
1515
unsigned long flags;
1516
conf_t *conf = mddev->private;
1517
struct list_head *head = &conf->retry_list;
1518
mdk_rdev_t *rdev;
1519
struct blk_plug plug;
1520
1521
md_check_recovery(mddev);
1522
1523
blk_start_plug(&plug);
1524
for (;;) {
1525
char b[BDEVNAME_SIZE];
1526
1527
if (atomic_read(&mddev->plug_cnt) == 0)
1528
flush_pending_writes(conf);
1529
1530
spin_lock_irqsave(&conf->device_lock, flags);
1531
if (list_empty(head)) {
1532
spin_unlock_irqrestore(&conf->device_lock, flags);
1533
break;
1534
}
1535
r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1536
list_del(head->prev);
1537
conf->nr_queued--;
1538
spin_unlock_irqrestore(&conf->device_lock, flags);
1539
1540
mddev = r1_bio->mddev;
1541
conf = mddev->private;
1542
if (test_bit(R1BIO_IsSync, &r1_bio->state))
1543
sync_request_write(mddev, r1_bio);
1544
else {
1545
int disk;
1546
1547
/* we got a read error. Maybe the drive is bad. Maybe just
1548
* the block and we can fix it.
1549
* We freeze all other IO, and try reading the block from
1550
* other devices. When we find one, we re-write
1551
* and check it that fixes the read error.
1552
* This is all done synchronously while the array is
1553
* frozen
1554
*/
1555
if (mddev->ro == 0) {
1556
freeze_array(conf);
1557
fix_read_error(conf, r1_bio->read_disk,
1558
r1_bio->sector,
1559
r1_bio->sectors);
1560
unfreeze_array(conf);
1561
} else
1562
md_error(mddev,
1563
conf->mirrors[r1_bio->read_disk].rdev);
1564
1565
bio = r1_bio->bios[r1_bio->read_disk];
1566
if ((disk=read_balance(conf, r1_bio)) == -1) {
1567
printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1568
" read error for block %llu\n",
1569
mdname(mddev),
1570
bdevname(bio->bi_bdev,b),
1571
(unsigned long long)r1_bio->sector);
1572
raid_end_bio_io(r1_bio);
1573
} else {
1574
const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1575
r1_bio->bios[r1_bio->read_disk] =
1576
mddev->ro ? IO_BLOCKED : NULL;
1577
r1_bio->read_disk = disk;
1578
bio_put(bio);
1579
bio = bio_clone_mddev(r1_bio->master_bio,
1580
GFP_NOIO, mddev);
1581
r1_bio->bios[r1_bio->read_disk] = bio;
1582
rdev = conf->mirrors[disk].rdev;
1583
if (printk_ratelimit())
1584
printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1585
" other mirror: %s\n",
1586
mdname(mddev),
1587
(unsigned long long)r1_bio->sector,
1588
bdevname(rdev->bdev,b));
1589
bio->bi_sector = r1_bio->sector + rdev->data_offset;
1590
bio->bi_bdev = rdev->bdev;
1591
bio->bi_end_io = raid1_end_read_request;
1592
bio->bi_rw = READ | do_sync;
1593
bio->bi_private = r1_bio;
1594
generic_make_request(bio);
1595
}
1596
}
1597
cond_resched();
1598
}
1599
blk_finish_plug(&plug);
1600
}
1601
1602
1603
static int init_resync(conf_t *conf)
1604
{
1605
int buffs;
1606
1607
buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1608
BUG_ON(conf->r1buf_pool);
1609
conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1610
conf->poolinfo);
1611
if (!conf->r1buf_pool)
1612
return -ENOMEM;
1613
conf->next_resync = 0;
1614
return 0;
1615
}
1616
1617
/*
1618
* perform a "sync" on one "block"
1619
*
1620
* We need to make sure that no normal I/O request - particularly write
1621
* requests - conflict with active sync requests.
1622
*
1623
* This is achieved by tracking pending requests and a 'barrier' concept
1624
* that can be installed to exclude normal IO requests.
