Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/media/dvb/frontends/cx24110.c
15112 views
1
/*
2
cx24110 - Single Chip Satellite Channel Receiver driver module
3
4
Copyright (C) 2002 Peter Hettkamp <[email protected]> based on
5
work
6
Copyright (C) 1999 Convergence Integrated Media GmbH <[email protected]>
7
8
This program is free software; you can redistribute it and/or modify
9
it under the terms of the GNU General Public License as published by
10
the Free Software Foundation; either version 2 of the License, or
11
(at your option) any later version.
12
13
This program is distributed in the hope that it will be useful,
14
but WITHOUT ANY WARRANTY; without even the implied warranty of
15
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16
17
GNU General Public License for more details.
18
19
You should have received a copy of the GNU General Public License
20
along with this program; if not, write to the Free Software
21
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
*/
24
25
#include <linux/slab.h>
26
#include <linux/kernel.h>
27
#include <linux/module.h>
28
#include <linux/init.h>
29
30
#include "dvb_frontend.h"
31
#include "cx24110.h"
32
33
34
struct cx24110_state {
35
36
struct i2c_adapter* i2c;
37
38
const struct cx24110_config* config;
39
40
struct dvb_frontend frontend;
41
42
u32 lastber;
43
u32 lastbler;
44
u32 lastesn0;
45
};
46
47
static int debug;
48
#define dprintk(args...) \
49
do { \
50
if (debug) printk(KERN_DEBUG "cx24110: " args); \
51
} while (0)
52
53
static struct {u8 reg; u8 data;} cx24110_regdata[]=
54
/* Comments beginning with @ denote this value should
55
be the default */
56
{{0x09,0x01}, /* SoftResetAll */
57
{0x09,0x00}, /* release reset */
58
{0x01,0xe8}, /* MSB of code rate 27.5MS/s */
59
{0x02,0x17}, /* middle byte " */
60
{0x03,0x29}, /* LSB " */
61
{0x05,0x03}, /* @ DVB mode, standard code rate 3/4 */
62
{0x06,0xa5}, /* @ PLL 60MHz */
63
{0x07,0x01}, /* @ Fclk, i.e. sampling clock, 60MHz */
64
{0x0a,0x00}, /* @ partial chip disables, do not set */
65
{0x0b,0x01}, /* set output clock in gapped mode, start signal low
66
active for first byte */
67
{0x0c,0x11}, /* no parity bytes, large hold time, serial data out */
68
{0x0d,0x6f}, /* @ RS Sync/Unsync thresholds */
69
{0x10,0x40}, /* chip doc is misleading here: write bit 6 as 1
70
to avoid starting the BER counter. Reset the
71
CRC test bit. Finite counting selected */
72
{0x15,0xff}, /* @ size of the limited time window for RS BER
73
estimation. It is <value>*256 RS blocks, this
74
gives approx. 2.6 sec at 27.5MS/s, rate 3/4 */
75
{0x16,0x00}, /* @ enable all RS output ports */
76
{0x17,0x04}, /* @ time window allowed for the RS to sync */
77
{0x18,0xae}, /* @ allow all standard DVB code rates to be scanned
78
for automatically */
79
/* leave the current code rate and normalization
80
registers as they are after reset... */
81
{0x21,0x10}, /* @ during AutoAcq, search each viterbi setting
82
only once */
83
{0x23,0x18}, /* @ size of the limited time window for Viterbi BER
84
estimation. It is <value>*65536 channel bits, i.e.
