Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/media/video/cafe_ccic.c
17531 views
1
/*
2
* A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
3
* multifunction chip. Currently works with the Omnivision OV7670
4
* sensor.
5
*
6
* The data sheet for this device can be found at:
7
* http://www.marvell.com/products/pc_connectivity/88alp01/
8
*
9
* Copyright 2006 One Laptop Per Child Association, Inc.
10
* Copyright 2006-7 Jonathan Corbet <[email protected]>
11
*
12
* Written by Jonathan Corbet, [email protected].
13
*
14
* v4l2_device/v4l2_subdev conversion by:
15
* Copyright (C) 2009 Hans Verkuil <[email protected]>
16
*
17
* Note: this conversion is untested! Please contact the linux-media
18
* mailinglist if you can test this, together with the test results.
19
*
20
* This file may be distributed under the terms of the GNU General
21
* Public License, version 2.
22
*/
23
24
#include <linux/kernel.h>
25
#include <linux/module.h>
26
#include <linux/init.h>
27
#include <linux/fs.h>
28
#include <linux/dmi.h>
29
#include <linux/mm.h>
30
#include <linux/pci.h>
31
#include <linux/i2c.h>
32
#include <linux/interrupt.h>
33
#include <linux/spinlock.h>
34
#include <linux/videodev2.h>
35
#include <linux/slab.h>
36
#include <media/v4l2-device.h>
37
#include <media/v4l2-ioctl.h>
38
#include <media/v4l2-chip-ident.h>
39
#include <linux/device.h>
40
#include <linux/wait.h>
41
#include <linux/list.h>
42
#include <linux/dma-mapping.h>
43
#include <linux/delay.h>
44
#include <linux/jiffies.h>
45
#include <linux/vmalloc.h>
46
47
#include <asm/uaccess.h>
48
#include <asm/io.h>
49
50
#include "ov7670.h"
51
#include "cafe_ccic-regs.h"
52
53
#define CAFE_VERSION 0x000002
54
55
56
/*
57
* Parameters.
58
*/
59
MODULE_AUTHOR("Jonathan Corbet <[email protected]>");
60
MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
61
MODULE_LICENSE("GPL");
62
MODULE_SUPPORTED_DEVICE("Video");
63
64
/*
65
* Internal DMA buffer management. Since the controller cannot do S/G I/O,
66
* we must have physically contiguous buffers to bring frames into.
67
* These parameters control how many buffers we use, whether we
68
* allocate them at load time (better chance of success, but nails down
69
* memory) or when somebody tries to use the camera (riskier), and,
70
* for load-time allocation, how big they should be.
71
*
72
* The controller can cycle through three buffers. We could use
73
* more by flipping pointers around, but it probably makes little
74
* sense.
75
*/
76
77
#define MAX_DMA_BUFS 3
78
static int alloc_bufs_at_read;
79
module_param(alloc_bufs_at_read, bool, 0444);
80
MODULE_PARM_DESC(alloc_bufs_at_read,
81
"Non-zero value causes DMA buffers to be allocated when the "
82
"video capture device is read, rather than at module load "
83
"time. This saves memory, but decreases the chances of "
84
"successfully getting those buffers.");
85
86
static int n_dma_bufs = 3;
87
module_param(n_dma_bufs, uint, 0644);
88
MODULE_PARM_DESC(n_dma_bufs,
89
"The number of DMA buffers to allocate. Can be either two "
90
"(saves memory, makes timing tighter) or three.");
91
92
static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */
93
module_param(dma_buf_size, uint, 0444);
94
MODULE_PARM_DESC(dma_buf_size,
95
"The size of the allocated DMA buffers. If actual operating "
96
"parameters require larger buffers, an attempt to reallocate "
97
"will be made.");
98
99
static int min_buffers = 1;
100
module_param(min_buffers, uint, 0644);
101
MODULE_PARM_DESC(min_buffers,
102
"The minimum number of streaming I/O buffers we are willing "
103
"to work with.");
104
105
static int max_buffers = 10;
106
module_param(max_buffers, uint, 0644);
107
MODULE_PARM_DESC(max_buffers,
108
"The maximum number of streaming I/O buffers an application "
109
"will be allowed to allocate. These buffers are big and live "
110
"in vmalloc space.");
111
112
static int flip;
113
module_param(flip, bool, 0444);
114
MODULE_PARM_DESC(flip,
115
"If set, the sensor will be instructed to flip the image "
116
"vertically.");
117
118
119
enum cafe_state {
120
S_NOTREADY, /* Not yet initialized */
121
S_IDLE, /* Just hanging around */
122
S_FLAKED, /* Some sort of problem */
123
S_SINGLEREAD, /* In read() */
124
S_SPECREAD, /* Speculative read (for future read()) */
125
S_STREAMING /* Streaming data */
126
};
127
128
/*
129
* Tracking of streaming I/O buffers.
130
*/
131
struct cafe_sio_buffer {
132
struct list_head list;
133
struct v4l2_buffer v4lbuf;
134
char *buffer; /* Where it lives in kernel space */
135
int mapcount;
136
struct cafe_camera *cam;
137
};
138
139
/*
140
* A description of one of our devices.
141
* Locking: controlled by s_mutex. Certain fields, however, require
142
* the dev_lock spinlock; they are marked as such by comments.
143
* dev_lock is also required for access to device registers.
144
*/
145
struct cafe_camera
146
{
147
struct v4l2_device v4l2_dev;
148
enum cafe_state state;
149
unsigned long flags; /* Buffer status, mainly (dev_lock) */
150
int users; /* How many open FDs */
151
struct file *owner; /* Who has data access (v4l2) */
152
153
/*
154
* Subsystem structures.
155
*/
156
struct pci_dev *pdev;
157
struct video_device vdev;
158
struct i2c_adapter i2c_adapter;
159
struct v4l2_subdev *sensor;
160
unsigned short sensor_addr;
161
162
unsigned char __iomem *regs;
163
struct list_head dev_list; /* link to other devices */
164
165
/* DMA buffers */
166
unsigned int nbufs; /* How many are alloc'd */
167
int next_buf; /* Next to consume (dev_lock) */
168
unsigned int dma_buf_size; /* allocated size */
169
void *dma_bufs[MAX_DMA_BUFS]; /* Internal buffer addresses */
170
dma_addr_t dma_handles[MAX_DMA_BUFS]; /* Buffer bus addresses */
171
unsigned int specframes; /* Unconsumed spec frames (dev_lock) */
172
unsigned int sequence; /* Frame sequence number */
173
unsigned int buf_seq[MAX_DMA_BUFS]; /* Sequence for individual buffers */
174
175
/* Streaming buffers */
176
unsigned int n_sbufs; /* How many we have */
177
struct cafe_sio_buffer *sb_bufs; /* The array of housekeeping structs */
178
struct list_head sb_avail; /* Available for data (we own) (dev_lock) */
179
struct list_head sb_full; /* With data (user space owns) (dev_lock) */
180
struct tasklet_struct s_tasklet;
181
182
/* Current operating parameters */
183
u32 sensor_type; /* Currently ov7670 only */
184
struct v4l2_pix_format pix_format;
185
enum v4l2_mbus_pixelcode mbus_code;
186
187
/* Locks */
188
struct mutex s_mutex; /* Access to this structure */
189
spinlock_t dev_lock; /* Access to device */
190
191
/* Misc */
192
wait_queue_head_t smbus_wait; /* Waiting on i2c events */
193
wait_queue_head_t iowait; /* Waiting on frame data */
194
};
195
196
/*
197
* Status flags. Always manipulated with bit operations.
