Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/media/radio/wl128x/fmdrv_common.c
15112 views
1
/*
2
* FM Driver for Connectivity chip of Texas Instruments.
3
*
4
* This sub-module of FM driver is common for FM RX and TX
5
* functionality. This module is responsible for:
6
* 1) Forming group of Channel-8 commands to perform particular
7
* functionality (eg., frequency set require more than
8
* one Channel-8 command to be sent to the chip).
9
* 2) Sending each Channel-8 command to the chip and reading
10
* response back over Shared Transport.
11
* 3) Managing TX and RX Queues and Tasklets.
12
* 4) Handling FM Interrupt packet and taking appropriate action.
13
* 5) Loading FM firmware to the chip (common, FM TX, and FM RX
14
* firmware files based on mode selection)
15
*
16
* Copyright (C) 2011 Texas Instruments
17
* Author: Raja Mani <[email protected]>
18
* Author: Manjunatha Halli <[email protected]>
19
*
20
* This program is free software; you can redistribute it and/or modify
21
* it under the terms of the GNU General Public License version 2 as
22
* published by the Free Software Foundation.
23
*
24
* This program is distributed in the hope that it will be useful,
25
* but WITHOUT ANY WARRANTY; without even the implied warranty of
26
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27
* GNU General Public License for more details.
28
*
29
* You should have received a copy of the GNU General Public License
30
* along with this program; if not, write to the Free Software
31
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32
*
33
*/
34
35
#include <linux/module.h>
36
#include <linux/firmware.h>
37
#include <linux/delay.h>
38
#include "fmdrv.h"
39
#include "fmdrv_v4l2.h"
40
#include "fmdrv_common.h"
41
#include <linux/ti_wilink_st.h>
42
#include "fmdrv_rx.h"
43
#include "fmdrv_tx.h"
44
45
/* Region info */
46
static struct region_info region_configs[] = {
47
/* Europe/US */
48
{
49
.chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
50
.bot_freq = 87500, /* 87.5 MHz */
51
.top_freq = 108000, /* 108 MHz */
52
.fm_band = 0,
53
},
54
/* Japan */
55
{
56
.chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
57
.bot_freq = 76000, /* 76 MHz */
58
.top_freq = 90000, /* 90 MHz */
59
.fm_band = 1,
60
},
61
};
62
63
/* Band selection */
64
static u8 default_radio_region; /* Europe/US */
65
module_param(default_radio_region, byte, 0);
66
MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
67
68
/* RDS buffer blocks */
69
static u32 default_rds_buf = 300;
70
module_param(default_rds_buf, uint, 0444);
71
MODULE_PARM_DESC(rds_buf, "RDS buffer entries");
72
73
/* Radio Nr */
74
static u32 radio_nr = -1;
75
module_param(radio_nr, int, 0444);
76
MODULE_PARM_DESC(radio_nr, "Radio Nr");
77
78
/* FM irq handlers forward declaration */
79
static void fm_irq_send_flag_getcmd(struct fmdev *);
80
static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
81
static void fm_irq_handle_hw_malfunction(struct fmdev *);
82
static void fm_irq_handle_rds_start(struct fmdev *);
83
static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
84
static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
85
static void fm_irq_handle_rds_finish(struct fmdev *);
86
static void fm_irq_handle_tune_op_ended(struct fmdev *);
87
static void fm_irq_handle_power_enb(struct fmdev *);
88
static void fm_irq_handle_low_rssi_start(struct fmdev *);
89
static void fm_irq_afjump_set_pi(struct fmdev *);
90
static void fm_irq_handle_set_pi_resp(struct fmdev *);
91
static void fm_irq_afjump_set_pimask(struct fmdev *);
92
static void fm_irq_handle_set_pimask_resp(struct fmdev *);
93
static void fm_irq_afjump_setfreq(struct fmdev *);
94
static void fm_irq_handle_setfreq_resp(struct fmdev *);
95
static void fm_irq_afjump_enableint(struct fmdev *);
96
static void fm_irq_afjump_enableint_resp(struct fmdev *);
97
static void fm_irq_start_afjump(struct fmdev *);
98
static void fm_irq_handle_start_afjump_resp(struct fmdev *);
99
static void fm_irq_afjump_rd_freq(struct fmdev *);
100
static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
101
static void fm_irq_handle_low_rssi_finish(struct fmdev *);
102
static void fm_irq_send_intmsk_cmd(struct fmdev *);
103
static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
104
105
/*
106
* When FM common module receives interrupt packet, following handlers
107
* will be executed one after another to service the interrupt(s)
108
*/
109
enum fmc_irq_handler_index {
110
FM_SEND_FLAG_GETCMD_IDX,
111
FM_HANDLE_FLAG_GETCMD_RESP_IDX,
112
113
/* HW malfunction irq handler */
114
FM_HW_MAL_FUNC_IDX,
115
116
/* RDS threshold reached irq handler */
117
FM_RDS_START_IDX,
118
FM_RDS_SEND_RDS_GETCMD_IDX,
119
FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
120
FM_RDS_FINISH_IDX,
121
122
/* Tune operation ended irq handler */
123
FM_HW_TUNE_OP_ENDED_IDX,
124
125
/* TX power enable irq handler */
126
FM_HW_POWER_ENB_IDX,
127
128
/* Low RSSI irq handler */
129
FM_LOW_RSSI_START_IDX,
130
FM_AF_JUMP_SETPI_IDX,
131
FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
132
FM_AF_JUMP_SETPI_MASK_IDX,
133
FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
134
FM_AF_JUMP_SET_AF_FREQ_IDX,
135
FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
136
FM_AF_JUMP_ENABLE_INT_IDX,
137
FM_AF_JUMP_ENABLE_INT_RESP_IDX,
138
FM_AF_JUMP_START_AFJUMP_IDX,
139
FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
140
FM_AF_JUMP_RD_FREQ_IDX,
141
FM_AF_JUMP_RD_FREQ_RESP_IDX,
142
FM_LOW_RSSI_FINISH_IDX,
143
144
/* Interrupt process post action */
145
FM_SEND_INTMSK_CMD_IDX,
146
FM_HANDLE_INTMSK_CMD_RESP_IDX,
147
};
148
149
/* FM interrupt handler table */
150
static int_handler_prototype int_handler_table[] = {
151
fm_irq_send_flag_getcmd,
152
