Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/media/rc/rc-main.c
15109 views
1
/* rc-main.c - Remote Controller core module
2
*
3
* Copyright (C) 2009-2010 by Mauro Carvalho Chehab <[email protected]>
4
*
5
* This program is free software; you can redistribute it and/or modify
6
* it under the terms of the GNU General Public License as published by
7
* the Free Software Foundation version 2 of the License.
8
*
9
* This program is distributed in the hope that it will be useful,
10
* but WITHOUT ANY WARRANTY; without even the implied warranty of
11
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12
* GNU General Public License for more details.
13
*/
14
15
#include <media/rc-core.h>
16
#include <linux/spinlock.h>
17
#include <linux/delay.h>
18
#include <linux/input.h>
19
#include <linux/slab.h>
20
#include <linux/device.h>
21
#include "rc-core-priv.h"
22
23
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
24
#define IR_TAB_MIN_SIZE 256
25
#define IR_TAB_MAX_SIZE 8192
26
27
/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
28
#define IR_KEYPRESS_TIMEOUT 250
29
30
/* Used to keep track of known keymaps */
31
static LIST_HEAD(rc_map_list);
32
static DEFINE_SPINLOCK(rc_map_lock);
33
34
static struct rc_map_list *seek_rc_map(const char *name)
35
{
36
struct rc_map_list *map = NULL;
37
38
spin_lock(&rc_map_lock);
39
list_for_each_entry(map, &rc_map_list, list) {
40
if (!strcmp(name, map->map.name)) {
41
spin_unlock(&rc_map_lock);
42
return map;
43
}
44
}
45
spin_unlock(&rc_map_lock);
46
47
return NULL;
48
}
49
50
struct rc_map *rc_map_get(const char *name)
51
{
52
53
struct rc_map_list *map;
54
55
map = seek_rc_map(name);
56
#ifdef MODULE
57
if (!map) {
58
int rc = request_module(name);
59
if (rc < 0) {
60
printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
61
return NULL;
62
}
63
msleep(20); /* Give some time for IR to register */
64
65
map = seek_rc_map(name);
66
}
67
#endif
68
if (!map) {
69
printk(KERN_ERR "IR keymap %s not found\n", name);
70
return NULL;
71
}
72
73
printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
74
75
return &map->map;
76
}
77
EXPORT_SYMBOL_GPL(rc_map_get);
78
79
int rc_map_register(struct rc_map_list *map)
80
{
81
spin_lock(&rc_map_lock);
82
list_add_tail(&map->list, &rc_map_list);
83
spin_unlock(&rc_map_lock);
84
return 0;
85
}
86
EXPORT_SYMBOL_GPL(rc_map_register);
87
88
void rc_map_unregister(struct rc_map_list *map)
89
{
90
spin_lock(&rc_map_lock);
91
list_del(&map->list);
92
spin_unlock(&rc_map_lock);
93
}
94
EXPORT_SYMBOL_GPL(rc_map_unregister);
95
96
97
static struct rc_map_table empty[] = {
98
{ 0x2a, KEY_COFFEE },
99
};
100
101
static struct rc_map_list empty_map = {
102
.map = {
103
.scan = empty,
104
.size = ARRAY_SIZE(empty),
105
.rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */
106
.name = RC_MAP_EMPTY,
107
}
108
};
109
110
/**
111
* ir_create_table() - initializes a scancode table
112
* @rc_map: the rc_map to initialize
113
* @name: name to assign to the table
114
* @rc_type: ir type to assign to the new table
115
* @size: initial size of the table
116
* @return: zero on success or a negative error code
117
*
118
* This routine will initialize the rc_map and will allocate
119
* memory to hold at least the specified number of elements.
120
*/
121
static int ir_create_table(struct rc_map *rc_map,
122
const char *name, u64 rc_type, size_t size)
123
{
124
rc_map->name = name;
125
rc_map->rc_type = rc_type;
126
rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
127
rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
128
rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
129
if (!rc_map->scan)
130
return -ENOMEM;
131
132
IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
133
rc_map->size, rc_map->alloc);
134
return 0;
135
}
136
137
/**
138
* ir_free_table() - frees memory allocated by a scancode table
139
* @rc_map: the table whose mappings need to be freed
140
*
141
* This routine will free memory alloctaed for key mappings used by given
142
* scancode table.
143
*/
144
static void ir_free_table(struct rc_map *rc_map)
145
{
146
rc_map->size = 0;
147
kfree(rc_map->scan);
148
rc_map->scan = NULL;
149
}
150
151
/**
152
* ir_resize_table() - resizes a scancode table if necessary
153
* @rc_map: the rc_map to resize
154
* @gfp_flags: gfp flags to use when allocating memory
155
* @return: zero on success or a negative error code
156
*
157
* This routine will shrink the rc_map if it has lots of
158
* unused entries and grow it if it is full.