198
*/
199
#define CF_BUF0_VALID 0 /* Buffers valid - first three */
200
#define CF_BUF1_VALID 1
201
#define CF_BUF2_VALID 2
202
#define CF_DMA_ACTIVE 3 /* A frame is incoming */
203
#define CF_CONFIG_NEEDED 4 /* Must configure hardware */
204
205
#define sensor_call(cam, o, f, args...) \
206
v4l2_subdev_call(cam->sensor, o, f, ##args)
207
208
static inline struct cafe_camera *to_cam(struct v4l2_device *dev)
209
{
210
return container_of(dev, struct cafe_camera, v4l2_dev);
211
}
212
213
static struct cafe_format_struct {
214
__u8 *desc;
215
__u32 pixelformat;
216
int bpp; /* Bytes per pixel */
217
enum v4l2_mbus_pixelcode mbus_code;
218
} cafe_formats[] = {
219
{
220
.desc = "YUYV 4:2:2",
221
.pixelformat = V4L2_PIX_FMT_YUYV,
222
.mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
223
.bpp = 2,
224
},
225
{
226
.desc = "RGB 444",
227
.pixelformat = V4L2_PIX_FMT_RGB444,
228
.mbus_code = V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE,
229
.bpp = 2,
230
},
231
{
232
.desc = "RGB 565",
233
.pixelformat = V4L2_PIX_FMT_RGB565,
234
.mbus_code = V4L2_MBUS_FMT_RGB565_2X8_LE,
235
.bpp = 2,
236
},
237
{
238
.desc = "Raw RGB Bayer",
239
.pixelformat = V4L2_PIX_FMT_SBGGR8,
240
.mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,
241
.bpp = 1
242
},
243
};
244
#define N_CAFE_FMTS ARRAY_SIZE(cafe_formats)
245
246
static struct cafe_format_struct *cafe_find_format(u32 pixelformat)
247
{
248
unsigned i;
249
250
for (i = 0; i < N_CAFE_FMTS; i++)
251
if (cafe_formats[i].pixelformat == pixelformat)
252
return cafe_formats + i;
253
/* Not found? Then return the first format. */
254
return cafe_formats;
255
}
256
257
/*
258
* Start over with DMA buffers - dev_lock needed.
259
*/
260
static void cafe_reset_buffers(struct cafe_camera *cam)
261
{
262
int i;
263
264
cam->next_buf = -1;
265
for (i = 0; i < cam->nbufs; i++)
266
clear_bit(i, &cam->flags);
267
cam->specframes = 0;
268
}
269
270
static inline int cafe_needs_config(struct cafe_camera *cam)
271
{
272
return test_bit(CF_CONFIG_NEEDED, &cam->flags);
273
}
274
275
static void cafe_set_config_needed(struct cafe_camera *cam, int needed)
276
{
277
if (needed)
278
set_bit(CF_CONFIG_NEEDED, &cam->flags);
279
else
280
clear_bit(CF_CONFIG_NEEDED, &cam->flags);
281
}
282
283
284
285
286
/*
287
* Debugging and related.
288
*/
289
#define cam_err(cam, fmt, arg...) \
290
dev_err(&(cam)->pdev->dev, fmt, ##arg);
291
#define cam_warn(cam, fmt, arg...) \
292
dev_warn(&(cam)->pdev->dev, fmt, ##arg);
293
#define cam_dbg(cam, fmt, arg...) \
294
dev_dbg(&(cam)->pdev->dev, fmt, ##arg);
295
296
297
/* ---------------------------------------------------------------------*/
298
299
/*
300
* Device register I/O
301
*/
302
static inline void cafe_reg_write(struct cafe_camera *cam, unsigned int reg,
303
unsigned int val)
304
{
305
iowrite32(val, cam->regs + reg);
306
}
307
308
static inline unsigned int cafe_reg_read(struct cafe_camera *cam,
309
unsigned int reg)
310
{
311
return ioread32(cam->regs + reg);
312
}
313
314
315
static inline void cafe_reg_write_mask(struct cafe_camera *cam, unsigned int reg,
316
unsigned int val, unsigned int mask)
317
{
318
unsigned int v = cafe_reg_read(cam, reg);
319
320
v = (v & ~mask) | (val & mask);
321
cafe_reg_write(cam, reg, v);
322
}
323
324
static inline void cafe_reg_clear_bit(struct cafe_camera *cam,
325
unsigned int reg, unsigned int val)
326
{
327
cafe_reg_write_mask(cam, reg, 0, val);
328
}
329
330
static inline void cafe_reg_set_bit(struct cafe_camera *cam,
331
unsigned int reg, unsigned int val)
332
{
333
cafe_reg_write_mask(cam, reg, val, val);
334
}
335
336
337
338
/* -------------------------------------------------------------------- */
339
/*
340
* The I2C/SMBUS interface to the camera itself starts here. The
341
* controller handles SMBUS itself, presenting a relatively simple register
342
* interface; all we have to do is to tell it where to route the data.
343
*/
344
#define CAFE_SMBUS_TIMEOUT (HZ) /* generous */
345
346
static int cafe_smbus_write_done(struct cafe_camera *cam)
347
{
348
unsigned long flags;
349
int c1;
350
351
/*
352
* We must delay after the interrupt, or the controller gets confused
353
* and never does give us good status. Fortunately, we don't do this
354
* often.
355
*/
356
udelay(20);
357
spin_lock_irqsave(&cam->dev_lock, flags);
358
c1 = cafe_reg_read(cam, REG_TWSIC1);
359
spin_unlock_irqrestore(&cam->dev_lock, flags);
360
return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT;
361
}
362
363
static int cafe_smbus_write_data(struct cafe_camera *cam,
364
u16 addr, u8 command, u8 value)
365
{
366
unsigned int rval;
367
unsigned long flags;
368
369
spin_lock_irqsave(&cam->dev_lock, flags);
370
rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
371
rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
372
/*
373
* Marvell sez set clkdiv to all 1's for now.
374
*/
375
rval |= TWSIC0_CLKDIV;
376
cafe_reg_write(cam, REG_TWSIC0, rval);
377
(void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
378
rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
379
cafe_reg_write(cam, REG_TWSIC1, rval);
380
spin_unlock_irqrestore(&cam->dev_lock, flags);
381
382
/* Unfortunately, reading TWSIC1 too soon after sending a command
383
* causes the device to die.
384
* Use a busy-wait because we often send a large quantity of small
385
* commands at-once; using msleep() would cause a lot of context
386
* switches which take longer than 2ms, resulting in a noticeable
387
* boot-time and capture-start delays.
388
*/
389
mdelay(2);
390
391
/*
392
* Another sad fact is that sometimes, commands silently complete but
393
* cafe_smbus_write_done() never becomes aware of this.
394
* This happens at random and appears to possible occur with any
395
* command.
396
* We don't understand why this is. We work around this issue
397
* with the timeout in the wait below, assuming that all commands
398
* complete within the timeout.