fm_irq_handle_flag_getcmd_resp,
153
fm_irq_handle_hw_malfunction,
154
fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
155
fm_irq_send_rdsdata_getcmd,
156
fm_irq_handle_rdsdata_getcmd_resp,
157
fm_irq_handle_rds_finish,
158
fm_irq_handle_tune_op_ended,
159
fm_irq_handle_power_enb, /* TX power enable irq handler */
160
fm_irq_handle_low_rssi_start,
161
fm_irq_afjump_set_pi,
162
fm_irq_handle_set_pi_resp,
163
fm_irq_afjump_set_pimask,
164
fm_irq_handle_set_pimask_resp,
165
fm_irq_afjump_setfreq,
166
fm_irq_handle_setfreq_resp,
167
fm_irq_afjump_enableint,
168
fm_irq_afjump_enableint_resp,
169
fm_irq_start_afjump,
170
fm_irq_handle_start_afjump_resp,
171
fm_irq_afjump_rd_freq,
172
fm_irq_afjump_rd_freq_resp,
173
fm_irq_handle_low_rssi_finish,
174
fm_irq_send_intmsk_cmd, /* Interrupt process post action */
175
fm_irq_handle_intmsk_cmd_resp
176
};
177
178
long (*g_st_write) (struct sk_buff *skb);
179
static struct completion wait_for_fmdrv_reg_comp;
180
181
static inline void fm_irq_call(struct fmdev *fmdev)
182
{
183
fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
184
}
185
186
/* Continue next function in interrupt handler table */
187
static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
188
{
189
fmdev->irq_info.stage = stage;
190
fm_irq_call(fmdev);
191
}
192
193
static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
194
{
195
fmdev->irq_info.stage = stage;
196
mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
197
}
198
199
#ifdef FM_DUMP_TXRX_PKT
200
/* To dump outgoing FM Channel-8 packets */
201
inline void dump_tx_skb_data(struct sk_buff *skb)
202
{
203
int len, len_org;
204
u8 index;
205
struct fm_cmd_msg_hdr *cmd_hdr;
206
207
cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
208
printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
209
fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
210
cmd_hdr->len, cmd_hdr->op,
211
cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
212
213
len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
214
if (len_org > 0) {
215
printk("\n data(%d): ", cmd_hdr->dlen);
216
len = min(len_org, 14);
217
for (index = 0; index < len; index++)
218
printk("%x ",
219
skb->data[FM_CMD_MSG_HDR_SIZE + index]);
220
printk("%s", (len_org > 14) ? ".." : "");
221
}
222
printk("\n");
223
}
224
225
/* To dump incoming FM Channel-8 packets */
226
inline void dump_rx_skb_data(struct sk_buff *skb)
227
{
228
int len, len_org;
229
u8 index;
230
struct fm_event_msg_hdr *evt_hdr;
231
232
evt_hdr = (struct fm_event_msg_hdr *)skb->data;
233
printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x "
234
"opcode:%02x type:%s dlen:%02x", evt_hdr->hdr, evt_hdr->len,
235
evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
236
(evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
237
238
len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
239
if (len_org > 0) {
240
printk("\n data(%d): ", evt_hdr->dlen);
241
len = min(len_org, 14);
242
for (index = 0; index < len; index++)
243
printk("%x ",
244
skb->data[FM_EVT_MSG_HDR_SIZE + index]);
245
printk("%s", (len_org > 14) ? ".." : "");
246
}
247
printk("\n");
248
}
249
#endif
250
251
void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
252
{
253
fmdev->rx.region = region_configs[region_to_set];
254
}
255
256
/*
257
* FM common sub-module will schedule this tasklet whenever it receives
258
* FM packet from ST driver.
259
*/
260
static void recv_tasklet(unsigned long arg)
261
{
262
struct fmdev *fmdev;
263
struct fm_irq *irq_info;
264
struct fm_event_msg_hdr *evt_hdr;
265
struct sk_buff *skb;
266
u8 num_fm_hci_cmds;
267
unsigned long flags;
268
269
fmdev = (struct fmdev *)arg;
270
irq_info = &fmdev->irq_info;
271
/* Process all packets in the RX queue */
272
while ((skb = skb_dequeue(&fmdev->rx_q))) {
273
if (skb->len < sizeof(struct fm_event_msg_hdr)) {
274
fmerr("skb(%p) has only %d bytes, "
275
"at least need %zu bytes to decode\n", skb,
276
skb->len, sizeof(struct fm_event_msg_hdr));
277
kfree_skb(skb);
278
continue;
279
}
280
281
evt_hdr = (void *)skb->data;
282
num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
283
284
/* FM interrupt packet? */
285
if (evt_hdr->op == FM_INTERRUPT) {
286
/* FM interrupt handler started already? */
287
if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
288
set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
289
if (irq_info->stage != 0) {
290
fmerr("Inval stage resetting to zero\n");
291
irq_info->stage = 0;
292
}
293
294
/*
295
* Execute first function in interrupt handler
296
* table.
297
*/
298
irq_info->handlers[irq_info->stage](fmdev);
299
} else {
300
set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
301
}
302
kfree_skb(skb);
303
}
304
/* Anyone waiting for this with completion handler? */
305
else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
306
307
spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
308
fmdev->resp_skb = skb;
309
spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
310
complete(fmdev->resp_comp);
311
312
fmdev->resp_comp = NULL;
313
atomic_set(&fmdev->tx_cnt, 1);
314
}
315
/* Is this for interrupt handler? */
316
else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
317
if (fmdev->resp_skb != NULL)
318
fmerr("Response SKB ptr not NULL\n");
319
320
spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
321
fmdev->resp_skb = skb;
322
spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
323
324
/* Execute interrupt handler where state index points */
325
irq_info->handlers[irq_info->stage](fmdev);
326
327
kfree_skb(skb);
328
atomic_set(&fmdev->tx_cnt, 1);
329
} else {
330
fmerr("Nobody claimed SKB(%p),purging\n", skb);
331
}
332
333
/*
334
* Check flow control field. If Num_FM_HCI_Commands field is
335
* not zero, schedule FM TX tasklet.