159
*/
160
static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
161
{
162
unsigned int oldalloc = rc_map->alloc;
163
unsigned int newalloc = oldalloc;
164
struct rc_map_table *oldscan = rc_map->scan;
165
struct rc_map_table *newscan;
166
167
if (rc_map->size == rc_map->len) {
168
/* All entries in use -> grow keytable */
169
if (rc_map->alloc >= IR_TAB_MAX_SIZE)
170
return -ENOMEM;
171
172
newalloc *= 2;
173
IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
174
}
175
176
if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
177
/* Less than 1/3 of entries in use -> shrink keytable */
178
newalloc /= 2;
179
IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
180
}
181
182
if (newalloc == oldalloc)
183
return 0;
184
185
newscan = kmalloc(newalloc, gfp_flags);
186
if (!newscan) {
187
IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
188
return -ENOMEM;
189
}
190
191
memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
192
rc_map->scan = newscan;
193
rc_map->alloc = newalloc;
194
rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
195
kfree(oldscan);
196
return 0;
197
}
198
199
/**
200
* ir_update_mapping() - set a keycode in the scancode->keycode table
201
* @dev: the struct rc_dev device descriptor
202
* @rc_map: scancode table to be adjusted
203
* @index: index of the mapping that needs to be updated
204
* @keycode: the desired keycode
205
* @return: previous keycode assigned to the mapping
206
*
207
* This routine is used to update scancode->keycode mapping at given
208
* position.
209
*/
210
static unsigned int ir_update_mapping(struct rc_dev *dev,
211
struct rc_map *rc_map,
212
unsigned int index,
213
unsigned int new_keycode)
214
{
215
int old_keycode = rc_map->scan[index].keycode;
216
int i;
217
218
/* Did the user wish to remove the mapping? */
219
if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
220
IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
221
index, rc_map->scan[index].scancode);
222
rc_map->len--;
223
memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
224
(rc_map->len - index) * sizeof(struct rc_map_table));
225
} else {
226
IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
227
index,
228
old_keycode == KEY_RESERVED ? "New" : "Replacing",
229
rc_map->scan[index].scancode, new_keycode);
230
rc_map->scan[index].keycode = new_keycode;
231
__set_bit(new_keycode, dev->input_dev->keybit);
232
}
233
234
if (old_keycode != KEY_RESERVED) {
235
/* A previous mapping was updated... */
236
__clear_bit(old_keycode, dev->input_dev->keybit);
237
/* ... but another scancode might use the same keycode */
238
for (i = 0; i < rc_map->len; i++) {
239
if (rc_map->scan[i].keycode == old_keycode) {
240
__set_bit(old_keycode, dev->input_dev->keybit);
241
break;
242
}
243
}
244
245
/* Possibly shrink the keytable, failure is not a problem */
246
ir_resize_table(rc_map, GFP_ATOMIC);
247
}
248
249
return old_keycode;
250
}
251
252
/**
253
* ir_establish_scancode() - set a keycode in the scancode->keycode table
254
* @dev: the struct rc_dev device descriptor
255
* @rc_map: scancode table to be searched
256
* @scancode: the desired scancode
257
* @resize: controls whether we allowed to resize the table to
258
* accommodate not yet present scancodes
259
* @return: index of the mapping containing scancode in question
260
* or -1U in case of failure.
261
*
262
* This routine is used to locate given scancode in rc_map.
263
* If scancode is not yet present the routine will allocate a new slot
264
* for it.
265
*/
266
static unsigned int ir_establish_scancode(struct rc_dev *dev,
267
struct rc_map *rc_map,
268
unsigned int scancode,
269
bool resize)
270
{
271
unsigned int i;
272
273
/*
274
* Unfortunately, some hardware-based IR decoders don't provide
275
* all bits for the complete IR code. In general, they provide only
276
* the command part of the IR code. Yet, as it is possible to replace
277
* the provided IR with another one, it is needed to allow loading
278
* IR tables from other remotes. So, we support specifying a mask to
279
* indicate the valid bits of the scancodes.