399
*/
400
wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(cam),
401
CAFE_SMBUS_TIMEOUT);
402
403
spin_lock_irqsave(&cam->dev_lock, flags);
404
rval = cafe_reg_read(cam, REG_TWSIC1);
405
spin_unlock_irqrestore(&cam->dev_lock, flags);
406
407
if (rval & TWSIC1_WSTAT) {
408
cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr,
409
command, value);
410
return -EIO;
411
}
412
if (rval & TWSIC1_ERROR) {
413
cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr,
414
command, value);
415
return -EIO;
416
}
417
return 0;
418
}
419
420
421
422
static int cafe_smbus_read_done(struct cafe_camera *cam)
423
{
424
unsigned long flags;
425
int c1;
426
427
/*
428
* We must delay after the interrupt, or the controller gets confused
429
* and never does give us good status. Fortunately, we don't do this
430
* often.
431
*/
432
udelay(20);
433
spin_lock_irqsave(&cam->dev_lock, flags);
434
c1 = cafe_reg_read(cam, REG_TWSIC1);
435
spin_unlock_irqrestore(&cam->dev_lock, flags);
436
return c1 & (TWSIC1_RVALID|TWSIC1_ERROR);
437
}
438
439
440
441
static int cafe_smbus_read_data(struct cafe_camera *cam,
442
u16 addr, u8 command, u8 *value)
443
{
444
unsigned int rval;
445
unsigned long flags;
446
447
spin_lock_irqsave(&cam->dev_lock, flags);
448
rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
449
rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
450
/*
451
* Marvel sez set clkdiv to all 1's for now.
452
*/
453
rval |= TWSIC0_CLKDIV;
454
cafe_reg_write(cam, REG_TWSIC0, rval);
455
(void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
456
rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
457
cafe_reg_write(cam, REG_TWSIC1, rval);
458
spin_unlock_irqrestore(&cam->dev_lock, flags);
459
460
wait_event_timeout(cam->smbus_wait,
461
cafe_smbus_read_done(cam), CAFE_SMBUS_TIMEOUT);
462
spin_lock_irqsave(&cam->dev_lock, flags);
463
rval = cafe_reg_read(cam, REG_TWSIC1);
464
spin_unlock_irqrestore(&cam->dev_lock, flags);
465
466
if (rval & TWSIC1_ERROR) {
467
cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command);
468
return -EIO;
469
}
470
if (! (rval & TWSIC1_RVALID)) {
471
cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr,
472
command);
473
return -EIO;
474
}
475
*value = rval & 0xff;
476
return 0;
477
}
478
479
/*
480
* Perform a transfer over SMBUS. This thing is called under
481
* the i2c bus lock, so we shouldn't race with ourselves...
482
*/
483
static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
484
unsigned short flags, char rw, u8 command,
485
int size, union i2c_smbus_data *data)
486
{
487
struct v4l2_device *v4l2_dev = i2c_get_adapdata(adapter);
488
struct cafe_camera *cam = to_cam(v4l2_dev);
489
int ret = -EINVAL;
490
491
/*
492
* This interface would appear to only do byte data ops. OK
493
* it can do word too, but the cam chip has no use for that.
494
*/
495
if (size != I2C_SMBUS_BYTE_DATA) {
496
cam_err(cam, "funky xfer size %d\n", size);
497
return -EINVAL;
498
}
499
500
if (rw == I2C_SMBUS_WRITE)
501
ret = cafe_smbus_write_data(cam, addr, command, data->byte);
502
else if (rw == I2C_SMBUS_READ)
503
ret = cafe_smbus_read_data(cam, addr, command, &data->byte);
504
return ret;
505
}
506
507
508
static void cafe_smbus_enable_irq(struct cafe_camera *cam)
509
{
510
unsigned long flags;
511
512
spin_lock_irqsave(&cam->dev_lock, flags);
513
cafe_reg_set_bit(cam, REG_IRQMASK, TWSIIRQS);
514
spin_unlock_irqrestore(&cam->dev_lock, flags);
515
}
516
517
static u32 cafe_smbus_func(struct i2c_adapter *adapter)
518
{
519
return I2C_FUNC_SMBUS_READ_BYTE_DATA |
520
I2C_FUNC_SMBUS_WRITE_BYTE_DATA;
521
}
522
523
static struct i2c_algorithm cafe_smbus_algo = {
524
.smbus_xfer = cafe_smbus_xfer,
525
.functionality = cafe_smbus_func
526
};
527
528
/* Somebody is on the bus */
529
static void cafe_ctlr_stop_dma(struct cafe_camera *cam);
530
static void cafe_ctlr_power_down(struct cafe_camera *cam);
531
532
static int cafe_smbus_setup(struct cafe_camera *cam)
533
{
534
struct i2c_adapter *adap = &cam->i2c_adapter;
535
int ret;
536
537
cafe_smbus_enable_irq(cam);
538
adap->owner = THIS_MODULE;
539
adap->algo = &cafe_smbus_algo;
540
strcpy(adap->name, "cafe_ccic");
541
adap->dev.parent = &cam->pdev->dev;
542
i2c_set_adapdata(adap, &cam->v4l2_dev);
543
ret = i2c_add_adapter(adap);
544
if (ret)
545
printk(KERN_ERR "Unable to register cafe i2c adapter\n");
546
return ret;
547
}
548
549
static void cafe_smbus_shutdown(struct cafe_camera *cam)
550
{
551
i2c_del_adapter(&cam->i2c_adapter);
552
}
553
554
555
/* ------------------------------------------------------------------- */
556
/*
557
* Deal with the controller.
558
*/
559
560
/*
561
* Do everything we think we need to have the interface operating
562
* according to the desired format.
563
*/
564
static void cafe_ctlr_dma(struct cafe_camera *cam)
565
{
566
/*
567
* Store the first two Y buffers (we aren't supporting
568
* planar formats for now, so no UV bufs). Then either
569
* set the third if it exists, or tell the controller
570
* to just use two.
571
*/
572
cafe_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
573
cafe_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
574
if (cam->nbufs > 2) {
575
cafe_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
576
cafe_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
577
}
578
else
579
cafe_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
580
cafe_reg_write(cam, REG_UBAR, 0); /* 32 bits only for now */
581
}
582
583
static void cafe_ctlr_image(struct cafe_camera *cam)
584
{
585
int imgsz;
586
struct v4l2_pix_format *fmt = &cam->pix_format;
587
588
imgsz = ((fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK) |
589
(fmt->bytesperline & IMGSZ_H_MASK);
590
cafe_reg_write(cam, REG_IMGSIZE, imgsz);
591
cafe_reg_write(cam, REG_IMGOFFSET, 0);
592
/* YPITCH just drops the last two bits */
593
cafe_reg_write_mask(cam, REG_IMGPITCH, fmt->bytesperline,
594
IMGP_YP_MASK);
595
/*
596
* Tell the controller about the image format we are using.
597
*/
598
switch (cam->pix_format.pixelformat) {
599
case V4L2_PIX_FMT_YUYV:
600
cafe_reg_write_mask(cam, REG_CTRL0,
601
C0_DF_YUV|C0_YUV_PACKED|C0_YUVE_YUYV,
602
C0_DF_MASK);
603
break;
604
605
case V4L2_PIX_FMT_RGB444:
606
cafe_reg_write_mask(cam, REG_CTRL0,
607
C0_DF_RGB|C0_RGBF_444|C0_RGB4_XRGB,
608
C0_DF_MASK);
609
/* Alpha value? */
610
break;
611
612
case V4L2_PIX_FMT_RGB565:
613
cafe_reg_write_mask(cam, REG_CTRL0,
614
C0_DF_RGB|C0_RGBF_565|C0_RGB5_BGGR,
615
C0_DF_MASK);
616
break;
617
618
default:
619
cam_err(cam, "Unknown format %x\n", cam->pix_format.pixelformat);
620
break;
621
}
622
/*
623
* Make sure it knows we want to use hsync/vsync.