336
*/
337
if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
338
if (!skb_queue_empty(&fmdev->tx_q))
339
tasklet_schedule(&fmdev->tx_task);
340
}
341
}
342
343
/* FM send tasklet: is scheduled when FM packet has to be sent to chip */
344
static void send_tasklet(unsigned long arg)
345
{
346
struct fmdev *fmdev;
347
struct sk_buff *skb;
348
int len;
349
350
fmdev = (struct fmdev *)arg;
351
352
if (!atomic_read(&fmdev->tx_cnt))
353
return;
354
355
/* Check, is there any timeout happened to last transmitted packet */
356
if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
357
fmerr("TX timeout occurred\n");
358
atomic_set(&fmdev->tx_cnt, 1);
359
}
360
361
/* Send queued FM TX packets */
362
skb = skb_dequeue(&fmdev->tx_q);
363
if (!skb)
364
return;
365
366
atomic_dec(&fmdev->tx_cnt);
367
fmdev->pre_op = fm_cb(skb)->fm_op;
368
369
if (fmdev->resp_comp != NULL)
370
fmerr("Response completion handler is not NULL\n");
371
372
fmdev->resp_comp = fm_cb(skb)->completion;
373
374
/* Write FM packet to ST driver */
375
len = g_st_write(skb);
376
if (len < 0) {
377
kfree_skb(skb);
378
fmdev->resp_comp = NULL;
379
fmerr("TX tasklet failed to send skb(%p)\n", skb);
380
atomic_set(&fmdev->tx_cnt, 1);
381
} else {
382
fmdev->last_tx_jiffies = jiffies;
383
}
384
}
385
386
/*
387
* Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
388
* transmission
389
*/
390
static u32 fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
391
int payload_len, struct completion *wait_completion)
392
{
393
struct sk_buff *skb;
394
struct fm_cmd_msg_hdr *hdr;
395
int size;
396
397
if (fm_op >= FM_INTERRUPT) {
398
fmerr("Invalid fm opcode - %d\n", fm_op);
399
return -EINVAL;
400
}
401
if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
402
fmerr("Payload data is NULL during fw download\n");
403
return -EINVAL;
404
}
405
if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
406
size =
407
FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
408
else
409
size = payload_len;
410
411
skb = alloc_skb(size, GFP_ATOMIC);
412
if (!skb) {
413
fmerr("No memory to create new SKB\n");
414
return -ENOMEM;
415
}
416
/*
417
* Don't fill FM header info for the commands which come from
418
* FM firmware file.
419
*/
420
if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
421
test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
422
/* Fill command header info */
423
hdr = (struct fm_cmd_msg_hdr *)skb_put(skb, FM_CMD_MSG_HDR_SIZE);
424
hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */
425
426
/* 3 (fm_opcode,rd_wr,dlen) + payload len) */
427
hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
428
429
/* FM opcode */
430
hdr->op = fm_op;
431
432
/* read/write type */
433
hdr->rd_wr = type;
434
hdr->dlen = payload_len;
435
fm_cb(skb)->fm_op = fm_op;
436
437
/*
438
* If firmware download has finished and the command is
439
* not a read command then payload is != NULL - a write
440
* command with u16 payload - convert to be16
441
*/
442
if (payload != NULL)
443
*(u16 *)payload = cpu_to_be16(*(u16 *)payload);
444
445
} else if (payload != NULL) {
446
fm_cb(skb)->fm_op = *((u8 *)payload + 2);
447
}
448
if (payload != NULL)
449
memcpy(skb_put(skb, payload_len), payload, payload_len);
450
451
fm_cb(skb)->completion = wait_completion;
452
skb_queue_tail(&fmdev->tx_q, skb);
453
tasklet_schedule(&fmdev->tx_task);
454
455
return 0;
456
}
457
458
/* Sends FM Channel-8 command to the chip and waits for the response */
459
u32 fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
460
unsigned int payload_len, void *response, int *response_len)
461
{
462
struct sk_buff *skb;
463
struct fm_event_msg_hdr *evt_hdr;
464
unsigned long flags;
465
u32 ret;
466
467
init_completion(&fmdev->maintask_comp);
468
ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
469
&fmdev->maintask_comp);
470
if (ret)
471
return ret;
472
473
ret = wait_for_completion_timeout(&fmdev->maintask_comp, FM_DRV_TX_TIMEOUT);
474
if (!ret) {
475
fmerr("Timeout(%d sec),didn't get reg"
476
"completion signal from RX tasklet\n",
477
jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
478
return -ETIMEDOUT;
479
}
480
if (!fmdev->resp_skb) {
481
fmerr("Response SKB is missing\n");
482
return -EFAULT;
483
}
484
spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
485
skb = fmdev->resp_skb;
486
fmdev->resp_skb = NULL;
487
spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
488
489
evt_hdr = (void *)skb->data;
490
if (evt_hdr->status != 0) {
491
fmerr("Received event pkt status(%d) is not zero\n",
492
evt_hdr->status);
493
kfree_skb(skb);
494
return -EIO;
495
}
496
/* Send response data to caller */
497
if (response != NULL && response_len != NULL && evt_hdr->dlen) {
498
/* Skip header info and copy only response data */
499
skb_pull(skb, sizeof(struct fm_event_msg_hdr));
500
memcpy(response, skb->data, evt_hdr->dlen);
501
*response_len = evt_hdr->dlen;
502
} else if (response_len != NULL && evt_hdr->dlen == 0) {
503
*response_len = 0;
504
}
505
kfree_skb(skb);
506
507
return 0;
508
}
509
510
/* --- Helper functions used in FM interrupt handlers ---*/
511
static inline u32 check_cmdresp_status(struct fmdev *fmdev,
512
struct sk_buff **skb)
513
{
514
struct fm_event_msg_hdr *fm_evt_hdr;
515
unsigned long flags;
516
517
del_timer(&fmdev->irq_info.timer);
518
519
spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
520
*skb = fmdev->resp_skb;
521
fmdev->resp_skb = NULL;
522
spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
523
524
fm_evt_hdr = (void *)(*skb)->data;
525
if (fm_evt_hdr->status != 0) {
526
fmerr("irq: opcode %x response status is not zero "
527
"Initiating irq recovery process\n",
528
fm_evt_hdr->op);
529
530
mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
531
return -1;
532
}
533
534
return 0;
535
}
536
537
static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
538
{
539
struct sk_buff *skb;
540
541
if (!check_cmdresp_status(fmdev, &skb))
542
fm_irq_call_stage(fmdev, stage);
543
}
544
545
/*
546
* Interrupt process timeout handler.
547
* One of the irq handler did not get proper response from the chip. So take
548
* recovery action here. FM interrupts are disabled in the beginning of
549
* interrupt process. Therefore reset stage index to re-enable default
550
* interrupts. So that next interrupt will be processed as usual.