280
*/
281
if (dev->scanmask)
282
scancode &= dev->scanmask;
283
284
/* First check if we already have a mapping for this ir command */
285
for (i = 0; i < rc_map->len; i++) {
286
if (rc_map->scan[i].scancode == scancode)
287
return i;
288
289
/* Keytable is sorted from lowest to highest scancode */
290
if (rc_map->scan[i].scancode >= scancode)
291
break;
292
}
293
294
/* No previous mapping found, we might need to grow the table */
295
if (rc_map->size == rc_map->len) {
296
if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
297
return -1U;
298
}
299
300
/* i is the proper index to insert our new keycode */
301
if (i < rc_map->len)
302
memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
303
(rc_map->len - i) * sizeof(struct rc_map_table));
304
rc_map->scan[i].scancode = scancode;
305
rc_map->scan[i].keycode = KEY_RESERVED;
306
rc_map->len++;
307
308
return i;
309
}
310
311
/**
312
* ir_setkeycode() - set a keycode in the scancode->keycode table
313
* @idev: the struct input_dev device descriptor
314
* @scancode: the desired scancode
315
* @keycode: result
316
* @return: -EINVAL if the keycode could not be inserted, otherwise zero.
317
*
318
* This routine is used to handle evdev EVIOCSKEY ioctl.
319
*/
320
static int ir_setkeycode(struct input_dev *idev,
321
const struct input_keymap_entry *ke,
322
unsigned int *old_keycode)
323
{
324
struct rc_dev *rdev = input_get_drvdata(idev);
325
struct rc_map *rc_map = &rdev->rc_map;
326
unsigned int index;
327
unsigned int scancode;
328
int retval = 0;
329
unsigned long flags;
330
331
spin_lock_irqsave(&rc_map->lock, flags);
332
333
if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
334
index = ke->index;
335
if (index >= rc_map->len) {
336
retval = -EINVAL;
337
goto out;
338
}
339
} else {
340
retval = input_scancode_to_scalar(ke, &scancode);
341
if (retval)
342
goto out;
343
344
index = ir_establish_scancode(rdev, rc_map, scancode, true);
345
if (index >= rc_map->len) {
346
retval = -ENOMEM;
347
goto out;
348
}
349
}
350
351
*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
352
353
out:
354
spin_unlock_irqrestore(&rc_map->lock, flags);
355
return retval;
356
}
357
358
/**
359
* ir_setkeytable() - sets several entries in the scancode->keycode table
360
* @dev: the struct rc_dev device descriptor
361
* @to: the struct rc_map to copy entries to
362
* @from: the struct rc_map to copy entries from
363
* @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
364
*
365
* This routine is used to handle table initialization.
366
*/
367
static int ir_setkeytable(struct rc_dev *dev,
368
const struct rc_map *from)
369
{
370
struct rc_map *rc_map = &dev->rc_map;
371
unsigned int i, index;
372
int rc;
373
374
rc = ir_create_table(rc_map, from->name,
375
from->rc_type, from->size);
376
if (rc)
377
return rc;
378
379
IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
380
rc_map->size, rc_map->alloc);
381
382
for (i = 0; i < from->size; i++) {
383
index = ir_establish_scancode(dev, rc_map,
384
from->scan[i].scancode, false);
385
if (index >= rc_map->len) {
386
rc = -ENOMEM;
387
break;
388
}
389
390
ir_update_mapping(dev, rc_map, index,
391
from->scan[i].keycode);
392
}
393
394
if (rc)
395
ir_free_table(rc_map);
396
397
return rc;
398
}
399
400
/**
401
* ir_lookup_by_scancode() - locate mapping by scancode
402
* @rc_map: the struct rc_map to search
403
* @scancode: scancode to look for in the table
404
* @return: index in the table, -1U if not found
405
*
406
* This routine performs binary search in RC keykeymap table for
407
* given scancode.
408
*/
409
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
410
unsigned int scancode)
411
{
412
int start = 0;
413
int end = rc_map->len - 1;
414
int mid;
415
416
while (start <= end) {
417
mid = (start + end) / 2;
418
if (rc_map->scan[mid].scancode < scancode)
419
start = mid + 1;
420
else if (rc_map->scan[mid].scancode > scancode)
421
end = mid - 1;
422
else
423
return mid;
424
}
425
426
return -1U;
427
}
428
429
/**
430
* ir_getkeycode() - get a keycode from the scancode->keycode table
431
* @idev: the struct input_dev device descriptor
432
* @scancode: the desired scancode
433
* @keycode: used to return the keycode, if found, or KEY_RESERVED
434
* @return: always returns zero.
435
*
436
* This routine is used to handle evdev EVIOCGKEY ioctl.
437
*/
438
static int ir_getkeycode(struct input_dev *idev,
439
struct input_keymap_entry *ke)
440
{
441
struct rc_dev *rdev = input_get_drvdata(idev);
442
struct rc_map *rc_map = &rdev->rc_map;
443
struct rc_map_table *entry;
444
unsigned long flags;
445
unsigned int index;
446
unsigned int scancode;
447
int retval;
448
449
spin_lock_irqsave(&rc_map->lock, flags);
450
451
if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
452
index = ke->index;
453
} else {
454
retval = input_scancode_to_scalar(ke, &scancode);
455
if (retval)
456
goto out;
457
458
index = ir_lookup_by_scancode(rc_map, scancode);
459
}
460
461
if (index < rc_map->len) {
462
entry = &rc_map->scan[index];
463
464
ke->index = index;
465
ke->keycode = entry->keycode;
466
ke->len = sizeof(entry->scancode);
467
memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
468
469
} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
470
/*
471
* We do not really know the valid range of scancodes
472
* so let's respond with KEY_RESERVED to anything we
473
* do not have mapping for [yet].