85
approx. 38ms at 27.5MS/s, rate 3/4 */
86
{0x24,0x24}, /* do not trigger Viterbi CRC test. Finite count window */
87
/* leave front-end AGC parameters at default values */
88
/* leave decimation AGC parameters at default values */
89
{0x35,0x40}, /* disable all interrupts. They are not connected anyway */
90
{0x36,0xff}, /* clear all interrupt pending flags */
91
{0x37,0x00}, /* @ fully enable AutoAcqq state machine */
92
{0x38,0x07}, /* @ enable fade recovery, but not autostart AutoAcq */
93
/* leave the equalizer parameters on their default values */
94
/* leave the final AGC parameters on their default values */
95
{0x41,0x00}, /* @ MSB of front-end derotator frequency */
96
{0x42,0x00}, /* @ middle bytes " */
97
{0x43,0x00}, /* @ LSB " */
98
/* leave the carrier tracking loop parameters on default */
99
/* leave the bit timing loop parameters at default */
100
{0x56,0x4d}, /* set the filtune voltage to 2.7V, as recommended by */
101
/* the cx24108 data sheet for symbol rates above 15MS/s */
102
{0x57,0x00}, /* @ Filter sigma delta enabled, positive */
103
{0x61,0x95}, /* GPIO pins 1-4 have special function */
104
{0x62,0x05}, /* GPIO pin 5 has special function, pin 6 is GPIO */
105
{0x63,0x00}, /* All GPIO pins use CMOS output characteristics */
106
{0x64,0x20}, /* GPIO 6 is input, all others are outputs */
107
{0x6d,0x30}, /* tuner auto mode clock freq 62kHz */
108
{0x70,0x15}, /* use auto mode, tuner word is 21 bits long */
109
{0x73,0x00}, /* @ disable several demod bypasses */
110
{0x74,0x00}, /* @ " */
111
{0x75,0x00} /* @ " */
112
/* the remaining registers are for SEC */
113
};
114
115
116
static int cx24110_writereg (struct cx24110_state* state, int reg, int data)
117
{
118
u8 buf [] = { reg, data };
119
struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
120
int err;
121
122
if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
123
dprintk ("%s: writereg error (err == %i, reg == 0x%02x,"
124
" data == 0x%02x)\n", __func__, err, reg, data);
125
return -EREMOTEIO;
126
}
127
128
return 0;
129
}
130
131
static int cx24110_readreg (struct cx24110_state* state, u8 reg)
132
{
133
int ret;
134
u8 b0 [] = { reg };
135
u8 b1 [] = { 0 };
136
struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
137
{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } };
138
139
ret = i2c_transfer(state->i2c, msg, 2);
140
141
if (ret != 2) return ret;
142
143
return b1[0];
144
}
145
146
static int cx24110_set_inversion (struct cx24110_state* state, fe_spectral_inversion_t inversion)
147
{
148
/* fixme (low): error handling */
149
150
switch (inversion) {
151
case INVERSION_OFF:
152
cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x1);
153
/* AcqSpectrInvDis on. No idea why someone should want this */
154
cx24110_writereg(state,0x5,cx24110_readreg(state,0x5)&0xf7);
155
/* Initial value 0 at start of acq */
156
cx24110_writereg(state,0x22,cx24110_readreg(state,0x22)&0xef);
157
/* current value 0 */
158
/* The cx24110 manual tells us this reg is read-only.