624
*/
625
cafe_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC,
626
C0_SIFM_MASK);
627
}
628
629
630
/*
631
* Configure the controller for operation; caller holds the
632
* device mutex.
633
*/
634
static int cafe_ctlr_configure(struct cafe_camera *cam)
635
{
636
unsigned long flags;
637
638
spin_lock_irqsave(&cam->dev_lock, flags);
639
cafe_ctlr_dma(cam);
640
cafe_ctlr_image(cam);
641
cafe_set_config_needed(cam, 0);
642
spin_unlock_irqrestore(&cam->dev_lock, flags);
643
return 0;
644
}
645
646
static void cafe_ctlr_irq_enable(struct cafe_camera *cam)
647
{
648
/*
649
* Clear any pending interrupts, since we do not
650
* expect to have I/O active prior to enabling.
651
*/
652
cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
653
cafe_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
654
}
655
656
static void cafe_ctlr_irq_disable(struct cafe_camera *cam)
657
{
658
cafe_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
659
}
660
661
/*
662
* Make the controller start grabbing images. Everything must
663
* be set up before doing this.
664
*/
665
static void cafe_ctlr_start(struct cafe_camera *cam)
666
{
667
/* set_bit performs a read, so no other barrier should be
668
needed here */
669
cafe_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
670
}
671
672
static void cafe_ctlr_stop(struct cafe_camera *cam)
673
{
674
cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
675
}
676
677
static void cafe_ctlr_init(struct cafe_camera *cam)
678
{
679
unsigned long flags;
680
681
spin_lock_irqsave(&cam->dev_lock, flags);
682
/*
683
* Added magic to bring up the hardware on the B-Test board
684
*/
685
cafe_reg_write(cam, 0x3038, 0x8);
686
cafe_reg_write(cam, 0x315c, 0x80008);
687
/*
688
* Go through the dance needed to wake the device up.
689
* Note that these registers are global and shared
690
* with the NAND and SD devices. Interaction between the
691
* three still needs to be examined.
692
*/
693
cafe_reg_write(cam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */
694
cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRC);
695
cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRS);
696
/*
697
* Here we must wait a bit for the controller to come around.
698
*/
699
spin_unlock_irqrestore(&cam->dev_lock, flags);
700
msleep(5);
701
spin_lock_irqsave(&cam->dev_lock, flags);
702
703
cafe_reg_write(cam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC);
704
cafe_reg_set_bit(cam, REG_GL_IMASK, GIMSK_CCIC_EN);
705
/*
706
* Make sure it's not powered down.
707
*/
708
cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
709
/*
710
* Turn off the enable bit. It sure should be off anyway,
711
* but it's good to be sure.
712
*/
713
cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
714
/*
715
* Mask all interrupts.
716
*/
717
cafe_reg_write(cam, REG_IRQMASK, 0);
718
/*
719
* Clock the sensor appropriately. Controller clock should
720
* be 48MHz, sensor "typical" value is half that.
721
*/
722
cafe_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
723
spin_unlock_irqrestore(&cam->dev_lock, flags);
724
}
725
726
727
/*
728
* Stop the controller, and don't return until we're really sure that no
729
* further DMA is going on.
730
*/
731
static void cafe_ctlr_stop_dma(struct cafe_camera *cam)
732
{
733
unsigned long flags;
734
735
/*
736
* Theory: stop the camera controller (whether it is operating
737
* or not). Delay briefly just in case we race with the SOF
738
* interrupt, then wait until no DMA is active.
739
*/
740
spin_lock_irqsave(&cam->dev_lock, flags);
741
cafe_ctlr_stop(cam);
742
spin_unlock_irqrestore(&cam->dev_lock, flags);
743
mdelay(1);
744
wait_event_timeout(cam->iowait,
745
!test_bit(CF_DMA_ACTIVE, &cam->flags), HZ);
746
if (test_bit(CF_DMA_ACTIVE, &cam->flags))
747
cam_err(cam, "Timeout waiting for DMA to end\n");
748
/* This would be bad news - what now? */
749
spin_lock_irqsave(&cam->dev_lock, flags);
750
cam->state = S_IDLE;
751
cafe_ctlr_irq_disable(cam);
752
spin_unlock_irqrestore(&cam->dev_lock, flags);
753
}
754
755
/*
756
* Power up and down.
757
*/
758
static void cafe_ctlr_power_up(struct cafe_camera *cam)
759
{
760
unsigned long flags;
761
762
spin_lock_irqsave(&cam->dev_lock, flags);
763
cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
764
/*
765
* Part one of the sensor dance: turn the global
766
* GPIO signal on.
767
*/
768
cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
769
cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL);
770
/*
771
* Put the sensor into operational mode (assumes OLPC-style
772
* wiring). Control 0 is reset - set to 1 to operate.
773
* Control 1 is power down, set to 0 to operate.
774
*/
775
cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */
776
/* mdelay(1); */ /* Marvell says 1ms will do it */
777
cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0);
778
/* mdelay(1); */ /* Enough? */
779
spin_unlock_irqrestore(&cam->dev_lock, flags);
780
msleep(5); /* Just to be sure */
781
}
782
783
static void cafe_ctlr_power_down(struct cafe_camera *cam)
784
{
785
unsigned long flags;
786
787
spin_lock_irqsave(&cam->dev_lock, flags);
788
cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1);
789
cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
790
cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT);
791
cafe_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
792
spin_unlock_irqrestore(&cam->dev_lock, flags);
793
}
794
795
/* -------------------------------------------------------------------- */
796
/*
797
* Communications with the sensor.
798
*/
799
800
static int __cafe_cam_reset(struct cafe_camera *cam)
801
{
802
return sensor_call(cam, core, reset, 0);
803
}
804
805
/*
806
* We have found the sensor on the i2c. Let's try to have a
807
* conversation.
808
*/
809
static int cafe_cam_init(struct cafe_camera *cam)
810
{
811
struct v4l2_dbg_chip_ident chip;
812
int ret;
813
814
mutex_lock(&cam->s_mutex);
815
if (cam->state != S_NOTREADY)
816
cam_warn(cam, "Cam init with device in funky state %d",
817
cam->state);
818
ret = __cafe_cam_reset(cam);
819
if (ret)
820
goto out;
821
chip.ident = V4L2_IDENT_NONE;
822
chip.match.type = V4L2_CHIP_MATCH_I2C_ADDR;
823
chip.match.addr = cam->sensor_addr;
824
ret = sensor_call(cam, core, g_chip_ident, &chip);
825
if (ret)
826
goto out;
827
cam->sensor_type = chip.ident;
828
if (cam->sensor_type != V4L2_IDENT_OV7670) {
829
cam_err(cam, "Unsupported sensor type 0x%x", cam->sensor_type);
830
ret = -EINVAL;
831
goto out;
832
}
833
/* Get/set parameters? */
834
ret = 0;
835
cam->state = S_IDLE;
836
out:
837
cafe_ctlr_power_down(cam);
838
mutex_unlock(&cam->s_mutex);
839
return ret;
840
}
841
842
/*
843
* Configure the sensor to match the parameters we have. Caller should
844
* hold s_mutex
845
*/
846
static int cafe_cam_set_flip(struct cafe_camera *cam)
847
{
848
struct v4l2_control ctrl;
849
850
memset(&ctrl, 0, sizeof(ctrl));
851
ctrl.id = V4L2_CID_VFLIP;
852
ctrl.value = flip;
853
return sensor_call(cam, core, s_ctrl, &ctrl);
854
}
855
856
857
static int cafe_cam_configure(struct cafe_camera *cam)
858
{
859
struct v4l2_mbus_framefmt mbus_fmt;
860
int ret;
861
862
v4l2_fill_mbus_format(&mbus_fmt, &cam->pix_format, cam->mbus_code);
863
ret = sensor_call(cam, core, init, 0);
864
if (ret == 0)
865
ret = sensor_call(cam, video, s_mbus_fmt, &mbus_fmt);
866
/*
867
* OV7670 does weird things if flip is set *before* format...