474
*/
475
ke->index = index;
476
ke->keycode = KEY_RESERVED;
477
} else {
478
retval = -EINVAL;
479
goto out;
480
}
481
482
retval = 0;
483
484
out:
485
spin_unlock_irqrestore(&rc_map->lock, flags);
486
return retval;
487
}
488
489
/**
490
* rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
491
* @dev: the struct rc_dev descriptor of the device
492
* @scancode: the scancode to look for
493
* @return: the corresponding keycode, or KEY_RESERVED
494
*
495
* This routine is used by drivers which need to convert a scancode to a
496
* keycode. Normally it should not be used since drivers should have no
497
* interest in keycodes.
498
*/
499
u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
500
{
501
struct rc_map *rc_map = &dev->rc_map;
502
unsigned int keycode;
503
unsigned int index;
504
unsigned long flags;
505
506
spin_lock_irqsave(&rc_map->lock, flags);
507
508
index = ir_lookup_by_scancode(rc_map, scancode);
509
keycode = index < rc_map->len ?
510
rc_map->scan[index].keycode : KEY_RESERVED;
511
512
spin_unlock_irqrestore(&rc_map->lock, flags);
513
514
if (keycode != KEY_RESERVED)
515
IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
516
dev->input_name, scancode, keycode);
517
518
return keycode;
519
}
520
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
521
522
/**
523
* ir_do_keyup() - internal function to signal the release of a keypress
524
* @dev: the struct rc_dev descriptor of the device
525
* @sync: whether or not to call input_sync
526
*
527
* This function is used internally to release a keypress, it must be
528
* called with keylock held.
529
*/
530
static void ir_do_keyup(struct rc_dev *dev, bool sync)
531
{
532
if (!dev->keypressed)
533
return;
534
535
IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
536
input_report_key(dev->input_dev, dev->last_keycode, 0);
537
if (sync)
538
input_sync(dev->input_dev);
539
dev->keypressed = false;
540
}
541
542
/**
543
* rc_keyup() - signals the release of a keypress
544
* @dev: the struct rc_dev descriptor of the device
545
*
546
* This routine is used to signal that a key has been released on the
547
* remote control.
548
*/
549
void rc_keyup(struct rc_dev *dev)
550
{
551
unsigned long flags;
552
553
spin_lock_irqsave(&dev->keylock, flags);
554
ir_do_keyup(dev, true);
555
spin_unlock_irqrestore(&dev->keylock, flags);
556
}
557
EXPORT_SYMBOL_GPL(rc_keyup);
558
559
/**
560
* ir_timer_keyup() - generates a keyup event after a timeout
561
* @cookie: a pointer to the struct rc_dev for the device
562
*
563
* This routine will generate a keyup event some time after a keydown event
564
* is generated when no further activity has been detected.
565
*/
566
static void ir_timer_keyup(unsigned long cookie)
567
{
568
struct rc_dev *dev = (struct rc_dev *)cookie;
569
unsigned long flags;
570
571
/*
572
* ir->keyup_jiffies is used to prevent a race condition if a
573
* hardware interrupt occurs at this point and the keyup timer
574
* event is moved further into the future as a result.
575
*
576
* The timer will then be reactivated and this function called
577
* again in the future. We need to exit gracefully in that case
578
* to allow the input subsystem to do its auto-repeat magic or
579
* a keyup event might follow immediately after the keydown.
580
*/
581
spin_lock_irqsave(&dev->keylock, flags);
582
if (time_is_before_eq_jiffies(dev->keyup_jiffies))
583
ir_do_keyup(dev, true);
584
spin_unlock_irqrestore(&dev->keylock, flags);
585
}
586
587
/**
588
* rc_repeat() - signals that a key is still pressed
589
* @dev: the struct rc_dev descriptor of the device
590
*
591
* This routine is used by IR decoders when a repeat message which does
592
* not include the necessary bits to reproduce the scancode has been
593
* received.
