Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/media/rc/nuvoton-cir.c
15111 views
1
/*
2
* Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3
*
4
* Copyright (C) 2010 Jarod Wilson <[email protected]>
5
* Copyright (C) 2009 Nuvoton PS Team
6
*
7
* Special thanks to Nuvoton for providing hardware, spec sheets and
8
* sample code upon which portions of this driver are based. Indirect
9
* thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10
* modeled after.
11
*
12
* This program is free software; you can redistribute it and/or
13
* modify it under the terms of the GNU General Public License as
14
* published by the Free Software Foundation; either version 2 of the
15
* License, or (at your option) any later version.
16
*
17
* This program is distributed in the hope that it will be useful, but
18
* WITHOUT ANY WARRANTY; without even the implied warranty of
19
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
* General Public License for more details.
21
*
22
* You should have received a copy of the GNU General Public License
23
* along with this program; if not, write to the Free Software
24
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25
* USA
26
*/
27
28
#include <linux/kernel.h>
29
#include <linux/module.h>
30
#include <linux/pnp.h>
31
#include <linux/io.h>
32
#include <linux/interrupt.h>
33
#include <linux/sched.h>
34
#include <linux/slab.h>
35
#include <media/rc-core.h>
36
#include <linux/pci_ids.h>
37
38
#include "nuvoton-cir.h"
39
40
/* write val to config reg */
41
static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
42
{
43
outb(reg, nvt->cr_efir);
44
outb(val, nvt->cr_efdr);
45
}
46
47
/* read val from config reg */
48
static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
49
{
50
outb(reg, nvt->cr_efir);
51
return inb(nvt->cr_efdr);
52
}
53
54
/* update config register bit without changing other bits */
55
static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
56
{
57
u8 tmp = nvt_cr_read(nvt, reg) | val;
58
nvt_cr_write(nvt, tmp, reg);
59
}
60
61
/* clear config register bit without changing other bits */
62
static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
63
{
64
u8 tmp = nvt_cr_read(nvt, reg) & ~val;
65
nvt_cr_write(nvt, tmp, reg);
66
}
67
68
/* enter extended function mode */
69
static inline void nvt_efm_enable(struct nvt_dev *nvt)
70
{
71
/* Enabling Extended Function Mode explicitly requires writing 2x */
72
outb(EFER_EFM_ENABLE, nvt->cr_efir);
73
outb(EFER_EFM_ENABLE, nvt->cr_efir);
74
}
75
76
/* exit extended function mode */
77
static inline void nvt_efm_disable(struct nvt_dev *nvt)
78
{
79
outb(EFER_EFM_DISABLE, nvt->cr_efir);
80
}
81
82
/*
83
* When you want to address a specific logical device, write its logical
84
* device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
85
* 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
86
*/
87
static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
88
{
89
outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
90
outb(ldev, nvt->cr_efdr);
91
}
92
93
/* write val to cir config register */
94
static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
95
{
96
outb(val, nvt->cir_addr + offset);
97
}
98
99
/* read val from cir config register */
100
static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
101
{
102
u8 val;
103
104
val = inb(nvt->cir_addr + offset);
105
106
return val;
107
}
108
109
/* write val to cir wake register */
110
static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
111
u8 val, u8 offset)
112
{
113
outb(val, nvt->cir_wake_addr + offset);
114
}
115
116
/* read val from cir wake config register */
117
static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
118
{
119
u8 val;
120
121
val = inb(nvt->cir_wake_addr + offset);
122
123
return val;
124
}
125
126
#define pr_reg(text, ...) \
127
printk(KERN_INFO KBUILD_MODNAME ": " text, ## __VA_ARGS__)
128
129
/* dump current cir register contents */
130
static void cir_dump_regs(struct nvt_dev *nvt)
131
{
132
nvt_efm_enable(nvt);
133
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
134
135
pr_reg("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
136
pr_reg(" * CR CIR ACTIVE : 0x%x\n",
137
nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
138
pr_reg(" * CR CIR BASE ADDR: 0x%x\n",
139
(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
140
nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
141
pr_reg(" * CR CIR IRQ NUM: 0x%x\n",
142
nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
143
144
nvt_efm_disable(nvt);
145
146
pr_reg("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
147
pr_reg(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
148
pr_reg(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
149
pr_reg(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
150
pr_reg(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
151
pr_reg(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
152
pr_reg(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
153
pr_reg(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
154
pr_reg(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
155
pr_reg(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
156
pr_reg(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
157
pr_reg(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
158
pr_reg(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
159
pr_reg(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
160
pr_reg(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
161
pr_reg(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
162
pr_reg(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
163
}
164
165
/* dump current cir wake register contents */
166
static void cir_wake_dump_regs(struct nvt_dev *nvt)
167
{
168
u8 i, fifo_len;
169
170
nvt_efm_enable(nvt);
171
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
172
173
pr_reg("%s: Dump CIR WAKE logical device registers:\n",
174
NVT_DRIVER_NAME);
175
pr_reg(" * CR CIR WAKE ACTIVE : 0x%x\n",
176
nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
177
pr_reg(" * CR CIR WAKE BASE ADDR: 0x%x\n",
178