159
But what the heck... set it ayways */
160
break;
161
case INVERSION_ON:
162
cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x1);
163
/* AcqSpectrInvDis on. No idea why someone should want this */
164
cx24110_writereg(state,0x5,cx24110_readreg(state,0x5)|0x08);
165
/* Initial value 1 at start of acq */
166
cx24110_writereg(state,0x22,cx24110_readreg(state,0x22)|0x10);
167
/* current value 1 */
168
break;
169
case INVERSION_AUTO:
170
cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)&0xfe);
171
/* AcqSpectrInvDis off. Leave initial & current states as is */
172
break;
173
default:
174
return -EINVAL;
175
}
176
177
return 0;
178
}
179
180
static int cx24110_set_fec (struct cx24110_state* state, fe_code_rate_t fec)
181
{
182
/* fixme (low): error handling */
183
184
static const int rate[]={-1,1,2,3,5,7,-1};
185
static const int g1[]={-1,0x01,0x02,0x05,0x15,0x45,-1};
186
static const int g2[]={-1,0x01,0x03,0x06,0x1a,0x7a,-1};
187
188
/* Well, the AutoAcq engine of the cx24106 and 24110 automatically
189
searches all enabled viterbi rates, and can handle non-standard
190
rates as well. */
191
192
if (fec>FEC_AUTO)
193
fec=FEC_AUTO;
194
195
if (fec==FEC_AUTO) { /* (re-)establish AutoAcq behaviour */
196
cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)&0xdf);
197
/* clear AcqVitDis bit */
198
cx24110_writereg(state,0x18,0xae);
199
/* allow all DVB standard code rates */
200
cx24110_writereg(state,0x05,(cx24110_readreg(state,0x05)&0xf0)|0x3);
201
/* set nominal Viterbi rate 3/4 */
202
cx24110_writereg(state,0x22,(cx24110_readreg(state,0x22)&0xf0)|0x3);
203
/* set current Viterbi rate 3/4 */
204
cx24110_writereg(state,0x1a,0x05); cx24110_writereg(state,0x1b,0x06);
205
/* set the puncture registers for code rate 3/4 */
206
return 0;
207
} else {
208
cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x20);
209
/* set AcqVitDis bit */
210
if(rate[fec]>0) {
211
cx24110_writereg(state,0x05,(cx24110_readreg(state,0x05)&0xf0)|rate[fec]);
212
/* set nominal Viterbi rate */
213
cx24110_writereg(state,0x22,(cx24110_readreg(state,0x22)&0xf0)|rate[fec]);
214
/* set current Viterbi rate */
215
cx24110_writereg(state,0x1a,g1[fec]);
216
cx24110_writereg(state,0x1b,g2[fec]);
217
/* not sure if this is the right way: I always used AutoAcq mode */
218
} else
219
return -EOPNOTSUPP;
220
/* fixme (low): which is the correct return code? */
221
};
222
return 0;
223
}
224
225
static fe_code_rate_t cx24110_get_fec (struct cx24110_state* state)
226
{
227
int i;
228
229
i=cx24110_readreg(state,0x22)&0x0f;
230
if(!(i&0x08)) {
231
return FEC_1_2 + i - 1;
232
} else {
233
/* fixme (low): a special code rate has been selected. In theory, we need to
234
return a denominator value, a numerator value, and a pair of puncture
235
maps to correctly describe this mode. But this should never happen in
236
practice, because it cannot be set by cx24110_get_fec. */
237
return FEC_NONE;
238
}
239
}
240
241
static int cx24110_set_symbolrate (struct cx24110_state* state, u32 srate)
242
{
243
/* fixme (low): add error handling */
244
u32 ratio;
245
u32 tmp, fclk, BDRI;
246
247
static const u32 bands[]={5000000UL,15000000UL,90999000UL/2};
248
int i;
249
250
dprintk("cx24110 debug: entering %s(%d)\n",__func__,srate);