868
*/
869
ret += cafe_cam_set_flip(cam);
870
return ret;
871
}
872
873
/* -------------------------------------------------------------------- */
874
/*
875
* DMA buffer management. These functions need s_mutex held.
876
*/
877
878
/* FIXME: this is inefficient as hell, since dma_alloc_coherent just
879
* does a get_free_pages() call, and we waste a good chunk of an orderN
880
* allocation. Should try to allocate the whole set in one chunk.
881
*/
882
static int cafe_alloc_dma_bufs(struct cafe_camera *cam, int loadtime)
883
{
884
int i;
885
886
cafe_set_config_needed(cam, 1);
887
if (loadtime)
888
cam->dma_buf_size = dma_buf_size;
889
else
890
cam->dma_buf_size = cam->pix_format.sizeimage;
891
if (n_dma_bufs > 3)
892
n_dma_bufs = 3;
893
894
cam->nbufs = 0;
895
for (i = 0; i < n_dma_bufs; i++) {
896
cam->dma_bufs[i] = dma_alloc_coherent(&cam->pdev->dev,
897
cam->dma_buf_size, cam->dma_handles + i,
898
GFP_KERNEL);
899
if (cam->dma_bufs[i] == NULL) {
900
cam_warn(cam, "Failed to allocate DMA buffer\n");
901
break;
902
}
903
/* For debug, remove eventually */
904
memset(cam->dma_bufs[i], 0xcc, cam->dma_buf_size);
905
(cam->nbufs)++;
906
}
907
908
switch (cam->nbufs) {
909
case 1:
910
dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
911
cam->dma_bufs[0], cam->dma_handles[0]);
912
cam->nbufs = 0;
913
case 0:
914
cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
915
return -ENOMEM;
916
917
case 2:
918
if (n_dma_bufs > 2)
919
cam_warn(cam, "Will limp along with only 2 buffers\n");
920
break;
921
}
922
return 0;
923
}
924
925
static void cafe_free_dma_bufs(struct cafe_camera *cam)
926
{
927
int i;
928
929
for (i = 0; i < cam->nbufs; i++) {
930
dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
931
cam->dma_bufs[i], cam->dma_handles[i]);
932
cam->dma_bufs[i] = NULL;
933
}
934
cam->nbufs = 0;
935
}
936
937
938
939
940
941
/* ----------------------------------------------------------------------- */
942
/*
943
* Here starts the V4L2 interface code.
944
*/
945
946
/*
947
* Read an image from the device.
948
*/
949
static ssize_t cafe_deliver_buffer(struct cafe_camera *cam,
950
char __user *buffer, size_t len, loff_t *pos)
951
{
952
int bufno;
953
unsigned long flags;
954
955
spin_lock_irqsave(&cam->dev_lock, flags);
956
if (cam->next_buf < 0) {
957
cam_err(cam, "deliver_buffer: No next buffer\n");
958
spin_unlock_irqrestore(&cam->dev_lock, flags);
959
return -EIO;
960
}
961
bufno = cam->next_buf;
962
clear_bit(bufno, &cam->flags);
963
if (++(cam->next_buf) >= cam->nbufs)
964
cam->next_buf = 0;
965
if (! test_bit(cam->next_buf, &cam->flags))
966
cam->next_buf = -1;
967
cam->specframes = 0;
968
spin_unlock_irqrestore(&cam->dev_lock, flags);
969
970
if (len > cam->pix_format.sizeimage)
971
len = cam->pix_format.sizeimage;
972
if (copy_to_user(buffer, cam->dma_bufs[bufno], len))
973
return -EFAULT;
974
(*pos) += len;
975
return len;
976
}
977
978
/*
979
* Get everything ready, and start grabbing frames.
980
*/
981
static int cafe_read_setup(struct cafe_camera *cam, enum cafe_state state)
982
{
983
int ret;
984
unsigned long flags;
985
986
/*
987
* Configuration. If we still don't have DMA buffers,
988
* make one last, desperate attempt.
989
*/
990
if (cam->nbufs == 0)
991
if (cafe_alloc_dma_bufs(cam, 0))
992
return -ENOMEM;
993
994
if (cafe_needs_config(cam)) {
995
cafe_cam_configure(cam);
996
ret = cafe_ctlr_configure(cam);
997
if (ret)
998
return ret;
999
}
1000
1001
/*
1002
* Turn it loose.
1003
*/
1004
spin_lock_irqsave(&cam->dev_lock, flags);
1005
cafe_reset_buffers(cam);
1006
cafe_ctlr_irq_enable(cam);
1007
cam->state = state;
1008
cafe_ctlr_start(cam);
1009
spin_unlock_irqrestore(&cam->dev_lock, flags);
1010
return 0;
1011
}
1012
1013
1014
static ssize_t cafe_v4l_read(struct file *filp,
1015
char __user *buffer, size_t len, loff_t *pos)
1016
{
1017
struct cafe_camera *cam = filp->private_data;
1018
int ret = 0;
1019
1020
/*
1021
* Perhaps we're in speculative read mode and already
1022
* have data?
1023
*/
1024
mutex_lock(&cam->s_mutex);
1025
if (cam->state == S_SPECREAD) {
1026
if (cam->next_buf >= 0) {
1027
ret = cafe_deliver_buffer(cam, buffer, len, pos);
1028
if (ret != 0)
1029
goto out_unlock;
1030
}
1031
} else if (cam->state == S_FLAKED || cam->state == S_NOTREADY) {
1032
ret = -EIO;
1033
goto out_unlock;
1034
} else if (cam->state != S_IDLE) {
1035
ret = -EBUSY;
1036
goto out_unlock;
1037
}
1038
1039
/*
1040
* v4l2: multiple processes can open the device, but only
1041
* one gets to grab data from it.
1042
*/
1043
if (cam->owner && cam->owner != filp) {
1044
ret = -EBUSY;
1045
goto out_unlock;
1046
}
1047
cam->owner = filp;
1048
1049
/*
1050
* Do setup if need be.
1051
*/
1052
if (cam->state != S_SPECREAD) {
1053
ret = cafe_read_setup(cam, S_SINGLEREAD);
1054
if (ret)
1055
goto out_unlock;
1056
}
1057
/*
1058
* Wait for something to happen. This should probably
1059
* be interruptible (FIXME).
1060
*/
1061
wait_event_timeout(cam->iowait, cam->next_buf >= 0, HZ);
1062
if (cam->next_buf < 0) {
1063
cam_err(cam, "read() operation timed out\n");
1064
cafe_ctlr_stop_dma(cam);
1065
ret = -EIO;
1066
goto out_unlock;
1067
}
1068
/*
1069
* Give them their data and we should be done.
