Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/media/common/tuners/mt2060.c
15112 views
1
/*
2
* Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
3
*
4
* Copyright (c) 2006 Olivier DANET <[email protected]>
5
*
6
* This program is free software; you can redistribute it and/or modify
7
* it under the terms of the GNU General Public License as published by
8
* the Free Software Foundation; either version 2 of the License, or
9
* (at your option) any later version.
10
*
11
* This program is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
*
15
* GNU General Public License for more details.
16
*
17
* You should have received a copy of the GNU General Public License
18
* along with this program; if not, write to the Free Software
19
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
20
*/
21
22
/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
23
24
#include <linux/module.h>
25
#include <linux/delay.h>
26
#include <linux/dvb/frontend.h>
27
#include <linux/i2c.h>
28
#include <linux/slab.h>
29
30
#include "dvb_frontend.h"
31
32
#include "mt2060.h"
33
#include "mt2060_priv.h"
34
35
static int debug;
36
module_param(debug, int, 0644);
37
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
38
39
#define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
40
41
// Reads a single register
42
static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
43
{
44
struct i2c_msg msg[2] = {
45
{ .addr = priv->cfg->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
46
{ .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
47
};
48
49
if (i2c_transfer(priv->i2c, msg, 2) != 2) {
50
printk(KERN_WARNING "mt2060 I2C read failed\n");
51
return -EREMOTEIO;
52
}
53
return 0;
54
}
55
56
// Writes a single register
57
static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
58
{
59
u8 buf[2] = { reg, val };
60
struct i2c_msg msg = {
61
.addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2
62
};
63
64
if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
65
printk(KERN_WARNING "mt2060 I2C write failed\n");
66
return -EREMOTEIO;
67
}
68
return 0;
69
}
70
71
// Writes a set of consecutive registers
72
static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
73
{
74
struct i2c_msg msg = {
75
.addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len
76
};
77
if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
78
printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
79
return -EREMOTEIO;
80
}
81
return 0;
82
}
83
84
// Initialisation sequences
85
// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
86
static u8 mt2060_config1[] = {
87
REG_LO1C1,
88
0x3F, 0x74, 0x00, 0x08, 0x93
89
};
90
91
// FMCG=2, GP2=0, GP1=0
92
static u8 mt2060_config2[] = {
93
REG_MISC_CTRL,
94
0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
95
};
96
97
// VGAG=3, V1CSE=1
98
99
#ifdef MT2060_SPURCHECK
100
/* The function below calculates the frequency offset between the output frequency if2
101
and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
102
static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
103
{
104
int I,J;
105
int dia,diamin,diff;
106
diamin=1000000;
107
for (I = 1; I < 10; I++) {
108
J = ((2*I*lo1)/lo2+1)/2;
109
diff = I*(int)lo1-J*(int)lo2;
110
if (diff < 0) diff=-diff;
111
dia = (diff-(int)if2);
112
if (dia < 0) dia=-dia;
113
if (diamin > dia) diamin=dia;
114
}
115
return diamin;
116
}
117
118
#define BANDWIDTH 4000 // kHz
119
120
/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
121
static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
122
{
123
u32 Spur,Sp1,Sp2;
124
int I,J;
125
I=0;
126
J=1000;
127
128
Spur=mt2060_spurcalc(lo1,lo2,if2);
129
if (Spur < BANDWIDTH) {
130
/* Potential spurs detected */
131
dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
132
(int)lo1,(int)lo2);
133
I=1000;
134
Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
135
Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
136
137
if (Sp1 < Sp2) {
138
J=-J; I=-I; Spur=Sp2;
139
} else
140
Spur=Sp1;
141
142
while (Spur < BANDWIDTH) {
143
I += J;
144
Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
145
}
146
dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
147
(int)(lo1+I),(int)(lo2+I));
148
}
149
return I;
150
}
151
#endif
152
153
#define IF2 36150 // IF2 frequency = 36.150 MHz
154
#define FREF 16000 // Quartz oscillator 16 MHz
155
156
static int mt2060_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params)
157
{
158
struct mt2060_priv *priv;
159
int ret=0;
160
int i=0;
161
u32 freq;
162
u8 lnaband;
163
u32 f_lo1,f_lo2;
164
u32 div1,num1,div2,num2;
165
u8 b[8];
166
u32 if1;
167
168
priv = fe->tuner_priv;
169
170
if1 = priv->if1_freq;
171
b[0] = REG_LO1B1;
172
b[1] = 0xFF;
173
174
if (fe->ops.i2c_gate_ctrl)
175
fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
176
177
mt2060_writeregs(priv,b,2);
178
179
freq = params->frequency / 1000; // Hz -> kHz
180
priv->bandwidth = (fe->ops.info.type == FE_OFDM) ? params->u.ofdm.bandwidth : 0;
181
182
f_lo1 = freq + if1 * 1000;
183
f_lo1 = (f_lo1 / 250) * 250;
184
f_lo2 = f_lo1 - freq - IF2;
185
// From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
186
f_lo2 = ((f_lo2 + 25) / 50) * 50;
187
priv->frequency = (f_lo1 - f_lo2 - IF2) * 1000,
188
189
#ifdef MT2060_SPURCHECK
190
// LO-related spurs detection and correction
191
num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
192
f_lo1 += num1;
193
f_lo2 += num1;
194
#endif
195