551
*/
552
static void int_timeout_handler(unsigned long data)
553
{
554
struct fmdev *fmdev;
555
struct fm_irq *fmirq;
556
557
fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
558
fmdev = (struct fmdev *)data;
559
fmirq = &fmdev->irq_info;
560
fmirq->retry++;
561
562
if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
563
/* Stop recovery action (interrupt reenable process) and
564
* reset stage index & retry count values */
565
fmirq->stage = 0;
566
fmirq->retry = 0;
567
fmerr("Recovery action failed during"
568
"irq processing, max retry reached\n");
569
return;
570
}
571
fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
572
}
573
574
/* --------- FM interrupt handlers ------------*/
575
static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
576
{
577
u16 flag;
578
579
/* Send FLAG_GET command , to know the source of interrupt */
580
if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
581
fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
582
}
583
584
static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
585
{
586
struct sk_buff *skb;
587
struct fm_event_msg_hdr *fm_evt_hdr;
588
589
if (check_cmdresp_status(fmdev, &skb))
590
return;
591
592
fm_evt_hdr = (void *)skb->data;
593
594
/* Skip header info and copy only response data */
595
skb_pull(skb, sizeof(struct fm_event_msg_hdr));
596
memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
597
598
fmdev->irq_info.flag = be16_to_cpu(fmdev->irq_info.flag);
599
fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
600
601
/* Continue next function in interrupt handler table */
602
fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
603
}
604
605
static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
606
{
607
if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
608
fmerr("irq: HW MAL int received - do nothing\n");
609
610
/* Continue next function in interrupt handler table */
611
fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
612
}
613
614
static void fm_irq_handle_rds_start(struct fmdev *fmdev)
615
{
616
if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
617
fmdbg("irq: rds threshold reached\n");
618
fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
619
} else {
620
/* Continue next function in interrupt handler table */
621
fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
622
}
623
624
fm_irq_call(fmdev);
625
}
626
627
static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
628
{
629
/* Send the command to read RDS data from the chip */
630
if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
631
(FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
632
fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
633
}
634
635
/* Keeps track of current RX channel AF (Alternate Frequency) */
636
static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
637
{
638
struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
639
u8 reg_idx = fmdev->rx.region.fm_band;
640
u8 index;
641
u32 freq;
642
643
/* First AF indicates the number of AF follows. Reset the list */
644
if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
645
fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
646
fmdev->rx.stat_info.afcache_size = 0;
647
fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
648
return;
649
}
650
651
if (af < FM_RDS_MIN_AF)
652
return;
653
if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
654
return;
655
if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
656
return;
657
658
freq = fmdev->rx.region.bot_freq + (af * 100);
659
if (freq == fmdev->rx.freq) {
660
fmdbg("Current freq(%d) is matching with received AF(%d)\n",
661
fmdev->rx.freq, freq);
662
return;
663
}
664
/* Do check in AF cache */
665
for (index = 0; index < stat_info->afcache_size; index++) {
666
if (stat_info->af_cache[index] == freq)
667
break;
668
}
669
/* Reached the limit of the list - ignore the next AF */
670
if (index == stat_info->af_list_max) {
671
fmdbg("AF cache is full\n");
672
return;
673
}
674
/*
675
* If we reached the end of the list then this AF is not
676
* in the list - add it.
677
*/
678
if (index == stat_info->afcache_size) {
679
fmdbg("Storing AF %d to cache index %d\n", freq, index);
680
stat_info->af_cache[index] = freq;
681
stat_info->afcache_size++;
682
}
683
}
684
685
/*
686
* Converts RDS buffer data from big endian format
687
* to little endian format.
688
*/
689
static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
690
struct fm_rdsdata_format *rds_format)
691
{
692
u8 byte1;
693
u8 index = 0;
694
u8 *rds_buff;
695
696
/*
697
* Since in Orca the 2 RDS Data bytes are in little endian and
698
* in Dolphin they are in big endian, the parsing of the RDS data
699
* is chip dependent
700
*/
701
if (fmdev->asci_id != 0x6350) {
702
rds_buff = &rds_format->data.groupdatabuff.buff[0];
703
while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
704
byte1 = rds_buff[index];
705
rds_buff[index] = rds_buff[index + 1];
706
rds_buff[index + 1] = byte1;
707
index += 2;
708
}
709
}
710
}
711
712
static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
713
{
714
struct sk_buff *skb;
715
struct fm_rdsdata_format rds_fmt;
716
struct fm_rds *rds = &fmdev->rx.rds;
717
unsigned long group_idx, flags;
718
u8 *rds_data, meta_data, tmpbuf[3];
719
u8 type, blk_idx;
720
u16 cur_picode;
721
u32 rds_len;
722
723
if (check_cmdresp_status(fmdev, &skb))
724
return;
725
726
/* Skip header info */
727
skb_pull(skb, sizeof(struct fm_event_msg_hdr));
728
rds_data = skb->data;
729
rds_len = skb->len;
730
731
/* Parse the RDS data */
732
while (rds_len >= FM_RDS_BLK_SIZE) {
733
meta_data = rds_data[2];
734
/* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
735
type = (meta_data & 0x07);
736
737
/* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
738
blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
739
fmdbg("Block index:%d(%s)\n", blk_idx,
740
(meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
741
742
if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
743
break;
744
745
if (blk_idx < FM_RDS_BLK_IDX_A || blk_idx > FM_RDS_BLK_IDX_D) {
746
fmdbg("Block sequence mismatch\n");
747
rds->last_blk_idx = -1;
748
break;
749
}
750
751
/* Skip checkword (control) byte and copy only data byte */
752
memcpy(&rds_fmt.data.groupdatabuff.
753
buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
754
rds_data, (FM_RDS_BLK_SIZE - 1));
755
756
rds->last_blk_idx = blk_idx;
757
758
/* If completed a whole group then handle it */
759
if (blk_idx == FM_RDS_BLK_IDX_D) {
760
fmdbg("Good block received\n");
761
fm_rdsparse_swapbytes(fmdev, &rds_fmt);
762
763
/*
764
* Extract PI code and store in local cache.
765
* We need this during AF switch processing.