1070
*/
1071
ret = cafe_deliver_buffer(cam, buffer, len, pos);
1072
1073
out_unlock:
1074
mutex_unlock(&cam->s_mutex);
1075
return ret;
1076
}
1077
1078
1079
1080
1081
1082
1083
1084
1085
/*
1086
* Streaming I/O support.
1087
*/
1088
1089
1090
1091
static int cafe_vidioc_streamon(struct file *filp, void *priv,
1092
enum v4l2_buf_type type)
1093
{
1094
struct cafe_camera *cam = filp->private_data;
1095
int ret = -EINVAL;
1096
1097
if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1098
goto out;
1099
mutex_lock(&cam->s_mutex);
1100
if (cam->state != S_IDLE || cam->n_sbufs == 0)
1101
goto out_unlock;
1102
1103
cam->sequence = 0;
1104
ret = cafe_read_setup(cam, S_STREAMING);
1105
1106
out_unlock:
1107
mutex_unlock(&cam->s_mutex);
1108
out:
1109
return ret;
1110
}
1111
1112
1113
static int cafe_vidioc_streamoff(struct file *filp, void *priv,
1114
enum v4l2_buf_type type)
1115
{
1116
struct cafe_camera *cam = filp->private_data;
1117
int ret = -EINVAL;
1118
1119
if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1120
goto out;
1121
mutex_lock(&cam->s_mutex);
1122
if (cam->state != S_STREAMING)
1123
goto out_unlock;
1124
1125
cafe_ctlr_stop_dma(cam);
1126
ret = 0;
1127
1128
out_unlock:
1129
mutex_unlock(&cam->s_mutex);
1130
out:
1131
return ret;
1132
}
1133
1134
1135
1136
static int cafe_setup_siobuf(struct cafe_camera *cam, int index)
1137
{
1138
struct cafe_sio_buffer *buf = cam->sb_bufs + index;
1139
1140
INIT_LIST_HEAD(&buf->list);
1141
buf->v4lbuf.length = PAGE_ALIGN(cam->pix_format.sizeimage);
1142
buf->buffer = vmalloc_user(buf->v4lbuf.length);
1143
if (buf->buffer == NULL)
1144
return -ENOMEM;
1145
buf->mapcount = 0;
1146
buf->cam = cam;
1147
1148
buf->v4lbuf.index = index;
1149
buf->v4lbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1150
buf->v4lbuf.field = V4L2_FIELD_NONE;
1151
buf->v4lbuf.memory = V4L2_MEMORY_MMAP;
1152
/*
1153
* Offset: must be 32-bit even on a 64-bit system. videobuf-dma-sg
1154
* just uses the length times the index, but the spec warns
1155
* against doing just that - vma merging problems. So we
1156
* leave a gap between each pair of buffers.
1157
*/
1158
buf->v4lbuf.m.offset = 2*index*buf->v4lbuf.length;
1159
return 0;
1160
}
1161
1162
static int cafe_free_sio_buffers(struct cafe_camera *cam)
1163
{
1164
int i;
1165
1166
/*
1167
* If any buffers are mapped, we cannot free them at all.
1168
*/
1169
for (i = 0; i < cam->n_sbufs; i++)
1170
if (cam->sb_bufs[i].mapcount > 0)
1171
return -EBUSY;
1172
/*
1173
* OK, let's do it.
1174
*/
1175
for (i = 0; i < cam->n_sbufs; i++)
1176
vfree(cam->sb_bufs[i].buffer);
1177
cam->n_sbufs = 0;
1178
kfree(cam->sb_bufs);
1179
cam->sb_bufs = NULL;
1180
INIT_LIST_HEAD(&cam->sb_avail);
1181
INIT_LIST_HEAD(&cam->sb_full);
1182
return 0;
1183
}
1184
1185
1186
1187
static int cafe_vidioc_reqbufs(struct file *filp, void *priv,
1188
struct v4l2_requestbuffers *req)
1189
{
1190
struct cafe_camera *cam = filp->private_data;
1191
int ret = 0; /* Silence warning */
1192
1193
/*
1194
* Make sure it's something we can do. User pointers could be
1195
* implemented without great pain, but that's not been done yet.
1196
*/
1197
if (req->memory != V4L2_MEMORY_MMAP)
1198
return -EINVAL;
1199
/*
1200
* If they ask for zero buffers, they really want us to stop streaming
1201
* (if it's happening) and free everything. Should we check owner?
1202
*/
1203
mutex_lock(&cam->s_mutex);
1204
if (req->count == 0) {
1205
if (cam->state == S_STREAMING)
1206
cafe_ctlr_stop_dma(cam);
1207
ret = cafe_free_sio_buffers (cam);
1208
goto out;
1209
}
1210
/*
1211
* Device needs to be idle and working. We *could* try to do the
1212
* right thing in S_SPECREAD by shutting things down, but it
1213
* probably doesn't matter.
1214
*/
1215
if (cam->state != S_IDLE || (cam->owner && cam->owner != filp)) {
1216
ret = -EBUSY;
1217
goto out;
1218
}
1219
cam->owner = filp;
1220
1221
if (req->count < min_buffers)
1222
req->count = min_buffers;
1223
else if (req->count > max_buffers)
1224
req->count = max_buffers;
1225
if (cam->n_sbufs > 0) {
1226
ret = cafe_free_sio_buffers(cam);
1227
if (ret)
1228
goto out;
1229
}
1230
1231
cam->sb_bufs = kzalloc(req->count*sizeof(struct cafe_sio_buffer),
1232
GFP_KERNEL);
1233
if (cam->sb_bufs == NULL) {
1234
ret = -ENOMEM;
1235
goto out;
1236
}
1237
for (cam->n_sbufs = 0; cam->n_sbufs < req->count; (cam->n_sbufs++)) {
1238
ret = cafe_setup_siobuf(cam, cam->n_sbufs);
1239
if (ret)
1240
break;
1241
}
1242
1243
if (cam->n_sbufs == 0) /* no luck at all - ret already set */
1244
kfree(cam->sb_bufs);
1245
req->count = cam->n_sbufs; /* In case of partial success */
1246
1247
out:
1248
mutex_unlock(&cam->s_mutex);
1249
return ret;
1250
}
1251
1252
1253
static int cafe_vidioc_querybuf(struct file *filp, void *priv,
1254
struct v4l2_buffer *buf)
1255
{
1256
struct cafe_camera *cam = filp->private_data;
1257
int ret = -EINVAL;
1258
1259
mutex_lock(&cam->s_mutex);
1260
if (buf->index >= cam->n_sbufs)
1261
goto out;
1262
*buf = cam->sb_bufs[buf->index].v4lbuf;
1263
ret = 0;
1264
out:
1265
mutex_unlock(&cam->s_mutex);
1266
return ret;
1267
}
1268
1269
static int cafe_vidioc_qbuf(struct file *filp, void *priv,
1270
struct v4l2_buffer *buf)
1271
{
1272
struct cafe_camera *cam = filp->private_data;
1273
struct cafe_sio_buffer *sbuf;
1274
int ret = -EINVAL;
1275
unsigned long flags;
1276
1277
mutex_lock(&cam->s_mutex);
1278
if (buf->index >= cam->n_sbufs)
1279
goto out;
1280
sbuf = cam->sb_bufs + buf->index;
1281
if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_QUEUED) {
1282
ret = 0; /* Already queued?? */
1283
goto out;
1284
}
1285
if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_DONE) {
1286
/* Spec doesn't say anything, seems appropriate tho */
1287
ret = -EBUSY;
1288
goto out;
1289
}
1290
sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_QUEUED;
1291
spin_lock_irqsave(&cam->dev_lock, flags);
1292
list_add(&sbuf->list, &cam->sb_avail);