594
*/
595
void rc_repeat(struct rc_dev *dev)
596
{
597
unsigned long flags;
598
599
spin_lock_irqsave(&dev->keylock, flags);
600
601
input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
602
input_sync(dev->input_dev);
603
604
if (!dev->keypressed)
605
goto out;
606
607
dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
608
mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
609
610
out:
611
spin_unlock_irqrestore(&dev->keylock, flags);
612
}
613
EXPORT_SYMBOL_GPL(rc_repeat);
614
615
/**
616
* ir_do_keydown() - internal function to process a keypress
617
* @dev: the struct rc_dev descriptor of the device
618
* @scancode: the scancode of the keypress
619
* @keycode: the keycode of the keypress
620
* @toggle: the toggle value of the keypress
621
*
622
* This function is used internally to register a keypress, it must be
623
* called with keylock held.
624
*/
625
static void ir_do_keydown(struct rc_dev *dev, int scancode,
626
u32 keycode, u8 toggle)
627
{
628
bool new_event = !dev->keypressed ||
629
dev->last_scancode != scancode ||
630
dev->last_toggle != toggle;
631
632
if (new_event && dev->keypressed)
633
ir_do_keyup(dev, false);
634
635
input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
636
637
if (new_event && keycode != KEY_RESERVED) {
638
/* Register a keypress */
639
dev->keypressed = true;
640
dev->last_scancode = scancode;
641
dev->last_toggle = toggle;
642
dev->last_keycode = keycode;
643
644
IR_dprintk(1, "%s: key down event, "
645
"key 0x%04x, scancode 0x%04x\n",
646
dev->input_name, keycode, scancode);
647
input_report_key(dev->input_dev, keycode, 1);
648
}
649
650
input_sync(dev->input_dev);
651
}
652
653
/**
654
* rc_keydown() - generates input event for a key press
655
* @dev: the struct rc_dev descriptor of the device
656
* @scancode: the scancode that we're seeking
657
* @toggle: the toggle value (protocol dependent, if the protocol doesn't
658
* support toggle values, this should be set to zero)
659
*
660
* This routine is used to signal that a key has been pressed on the
661
* remote control.
662
*/
663
void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
664
{
665
unsigned long flags;
666
u32 keycode = rc_g_keycode_from_table(dev, scancode);
667
668
spin_lock_irqsave(&dev->keylock, flags);
669
ir_do_keydown(dev, scancode, keycode, toggle);
670
671
if (dev->keypressed) {
672
dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
673
mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
674
}
675
spin_unlock_irqrestore(&dev->keylock, flags);
676
}
677
EXPORT_SYMBOL_GPL(rc_keydown);
678
679
/**
680
* rc_keydown_notimeout() - generates input event for a key press without
681
* an automatic keyup event at a later time
682
* @dev: the struct rc_dev descriptor of the device
683
* @scancode: the scancode that we're seeking
684
* @toggle: the toggle value (protocol dependent, if the protocol doesn't
685
* support toggle values, this should be set to zero)
686
*
687
* This routine is used to signal that a key has been pressed on the
688
* remote control. The driver must manually call rc_keyup() at a later stage.
689
*/
690
void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
691
{
692
unsigned long flags;
693
u32 keycode = rc_g_keycode_from_table(dev, scancode);
694
695
spin_lock_irqsave(&dev->keylock, flags);
696
ir_do_keydown(dev, scancode, keycode, toggle);
697
spin_unlock_irqrestore(&dev->keylock, flags);
698
}
699
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
700
701
static int ir_open(struct input_dev *idev)
702
{
703
struct rc_dev *rdev = input_get_drvdata(idev);
704
705
return rdev->open(rdev);
706
}
707
708
static void ir_close(struct input_dev *idev)
709
{
710
struct rc_dev *rdev = input_get_drvdata(idev);
711
712
if (rdev)
713
rdev->close(rdev);
714
}
715
716
/* class for /sys/class/rc */
717
static char *ir_devnode(struct device *dev, mode_t *mode)
718
{
719
return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
720
}
721
722
static struct class ir_input_class = {
723
.name = "rc",
724
.devnode = ir_devnode,
725
};
726
727
static struct {
728
u64 type;
729
char *name;
730
} proto_names[] = {
731
{ RC_TYPE_UNKNOWN, "unknown" },
732
{ RC_TYPE_RC5, "rc-5" },
733
{ RC_TYPE_NEC, "nec" },
734
{ RC_TYPE_RC6, "rc-6" },
735
{ RC_TYPE_JVC, "jvc" },
736
{ RC_TYPE_SONY, "sony" },
737
{ RC_TYPE_RC5_SZ, "rc-5-sz" },
738
{ RC_TYPE_LIRC, "lirc" },
739
{ RC_TYPE_OTHER, "other" },
740
};
741
742
#define PROTO_NONE "none"
743
744
/**
745
* show_protocols() - shows the current IR protocol(s)
746
* @device: the device descriptor
747
* @mattr: the device attribute struct (unused)
748
* @buf: a pointer to the output buffer
749
*
750
* This routine is a callback routine for input read the IR protocol type(s).