766
*/
767
cur_picode = be16_to_cpu(rds_fmt.data.groupgeneral.pidata);
768
if (fmdev->rx.stat_info.picode != cur_picode)
769
fmdev->rx.stat_info.picode = cur_picode;
770
771
fmdbg("picode:%d\n", cur_picode);
772
773
group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
774
fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
775
(group_idx % 2) ? "B" : "A");
776
777
group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
778
if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
779
fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
780
fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
781
}
782
}
783
rds_len -= FM_RDS_BLK_SIZE;
784
rds_data += FM_RDS_BLK_SIZE;
785
}
786
787
/* Copy raw rds data to internal rds buffer */
788
rds_data = skb->data;
789
rds_len = skb->len;
790
791
spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
792
while (rds_len > 0) {
793
/*
794
* Fill RDS buffer as per V4L2 specification.
795
* Store control byte
796
*/
797
type = (rds_data[2] & 0x07);
798
blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
799
tmpbuf[2] = blk_idx; /* Offset name */
800
tmpbuf[2] |= blk_idx << 3; /* Received offset */
801
802
/* Store data byte */
803
tmpbuf[0] = rds_data[0];
804
tmpbuf[1] = rds_data[1];
805
806
memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
807
rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
808
809
/* Check for overflow & start over */
810
if (rds->wr_idx == rds->rd_idx) {
811
fmdbg("RDS buffer overflow\n");
812
rds->wr_idx = 0;
813
rds->rd_idx = 0;
814
break;
815
}
816
rds_len -= FM_RDS_BLK_SIZE;
817
rds_data += FM_RDS_BLK_SIZE;
818
}
819
spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
820
821
/* Wakeup read queue */
822
if (rds->wr_idx != rds->rd_idx)
823
wake_up_interruptible(&rds->read_queue);
824
825
fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
826
}
827
828
static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
829
{
830
fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
831
}
832
833
static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
834
{
835
if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
836
irq_info.mask) {
837
fmdbg("irq: tune ended/bandlimit reached\n");
838
if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
839
fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
840
} else {
841
complete(&fmdev->maintask_comp);
842
fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
843
}
844
} else
845
fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
846
847
fm_irq_call(fmdev);
848
}
849
850
static void fm_irq_handle_power_enb(struct fmdev *fmdev)
851
{
852
if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
853
fmdbg("irq: Power Enabled/Disabled\n");
854
complete(&fmdev->maintask_comp);
855
}
856
857
fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
858
}
859
860
static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
861
{
862
if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
863
(fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
864
(fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
865
(fmdev->rx.stat_info.afcache_size != 0)) {
866
fmdbg("irq: rssi level has fallen below threshold level\n");
867
868
/* Disable further low RSSI interrupts */
869
fmdev->irq_info.mask &= ~FM_LEV_EVENT;
870
871
fmdev->rx.afjump_idx = 0;
872
fmdev->rx.freq_before_jump = fmdev->rx.freq;
873
fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
874
} else {
875
/* Continue next function in interrupt handler table */
876
fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
877
}
878
879
fm_irq_call(fmdev);
880
}
881
882
static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
883
{
884
u16 payload;
885
886
/* Set PI code - must be updated if the AF list is not empty */
887
payload = fmdev->rx.stat_info.picode;
888
if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
889
fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
890
}
891
892
static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
893
{
894
fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
895
}
896
897
/*
898
* Set PI mask.
899
* 0xFFFF = Enable PI code matching
900
* 0x0000 = Disable PI code matching
901
*/
902
static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
903
{
904
u16 payload;
905
906
payload = 0x0000;
907
if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
908
fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
909
}
910
911
static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
912
{
913
fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
914
}
915
916
static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
917
{
918
u16 frq_index;
919
u16 payload;
920
921
fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
922
frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
923
fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
924
925
payload = frq_index;
926
if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
927
fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
928
}
929
930
static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
931
{
932
fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
933
}
934
935
static void fm_irq_afjump_enableint(struct fmdev *fmdev)
936
{
937
u16 payload;
938
939
/* Enable FR (tuning operation ended) interrupt */
940
payload = FM_FR_EVENT;
941
if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
942
fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
943
}
944
945
static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
946
{
947
fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
948
}
949
950
static void fm_irq_start_afjump(struct fmdev *fmdev)
951
{
952
u16 payload;
953
954
payload = FM_TUNER_AF_JUMP_MODE;
955
if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
956
sizeof(payload), NULL))
957
fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
958
}
959
960
static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
961
{
962
struct sk_buff *skb;
963
964
if (check_cmdresp_status(fmdev, &skb))
965
return;
966
967
fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
968
set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
969
clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
970
}
971
972
static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
973
{
974
u16 payload;
975
976
if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
977
fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
978
}
979
980
static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
981
{
982
struct sk_buff *skb;
983
u16 read_freq;
984
u32 curr_freq, jumped_freq;
985
986
if (check_cmdresp_status(fmdev, &skb))
987
return;
988
989
/* Skip header info and copy only response data */
990
skb_pull(skb, sizeof(struct fm_event_msg_hdr));
991
memcpy(&read_freq, skb->data, sizeof(read_freq));
992
read_freq = be16_to_cpu(read_freq);
993
curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
994
995
jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
996
997
/* If the frequency was changed the jump succeeded */
998
if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
999
fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
1000
fmdev->rx.freq = curr_freq;
1001
fm_rx_reset_rds_cache(fmdev);
1002
1003
/* AF feature is on, enable low level RSSI interrupt */
1004
if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
1005
fmdev->irq_info.mask |= FM_LEV_EVENT;
1006
1007
fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1008
} else { /* jump to the next freq in the AF list */
1009
fmdev->rx.afjump_idx++;
1010
1011
/* If we reached the end of the list - stop searching */
1012
if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1013
fmdbg("AF switch processing failed\n");
1014
fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1015
} else { /* AF List is not over - try next one */
1016
1017
fmdbg("Trying next freq in AF cache\n");
1018
fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1019
}
1020
}
1021
fm_irq_call(fmdev);
1022
}
1023
1024
static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1025
{
1026
fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1027
}
1028
1029
static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1030
{
1031
u16 payload;
1032
1033
/* Re-enable FM interrupts */
1034
payload = fmdev->irq_info.mask;
1035
1036
if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1037
sizeof(payload), NULL))
1038
fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1039
}
1040
1041
static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1042
{
1043
struct sk_buff *skb;
1044
1045
if (check_cmdresp_status(fmdev, &skb))
1046
return;
1047
/*
1048
* This is last function in interrupt table to be executed.
1049
* So, reset stage index to 0.