251
if (srate>90999000UL/2)
252
srate=90999000UL/2;
253
if (srate<500000)
254
srate=500000;
255
256
for(i = 0; (i < ARRAY_SIZE(bands)) && (srate>bands[i]); i++)
257
;
258
/* first, check which sample rate is appropriate: 45, 60 80 or 90 MHz,
259
and set the PLL accordingly (R07[1:0] Fclk, R06[7:4] PLLmult,
260
R06[3:0] PLLphaseDetGain */
261
tmp=cx24110_readreg(state,0x07)&0xfc;
262
if(srate<90999000UL/4) { /* sample rate 45MHz*/
263
cx24110_writereg(state,0x07,tmp);
264
cx24110_writereg(state,0x06,0x78);
265
fclk=90999000UL/2;
266
} else if(srate<60666000UL/2) { /* sample rate 60MHz */
267
cx24110_writereg(state,0x07,tmp|0x1);
268
cx24110_writereg(state,0x06,0xa5);
269
fclk=60666000UL;
270
} else if(srate<80888000UL/2) { /* sample rate 80MHz */
271
cx24110_writereg(state,0x07,tmp|0x2);
272
cx24110_writereg(state,0x06,0x87);
273
fclk=80888000UL;
274
} else { /* sample rate 90MHz */
275
cx24110_writereg(state,0x07,tmp|0x3);
276
cx24110_writereg(state,0x06,0x78);
277
fclk=90999000UL;
278
};
279
dprintk("cx24110 debug: fclk %d Hz\n",fclk);
280
/* we need to divide two integers with approx. 27 bits in 32 bit
281
arithmetic giving a 25 bit result */
282
/* the maximum dividend is 90999000/2, 0x02b6446c, this number is
283
also the most complex divisor. Hence, the dividend has,
284
assuming 32bit unsigned arithmetic, 6 clear bits on top, the
285
divisor 2 unused bits at the bottom. Also, the quotient is
286
always less than 1/2. Borrowed from VES1893.c, of course */
287
288
tmp=srate<<6;
289
BDRI=fclk>>2;
290
ratio=(tmp/BDRI);
291
292
tmp=(tmp%BDRI)<<8;
293
ratio=(ratio<<8)+(tmp/BDRI);
294
295
tmp=(tmp%BDRI)<<8;
296
ratio=(ratio<<8)+(tmp/BDRI);
297
298
tmp=(tmp%BDRI)<<1;
299
ratio=(ratio<<1)+(tmp/BDRI);
300
301
dprintk("srate= %d (range %d, up to %d)\n", srate,i,bands[i]);
302
dprintk("fclk = %d\n", fclk);
303
dprintk("ratio= %08x\n", ratio);
304
305
cx24110_writereg(state, 0x1, (ratio>>16)&0xff);
306
cx24110_writereg(state, 0x2, (ratio>>8)&0xff);
307
cx24110_writereg(state, 0x3, (ratio)&0xff);
308
309
return 0;
310
311
}
312
313
static int _cx24110_pll_write (struct dvb_frontend* fe, const u8 buf[], int len)
314
{
315
struct cx24110_state *state = fe->demodulator_priv;
316
317
if (len != 3)
318
return -EINVAL;
319
320
/* tuner data is 21 bits long, must be left-aligned in data */
321
/* tuner cx24108 is written through a dedicated 3wire interface on the demod chip */
322
/* FIXME (low): add error handling, avoid infinite loops if HW fails... */
323
324
cx24110_writereg(state,0x6d,0x30); /* auto mode at 62kHz */
325
cx24110_writereg(state,0x70,0x15); /* auto mode 21 bits */
326
327
/* if the auto tuner writer is still busy, clear it out */
328
while (cx24110_readreg(state,0x6d)&0x80)
329
cx24110_writereg(state,0x72,0);
330
331
/* write the topmost 8 bits */
332
cx24110_writereg(state,0x72,buf[0]);
333
334
/* wait for the send to be completed */
335
while ((cx24110_readreg(state,0x6d)&0xc0)==0x80)
336
;
337
338
/* send another 8 bytes */
339
cx24110_writereg(state,0x72,buf[1]);
340
while ((cx24110_readreg(state,0x6d)&0xc0)==0x80)
341
;
342
343
/* and the topmost 5 bits of this byte */
344
cx24110_writereg(state,0x72,buf[2]);
345
while ((cx24110_readreg(state,0x6d)&0xc0)==0x80)