(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
179
nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
180
pr_reg(" * CR CIR WAKE IRQ NUM: 0x%x\n",
181
nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
182
183
nvt_efm_disable(nvt);
184
185
pr_reg("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
186
pr_reg(" * IRCON: 0x%x\n",
187
nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
188
pr_reg(" * IRSTS: 0x%x\n",
189
nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
190
pr_reg(" * IREN: 0x%x\n",
191
nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
192
pr_reg(" * FIFO CMP DEEP: 0x%x\n",
193
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
194
pr_reg(" * FIFO CMP TOL: 0x%x\n",
195
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
196
pr_reg(" * FIFO COUNT: 0x%x\n",
197
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
198
pr_reg(" * SLCH: 0x%x\n",
199
nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
200
pr_reg(" * SLCL: 0x%x\n",
201
nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
202
pr_reg(" * FIFOCON: 0x%x\n",
203
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
204
pr_reg(" * SRXFSTS: 0x%x\n",
205
nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
206
pr_reg(" * SAMPLE RX FIFO: 0x%x\n",
207
nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
208
pr_reg(" * WR FIFO DATA: 0x%x\n",
209
nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
210
pr_reg(" * RD FIFO ONLY: 0x%x\n",
211
nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
212
pr_reg(" * RD FIFO ONLY IDX: 0x%x\n",
213
nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
214
pr_reg(" * FIFO IGNORE: 0x%x\n",
215
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
216
pr_reg(" * IRFSM: 0x%x\n",
217
nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
218
219
fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
220
pr_reg("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
221
pr_reg("* Contents = ");
222
for (i = 0; i < fifo_len; i++)
223
printk(KERN_CONT "%02x ",
224
nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
225
printk(KERN_CONT "\n");
226
}
227
228
/* detect hardware features */
229
static int nvt_hw_detect(struct nvt_dev *nvt)
230
{
231
unsigned long flags;
232
u8 chip_major, chip_minor;
233
int ret = 0;
234
char chip_id[12];
235
bool chip_unknown = false;
236
237
nvt_efm_enable(nvt);
238
239
/* Check if we're wired for the alternate EFER setup */
240
chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
241
if (chip_major == 0xff) {
242
nvt->cr_efir = CR_EFIR2;
243
nvt->cr_efdr = CR_EFDR2;
244
nvt_efm_enable(nvt);
245
chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
246
}
247
248
chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
249
250
/* these are the known working chip revisions... */
251
switch (chip_major) {
252
case CHIP_ID_HIGH_667:
253
strcpy(chip_id, "w83667hg\0");
254
if (chip_minor != CHIP_ID_LOW_667)
255
chip_unknown = true;
256
break;
257
case CHIP_ID_HIGH_677B:
258
strcpy(chip_id, "w83677hg\0");
259
if (chip_minor != CHIP_ID_LOW_677B2 &&
260
chip_minor != CHIP_ID_LOW_677B3)
261
chip_unknown = true;
262
break;
263
case CHIP_ID_HIGH_677C:
264
strcpy(chip_id, "w83677hg-c\0");
265
if (chip_minor != CHIP_ID_LOW_677C)
266
chip_unknown = true;
267
break;
268
default:
269
strcpy(chip_id, "w836x7hg\0");
270
chip_unknown = true;
271
break;
272
}
273
274
/* warn, but still let the driver load, if we don't know this chip */
275
if (chip_unknown)
276
nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, "
277
"it may not work...", chip_id, chip_major, chip_minor);
278
else
279
nvt_dbg("%s: chip id: 0x%02x 0x%02x",
280
chip_id, chip_major, chip_minor);
281
282
nvt_efm_disable(nvt);
283
284
spin_lock_irqsave(&nvt->nvt_lock, flags);
285
nvt->chip_major = chip_major;
286
nvt->chip_minor = chip_minor;
287
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
288
289
return ret;
290
}
291
292
static void nvt_cir_ldev_init(struct nvt_dev *nvt)
293
{
294
u8 val, psreg, psmask, psval;
295
296
if (nvt->chip_major == CHIP_ID_HIGH_667) {
297
psreg = CR_MULTIFUNC_PIN_SEL;
298
psmask = MULTIFUNC_PIN_SEL_MASK;
299
psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
300
} else {
301
psreg = CR_OUTPUT_PIN_SEL;
302
psmask = OUTPUT_PIN_SEL_MASK;
303
psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
304
}
305
306
/* output pin selection: enable CIR, with WB sensor enabled */
307
val = nvt_cr_read(nvt, psreg);
308
val &= psmask;
309
val |= psval;
310
nvt_cr_write(nvt, val, psreg);
311
312
/* Select CIR logical device and enable */
313
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
314
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
315
316
nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
317
nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
318
319
nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
320
321
nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
322
nvt->cir_addr, nvt->cir_irq);
323
}
324
325
static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
326
{
327
/* Select ACPI logical device, enable it and CIR Wake */
328
nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
329
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
330
331
/* Enable CIR Wake via PSOUT# (Pin60) */
332
nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
333
334
/* enable cir interrupt of mouse/keyboard IRQ event */
335
nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
336
337
/* enable pme interrupt of cir wakeup event */
338
nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
339
340
/* Select CIR Wake logical device and enable */
341
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
342
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
343
344
nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
345
nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
346
347
nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
348
349
nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
350
nvt->cir_wake_addr, nvt->cir_wake_irq);
351
}
352
353
/* clear out the hardware's cir rx fifo */
354
static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