1293
spin_unlock_irqrestore(&cam->dev_lock, flags);
1294
ret = 0;
1295
out:
1296
mutex_unlock(&cam->s_mutex);
1297
return ret;
1298
}
1299
1300
static int cafe_vidioc_dqbuf(struct file *filp, void *priv,
1301
struct v4l2_buffer *buf)
1302
{
1303
struct cafe_camera *cam = filp->private_data;
1304
struct cafe_sio_buffer *sbuf;
1305
int ret = -EINVAL;
1306
unsigned long flags;
1307
1308
mutex_lock(&cam->s_mutex);
1309
if (cam->state != S_STREAMING)
1310
goto out_unlock;
1311
if (list_empty(&cam->sb_full) && filp->f_flags & O_NONBLOCK) {
1312
ret = -EAGAIN;
1313
goto out_unlock;
1314
}
1315
1316
while (list_empty(&cam->sb_full) && cam->state == S_STREAMING) {
1317
mutex_unlock(&cam->s_mutex);
1318
if (wait_event_interruptible(cam->iowait,
1319
!list_empty(&cam->sb_full))) {
1320
ret = -ERESTARTSYS;
1321
goto out;
1322
}
1323
mutex_lock(&cam->s_mutex);
1324
}
1325
1326
if (cam->state != S_STREAMING)
1327
ret = -EINTR;
1328
else {
1329
spin_lock_irqsave(&cam->dev_lock, flags);
1330
/* Should probably recheck !list_empty() here */
1331
sbuf = list_entry(cam->sb_full.next,
1332
struct cafe_sio_buffer, list);
1333
list_del_init(&sbuf->list);
1334
spin_unlock_irqrestore(&cam->dev_lock, flags);
1335
sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_DONE;
1336
*buf = sbuf->v4lbuf;
1337
ret = 0;
1338
}
1339
1340
out_unlock:
1341
mutex_unlock(&cam->s_mutex);
1342
out:
1343
return ret;
1344
}
1345
1346
1347
1348
static void cafe_v4l_vm_open(struct vm_area_struct *vma)
1349
{
1350
struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1351
/*
1352
* Locking: done under mmap_sem, so we don't need to
1353
* go back to the camera lock here.
1354
*/
1355
sbuf->mapcount++;
1356
}
1357
1358
1359
static void cafe_v4l_vm_close(struct vm_area_struct *vma)
1360
{
1361
struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1362
1363
mutex_lock(&sbuf->cam->s_mutex);
1364
sbuf->mapcount--;
1365
/* Docs say we should stop I/O too... */
1366
if (sbuf->mapcount == 0)
1367
sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_MAPPED;
1368
mutex_unlock(&sbuf->cam->s_mutex);
1369
}
1370
1371
static const struct vm_operations_struct cafe_v4l_vm_ops = {
1372
.open = cafe_v4l_vm_open,
1373
.close = cafe_v4l_vm_close
1374
};
1375
1376
1377
static int cafe_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
1378
{
1379
struct cafe_camera *cam = filp->private_data;
1380
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1381
int ret = -EINVAL;
1382
int i;
1383
struct cafe_sio_buffer *sbuf = NULL;
1384
1385
if (! (vma->vm_flags & VM_WRITE) || ! (vma->vm_flags & VM_SHARED))
1386
return -EINVAL;
1387
/*
1388
* Find the buffer they are looking for.
1389
*/
1390
mutex_lock(&cam->s_mutex);
1391
for (i = 0; i < cam->n_sbufs; i++)
1392
if (cam->sb_bufs[i].v4lbuf.m.offset == offset) {
1393
sbuf = cam->sb_bufs + i;
1394
break;
1395
}
1396
if (sbuf == NULL)
1397
goto out;
1398
1399
ret = remap_vmalloc_range(vma, sbuf->buffer, 0);
1400
if (ret)
1401
goto out;
1402
vma->vm_flags |= VM_DONTEXPAND;
1403
vma->vm_private_data = sbuf;
1404
vma->vm_ops = &cafe_v4l_vm_ops;
1405
sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_MAPPED;
1406
cafe_v4l_vm_open(vma);
1407
ret = 0;
1408
out:
1409
mutex_unlock(&cam->s_mutex);
1410
return ret;
1411
}
1412
1413
1414
1415
static int cafe_v4l_open(struct file *filp)
1416
{
1417
struct cafe_camera *cam = video_drvdata(filp);
1418
1419
filp->private_data = cam;
1420
1421
mutex_lock(&cam->s_mutex);
1422
if (cam->users == 0) {
1423
cafe_ctlr_power_up(cam);
1424
__cafe_cam_reset(cam);
1425
cafe_set_config_needed(cam, 1);
1426
/* FIXME make sure this is complete */
1427
}
1428
(cam->users)++;
1429
mutex_unlock(&cam->s_mutex);
1430
return 0;
1431
}
1432
1433
1434
static int cafe_v4l_release(struct file *filp)
1435
{
1436
struct cafe_camera *cam = filp->private_data;
1437
1438
mutex_lock(&cam->s_mutex);
1439
(cam->users)--;
1440
if (filp == cam->owner) {
1441
cafe_ctlr_stop_dma(cam);
1442
cafe_free_sio_buffers(cam);
1443
cam->owner = NULL;
1444
}
1445
if (cam->users == 0) {
1446
cafe_ctlr_power_down(cam);
1447
if (alloc_bufs_at_read)
1448
cafe_free_dma_bufs(cam);
1449
}
1450
mutex_unlock(&cam->s_mutex);
1451
return 0;
1452
}
1453
1454
1455
1456
static unsigned int cafe_v4l_poll(struct file *filp,
1457
struct poll_table_struct *pt)
1458
{
1459
struct cafe_camera *cam = filp->private_data;
1460
1461
poll_wait(filp, &cam->iowait, pt);
1462
if (cam->next_buf >= 0)
1463
return POLLIN | POLLRDNORM;
1464
return 0;
1465
}
1466
1467
1468
1469
static int cafe_vidioc_queryctrl(struct file *filp, void *priv,
1470
struct v4l2_queryctrl *qc)
1471
{
1472
struct cafe_camera *cam = priv;
1473
int ret;
1474
1475
mutex_lock(&cam->s_mutex);
1476
ret = sensor_call(cam, core, queryctrl, qc);
1477
mutex_unlock(&cam->s_mutex);
1478
return ret;
1479
}
1480
1481
1482
static int cafe_vidioc_g_ctrl(struct file *filp, void *priv,
1483
struct v4l2_control *ctrl)
1484
{
1485
struct cafe_camera *cam = priv;
1486
int ret;
1487
1488
mutex_lock(&cam->s_mutex);
1489
ret = sensor_call(cam, core, g_ctrl, ctrl);
1490
mutex_unlock(&cam->s_mutex);
1491
return ret;
1492
}
1493
1494
1495
static int cafe_vidioc_s_ctrl(struct file *filp, void *priv,
1496
struct v4l2_control *ctrl)
1497
{
1498
struct cafe_camera *cam = priv;
1499
int ret;
1500
1501
mutex_lock(&cam->s_mutex);
1502
ret = sensor_call(cam, core, s_ctrl, ctrl);
1503
mutex_unlock(&cam->s_mutex);
1504
return ret;
1505
}
1506
1507
1508
1509
1510
1511
static int cafe_vidioc_querycap(struct file *file, void *priv,
1512
struct v4l2_capability *cap)
1513
{
1514
strcpy(cap->driver, "cafe_ccic");
1515
strcpy(cap->card, "cafe_ccic");
1516
cap->version = CAFE_VERSION;
1517
cap->capabilities = V4L2_CAP_VIDEO_CAPTURE |
1518
V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
1519
return 0;
1520
}
1521
1522
1523
/*
1524
* The default format we use until somebody says otherwise.