751
* it is trigged by reading /sys/class/rc/rc?/protocols.
752
* It returns the protocol names of supported protocols.
753
* Enabled protocols are printed in brackets.
754
*
755
* dev->lock is taken to guard against races between device
756
* registration, store_protocols and show_protocols.
757
*/
758
static ssize_t show_protocols(struct device *device,
759
struct device_attribute *mattr, char *buf)
760
{
761
struct rc_dev *dev = to_rc_dev(device);
762
u64 allowed, enabled;
763
char *tmp = buf;
764
int i;
765
766
/* Device is being removed */
767
if (!dev)
768
return -EINVAL;
769
770
mutex_lock(&dev->lock);
771
772
if (dev->driver_type == RC_DRIVER_SCANCODE) {
773
enabled = dev->rc_map.rc_type;
774
allowed = dev->allowed_protos;
775
} else {
776
enabled = dev->raw->enabled_protocols;
777
allowed = ir_raw_get_allowed_protocols();
778
}
779
780
IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
781
(long long)allowed,
782
(long long)enabled);
783
784
for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
785
if (allowed & enabled & proto_names[i].type)
786
tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
787
else if (allowed & proto_names[i].type)
788
tmp += sprintf(tmp, "%s ", proto_names[i].name);
789
}
790
791
if (tmp != buf)
792
tmp--;
793
*tmp = '\n';
794
795
mutex_unlock(&dev->lock);
796
797
return tmp + 1 - buf;
798
}
799
800
/**
801
* store_protocols() - changes the current IR protocol(s)
802
* @device: the device descriptor
803
* @mattr: the device attribute struct (unused)
804
* @buf: a pointer to the input buffer
805
* @len: length of the input buffer
806
*
807
* This routine is for changing the IR protocol type.
808
* It is trigged by writing to /sys/class/rc/rc?/protocols.
809
* Writing "+proto" will add a protocol to the list of enabled protocols.
810
* Writing "-proto" will remove a protocol from the list of enabled protocols.
811
* Writing "proto" will enable only "proto".
812
* Writing "none" will disable all protocols.
813
* Returns -EINVAL if an invalid protocol combination or unknown protocol name
814
* is used, otherwise @len.
815
*
816
* dev->lock is taken to guard against races between device
817
* registration, store_protocols and show_protocols.
818
*/
819
static ssize_t store_protocols(struct device *device,
820
struct device_attribute *mattr,
821
const char *data,
822
size_t len)
823
{
824
struct rc_dev *dev = to_rc_dev(device);
825
bool enable, disable;
826
const char *tmp;
827
u64 type;
828
u64 mask;
829
int rc, i, count = 0;
830
unsigned long flags;
831
ssize_t ret;
832
833
/* Device is being removed */
834
if (!dev)
835
return -EINVAL;
836
837
mutex_lock(&dev->lock);
838
839
if (dev->driver_type == RC_DRIVER_SCANCODE)
840
type = dev->rc_map.rc_type;
841
else if (dev->raw)
842
type = dev->raw->enabled_protocols;
843
else {
844
IR_dprintk(1, "Protocol switching not supported\n");
845
ret = -EINVAL;
846
goto out;
847
}
848
849
while ((tmp = strsep((char **) &data, " \n")) != NULL) {
850
if (!*tmp)
851
break;
852
853
if (*tmp == '+') {
854
enable = true;
855
disable = false;
856
tmp++;
857
} else if (*tmp == '-') {
858
enable = false;
859
disable = true;
860
tmp++;
861
} else {
862
enable = false;
863
disable = false;
864
}
865
866
if (!enable && !disable && !strncasecmp(tmp, PROTO_NONE, sizeof(PROTO_NONE))) {
867
tmp += sizeof(PROTO_NONE);
868
mask = 0;
869
count++;
870
} else {
871
for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
872
if (!strcasecmp(tmp, proto_names[i].name)) {
873
tmp += strlen(proto_names[i].name);
874
mask = proto_names[i].type;
875
break;
876
}
877
}
878
if (i == ARRAY_SIZE(proto_names)) {
879
IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
880
ret = -EINVAL;
881
goto out;
882
}
883
count++;
884
}
885
886
if (enable)
887
type |= mask;
888
else if (disable)
889
type &= ~mask;
890
else
891
type = mask;
892
}
893
894
if (!count) {
895
IR_dprintk(1, "Protocol not specified\n");
896
ret = -EINVAL;
897
goto out;