355
{
356
u8 val;
357
358
val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
359
nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
360
}
361
362
/* clear out the hardware's cir wake rx fifo */
363
static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
364
{
365
u8 val;
366
367
val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
368
nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
369
CIR_WAKE_FIFOCON);
370
}
371
372
/* clear out the hardware's cir tx fifo */
373
static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
374
{
375
u8 val;
376
377
val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
378
nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
379
}
380
381
/* enable RX Trigger Level Reach and Packet End interrupts */
382
static void nvt_set_cir_iren(struct nvt_dev *nvt)
383
{
384
u8 iren;
385
386
iren = CIR_IREN_RTR | CIR_IREN_PE;
387
nvt_cir_reg_write(nvt, iren, CIR_IREN);
388
}
389
390
static void nvt_cir_regs_init(struct nvt_dev *nvt)
391
{
392
/* set sample limit count (PE interrupt raised when reached) */
393
nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
394
nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
395
396
/* set fifo irq trigger levels */
397
nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
398
CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
399
400
/*
401
* Enable TX and RX, specify carrier on = low, off = high, and set
402
* sample period (currently 50us)
403
*/
404
nvt_cir_reg_write(nvt,
405
CIR_IRCON_TXEN | CIR_IRCON_RXEN |
406
CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
407
CIR_IRCON);
408
409
/* clear hardware rx and tx fifos */
410
nvt_clear_cir_fifo(nvt);
411
nvt_clear_tx_fifo(nvt);
412
413
/* clear any and all stray interrupts */
414
nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
415
416
/* and finally, enable interrupts */
417
nvt_set_cir_iren(nvt);
418
}
419
420
static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
421
{
422
/* set number of bytes needed for wake from s3 (default 65) */
423
nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
424
CIR_WAKE_FIFO_CMP_DEEP);
425
426
/* set tolerance/variance allowed per byte during wake compare */
427
nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
428
CIR_WAKE_FIFO_CMP_TOL);
429
430
/* set sample limit count (PE interrupt raised when reached) */
431
nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
432
nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
433
434
/* set cir wake fifo rx trigger level (currently 67) */
435
nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
436
CIR_WAKE_FIFOCON);
437
438
/*
439
* Enable TX and RX, specific carrier on = low, off = high, and set
440
* sample period (currently 50us)
441
*/
442
nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
443
CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
444
CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
445
CIR_WAKE_IRCON);
446
447
/* clear cir wake rx fifo */
448
nvt_clear_cir_wake_fifo(nvt);
449
450
/* clear any and all stray interrupts */
451
nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
452
}
453
454
static void nvt_enable_wake(struct nvt_dev *nvt)
455
{
456
nvt_efm_enable(nvt);
457
458
nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
459
nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
460
nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
461
nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
462
463
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
464
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
465
466
nvt_efm_disable(nvt);
467
468
nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
469
CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
470
CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
471
CIR_WAKE_IRCON);
472
nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
473
nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
474
}
475
476
/* rx carrier detect only works in learning mode, must be called w/nvt_lock */
477
static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
478
{
479
u32 count, carrier, duration = 0;
480
int i;
481
482
count = nvt_cir_reg_read(nvt, CIR_FCCL) |
483
nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
484
485
for (i = 0; i < nvt->pkts; i++) {
486
if (nvt->buf[i] & BUF_PULSE_BIT)
487
duration += nvt->buf[i] & BUF_LEN_MASK;
488
}
489
490
duration *= SAMPLE_PERIOD;
491
492
if (!count || !duration) {
493
nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
494
count, duration);
495
return 0;
496
}
497
498
carrier = MS_TO_NS(count) / duration;
499
500
if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
501
nvt_dbg("WTF? Carrier frequency out of range!");
502
503
nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
504
carrier, count, duration);
505
506
return carrier;
507
}
508
509
/*
510
* set carrier frequency
511
*
512
* set carrier on 2 registers: CP & CC
513
* always set CP as 0x81
514
* set CC by SPEC, CC = 3MHz/carrier - 1
515
*/
516
static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
517
{
518
struct nvt_dev *nvt = dev->priv;
519
u16 val;
520
521
nvt_cir_reg_write(nvt, 1, CIR_CP);
522
val = 3000000 / (carrier) - 1;
523
nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
524
525
nvt_dbg("cp: 0x%x cc: 0x%x\n",
526
nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
527
528
return 0;
529
}
530
531
/*
532
* nvt_tx_ir
533
*
534
* 1) clean TX fifo first (handled by AP)
535
* 2) copy data from user space
536
* 3) disable RX interrupts, enable TX interrupts: TTR & TFU
537
* 4) send 9 packets to TX FIFO to open TTR
538
* in interrupt_handler:
539
* 5) send all data out
540
* go back to write():
541
* 6) disable TX interrupts, re-enable RX interupts
542
*
543
* The key problem of this function is user space data may larger than
544
* driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
545
* buf, and keep current copied data buf num in cur_buf_num. But driver's buf
546
* number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
547
* set TXFCONT as 0xff, until buf_count less than 0xff.