1050
*/
1051
fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1052
1053
/* Start processing any pending interrupt */
1054
if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1055
fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1056
else
1057
clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1058
}
1059
1060
/* Returns availability of RDS data in internel buffer */
1061
u32 fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1062
struct poll_table_struct *pts)
1063
{
1064
poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1065
if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1066
return 0;
1067
1068
return -EAGAIN;
1069
}
1070
1071
/* Copies RDS data from internal buffer to user buffer */
1072
u32 fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1073
u8 __user *buf, size_t count)
1074
{
1075
u32 block_count;
1076
unsigned long flags;
1077
int ret;
1078
1079
if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1080
if (file->f_flags & O_NONBLOCK)
1081
return -EWOULDBLOCK;
1082
1083
ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1084
(fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1085
if (ret)
1086
return -EINTR;
1087
}
1088
1089
/* Calculate block count from byte count */
1090
count /= 3;
1091
block_count = 0;
1092
ret = 0;
1093
1094
spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1095
1096
while (block_count < count) {
1097
if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx)
1098
break;
1099
1100
if (copy_to_user(buf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1101
FM_RDS_BLK_SIZE))
1102
break;
1103
1104
fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1105
if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1106
fmdev->rx.rds.rd_idx = 0;
1107
1108
block_count++;
1109
buf += FM_RDS_BLK_SIZE;
1110
ret += FM_RDS_BLK_SIZE;
1111
}
1112
spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1113
return ret;
1114
}
1115
1116
u32 fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1117
{
1118
switch (fmdev->curr_fmmode) {
1119
case FM_MODE_RX:
1120
return fm_rx_set_freq(fmdev, freq_to_set);
1121
1122
case FM_MODE_TX:
1123
return fm_tx_set_freq(fmdev, freq_to_set);
1124
1125
default:
1126
return -EINVAL;
1127
}
1128
}
1129
1130
u32 fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1131
{
1132
if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1133
fmerr("RX frequency is not set\n");
1134
return -EPERM;
1135
}
1136
if (cur_tuned_frq == NULL) {
1137
fmerr("Invalid memory\n");
1138
return -ENOMEM;
1139
}
1140
1141
switch (fmdev->curr_fmmode) {
1142
case FM_MODE_RX:
1143
*cur_tuned_frq = fmdev->rx.freq;
1144
return 0;
1145
1146
case FM_MODE_TX:
1147
*cur_tuned_frq = 0; /* TODO : Change this later */
1148
return 0;
1149
1150
default:
1151
return -EINVAL;
1152
}
1153
1154
}
1155
1156
u32 fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1157
{
1158
switch (fmdev->curr_fmmode) {
1159
case FM_MODE_RX:
1160
return fm_rx_set_region(fmdev, region_to_set);
1161
1162
case FM_MODE_TX:
1163
return fm_tx_set_region(fmdev, region_to_set);
1164
1165
default:
1166
return -EINVAL;
1167
}
1168
}
1169
1170
u32 fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1171
{
1172
switch (fmdev->curr_fmmode) {
1173
case FM_MODE_RX:
1174
return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1175
1176
case FM_MODE_TX:
1177
return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1178
1179
default:
1180
return -EINVAL;
1181
}
1182
}
1183
1184
u32 fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1185
{
1186
switch (fmdev->curr_fmmode) {
1187
case FM_MODE_RX:
1188
return fm_rx_set_stereo_mono(fmdev, mode);
1189
1190
case FM_MODE_TX:
1191
return fm_tx_set_stereo_mono(fmdev, mode);
1192
1193
default:
1194
return -EINVAL;
1195
}
1196
}
1197
1198
u32 fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1199
{
1200
switch (fmdev->curr_fmmode) {
1201
case FM_MODE_RX:
1202
return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1203
1204
case FM_MODE_TX:
1205
return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1206
1207
default:
1208
return -EINVAL;
1209
}
1210
}
1211
1212
/* Sends power off command to the chip */
1213
static u32 fm_power_down(struct fmdev *fmdev)
1214
{
1215
u16 payload;
1216
u32 ret;
1217
1218
if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1219
fmerr("FM core is not ready\n");
1220
return -EPERM;
1221
}
1222
if (fmdev->curr_fmmode == FM_MODE_OFF) {
1223
fmdbg("FM chip is already in OFF state\n");
1224
return 0;
1225
}
1226
1227
payload = 0x0;
1228
ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1229
sizeof(payload), NULL, NULL);
1230
if (ret < 0)
1231
return ret;
1232
1233
return fmc_release(fmdev);
1234
}
1235
1236
/* Reads init command from FM firmware file and loads to the chip */
1237
static u32 fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1238
{
1239
const struct firmware *fw_entry;
1240
struct bts_header *fw_header;
1241
struct bts_action *action;
1242
struct bts_action_delay *delay;
1243
u8 *fw_data;
1244
int ret, fw_len, cmd_cnt;
1245
1246
cmd_cnt = 0;
1247
set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1248
1249
ret = request_firmware(&fw_entry, fw_name,
1250
&fmdev->radio_dev->dev);
1251
if (ret < 0) {
1252
fmerr("Unable to read firmware(%s) content\n", fw_name);
1253
return ret;
1254
}
1255
fmdbg("Firmware(%s) length : %d bytes\n", fw_name, fw_entry->size);
1256
1257
fw_data = (void *)fw_entry->data;
1258
fw_len = fw_entry->size;
1259
1260
fw_header = (struct bts_header *)fw_data;
1261
if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1262
fmerr("%s not a legal TI firmware file\n", fw_name);
1263
ret = -EINVAL;
1264
goto rel_fw;
1265
}
1266
fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1267
1268
/* Skip file header info , we already verified it */
1269
fw_data += sizeof(struct bts_header);
1270
fw_len -= sizeof(struct bts_header);
1271
1272
while (fw_data && fw_len > 0) {
1273
action = (struct bts_action *)fw_data;
1274
1275
switch (action->type) {
1276
case ACTION_SEND_COMMAND: /* Send */
1277
if (fmc_send_cmd(fmdev, 0, 0, action->data,
1278
action->size, NULL, NULL))
1279
goto rel_fw;
1280
1281
cmd_cnt++;
1282
break;
1283
1284
case ACTION_DELAY: /* Delay */
1285
delay = (struct bts_action_delay *)action->data;
1286
mdelay(delay->msec);
1287
break;
1288
}
1289
1290
fw_data += (sizeof(struct bts_action) + (action->size));
1291
fw_len -= (sizeof(struct bts_action) + (action->size));
1292
}
1293
fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1294
rel_fw:
1295
release_firmware(fw_entry);
1296
clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1297
1298
return ret;
1299
}
1300
1301
/* Loads default RX configuration to the chip */
1302
static u32 load_default_rx_configuration(struct fmdev *fmdev)
1303
{
1304
int ret;
1305
1306
ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1307
if (ret < 0)
1308
return ret;
1309
1310
return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1311
}
1312
1313
/* Does FM power on sequence */
1314
static u32 fm_power_up(struct fmdev *fmdev, u8 mode)
1315
{
1316
u16 payload, asic_id, asic_ver;
1317
int resp_len, ret;
1318
u8 fw_name[50];
1319
1320
if (mode >= FM_MODE_ENTRY_MAX) {
1321
fmerr("Invalid firmware download option\n");
1322
return -EINVAL;
1323
}
1324
1325
/*
1326
* Initialize FM common module. FM GPIO toggling is
1327
* taken care in Shared Transport driver.