1625
*/
1626
1627
static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1628
{
1629
conf_t *conf = mddev->private;
1630
r1bio_t *r1_bio;
1631
struct bio *bio;
1632
sector_t max_sector, nr_sectors;
1633
int disk = -1;
1634
int i;
1635
int wonly = -1;
1636
int write_targets = 0, read_targets = 0;
1637
sector_t sync_blocks;
1638
int still_degraded = 0;
1639
1640
if (!conf->r1buf_pool)
1641
if (init_resync(conf))
1642
return 0;
1643
1644
max_sector = mddev->dev_sectors;
1645
if (sector_nr >= max_sector) {
1646
/* If we aborted, we need to abort the
1647
* sync on the 'current' bitmap chunk (there will
1648
* only be one in raid1 resync.
1649
* We can find the current addess in mddev->curr_resync
1650
*/
1651
if (mddev->curr_resync < max_sector) /* aborted */
1652
bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1653
&sync_blocks, 1);
1654
else /* completed sync */
1655
conf->fullsync = 0;
1656
1657
bitmap_close_sync(mddev->bitmap);
1658
close_sync(conf);
1659
return 0;
1660
}
1661
1662
if (mddev->bitmap == NULL &&
1663
mddev->recovery_cp == MaxSector &&
1664
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1665
conf->fullsync == 0) {
1666
*skipped = 1;
1667
return max_sector - sector_nr;
1668
}
1669
/* before building a request, check if we can skip these blocks..
1670
* This call the bitmap_start_sync doesn't actually record anything
1671
*/
1672
if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1673
!conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1674
/* We can skip this block, and probably several more */
1675
*skipped = 1;
1676
return sync_blocks;
1677
}
1678
/*
1679
* If there is non-resync activity waiting for a turn,
1680
* and resync is going fast enough,
1681
* then let it though before starting on this new sync request.
1682
*/
1683
if (!go_faster && conf->nr_waiting)
1684
msleep_interruptible(1000);
1685
1686
bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1687
r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1688
raise_barrier(conf);
1689
1690
conf->next_resync = sector_nr;
1691
1692
rcu_read_lock();
1693
/*
1694
* If we get a correctably read error during resync or recovery,
1695
* we might want to read from a different device. So we
1696
* flag all drives that could conceivably be read from for READ,
1697
* and any others (which will be non-In_sync devices) for WRITE.
1698
* If a read fails, we try reading from something else for which READ
1699
* is OK.
1700
*/
1701
1702
r1_bio->mddev = mddev;
1703
r1_bio->sector = sector_nr;
1704
r1_bio->state = 0;
1705
set_bit(R1BIO_IsSync, &r1_bio->state);
1706
1707
for (i=0; i < conf->raid_disks; i++) {
1708
mdk_rdev_t *rdev;
1709
bio = r1_bio->bios[i];
1710
1711
/* take from bio_init */
1712
bio->bi_next = NULL;
1713
bio->bi_flags &= ~(BIO_POOL_MASK-1);
1714
bio->bi_flags |= 1 << BIO_UPTODATE;
1715
bio->bi_comp_cpu = -1;
1716
bio->bi_rw = READ;
1717
bio->bi_vcnt = 0;
1718
bio->bi_idx = 0;
1719
bio->bi_phys_segments = 0;
1720
bio->bi_size = 0;
1721
bio->bi_end_io = NULL;
1722
bio->bi_private = NULL;
1723
1724
rdev = rcu_dereference(conf->mirrors[i].rdev);
1725
if (rdev == NULL ||
1726
test_bit(Faulty, &rdev->flags)) {
1727
still_degraded = 1;
1728
continue;
1729
} else if (!test_bit(In_sync, &rdev->flags)) {
1730
bio->bi_rw = WRITE;
1731
bio->bi_end_io = end_sync_write;
1732
write_targets ++;
1733
} else {
1734
/* may need to read from here */
1735
bio->bi_rw = READ;
1736
bio->bi_end_io = end_sync_read;
1737
if (test_bit(WriteMostly, &rdev->flags)) {
1738
if (wonly < 0)
1739
wonly = i;
1740
} else {
1741
if (disk < 0)
1742
disk = i;
1743
}
1744
read_targets++;
1745
}
1746
atomic_inc(&rdev->nr_pending);
1747
bio->bi_sector = sector_nr + rdev->data_offset;
1748
bio->bi_bdev = rdev->bdev;
1749
bio->bi_private = r1_bio;
1750
}
1751
rcu_read_unlock();
1752
if (disk < 0)
1753
disk = wonly;
1754
r1_bio->read_disk = disk;
1755
1756
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1757
/* extra read targets are also write targets */
1758
write_targets += read_targets-1;
1759
1760
if (write_targets == 0 || read_targets == 0) {
1761
/* There is nowhere to write, so all non-sync
1762
* drives must be failed - so we are finished