548
*/
549
static int nvt_tx_ir(struct rc_dev *dev, int *txbuf, u32 n)
550
{
551
struct nvt_dev *nvt = dev->priv;
552
unsigned long flags;
553
size_t cur_count;
554
unsigned int i;
555
u8 iren;
556
int ret;
557
558
spin_lock_irqsave(&nvt->tx.lock, flags);
559
560
if (n >= TX_BUF_LEN) {
561
nvt->tx.buf_count = cur_count = TX_BUF_LEN;
562
ret = TX_BUF_LEN;
563
} else {
564
nvt->tx.buf_count = cur_count = n;
565
ret = n;
566
}
567
568
memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
569
570
nvt->tx.cur_buf_num = 0;
571
572
/* save currently enabled interrupts */
573
iren = nvt_cir_reg_read(nvt, CIR_IREN);
574
575
/* now disable all interrupts, save TFU & TTR */
576
nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
577
578
nvt->tx.tx_state = ST_TX_REPLY;
579
580
nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
581
CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
582
583
/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
584
for (i = 0; i < 9; i++)
585
nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
586
587
spin_unlock_irqrestore(&nvt->tx.lock, flags);
588
589
wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
590
591
spin_lock_irqsave(&nvt->tx.lock, flags);
592
nvt->tx.tx_state = ST_TX_NONE;
593
spin_unlock_irqrestore(&nvt->tx.lock, flags);
594
595
/* restore enabled interrupts to prior state */
596
nvt_cir_reg_write(nvt, iren, CIR_IREN);
597
598
return ret;
599
}
600
601
/* dump contents of the last rx buffer we got from the hw rx fifo */
602
static void nvt_dump_rx_buf(struct nvt_dev *nvt)
603
{
604
int i;
605
606
printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
607
for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
608
printk(KERN_CONT "0x%02x ", nvt->buf[i]);
609
printk(KERN_CONT "\n");
610
}
611
612
/*
613
* Process raw data in rx driver buffer, store it in raw IR event kfifo,
614
* trigger decode when appropriate.
615
*
616
* We get IR data samples one byte at a time. If the msb is set, its a pulse,
617
* otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
618
* (default 50us) intervals for that pulse/space. A discrete signal is
619
* followed by a series of 0x7f packets, then either 0x7<something> or 0x80
620
* to signal more IR coming (repeats) or end of IR, respectively. We store
621
* sample data in the raw event kfifo until we see 0x7<something> (except f)
622
* or 0x80, at which time, we trigger a decode operation.