1328
*/
1329
ret = fmc_prepare(fmdev);
1330
if (ret < 0) {
1331
fmerr("Unable to prepare FM Common\n");
1332
return ret;
1333
}
1334
1335
payload = FM_ENABLE;
1336
if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1337
sizeof(payload), NULL, NULL))
1338
goto rel;
1339
1340
/* Allow the chip to settle down in Channel-8 mode */
1341
msleep(20);
1342
1343
if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1344
sizeof(asic_id), &asic_id, &resp_len))
1345
goto rel;
1346
1347
if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1348
sizeof(asic_ver), &asic_ver, &resp_len))
1349
goto rel;
1350
1351
fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1352
be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1353
1354
sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1355
be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1356
1357
ret = fm_download_firmware(fmdev, fw_name);
1358
if (ret < 0) {
1359
fmdbg("Failed to download firmware file %s\n", fw_name);
1360
goto rel;
1361
}
1362
sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1363
FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1364
be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1365
1366
ret = fm_download_firmware(fmdev, fw_name);
1367
if (ret < 0) {
1368
fmdbg("Failed to download firmware file %s\n", fw_name);
1369
goto rel;
1370
} else
1371
return ret;
1372
rel:
1373
return fmc_release(fmdev);
1374
}
1375
1376
/* Set FM Modes(TX, RX, OFF) */
1377
u32 fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1378
{
1379
int ret = 0;
1380
1381
if (fm_mode >= FM_MODE_ENTRY_MAX) {
1382
fmerr("Invalid FM mode\n");
1383
return -EINVAL;
1384
}
1385
if (fmdev->curr_fmmode == fm_mode) {
1386
fmdbg("Already fm is in mode(%d)\n", fm_mode);
1387
return ret;
1388
}
1389
1390
switch (fm_mode) {
1391
case FM_MODE_OFF: /* OFF Mode */
1392
ret = fm_power_down(fmdev);
1393
if (ret < 0) {
1394
fmerr("Failed to set OFF mode\n");
1395
return ret;
1396
}
1397
break;
1398
1399
case FM_MODE_TX: /* TX Mode */
1400
case FM_MODE_RX: /* RX Mode */
1401
/* Power down before switching to TX or RX mode */
1402
if (fmdev->curr_fmmode != FM_MODE_OFF) {
1403
ret = fm_power_down(fmdev);
1404
if (ret < 0) {
1405
fmerr("Failed to set OFF mode\n");
1406
return ret;
1407
}
1408
msleep(30);
1409
}
1410
ret = fm_power_up(fmdev, fm_mode);
1411
if (ret < 0) {
1412
fmerr("Failed to load firmware\n");
1413
return ret;
1414
}
1415
}
1416
fmdev->curr_fmmode = fm_mode;
1417
1418
/* Set default configuration */
1419
if (fmdev->curr_fmmode == FM_MODE_RX) {
1420
fmdbg("Loading default rx configuration..\n");
1421
ret = load_default_rx_configuration(fmdev);
1422
if (ret < 0)
1423
fmerr("Failed to load default values\n");
1424
}
1425
1426
return ret;
1427
}
1428
1429
/* Returns current FM mode (TX, RX, OFF) */
1430
u32 fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1431
{
1432
if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1433
fmerr("FM core is not ready\n");
1434
return -EPERM;
1435
}
1436
if (fmmode == NULL) {
1437
fmerr("Invalid memory\n");
1438
return -ENOMEM;
1439
}
1440
1441
*fmmode = fmdev->curr_fmmode;
1442
return 0;
1443
}
1444
1445
/* Called by ST layer when FM packet is available */
1446
static long fm_st_receive(void *arg, struct sk_buff *skb)
1447
{
1448
struct fmdev *fmdev;
1449
1450
fmdev = (struct fmdev *)arg;
1451
1452
if (skb == NULL) {
1453
fmerr("Invalid SKB received from ST\n");
1454
return -EFAULT;
1455
}
1456
1457
if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1458
fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1459
return -EINVAL;
1460
}
1461
1462
memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1463
skb_queue_tail(&fmdev->rx_q, skb);
1464
tasklet_schedule(&fmdev->rx_task);
1465
1466
return 0;
1467
}
1468
1469
/*
1470
* Called by ST layer to indicate protocol registration completion
1471
* status.
1472
*/
1473
static void fm_st_reg_comp_cb(void *arg, char data)
1474
{
1475
struct fmdev *fmdev;
1476
1477
fmdev = (struct fmdev *)arg;
1478
fmdev->streg_cbdata = data;
1479
complete(&wait_for_fmdrv_reg_comp);
1480
}
1481
1482
/*
1483
* This function will be called from FM V4L2 open function.
1484
* Register with ST driver and initialize driver data.