1763
*/
1764
sector_t rv = max_sector - sector_nr;
1765
*skipped = 1;
1766
put_buf(r1_bio);
1767
return rv;
1768
}
1769
1770
if (max_sector > mddev->resync_max)
1771
max_sector = mddev->resync_max; /* Don't do IO beyond here */
1772
nr_sectors = 0;
1773
sync_blocks = 0;
1774
do {
1775
struct page *page;
1776
int len = PAGE_SIZE;
1777
if (sector_nr + (len>>9) > max_sector)
1778
len = (max_sector - sector_nr) << 9;
1779
if (len == 0)
1780
break;
1781
if (sync_blocks == 0) {
1782
if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1783
&sync_blocks, still_degraded) &&
1784
!conf->fullsync &&
1785
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1786
break;
1787
BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1788
if ((len >> 9) > sync_blocks)
1789
len = sync_blocks<<9;
1790
}
1791
1792
for (i=0 ; i < conf->raid_disks; i++) {
1793
bio = r1_bio->bios[i];
1794
if (bio->bi_end_io) {
1795
page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1796
if (bio_add_page(bio, page, len, 0) == 0) {
1797
/* stop here */
1798
bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1799
while (i > 0) {
1800
i--;
1801
bio = r1_bio->bios[i];
1802
if (bio->bi_end_io==NULL)
1803
continue;
1804
/* remove last page from this bio */
1805
bio->bi_vcnt--;
1806
bio->bi_size -= len;
1807
bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1808
}
1809
goto bio_full;
1810
}
1811
}
1812
}
1813
nr_sectors += len>>9;
1814
sector_nr += len>>9;
1815
sync_blocks -= (len>>9);
1816
} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1817
bio_full:
1818
r1_bio->sectors = nr_sectors;
1819
1820
/* For a user-requested sync, we read all readable devices and do a
1821
* compare
1822
*/
1823
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1824
atomic_set(&r1_bio->remaining, read_targets);
1825
for (i=0; i<conf->raid_disks; i++) {
1826
bio = r1_bio->bios[i];
1827
if (bio->bi_end_io == end_sync_read) {
1828
md_sync_acct(bio->bi_bdev, nr_sectors);
1829
generic_make_request(bio);
1830
}
1831
}
1832
} else {
1833
atomic_set(&r1_bio->remaining, 1);
1834
bio = r1_bio->bios[r1_bio->read_disk];
1835
md_sync_acct(bio->bi_bdev, nr_sectors);
1836
generic_make_request(bio);
1837
1838
}
1839
return nr_sectors;
1840
}
1841
1842
static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1843
{
1844
if (sectors)
1845
return sectors;
1846
1847
return mddev->dev_sectors;
1848
}
1849
1850
static conf_t *setup_conf(mddev_t *mddev)
1851
{
1852
conf_t *conf;
1853
int i;
1854
mirror_info_t *disk;
1855
mdk_rdev_t *rdev;
1856
int err = -ENOMEM;
1857
1858
conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1859
if (!conf)
1860
goto abort;
1861
1862
conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1863
GFP_KERNEL);
1864
if (!conf->mirrors)
1865
goto abort;
1866
1867
conf->tmppage = alloc_page(GFP_KERNEL);
1868
if (!conf->tmppage)
1869
goto abort;
1870
1871
conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1872
if (!conf->poolinfo)
1873
goto abort;
1874
conf->poolinfo->raid_disks = mddev->raid_disks;
1875
conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1876
r1bio_pool_free,
1877
conf->poolinfo);
1878
if (!conf->r1bio_pool)
1879
goto abort;
1880
1881
conf->poolinfo->mddev = mddev;
1882
1883
spin_lock_init(&conf->device_lock);
1884
list_for_each_entry(rdev, &mddev->disks, same_set) {
1885
int disk_idx = rdev->raid_disk;
1886
if (disk_idx >= mddev->raid_disks
1887
|| disk_idx < 0)
1888
continue;
1889
disk = conf->mirrors + disk_idx;
1890
1891
disk->rdev = rdev;
1892
1893
disk->head_position = 0;
1894
}
1895
conf->raid_disks = mddev->raid_disks;
1896
conf->mddev = mddev;
1897
INIT_LIST_HEAD(&conf->retry_list);
1898
1899
spin_lock_init(&conf->resync_lock);
1900
init_waitqueue_head(&conf->wait_barrier);
1901
1902
bio_list_init(&conf->pending_bio_list);
1903
1904
conf->last_used = -1;
1905
for (i = 0; i < conf->raid_disks; i++) {
1906
1907
disk = conf->mirrors + i;
1908
1909
if (!disk->rdev ||
1910
!test_bit(In_sync, &disk->rdev->flags)) {
1911
disk->head_position = 0;
1912
if (disk->rdev)
1913
conf->fullsync = 1;
1914
} else if (conf->last_used < 0)
1915
/*
1916
* The first working device is used as a
1917
* starting point to read balancing.