346
;
347
348
/* now strobe the enable line once */
349
cx24110_writereg(state,0x6d,0x32);
350
cx24110_writereg(state,0x6d,0x30);
351
352
return 0;
353
}
354
355
static int cx24110_initfe(struct dvb_frontend* fe)
356
{
357
struct cx24110_state *state = fe->demodulator_priv;
358
/* fixme (low): error handling */
359
int i;
360
361
dprintk("%s: init chip\n", __func__);
362
363
for(i = 0; i < ARRAY_SIZE(cx24110_regdata); i++) {
364
cx24110_writereg(state, cx24110_regdata[i].reg, cx24110_regdata[i].data);
365
};
366
367
return 0;
368
}
369
370
static int cx24110_set_voltage (struct dvb_frontend* fe, fe_sec_voltage_t voltage)
371
{
372
struct cx24110_state *state = fe->demodulator_priv;
373
374
switch (voltage) {
375
case SEC_VOLTAGE_13:
376
return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&0x3b)|0xc0);
377
case SEC_VOLTAGE_18:
378
return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&0x3b)|0x40);
379
default:
380
return -EINVAL;
381
};
382
}
383
384
static int cx24110_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst)
385
{
386
int rv, bit;
387
struct cx24110_state *state = fe->demodulator_priv;
388
unsigned long timeout;
389
390
if (burst == SEC_MINI_A)
391
bit = 0x00;
392
else if (burst == SEC_MINI_B)
393
bit = 0x08;
394
else
395
return -EINVAL;
396
397
rv = cx24110_readreg(state, 0x77);
398
if (!(rv & 0x04))
399
cx24110_writereg(state, 0x77, rv | 0x04);
400
401
rv = cx24110_readreg(state, 0x76);
402
cx24110_writereg(state, 0x76, ((rv & 0x90) | 0x40 | bit));
403
timeout = jiffies + msecs_to_jiffies(100);
404
while (!time_after(jiffies, timeout) && !(cx24110_readreg(state, 0x76) & 0x40))
405
; /* wait for LNB ready */
406
407
return 0;
408
}
409
410
static int cx24110_send_diseqc_msg(struct dvb_frontend* fe,
411
struct dvb_diseqc_master_cmd *cmd)
412
{
413
int i, rv;
414
struct cx24110_state *state = fe->demodulator_priv;
415
unsigned long timeout;
416
417
if (cmd->msg_len < 3 || cmd->msg_len > 6)
418
return -EINVAL; /* not implemented */
419
420
for (i = 0; i < cmd->msg_len; i++)
421
cx24110_writereg(state, 0x79 + i, cmd->msg[i]);
422
423
rv = cx24110_readreg(state, 0x77);
424
if (rv & 0x04) {
425
cx24110_writereg(state, 0x77, rv & ~0x04);
426
msleep(30); /* reportedly fixes switching problems */
427
}
428
429
rv = cx24110_readreg(state, 0x76);
430
431
cx24110_writereg(state, 0x76, ((rv & 0x90) | 0x40) | ((cmd->msg_len-3) & 3));
432
timeout = jiffies + msecs_to_jiffies(100);
433
while (!time_after(jiffies, timeout) && !(cx24110_readreg(state, 0x76) & 0x40))
434
; /* wait for LNB ready */
435
436
return 0;
437
}
438
439
static int cx24110_read_status(struct dvb_frontend* fe, fe_status_t* status)
440
{
441
struct cx24110_state *state = fe->demodulator_priv;
442
443
int sync = cx24110_readreg (state, 0x55);
444
445
*status = 0;
446
447
if (sync & 0x10)
448
*status |= FE_HAS_SIGNAL;
449
450
if (sync & 0x08)
451
*status |= FE_HAS_CARRIER;
452
453
sync = cx24110_readreg (state, 0x08);
454
455
if (sync & 0x40)
456
*status |= FE_HAS_VITERBI;
457
458
if (sync & 0x20)
459
*status |= FE_HAS_SYNC;
460
461
if ((sync & 0x60) == 0x60)
462
*status |= FE_HAS_LOCK;
463
464
return 0;
465
}
466
467
static int cx24110_read_ber(struct dvb_frontend* fe, u32* ber)