1485
*/
1486
u32 fmc_prepare(struct fmdev *fmdev)
1487
{
1488
static struct st_proto_s fm_st_proto;
1489
u32 ret;
1490
1491
if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1492
fmdbg("FM Core is already up\n");
1493
return 0;
1494
}
1495
1496
memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1497
fm_st_proto.recv = fm_st_receive;
1498
fm_st_proto.match_packet = NULL;
1499
fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1500
fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1501
fm_st_proto.priv_data = fmdev;
1502
fm_st_proto.chnl_id = 0x08;
1503
fm_st_proto.max_frame_size = 0xff;
1504
fm_st_proto.hdr_len = 1;
1505
fm_st_proto.offset_len_in_hdr = 0;
1506
fm_st_proto.len_size = 1;
1507
fm_st_proto.reserve = 1;
1508
1509
ret = st_register(&fm_st_proto);
1510
if (ret == -EINPROGRESS) {
1511
init_completion(&wait_for_fmdrv_reg_comp);
1512
fmdev->streg_cbdata = -EINPROGRESS;
1513
fmdbg("%s waiting for ST reg completion signal\n", __func__);
1514
1515
ret = wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1516
FM_ST_REG_TIMEOUT);
1517
1518
if (!ret) {
1519
fmerr("Timeout(%d sec), didn't get reg "
1520
"completion signal from ST\n",
1521
jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1522
return -ETIMEDOUT;
1523
}
1524
if (fmdev->streg_cbdata != 0) {
1525
fmerr("ST reg comp CB called with error "
1526
"status %d\n", fmdev->streg_cbdata);
1527
return -EAGAIN;
1528
}
1529
1530
ret = 0;
1531
} else if (ret == -1) {
1532
fmerr("st_register failed %d\n", ret);
1533
return -EAGAIN;
1534
}
1535
1536
if (fm_st_proto.write != NULL) {
1537
g_st_write = fm_st_proto.write;
1538
} else {
1539
fmerr("Failed to get ST write func pointer\n");
1540
ret = st_unregister(&fm_st_proto);
1541
if (ret < 0)
1542
fmerr("st_unregister failed %d\n", ret);
1543
return -EAGAIN;
1544
}
1545
1546
spin_lock_init(&fmdev->rds_buff_lock);
1547
spin_lock_init(&fmdev->resp_skb_lock);
1548
1549
/* Initialize TX queue and TX tasklet */
1550
skb_queue_head_init(&fmdev->tx_q);
1551
tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1552
1553
/* Initialize RX Queue and RX tasklet */
1554
skb_queue_head_init(&fmdev->rx_q);
1555
tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1556
1557
fmdev->irq_info.stage = 0;
1558
atomic_set(&fmdev->tx_cnt, 1);
1559
fmdev->resp_comp = NULL;
1560
1561
init_timer(&fmdev->irq_info.timer);
1562
fmdev->irq_info.timer.function = &int_timeout_handler;
1563
fmdev->irq_info.timer.data = (unsigned long)fmdev;
1564
/*TODO: add FM_STIC_EVENT later */
1565
fmdev->irq_info.mask = FM_MAL_EVENT;
1566
1567
/* Region info */
1568
memcpy(&fmdev->rx.region, &region_configs[default_radio_region],
1569
sizeof(struct region_info));
1570
1571
fmdev->rx.mute_mode = FM_MUTE_OFF;
1572
fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1573
fmdev->rx.rds.flag = FM_RDS_DISABLE;
1574
fmdev->rx.freq = FM_UNDEFINED_FREQ;
1575
fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1576
fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1577
fmdev->irq_info.retry = 0;
1578
1579
fm_rx_reset_rds_cache(fmdev);
1580
init_waitqueue_head(&fmdev->rx.rds.read_queue);
1581
1582
fm_rx_reset_station_info(fmdev);
1583
set_bit(FM_CORE_READY, &fmdev->flag);
1584
1585
return ret;
1586
}
1587
1588
/*
1589
* This function will be called from FM V4L2 release function.
1590
* Unregister from ST driver.
1591
*/
1592
u32 fmc_release(struct fmdev *fmdev)
1593
{
1594
static struct st_proto_s fm_st_proto;
1595
u32 ret;
1596
1597
if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1598
fmdbg("FM Core is already down\n");
1599
return 0;
1600
}
1601
/* Service pending read */
1602
wake_up_interruptible(&fmdev->rx.rds.read_queue);
1603
1604
tasklet_kill(&fmdev->tx_task);
1605
tasklet_kill(&fmdev->rx_task);
1606
1607
skb_queue_purge(&fmdev->tx_q);
1608
skb_queue_purge(&fmdev->rx_q);
1609
1610
fmdev->resp_comp = NULL;
1611
fmdev->rx.freq = 0;
1612
1613
memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1614
fm_st_proto.chnl_id = 0x08;
1615
1616
ret = st_unregister(&fm_st_proto);
1617
1618
if (ret < 0)
1619
fmerr("Failed to de-register FM from ST %d\n", ret);
1620
else
1621
fmdbg("Successfully unregistered from ST\n");
1622
1623
clear_bit(FM_CORE_READY, &fmdev->flag);
1624
return ret;
1625
}
1626
1627
/*
1628
* Module init function. Ask FM V4L module to register video device.
1629
* Allocate memory for FM driver context and RX RDS buffer.
1630
*/
1631
static int __init fm_drv_init(void)
1632
{
1633
struct fmdev *fmdev = NULL;
1634
u32 ret = -ENOMEM;
1635
1636
fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1637
1638
fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1639
if (NULL == fmdev) {
1640
fmerr("Can't allocate operation structure memory\n");
1641
return ret;
1642
}
1643
fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1644
fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1645
if (NULL == fmdev->rx.rds.buff) {
1646
fmerr("Can't allocate rds ring buffer\n");
1647
goto rel_dev;
1648
}
1649
1650
ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1651
if (ret < 0)
1652
goto rel_rdsbuf;
1653
1654
fmdev->irq_info.handlers = int_handler_table;
1655
fmdev->curr_fmmode = FM_MODE_OFF;
1656
fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1657
fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1658
return ret;
1659
1660
rel_rdsbuf:
1661
kfree(fmdev->rx.rds.buff);
1662
rel_dev:
1663
kfree(fmdev);
1664
1665
return ret;
1666
}
1667
1668
/* Module exit function. Ask FM V4L module to unregister video device */
1669
static void __exit fm_drv_exit(void)
1670
{
1671
struct fmdev *fmdev = NULL;
1672
1673
fmdev = fm_v4l2_deinit_video_device();
1674
if (fmdev != NULL) {
1675
kfree(fmdev->rx.rds.buff);
1676
kfree(fmdev);
1677
}
1678
}
1679
1680
module_init(fm_drv_init);
1681
module_exit(fm_drv_exit);
1682
1683
/* ------------- Module Info ------------- */
1684
MODULE_AUTHOR("Manjunatha Halli <[email protected]>");
1685
MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1686
MODULE_VERSION(FM_DRV_VERSION);
1687
MODULE_LICENSE("GPL");
1688
1689