1918
*/
1919
conf->last_used = i;
1920
}
1921
1922
err = -EIO;
1923
if (conf->last_used < 0) {
1924
printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
1925
mdname(mddev));
1926
goto abort;
1927
}
1928
err = -ENOMEM;
1929
conf->thread = md_register_thread(raid1d, mddev, NULL);
1930
if (!conf->thread) {
1931
printk(KERN_ERR
1932
"md/raid1:%s: couldn't allocate thread\n",
1933
mdname(mddev));
1934
goto abort;
1935
}
1936
1937
return conf;
1938
1939
abort:
1940
if (conf) {
1941
if (conf->r1bio_pool)
1942
mempool_destroy(conf->r1bio_pool);
1943
kfree(conf->mirrors);
1944
safe_put_page(conf->tmppage);
1945
kfree(conf->poolinfo);
1946
kfree(conf);
1947
}
1948
return ERR_PTR(err);
1949
}
1950
1951
static int run(mddev_t *mddev)
1952
{
1953
conf_t *conf;
1954
int i;
1955
mdk_rdev_t *rdev;
1956
1957
if (mddev->level != 1) {
1958
printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
1959
mdname(mddev), mddev->level);
1960
return -EIO;
1961
}
1962
if (mddev->reshape_position != MaxSector) {
1963
printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
1964
mdname(mddev));
1965
return -EIO;
1966
}
1967
/*
1968
* copy the already verified devices into our private RAID1
1969
* bookkeeping area. [whatever we allocate in run(),
1970
* should be freed in stop()]
1971
*/
1972
if (mddev->private == NULL)
1973
conf = setup_conf(mddev);
1974
else
1975
conf = mddev->private;
1976
1977
if (IS_ERR(conf))
1978
return PTR_ERR(conf);
1979
1980
list_for_each_entry(rdev, &mddev->disks, same_set) {
1981
if (!mddev->gendisk)
1982
continue;
1983
disk_stack_limits(mddev->gendisk, rdev->bdev,
1984
rdev->data_offset << 9);
1985
/* as we don't honour merge_bvec_fn, we must never risk
1986
* violating it, so limit ->max_segments to 1 lying within
1987
* a single page, as a one page request is never in violation.