898
}
899
900
if (dev->change_protocol) {
901
rc = dev->change_protocol(dev, type);
902
if (rc < 0) {
903
IR_dprintk(1, "Error setting protocols to 0x%llx\n",
904
(long long)type);
905
ret = -EINVAL;
906
goto out;
907
}
908
}
909
910
if (dev->driver_type == RC_DRIVER_SCANCODE) {
911
spin_lock_irqsave(&dev->rc_map.lock, flags);
912
dev->rc_map.rc_type = type;
913
spin_unlock_irqrestore(&dev->rc_map.lock, flags);
914
} else {
915
dev->raw->enabled_protocols = type;
916
}
917
918
IR_dprintk(1, "Current protocol(s): 0x%llx\n",
919
(long long)type);
920
921
ret = len;
922
923
out:
924
mutex_unlock(&dev->lock);
925
return ret;
926
}
927
928
static void rc_dev_release(struct device *device)
929
{
930
struct rc_dev *dev = to_rc_dev(device);
931
932
kfree(dev);
933
module_put(THIS_MODULE);
934
}
935
936
#define ADD_HOTPLUG_VAR(fmt, val...) \
937
do { \
938
int err = add_uevent_var(env, fmt, val); \
939
if (err) \
940
return err; \
941
} while (0)
942
943
static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
944
{
945
struct rc_dev *dev = to_rc_dev(device);
946
947
if (dev->rc_map.name)
948
ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
949
if (dev->driver_name)
950
ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
951
952
return 0;
953
}
954
955
/*
956
* Static device attribute struct with the sysfs attributes for IR's
957
*/
958
static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
959
show_protocols, store_protocols);
960
961
static struct attribute *rc_dev_attrs[] = {
962
&dev_attr_protocols.attr,
963
NULL,
964
};
965
966
static struct attribute_group rc_dev_attr_grp = {
967
.attrs = rc_dev_attrs,
968
};
969
970
static const struct attribute_group *rc_dev_attr_groups[] = {
971
&rc_dev_attr_grp,
972
NULL
973
};
974
975
static struct device_type rc_dev_type = {
976
.groups = rc_dev_attr_groups,
977
.release = rc_dev_release,
978
.uevent = rc_dev_uevent,
979
};
980
981
struct rc_dev *rc_allocate_device(void)
982
{
983
struct rc_dev *dev;
984
985
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
986
if (!dev)
987
return NULL;
988
989
dev->input_dev = input_allocate_device();
990
if (!dev->input_dev) {
991
kfree(dev);
992
return NULL;
993
}
994
995
dev->input_dev->getkeycode = ir_getkeycode;
996
dev->input_dev->setkeycode = ir_setkeycode;
997
input_set_drvdata(dev->input_dev, dev);
998
999
spin_lock_init(&dev->rc_map.lock);
1000
spin_lock_init(&dev->keylock);
1001
mutex_init(&dev->lock);
1002
setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1003
1004
dev->dev.type = &rc_dev_type;
1005
dev->dev.class = &ir_input_class;
1006
device_initialize(&dev->dev);
1007
1008
__module_get(THIS_MODULE);
1009
return dev;
1010
}
1011
EXPORT_SYMBOL_GPL(rc_allocate_device);
1012
1013
void rc_free_device(struct rc_dev *dev)
1014
{
1015
if (dev) {
1016
input_free_device(dev->input_dev);
1017
put_device(&dev->dev);
1018
}
1019
}
1020
EXPORT_SYMBOL_GPL(rc_free_device);
1021
1022
int rc_register_device(struct rc_dev *dev)
1023
{
1024
static atomic_t devno = ATOMIC_INIT(0);
1025
struct rc_map *rc_map;
1026
const char *path;
1027
int rc;
1028
1029
if (!dev || !dev->map_name)
1030
return -EINVAL;
1031
1032
rc_map = rc_map_get(dev->map_name);
1033
if (!rc_map)
1034
rc_map = rc_map_get(RC_MAP_EMPTY);
1035
if (!rc_map || !rc_map->scan || rc_map->size == 0)
1036
return -EINVAL;
1037
1038
set_bit(EV_KEY, dev->input_dev->evbit);
1039
set_bit(EV_REP, dev->input_dev->evbit);
1040
set_bit(EV_MSC, dev->input_dev->evbit);
1041
set_bit(MSC_SCAN, dev->input_dev->mscbit);
1042
if (dev->open)
1043
dev->input_dev->open = ir_open;
1044
if (dev->close)
1045
dev->input_dev->close = ir_close;
1046
1047
/*
1048
* Take the lock here, as the device sysfs node will appear
1049
* when device_add() is called, which may trigger an ir-keytable udev
1050
* rule, which will in turn call show_protocols and access either
1051
* dev->rc_map.rc_type or dev->raw->enabled_protocols before it has
1052
* been initialized.