468
{
469
struct cx24110_state *state = fe->demodulator_priv;
470
471
/* fixme (maybe): value range is 16 bit. Scale? */
472
if(cx24110_readreg(state,0x24)&0x10) {
473
/* the Viterbi error counter has finished one counting window */
474
cx24110_writereg(state,0x24,0x04); /* select the ber reg */
475
state->lastber=cx24110_readreg(state,0x25)|
476
(cx24110_readreg(state,0x26)<<8);
477
cx24110_writereg(state,0x24,0x04); /* start new count window */
478
cx24110_writereg(state,0x24,0x14);
479
}
480
*ber = state->lastber;
481
482
return 0;
483
}
484
485
static int cx24110_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
486
{
487
struct cx24110_state *state = fe->demodulator_priv;
488
489
/* no provision in hardware. Read the frontend AGC accumulator. No idea how to scale this, but I know it is 2s complement */
490
u8 signal = cx24110_readreg (state, 0x27)+128;
491
*signal_strength = (signal << 8) | signal;
492
493
return 0;
494
}
495
496
static int cx24110_read_snr(struct dvb_frontend* fe, u16* snr)
497
{
498
struct cx24110_state *state = fe->demodulator_priv;
499
500
/* no provision in hardware. Can be computed from the Es/N0 estimator, but I don't know how. */
501
if(cx24110_readreg(state,0x6a)&0x80) {
502
/* the Es/N0 error counter has finished one counting window */
503
state->lastesn0=cx24110_readreg(state,0x69)|
504
(cx24110_readreg(state,0x68)<<8);
505
cx24110_writereg(state,0x6a,0x84); /* start new count window */
506
}
507
*snr = state->lastesn0;
508
509
return 0;
510
}
511
512
static int cx24110_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
513
{
514
struct cx24110_state *state = fe->demodulator_priv;
515
u32 lastbyer;
516
517
if(cx24110_readreg(state,0x10)&0x40) {
518
/* the RS error counter has finished one counting window */
519
cx24110_writereg(state,0x10,0x60); /* select the byer reg */
520
lastbyer=cx24110_readreg(state,0x12)|
521
(cx24110_readreg(state,0x13)<<8)|
522
(cx24110_readreg(state,0x14)<<16);
523
cx24110_writereg(state,0x10,0x70); /* select the bler reg */
524
state->lastbler=cx24110_readreg(state,0x12)|
525
(cx24110_readreg(state,0x13)<<8)|
526
(cx24110_readreg(state,0x14)<<16);
527
cx24110_writereg(state,0x10,0x20); /* start new count window */
528
}
529
*ucblocks = state->lastbler;
530
531
return 0;
532
}
533
534
static int cx24110_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
535
{
536
struct cx24110_state *state = fe->demodulator_priv;
537
538
539
if (fe->ops.tuner_ops.set_params) {
540
fe->ops.tuner_ops.set_params(fe, p);
541
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
542
}
543
544
cx24110_set_inversion (state, p->inversion);
545
cx24110_set_fec (state, p->u.qpsk.fec_inner);
546
cx24110_set_symbolrate (state, p->u.qpsk.symbol_rate);
547
cx24110_writereg(state,0x04,0x05); /* start acquisition */
548
549
return 0;
550
}
551
552
static int cx24110_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
553
{
554
struct cx24110_state *state = fe->demodulator_priv;
555
s32 afc; unsigned sclk;
556
557
/* cannot read back tuner settings (freq). Need to have some private storage */
558
559
sclk = cx24110_readreg (state, 0x07) & 0x03;
560
/* ok, real AFC (FEDR) freq. is afc/2^24*fsamp, fsamp=45/60/80/90MHz.