1988
*/
1989
if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1990
blk_queue_max_segments(mddev->queue, 1);
1991
blk_queue_segment_boundary(mddev->queue,
1992
PAGE_CACHE_SIZE - 1);
1993
}
1994
}
1995
1996
mddev->degraded = 0;
1997
for (i=0; i < conf->raid_disks; i++)
1998
if (conf->mirrors[i].rdev == NULL ||
1999
!test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2000
test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2001
mddev->degraded++;
2002
2003
if (conf->raid_disks - mddev->degraded == 1)
2004
mddev->recovery_cp = MaxSector;
2005
2006
if (mddev->recovery_cp != MaxSector)
2007
printk(KERN_NOTICE "md/raid1:%s: not clean"
2008
" -- starting background reconstruction\n",
2009
mdname(mddev));
2010
printk(KERN_INFO
2011
"md/raid1:%s: active with %d out of %d mirrors\n",
2012
mdname(mddev), mddev->raid_disks - mddev->degraded,
2013
mddev->raid_disks);
2014
2015
/*
2016
* Ok, everything is just fine now
2017
*/
2018
mddev->thread = conf->thread;
2019
conf->thread = NULL;
2020
mddev->private = conf;
2021
2022
md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2023
2024
if (mddev->queue) {
2025
mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2026
mddev->queue->backing_dev_info.congested_data = mddev;
2027
}
2028
return md_integrity_register(mddev);
2029
}
2030
2031
static int stop(mddev_t *mddev)
2032
{
2033
conf_t *conf = mddev->private;
2034
struct bitmap *bitmap = mddev->bitmap;
2035
2036
/* wait for behind writes to complete */
2037
if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2038
printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2039
mdname(mddev));
2040
/* need to kick something here to make sure I/O goes? */
2041
wait_event(bitmap->behind_wait,
2042
atomic_read(&bitmap->behind_writes) == 0);
2043
}
2044
2045
raise_barrier(conf);
2046
lower_barrier(conf);
2047
2048
md_unregister_thread(mddev->thread);
2049
mddev->thread = NULL;
2050
if (conf->r1bio_pool)
2051
mempool_destroy(conf->r1bio_pool);
2052
kfree(conf->mirrors);
2053
kfree(conf->poolinfo);
2054
kfree(conf);
2055
mddev->private = NULL;
2056
return 0;
2057
}
2058
2059
static int raid1_resize(mddev_t *mddev, sector_t sectors)
2060
{
2061
/* no resync is happening, and there is enough space
2062
* on all devices, so we can resize.
2063
* We need to make sure resync covers any new space.
2064
* If the array is shrinking we should possibly wait until
2065
* any io in the removed space completes, but it hardly seems
2066
* worth it.
2067
*/
2068
md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2069
if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2070
return -EINVAL;
2071
set_capacity(mddev->gendisk, mddev->array_sectors);
2072
revalidate_disk(mddev->gendisk);
2073
if (sectors > mddev->dev_sectors &&
2074
mddev->recovery_cp > mddev->dev_sectors) {
2075
mddev->recovery_cp = mddev->dev_sectors;
2076
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2077
}
2078
mddev->dev_sectors = sectors;
2079
mddev->resync_max_sectors = sectors;
2080
return 0;
2081
}
2082
2083
static int raid1_reshape(mddev_t *mddev)
2084
{
2085
/* We need to:
2086
* 1/ resize the r1bio_pool
2087
* 2/ resize conf->mirrors
2088
*
2089
* We allocate a new r1bio_pool if we can.
2090
* Then raise a device barrier and wait until all IO stops.
2091
* Then resize conf->mirrors and swap in the new r1bio pool.
2092
*
2093
* At the same time, we "pack" the devices so that all the missing
2094
* devices have the higher raid_disk numbers.
2095
*/
2096
mempool_t *newpool, *oldpool;
2097
struct pool_info *newpoolinfo;
2098
mirror_info_t *newmirrors;
2099
conf_t *conf = mddev->private;
2100
int cnt, raid_disks;
2101
unsigned long flags;
2102
int d, d2, err;
2103
2104
/* Cannot change chunk_size, layout, or level */
2105
if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2106
mddev->layout != mddev->new_layout ||
2107
mddev->level != mddev->new_level) {
2108
mddev->new_chunk_sectors = mddev->chunk_sectors;
2109
mddev->new_layout = mddev->layout;
2110
mddev->new_level = mddev->level;
2111
return -EINVAL;
2112
}
2113
2114