1053
*/
1054
mutex_lock(&dev->lock);
1055
1056
dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
1057
dev_set_name(&dev->dev, "rc%ld", dev->devno);
1058
dev_set_drvdata(&dev->dev, dev);
1059
rc = device_add(&dev->dev);
1060
if (rc)
1061
goto out_unlock;
1062
1063
rc = ir_setkeytable(dev, rc_map);
1064
if (rc)
1065
goto out_dev;
1066
1067
dev->input_dev->dev.parent = &dev->dev;
1068
memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1069
dev->input_dev->phys = dev->input_phys;
1070
dev->input_dev->name = dev->input_name;
1071
rc = input_register_device(dev->input_dev);
1072
if (rc)
1073
goto out_table;
1074
1075
/*
1076
* Default delay of 250ms is too short for some protocols, especially
1077
* since the timeout is currently set to 250ms. Increase it to 500ms,
1078
* to avoid wrong repetition of the keycodes. Note that this must be
1079
* set after the call to input_register_device().
1080
*/
1081
dev->input_dev->rep[REP_DELAY] = 500;
1082
1083
/*
1084
* As a repeat event on protocols like RC-5 and NEC take as long as
1085
* 110/114ms, using 33ms as a repeat period is not the right thing
1086
* to do.
1087
*/
1088
dev->input_dev->rep[REP_PERIOD] = 125;
1089
1090
path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1091
printk(KERN_INFO "%s: %s as %s\n",
1092
dev_name(&dev->dev),
1093
dev->input_name ? dev->input_name : "Unspecified device",
1094
path ? path : "N/A");
1095
kfree(path);
1096
1097
if (dev->driver_type == RC_DRIVER_IR_RAW) {
1098
rc = ir_raw_event_register(dev);
1099
if (rc < 0)
1100
goto out_input;
1101
}
1102
mutex_unlock(&dev->lock);
1103
1104
if (dev->change_protocol) {
1105
rc = dev->change_protocol(dev, rc_map->rc_type);
1106
if (rc < 0)
1107
goto out_raw;
1108
}
1109
1110
IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1111
dev->devno,
1112
dev->driver_name ? dev->driver_name : "unknown",
1113
rc_map->name ? rc_map->name : "unknown",
1114
dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1115
1116
return 0;
1117
1118
out_raw:
1119
if (dev->driver_type == RC_DRIVER_IR_RAW)
1120
ir_raw_event_unregister(dev);
1121
out_input:
1122
input_unregister_device(dev->input_dev);
1123
dev->input_dev = NULL;
1124
out_table:
1125
ir_free_table(&dev->rc_map);
1126
out_dev:
1127
device_del(&dev->dev);
1128
out_unlock:
1129
mutex_unlock(&dev->lock);
1130
return rc;
1131
}
1132
EXPORT_SYMBOL_GPL(rc_register_device);
1133
1134
void rc_unregister_device(struct rc_dev *dev)
1135
{
1136
if (!dev)
1137
return;
1138
1139
del_timer_sync(&dev->timer_keyup);
1140
1141
if (dev->driver_type == RC_DRIVER_IR_RAW)
1142
ir_raw_event_unregister(dev);
1143
1144
input_unregister_device(dev->input_dev);
1145
dev->input_dev = NULL;
1146
1147
ir_free_table(&dev->rc_map);
1148
IR_dprintk(1, "Freed keycode table\n");
1149
1150
device_unregister(&dev->dev);
1151
}
1152
EXPORT_SYMBOL_GPL(rc_unregister_device);
1153
1154
/*
1155
* Init/exit code for the module. Basically, creates/removes /sys/class/rc
1156
*/
1157
1158
static int __init rc_core_init(void)
1159
{
1160
int rc = class_register(&ir_input_class);
1161
if (rc) {
1162
printk(KERN_ERR "rc_core: unable to register rc class\n");
1163
return rc;
1164
}
1165
1166
/* Initialize/load the decoders/keymap code that will be used */
1167
ir_raw_init();
1168
rc_map_register(&empty_map);
1169
1170
return 0;
1171
}
1172
1173
static void __exit rc_core_exit(void)
1174
{
1175
class_unregister(&ir_input_class);
1176
rc_map_unregister(&empty_map);
1177
}
1178
1179
module_init(rc_core_init);
1180
module_exit(rc_core_exit);
1181
1182
int rc_core_debug; /* ir_debug level (0,1,2) */
1183
EXPORT_SYMBOL_GPL(rc_core_debug);
1184
module_param_named(debug, rc_core_debug, int, 0644);
1185
1186
MODULE_AUTHOR("Mauro Carvalho Chehab <[email protected]>");
1187
MODULE_LICENSE("GPL");
1188
1189