561
* Need 64 bit arithmetic. Is thiss possible in the kernel? */
562
if (sclk==0) sclk=90999000L/2L;
563
else if (sclk==1) sclk=60666000L;
564
else if (sclk==2) sclk=80888000L;
565
else sclk=90999000L;
566
sclk>>=8;
567
afc = sclk*(cx24110_readreg (state, 0x44)&0x1f)+
568
((sclk*cx24110_readreg (state, 0x45))>>8)+
569
((sclk*cx24110_readreg (state, 0x46))>>16);
570
571
p->frequency += afc;
572
p->inversion = (cx24110_readreg (state, 0x22) & 0x10) ?
573
INVERSION_ON : INVERSION_OFF;
574
p->u.qpsk.fec_inner = cx24110_get_fec (state);
575
576
return 0;
577
}
578
579
static int cx24110_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
580
{
581
struct cx24110_state *state = fe->demodulator_priv;
582
583
return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&~0x10)|(((tone==SEC_TONE_ON))?0x10:0));
584
}
585
586
static void cx24110_release(struct dvb_frontend* fe)
587
{
588
struct cx24110_state* state = fe->demodulator_priv;
589
kfree(state);
590
}
591
592
static struct dvb_frontend_ops cx24110_ops;
593
594
struct dvb_frontend* cx24110_attach(const struct cx24110_config* config,
595
struct i2c_adapter* i2c)
596
{
597
struct cx24110_state* state = NULL;
598
int ret;
599
600
/* allocate memory for the internal state */
601
state = kzalloc(sizeof(struct cx24110_state), GFP_KERNEL);
602
if (state == NULL) goto error;
603
604
/* setup the state */
605
state->config = config;
606
state->i2c = i2c;
607
state->lastber = 0;
608
state->lastbler = 0;
609
state->lastesn0 = 0;
610
611
/* check if the demod is there */
612
ret = cx24110_readreg(state, 0x00);
613
if ((ret != 0x5a) && (ret != 0x69)) goto error;
614
615
/* create dvb_frontend */
616
memcpy(&state->frontend.ops, &cx24110_ops, sizeof(struct dvb_frontend_ops));
617
state->frontend.demodulator_priv = state;
618
return &state->frontend;
619
620
error:
621
kfree(state);
622
return NULL;
623
}
624
625
static struct dvb_frontend_ops cx24110_ops = {
626
627
.info = {
628
.name = "Conexant CX24110 DVB-S",
629
.type = FE_QPSK,
630
.frequency_min = 950000,
631
.frequency_max = 2150000,
632
.frequency_stepsize = 1011, /* kHz for QPSK frontends */
633
.frequency_tolerance = 29500,
634
.symbol_rate_min = 1000000,
635
.symbol_rate_max = 45000000,
636
.caps = FE_CAN_INVERSION_AUTO |
637
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
638
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
639
FE_CAN_QPSK | FE_CAN_RECOVER
640
},
641
642
.release = cx24110_release,
643
644
.init = cx24110_initfe,
645
.write = _cx24110_pll_write,
646
.set_frontend = cx24110_set_frontend,
647
.get_frontend = cx24110_get_frontend,
648
.read_status = cx24110_read_status,
649
.read_ber = cx24110_read_ber,
650
.read_signal_strength = cx24110_read_signal_strength,
651
.read_snr = cx24110_read_snr,
652
.read_ucblocks = cx24110_read_ucblocks,
653
654
.diseqc_send_master_cmd = cx24110_send_diseqc_msg,
655
.set_tone = cx24110_set_tone,
656
.set_voltage = cx24110_set_voltage,
657
.diseqc_send_burst = cx24110_diseqc_send_burst,
658
};
659
660
module_param(debug, int, 0644);
661
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
662
663
MODULE_DESCRIPTION("Conexant CX24110 DVB-S Demodulator driver");
664
MODULE_AUTHOR("Peter Hettkamp");
665
MODULE_LICENSE("GPL");
666
667
EXPORT_SYMBOL(cx24110_attach);
668
669