err = md_allow_write(mddev);
2115
if (err)
2116
return err;
2117
2118
raid_disks = mddev->raid_disks + mddev->delta_disks;
2119
2120
if (raid_disks < conf->raid_disks) {
2121
cnt=0;
2122
for (d= 0; d < conf->raid_disks; d++)
2123
if (conf->mirrors[d].rdev)
2124
cnt++;
2125
if (cnt > raid_disks)
2126
return -EBUSY;
2127
}
2128
2129
newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2130
if (!newpoolinfo)
2131
return -ENOMEM;
2132
newpoolinfo->mddev = mddev;
2133
newpoolinfo->raid_disks = raid_disks;
2134
2135
newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2136
r1bio_pool_free, newpoolinfo);
2137
if (!newpool) {
2138
kfree(newpoolinfo);
2139
return -ENOMEM;
2140
}
2141
newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2142
if (!newmirrors) {
2143
kfree(newpoolinfo);
2144
mempool_destroy(newpool);
2145
return -ENOMEM;
2146
}
2147
2148
raise_barrier(conf);
2149
2150
/* ok, everything is stopped */
2151
oldpool = conf->r1bio_pool;
2152
conf->r1bio_pool = newpool;
2153
2154
for (d = d2 = 0; d < conf->raid_disks; d++) {
2155
mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2156
if (rdev && rdev->raid_disk != d2) {
2157
char nm[20];
2158
sprintf(nm, "rd%d", rdev->raid_disk);
2159
sysfs_remove_link(&mddev->kobj, nm);
2160
rdev->raid_disk = d2;
2161
sprintf(nm, "rd%d", rdev->raid_disk);
2162
sysfs_remove_link(&mddev->kobj, nm);
2163
if (sysfs_create_link(&mddev->kobj,
2164
&rdev->kobj, nm))
2165
printk(KERN_WARNING
2166
"md/raid1:%s: cannot register "
2167
"%s\n",
2168
mdname(mddev), nm);
2169
}
2170
if (rdev)
2171
newmirrors[d2++].rdev = rdev;
2172
}
2173
kfree(conf->mirrors);
2174
conf->mirrors = newmirrors;
2175
kfree(conf->poolinfo);
2176
conf->poolinfo = newpoolinfo;
2177
2178
spin_lock_irqsave(&conf->device_lock, flags);
2179
mddev->degraded += (raid_disks - conf->raid_disks);
2180
spin_unlock_irqrestore(&conf->device_lock, flags);
2181
conf->raid_disks = mddev->raid_disks = raid_disks;
2182
mddev->delta_disks = 0;
2183
2184
conf->last_used = 0; /* just make sure it is in-range */
2185
lower_barrier(conf);
2186
2187
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2188
md_wakeup_thread(mddev->thread);
2189
2190
mempool_destroy(oldpool);
2191
return 0;
2192
}
2193
2194
static void raid1_quiesce(mddev_t *mddev, int state)
2195
{
2196
conf_t *conf = mddev->private;
2197
2198
switch(state) {
2199
case 2: /* wake for suspend */
2200
wake_up(&conf->wait_barrier);
2201
break;
2202
case 1:
2203
raise_barrier(conf);
2204
break;
2205
case 0:
2206
lower_barrier(conf);
2207
break;
2208
}
2209
}
2210
2211
static void *raid1_takeover(mddev_t *mddev)
2212
{
2213
/* raid1 can take over:
2214
* raid5 with 2 devices, any layout or chunk size
2215
*/
2216
if (mddev->level == 5 && mddev->raid_disks == 2) {
2217
conf_t *conf;
2218
mddev->new_level = 1;
2219
mddev->new_layout = 0;
2220
mddev->new_chunk_sectors = 0;
2221
conf = setup_conf(mddev);
2222
if (!IS_ERR(conf))
2223
conf->barrier = 1;
2224
return conf;
2225
}
2226
return ERR_PTR(-EINVAL);
2227
}
2228
2229
static struct mdk_personality raid1_personality =
2230
{
2231
.name = "raid1",
2232
.level = 1,
2233
.owner = THIS_MODULE,
2234
.make_request = make_request,
2235
.run = run,
2236
.stop = stop,
2237
.status = status,
2238
.error_handler = error,
2239
.hot_add_disk = raid1_add_disk,
2240
.hot_remove_disk= raid1_remove_disk,
2241
.spare_active = raid1_spare_active,
2242
.sync_request = sync_request,
2243
.resize = raid1_resize,
2244
.size = raid1_size,
2245
.check_reshape = raid1_reshape,
2246
.quiesce = raid1_quiesce,
2247
.takeover = raid1_takeover,
2248
};
2249
2250
static int __init raid_init(void)
2251
{
2252
return register_md_personality(&raid1_personality);
2253
}
2254
2255
static void raid_exit(void)
2256
{
2257
unregister_md_personality(&raid1_personality);
2258
}
2259
2260
module_init(raid_init);
2261
module_exit(raid_exit);
2262
MODULE_LICENSE("GPL");
2263
MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2264
MODULE_ALIAS("md-personality-3"); /* RAID1 */
2265
MODULE_ALIAS("md-raid1");
2266
MODULE_ALIAS("md-level-1");
2267
2268