623
*/
624
static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
625
{
626
DEFINE_IR_RAW_EVENT(rawir);
627
unsigned int count;
628
u32 carrier;
629
u8 sample;
630
int i;
631
632
nvt_dbg_verbose("%s firing", __func__);
633
634
if (debug)
635
nvt_dump_rx_buf(nvt);
636
637
if (nvt->carrier_detect_enabled)
638
carrier = nvt_rx_carrier_detect(nvt);
639
640
count = nvt->pkts;
641
nvt_dbg_verbose("Processing buffer of len %d", count);
642
643
init_ir_raw_event(&rawir);
644
645
for (i = 0; i < count; i++) {
646
nvt->pkts--;
647
sample = nvt->buf[i];
648
649
rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
650
rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
651
* SAMPLE_PERIOD);
652
653
if ((sample & BUF_LEN_MASK) == BUF_LEN_MASK) {
654
if (nvt->rawir.pulse == rawir.pulse)
655
nvt->rawir.duration += rawir.duration;
656
else {
657
nvt->rawir.duration = rawir.duration;
658
nvt->rawir.pulse = rawir.pulse;
659
}
660
continue;
661
}
662
663
rawir.duration += nvt->rawir.duration;
664
665
init_ir_raw_event(&nvt->rawir);
666
nvt->rawir.duration = 0;
667
nvt->rawir.pulse = rawir.pulse;
668
669
if (sample == BUF_PULSE_BIT)
670
rawir.pulse = false;
671
672
if (rawir.duration) {
673
nvt_dbg("Storing %s with duration %d",
674
rawir.pulse ? "pulse" : "space",
675
rawir.duration);
676
677
ir_raw_event_store_with_filter(nvt->rdev, &rawir);
678
}
679
680
/*
681
* BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
682
* indicates end of IR signal, but new data incoming. In both
683
* cases, it means we're ready to call ir_raw_event_handle
684
*/
685
if ((sample == BUF_PULSE_BIT) && nvt->pkts) {
686
nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
687
ir_raw_event_handle(nvt->rdev);
688
}
689
}
690
691
nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
692
ir_raw_event_handle(nvt->rdev);
693
694
if (nvt->pkts) {
695
nvt_dbg("Odd, pkts should be 0 now... (its %u)", nvt->pkts);
696
nvt->pkts = 0;
697
}
698
699
nvt_dbg_verbose("%s done", __func__);
700
}
701
702
static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
703
{
704
nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
705
706
nvt->pkts = 0;
707
nvt_clear_cir_fifo(nvt);
708
ir_raw_event_reset(nvt->rdev);
709
}
710
711
/* copy data from hardware rx fifo into driver buffer */
712
static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
713
{
714
unsigned long flags;
715
u8 fifocount, val;
716
unsigned int b_idx;
717
bool overrun = false;
718
int i;
719
720
/* Get count of how many bytes to read from RX FIFO */
721
fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
722
/* if we get 0xff, probably means the logical dev is disabled */
723
if (fifocount == 0xff)
724
return;
725
/* watch out for a fifo overrun condition */
726
else if (fifocount > RX_BUF_LEN) {
727
overrun = true;
728
fifocount = RX_BUF_LEN;
729
}
730
731
nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
732
733
spin_lock_irqsave(&nvt->nvt_lock, flags);
734
735
b_idx = nvt->pkts;
736
737
/* This should never happen, but lets check anyway... */
738
if (b_idx + fifocount > RX_BUF_LEN) {
739
nvt_process_rx_ir_data(nvt);
740
b_idx = 0;
741
}
742
743
/* Read fifocount bytes from CIR Sample RX FIFO register */
744
for (i = 0; i < fifocount; i++) {
745
val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
746
nvt->buf[b_idx + i] = val;
747
}
748
749
nvt->pkts += fifocount;
750
nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
751
752
nvt_process_rx_ir_data(nvt);
753
754
if (overrun)
755
nvt_handle_rx_fifo_overrun(nvt);
756
757
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
758
}
759
760
static void nvt_cir_log_irqs(u8 status, u8 iren)
761
{
762
nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
763
status, iren,
764
status & CIR_IRSTS_RDR ? " RDR" : "",
765
status & CIR_IRSTS_RTR ? " RTR" : "",
766
status & CIR_IRSTS_PE ? " PE" : "",
767
status & CIR_IRSTS_RFO ? " RFO" : "",
768
status & CIR_IRSTS_TE ? " TE" : "",
769
status & CIR_IRSTS_TTR ? " TTR" : "",
770
status & CIR_IRSTS_TFU ? " TFU" : "",
771
status & CIR_IRSTS_GH ? " GH" : "",
772
status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
773
CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
774
CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
775
}
776
777
static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
778
{
779
unsigned long flags;
780
bool tx_inactive;
781
u8 tx_state;
782
783
spin_lock_irqsave(&nvt->tx.lock, flags);
784
tx_state = nvt->tx.tx_state;
785
spin_unlock_irqrestore(&nvt->tx.lock, flags);
786
787
tx_inactive = (tx_state == ST_TX_NONE);
788
789
return tx_inactive;
790
}
791
792