//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
196
num1 = f_lo1 / (FREF / 64);
197
div1 = num1 / 64;
198
num1 &= 0x3f;
199
200
// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
201
num2 = f_lo2 * 64 / (FREF / 128);
202
div2 = num2 / 8192;
203
num2 &= 0x1fff;
204
205
if (freq <= 95000) lnaband = 0xB0; else
206
if (freq <= 180000) lnaband = 0xA0; else
207
if (freq <= 260000) lnaband = 0x90; else
208
if (freq <= 335000) lnaband = 0x80; else
209
if (freq <= 425000) lnaband = 0x70; else
210
if (freq <= 480000) lnaband = 0x60; else
211
if (freq <= 570000) lnaband = 0x50; else
212
if (freq <= 645000) lnaband = 0x40; else
213
if (freq <= 730000) lnaband = 0x30; else
214
if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
215
216
b[0] = REG_LO1C1;
217
b[1] = lnaband | ((num1 >>2) & 0x0F);
218
b[2] = div1;
219
b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
220
b[4] = num2 >> 4;
221
b[5] = ((num2 >>12) & 1) | (div2 << 1);
222
223
dprintk("IF1: %dMHz",(int)if1);
224
dprintk("PLL freq=%dkHz f_lo1=%dkHz f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
225
dprintk("PLL div1=%d num1=%d div2=%d num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
226
dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
227
228
mt2060_writeregs(priv,b,6);
229
230
//Waits for pll lock or timeout
231
i = 0;
232
do {
233
mt2060_readreg(priv,REG_LO_STATUS,b);
234
if ((b[0] & 0x88)==0x88)
235
break;
236
msleep(4);
237
i++;
238
} while (i<10);
239
240
if (fe->ops.i2c_gate_ctrl)
241
fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
242
243
return ret;
244
}
245
246
static void mt2060_calibrate(struct mt2060_priv *priv)
247
{
248
u8 b = 0;
249
int i = 0;
250
251
if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
252
return;
253
if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
254
return;
255
256
/* initialize the clock output */
257
mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
258
259
do {
260
b |= (1 << 6); // FM1SS;
261
mt2060_writereg(priv, REG_LO2C1,b);
262
msleep(20);
263
264
if (i == 0) {
265
b |= (1 << 7); // FM1CA;
266
mt2060_writereg(priv, REG_LO2C1,b);
267
b &= ~(1 << 7); // FM1CA;
268
msleep(20);
269
}
270
271
b &= ~(1 << 6); // FM1SS
272
mt2060_writereg(priv, REG_LO2C1,b);
273
274
msleep(20);
275
i++;
276
} while (i < 9);
277
278
i = 0;
279
while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
280
msleep(20);
281
282
if (i <= 10) {
283
mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
284
dprintk("calibration was successful: %d", (int)priv->fmfreq);
285
} else
286
dprintk("FMCAL timed out");
287
}
288
289
static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
290
{
291
struct mt2060_priv *priv = fe->tuner_priv;
292
*frequency = priv->frequency;
293
return 0;
294
}
295
296
static int mt2060_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
297
{
298
struct mt2060_priv *priv = fe->tuner_priv;
299
*bandwidth = priv->bandwidth;
300
return 0;
301
}
302
303
static int mt2060_init(struct dvb_frontend *fe)
304
{
305
struct mt2060_priv *priv = fe->tuner_priv;
306
int ret;
307
308
if (fe->ops.i2c_gate_ctrl)
309
fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
310
311
ret = mt2060_writereg(priv, REG_VGAG,
312
(priv->cfg->clock_out << 6) | 0x33);
313
314
if (fe->ops.i2c_gate_ctrl)
315
fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
316
317
return ret;
318
}
319
320
static int mt2060_sleep(struct dvb_frontend *fe)
321
{
322
struct mt2060_priv *priv = fe->tuner_priv;
323
int ret;
324
325
if (fe->ops.i2c_gate_ctrl)
326
fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
327
328
ret = mt2060_writereg(priv, REG_VGAG,
329
(priv->cfg->clock_out << 6) | 0x30);
330
331
if (fe->ops.i2c_gate_ctrl)
332
fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
333
334
return ret;
335
}
336
337
static int mt2060_release(struct dvb_frontend *fe)
338
{
339
kfree(fe->tuner_priv);
340
fe->tuner_priv = NULL;
341
return 0;
342
}
343
344
static const struct dvb_tuner_ops mt2060_tuner_ops = {
345
.info = {
346
.name = "Microtune MT2060",
347
.frequency_min = 48000000,
348
.frequency_max = 860000000,
349
.frequency_step = 50000,
350
},
351
352
.release = mt2060_release,
353
354
.init = mt2060_init,
355
.sleep = mt2060_sleep,
356
357
.set_params = mt2060_set_params,
358
.get_frequency = mt2060_get_frequency,
359
.get_bandwidth = mt2060_get_bandwidth
360
};
361
362
/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
363
struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
364
{
365
struct mt2060_priv *priv = NULL;
366
u8 id = 0;
367
368
priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
369
if (priv == NULL)
370
return NULL;
371
372
priv->cfg = cfg;
373
priv->i2c = i2c;
374
priv->if1_freq = if1;
375
376
if (fe->ops.i2c_gate_ctrl)
377
fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
378
379
if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
380
kfree(priv);
381
return NULL;
382
}
383
384
if (id != PART_REV) {
385
kfree(priv);
386
return NULL;
387
}
388
printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
389
memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
390
391
fe->tuner_priv = priv;
392
393
mt2060_calibrate(priv);
394
395
if (fe->ops.i2c_gate_ctrl)
396
fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
397
398
return fe;
399
}
400
EXPORT_SYMBOL(mt2060_attach);
401
402
MODULE_AUTHOR("Olivier DANET");
403
MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
404
MODULE_LICENSE("GPL");
405
406