/* interrupt service routine for incoming and outgoing CIR data */
793
static irqreturn_t nvt_cir_isr(int irq, void *data)
794
{
795
struct nvt_dev *nvt = data;
796
u8 status, iren, cur_state;
797
unsigned long flags;
798
799
nvt_dbg_verbose("%s firing", __func__);
800
801
nvt_efm_enable(nvt);
802
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
803
nvt_efm_disable(nvt);
804
805
/*
806
* Get IR Status register contents. Write 1 to ack/clear
807
*
808
* bit: reg name - description
809
* 7: CIR_IRSTS_RDR - RX Data Ready
810
* 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
811
* 5: CIR_IRSTS_PE - Packet End
812
* 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
813
* 3: CIR_IRSTS_TE - TX FIFO Empty
814
* 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
815
* 1: CIR_IRSTS_TFU - TX FIFO Underrun
816
* 0: CIR_IRSTS_GH - Min Length Detected
817
*/
818
status = nvt_cir_reg_read(nvt, CIR_IRSTS);
819
if (!status) {
820
nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
821
nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
822
return IRQ_RETVAL(IRQ_NONE);
823
}
824
825
/* ack/clear all irq flags we've got */
826
nvt_cir_reg_write(nvt, status, CIR_IRSTS);
827
nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
828
829
/* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
830
iren = nvt_cir_reg_read(nvt, CIR_IREN);
831
if (!iren) {
832
nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
833
return IRQ_RETVAL(IRQ_NONE);
834
}
835
836
if (debug)
837
nvt_cir_log_irqs(status, iren);
838
839
if (status & CIR_IRSTS_RTR) {
840
/* FIXME: add code for study/learn mode */
841
/* We only do rx if not tx'ing */
842
if (nvt_cir_tx_inactive(nvt))
843
nvt_get_rx_ir_data(nvt);
844
}
845
846
if (status & CIR_IRSTS_PE) {
847
if (nvt_cir_tx_inactive(nvt))
848
nvt_get_rx_ir_data(nvt);
849
850
spin_lock_irqsave(&nvt->nvt_lock, flags);
851
852
cur_state = nvt->study_state;
853
854
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
855
856
if (cur_state == ST_STUDY_NONE)
857
nvt_clear_cir_fifo(nvt);
858
}
859
860
if (status & CIR_IRSTS_TE)
861
nvt_clear_tx_fifo(nvt);
862
863
if (status & CIR_IRSTS_TTR) {
864
unsigned int pos, count;
865
u8 tmp;
866
867
spin_lock_irqsave(&nvt->tx.lock, flags);
868
869
pos = nvt->tx.cur_buf_num;
870
count = nvt->tx.buf_count;
871
872
/* Write data into the hardware tx fifo while pos < count */
873
if (pos < count) {
874
nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
875
nvt->tx.cur_buf_num++;
876
/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
877
} else {
878
tmp = nvt_cir_reg_read(nvt, CIR_IREN);
879
nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
880
}
881
882
spin_unlock_irqrestore(&nvt->tx.lock, flags);
883
884
}
885
886
if (status & CIR_IRSTS_TFU) {
887
spin_lock_irqsave(&nvt->tx.lock, flags);
888
if (nvt->tx.tx_state == ST_TX_REPLY) {
889
nvt->tx.tx_state = ST_TX_REQUEST;
890
wake_up(&nvt->tx.queue);
891
}
892
spin_unlock_irqrestore(&nvt->tx.lock, flags);
893
}
894
895
nvt_dbg_verbose("%s done", __func__);
896
return IRQ_RETVAL(IRQ_HANDLED);
897
}
898
899
/* Interrupt service routine for CIR Wake */
900
static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
901
{
902
u8 status, iren, val;
903
struct nvt_dev *nvt = data;
904
unsigned long flags;
905
906
nvt_dbg_wake("%s firing", __func__);
907
908
status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
909
if (!status)
910
return IRQ_RETVAL(IRQ_NONE);
911
912
if (status & CIR_WAKE_IRSTS_IR_PENDING)
913
nvt_clear_cir_wake_fifo(nvt);
914
915
nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
916
nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
917
918
/* Interrupt may be shared with CIR, bail if Wake not enabled */
919
iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
920
if (!iren) {
921
nvt_dbg_wake("%s exiting, wake not enabled", __func__);
922
return IRQ_RETVAL(IRQ_HANDLED);
923
}
924
925
if ((status & CIR_WAKE_IRSTS_PE) &&
926
(nvt->wake_state == ST_WAKE_START)) {
927
while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
928
val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
929
nvt_dbg("setting wake up key: 0x%x", val);
930
}
931
932
nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
933
spin_lock_irqsave(&nvt->nvt_lock, flags);
934
nvt->wake_state = ST_WAKE_FINISH;
935
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
936
}
937
938
nvt_dbg_wake("%s done", __func__);
939
return IRQ_RETVAL(IRQ_HANDLED);
940
}
941
942
static void nvt_enable_cir(struct nvt_dev *nvt)
943
{
944
/* set function enable flags */
945
nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
946
CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
947
CIR_IRCON);
948
949
nvt_efm_enable(nvt);
950
951
/* enable the CIR logical device */
952
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
953
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
954
955
nvt_efm_disable(nvt);
956
957
/* clear all pending interrupts */
958
nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
959
960
/* enable interrupts */
961
nvt_set_cir_iren(nvt);
962
}
963
964
static void nvt_disable_cir(struct nvt_dev *nvt)
965
{
966
/* disable CIR interrupts */
967
nvt_cir_reg_write(nvt, 0, CIR_IREN);
968
969
/* clear any and all pending interrupts */
970
nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
971
972
/* clear all function enable flags */
973
nvt_cir_reg_write(nvt, 0, CIR_IRCON);
974
975
/* clear hardware rx and tx fifos */
976
nvt_clear_cir_fifo(nvt);
977
nvt_clear_tx_fifo(nvt);
978
979
nvt_efm_enable(nvt);
980
981
/* disable the CIR logical device */
982
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
983
nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
984
985
nvt_efm_disable(nvt);
986
}
987
988
static int nvt_open(struct rc_dev *dev)
989
{
990
struct nvt_dev *nvt = dev->priv;
991
unsigned long flags;
992
993
spin_lock_irqsave(&nvt->nvt_lock, flags);
994
nvt_enable_cir(nvt);
995
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
996
997
return 0;
998
}
999
1000
static void nvt_close(struct rc_dev *dev)
1001
{
1002
struct nvt_dev *nvt = dev->priv;
1003
unsigned long flags;
1004
1005
spin_lock_irqsave(&nvt->nvt_lock, flags);
1006
nvt_disable_cir(nvt);
1007
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1008
}
1009
1010
/* Allocate memory, probe hardware, and initialize everything */
1011
static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
1012
{
1013
struct nvt_dev *nvt;
1014
struct rc_dev *rdev;
1015
int ret = -ENOMEM;
1016
1017
nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
1018
if (!nvt)
1019
return ret;
1020
1021
/* input device for IR remote (and tx) */
1022
rdev = rc_allocate_device();
1023
if (!rdev)
1024
goto failure;
1025
1026
ret = -ENODEV;
1027
/* validate pnp resources */
1028
if (!pnp_port_valid(pdev, 0) ||
1029
pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
1030
dev_err(&pdev->dev, "IR PNP Port not valid!\n");
1031
goto failure;
1032
}
1033
1034
if (!pnp_irq_valid(pdev, 0)) {
1035
dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1036
goto failure;
1037
}
1038
1039
if (!pnp_port_valid(pdev, 1) ||
1040
pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1041
dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1042
goto failure;
1043
}
1044
1045
nvt->cir_addr = pnp_port_start(pdev, 0);
1046
nvt->cir_irq = pnp_irq(pdev, 0);
1047
1048
nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1049
/* irq is always shared between cir and cir wake */
1050
nvt->cir_wake_irq = nvt->cir_irq;
1051
1052
nvt->cr_efir = CR_EFIR;
1053
nvt->cr_efdr = CR_EFDR;
1054
1055
spin_lock_init(&nvt->nvt_lock);
1056
spin_lock_init(&nvt->tx.lock);
1057
init_ir_raw_event(&nvt->rawir);
1058
1059
ret = -EBUSY;
1060
/* now claim resources */
1061
if (!request_region(nvt->cir_addr,
1062
CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1063
goto failure;
1064
1065
if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
1066
NVT_DRIVER_NAME, (void *)nvt))
1067
goto failure;
1068
1069
if (!request_region(nvt->cir_wake_addr,
1070
CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1071
goto failure;
1072
1073
if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
1074
NVT_DRIVER_NAME, (void *)nvt))
1075
goto failure;
1076
1077
pnp_set_drvdata(pdev, nvt);
1078
nvt->pdev = pdev;
1079
1080
init_waitqueue_head(&nvt->tx.queue);
1081
1082
ret = nvt_hw_detect(nvt);
1083
if (ret)
1084
goto failure;
1085
1086
/* Initialize CIR & CIR Wake Logical Devices */
1087
nvt_efm_enable(nvt);
1088
nvt_cir_ldev_init(nvt);
1089
nvt_cir_wake_ldev_init(nvt);
1090
nvt_efm_disable(nvt);
1091
1092
/* Initialize CIR & CIR Wake Config Registers */
1093
nvt_cir_regs_init(nvt);
1094
nvt_cir_wake_regs_init(nvt);
1095
1096
/* Set up the rc device */
1097
rdev->priv = nvt;
1098
rdev->driver_type = RC_DRIVER_IR_RAW;
1099
rdev->allowed_protos = RC_TYPE_ALL;
1100
rdev->open = nvt_open;
1101
rdev->close = nvt_close;
1102
rdev->tx_ir = nvt_tx_ir;
1103
rdev->s_tx_carrier = nvt_set_tx_carrier;
1104
rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1105
rdev->input_phys = "nuvoton/cir0";
1106
rdev->input_id.bustype = BUS_HOST;
1107
rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1108
rdev->input_id.product = nvt->chip_major;
1109
rdev->input_id.version = nvt->chip_minor;
1110
rdev->dev.parent = &pdev->dev;
1111
rdev->driver_name = NVT_DRIVER_NAME;
1112
rdev->map_name = RC_MAP_RC6_MCE;
1113
rdev->timeout = MS_TO_NS(100);
1114
/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1115
rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1116
#if 0
1117
rdev->min_timeout = XYZ;
1118
rdev->max_timeout = XYZ;
1119
/* tx bits */
1120
rdev->tx_resolution = XYZ;
1121
#endif
1122
1123
ret = rc_register_device(rdev);
1124
if (ret)
1125
goto failure;
1126
1127
device_init_wakeup(&pdev->dev, true);
1128
nvt->rdev = rdev;
1129
nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
1130
if (debug) {
1131
cir_dump_regs(nvt);
1132
cir_wake_dump_regs(nvt);
1133
}
1134
1135
return 0;
1136
1137
failure:
1138
if (nvt->cir_irq)
1139
free_irq(nvt->cir_irq, nvt);
1140
if (nvt->cir_addr)
1141
release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1142
1143
if (nvt->cir_wake_irq)
1144
free_irq(nvt->cir_wake_irq, nvt);
1145
if (nvt->cir_wake_addr)
1146
release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1147
1148
rc_free_device(rdev);
1149
kfree(nvt);
1150
1151
return ret;
1152
}
1153
1154
static void __devexit nvt_remove(struct pnp_dev *pdev)
1155
{
1156
struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1157
unsigned long flags;
1158
1159
spin_lock_irqsave(&nvt->nvt_lock, flags);
1160
/* disable CIR */
1161
nvt_cir_reg_write(nvt, 0, CIR_IREN);
1162
nvt_disable_cir(nvt);
1163
/* enable CIR Wake (for IR power-on) */
1164
nvt_enable_wake(nvt);
1165
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1166
1167
/* free resources */
1168
free_irq(nvt->cir_irq, nvt);
1169
free_irq(nvt->cir_wake_irq, nvt);
1170
release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1171
release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1172
1173
rc_unregister_device(nvt->rdev);
1174
1175
kfree(nvt);
1176
}
1177
1178
static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1179
{
1180
struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1181
unsigned long flags;
1182
1183
nvt_dbg("%s called", __func__);
1184
1185
/* zero out misc state tracking */
1186
spin_lock_irqsave(&nvt->nvt_lock, flags);
1187
nvt->study_state = ST_STUDY_NONE;
1188
nvt->wake_state = ST_WAKE_NONE;
1189
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1190
1191
spin_lock_irqsave(&nvt->tx.lock, flags);
1192
nvt->tx.tx_state = ST_TX_NONE;
1193
spin_unlock_irqrestore(&nvt->tx.lock, flags);
1194
1195
/* disable all CIR interrupts */
1196
nvt_cir_reg_write(nvt, 0, CIR_IREN);
1197
1198
nvt_efm_enable(nvt);
1199
1200
/* disable cir logical dev */
1201
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1202
nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1203
1204
nvt_efm_disable(nvt);
1205
1206
/* make sure wake is enabled */
1207
nvt_enable_wake(nvt);
1208
1209
return 0;
1210
}
1211
1212
static int nvt_resume(struct pnp_dev *pdev)
1213
{
1214
int ret = 0;
1215
struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1216
1217
nvt_dbg("%s called", __func__);
1218
1219
/* open interrupt */
1220
nvt_set_cir_iren(nvt);
1221
1222
/* Enable CIR logical device */
1223
nvt_efm_enable(nvt);
1224
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1225
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1226
1227
nvt_efm_disable(nvt);
1228
1229
nvt_cir_regs_init(nvt);
1230
nvt_cir_wake_regs_init(nvt);
1231
1232
return ret;
1233
}
1234
1235
static void nvt_shutdown(struct pnp_dev *pdev)
1236
{
1237
struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1238
nvt_enable_wake(nvt);
1239
}
1240
1241
static const struct pnp_device_id nvt_ids[] = {
1242
{ "WEC0530", 0 }, /* CIR */
1243
{ "NTN0530", 0 }, /* CIR for new chip's pnp id*/
1244
{ "", 0 },
1245
};
1246
1247
static struct pnp_driver nvt_driver = {
1248
.name = NVT_DRIVER_NAME,
1249
.id_table = nvt_ids,
1250
.flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1251
.probe = nvt_probe,
1252
.remove = __devexit_p(nvt_remove),
1253
.suspend = nvt_suspend,
1254
.resume = nvt_resume,
1255
.shutdown = nvt_shutdown,
1256
};
1257
1258
int nvt_init(void)
1259
{
1260
return pnp_register_driver(&nvt_driver);
1261
}
1262
1263
void nvt_exit(void)
1264
{
1265
pnp_unregister_driver(&nvt_driver);
1266
}
1267
1268
module_param(debug, int, S_IRUGO | S_IWUSR);
1269
MODULE_PARM_DESC(debug, "Enable debugging output");
1270
1271
MODULE_DEVICE_TABLE(pnp, nvt_ids);
1272
MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1273
1274
MODULE_AUTHOR("Jarod Wilson <[email protected]>");
1275
MODULE_LICENSE("GPL");
1276
1277
module_init(nvt_init);
1278
module_exit(nvt_exit);
1279
1280