1525
*/
1526
static const struct v4l2_pix_format cafe_def_pix_format = {
1527
.width = VGA_WIDTH,
1528
.height = VGA_HEIGHT,
1529
.pixelformat = V4L2_PIX_FMT_YUYV,
1530
.field = V4L2_FIELD_NONE,
1531
.bytesperline = VGA_WIDTH*2,
1532
.sizeimage = VGA_WIDTH*VGA_HEIGHT*2,
1533
};
1534
1535
static const enum v4l2_mbus_pixelcode cafe_def_mbus_code =
1536
V4L2_MBUS_FMT_YUYV8_2X8;
1537
1538
static int cafe_vidioc_enum_fmt_vid_cap(struct file *filp,
1539
void *priv, struct v4l2_fmtdesc *fmt)
1540
{
1541
if (fmt->index >= N_CAFE_FMTS)
1542
return -EINVAL;
1543
strlcpy(fmt->description, cafe_formats[fmt->index].desc,
1544
sizeof(fmt->description));
1545
fmt->pixelformat = cafe_formats[fmt->index].pixelformat;
1546
return 0;
1547
}
1548
1549
static int cafe_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
1550
struct v4l2_format *fmt)
1551
{
1552
struct cafe_camera *cam = priv;
1553
struct cafe_format_struct *f;
1554
struct v4l2_pix_format *pix = &fmt->fmt.pix;
1555
struct v4l2_mbus_framefmt mbus_fmt;
1556
int ret;
1557
1558
f = cafe_find_format(pix->pixelformat);
1559
pix->pixelformat = f->pixelformat;
1560
v4l2_fill_mbus_format(&mbus_fmt, pix, f->mbus_code);
1561
mutex_lock(&cam->s_mutex);
1562
ret = sensor_call(cam, video, try_mbus_fmt, &mbus_fmt);
1563
mutex_unlock(&cam->s_mutex);
1564
v4l2_fill_pix_format(pix, &mbus_fmt);
1565
pix->bytesperline = pix->width * f->bpp;
1566
pix->sizeimage = pix->height * pix->bytesperline;
1567
return ret;
1568
}
1569
1570
static int cafe_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
1571
struct v4l2_format *fmt)
1572
{
1573
struct cafe_camera *cam = priv;
1574
struct cafe_format_struct *f;
1575
int ret;
1576
1577
/*
1578
* Can't do anything if the device is not idle
1579
* Also can't if there are streaming buffers in place.
1580
*/
1581
if (cam->state != S_IDLE || cam->n_sbufs > 0)
1582
return -EBUSY;
1583
1584
f = cafe_find_format(fmt->fmt.pix.pixelformat);
1585
1586
/*
1587
* See if the formatting works in principle.
1588
*/
1589
ret = cafe_vidioc_try_fmt_vid_cap(filp, priv, fmt);
1590
if (ret)
1591
return ret;
1592
/*
1593
* Now we start to change things for real, so let's do it
1594
* under lock.
1595
*/
1596
mutex_lock(&cam->s_mutex);
1597
cam->pix_format = fmt->fmt.pix;
1598
cam->mbus_code = f->mbus_code;
1599
1600
/*
1601
* Make sure we have appropriate DMA buffers.
1602
*/
1603
ret = -ENOMEM;
1604
if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
1605
cafe_free_dma_bufs(cam);
1606
if (cam->nbufs == 0) {
1607
if (cafe_alloc_dma_bufs(cam, 0))
1608
goto out;
1609
}
1610
/*
1611
* It looks like this might work, so let's program the sensor.
1612
*/
1613
ret = cafe_cam_configure(cam);
1614
if (! ret)
1615
ret = cafe_ctlr_configure(cam);
1616
out:
1617
mutex_unlock(&cam->s_mutex);
1618
return ret;
1619
}
1620
1621
/*
1622
* Return our stored notion of how the camera is/should be configured.
1623
* The V4l2 spec wants us to be smarter, and actually get this from
1624
* the camera (and not mess with it at open time). Someday.
1625
*/
1626
static int cafe_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
1627
struct v4l2_format *f)
1628
{
1629
struct cafe_camera *cam = priv;
1630
1631
f->fmt.pix = cam->pix_format;
1632
return 0;
1633
}
1634
1635
/*
1636
* We only have one input - the sensor - so minimize the nonsense here.
1637
*/
1638
static int cafe_vidioc_enum_input(struct file *filp, void *priv,
1639
struct v4l2_input *input)
1640
{
1641
if (input->index != 0)
1642
return -EINVAL;
1643
1644
input->type = V4L2_INPUT_TYPE_CAMERA;
1645
input->std = V4L2_STD_ALL; /* Not sure what should go here */
1646
strcpy(input->name, "Camera");
1647
return 0;
1648
}
1649
1650
static int cafe_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
1651
{
1652
*i = 0;
1653
return 0;
1654
}
1655
1656
static int cafe_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
1657
{
1658
if (i != 0)
1659
return -EINVAL;
1660
return 0;
1661
}
1662
1663
/* from vivi.c */
1664
static int cafe_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id *a)
1665
{
1666
return 0;
1667
}
1668
1669
/*
1670
* G/S_PARM. Most of this is done by the sensor, but we are
1671
* the level which controls the number of read buffers.
1672
*/
1673
static int cafe_vidioc_g_parm(struct file *filp, void *priv,
1674
struct v4l2_streamparm *parms)
1675
{
1676
struct cafe_camera *cam = priv;
1677
int ret;
1678
1679
mutex_lock(&cam->s_mutex);
1680
ret = sensor_call(cam, video, g_parm, parms);
1681
mutex_unlock(&cam->s_mutex);
1682
parms->parm.capture.readbuffers = n_dma_bufs;
1683
return ret;
1684
}
1685
1686
static int cafe_vidioc_s_parm(struct file *filp, void *priv,
1687
struct v4l2_streamparm *parms)
1688
{
1689
struct cafe_camera *cam = priv;
1690
int ret;
1691
1692
mutex_lock(&cam->s_mutex);
1693
ret = sensor_call(cam, video, s_parm, parms);
1694
mutex_unlock(&cam->s_mutex);
1695
parms->parm.capture.readbuffers = n_dma_bufs;
1696
return ret;
1697
}
1698
1699
static int cafe_vidioc_g_chip_ident(struct file *file, void *priv,
1700
struct v4l2_dbg_chip_ident *chip)
1701
{
1702
struct cafe_camera *cam = priv;
1703
1704
chip->ident = V4L2_IDENT_NONE;
1705
chip->revision = 0;
1706
if (v4l2_chip_match_host(&chip->match)) {
1707
chip->ident = V4L2_IDENT_CAFE;
1708
return 0;
1709
}
1710
return sensor_call(cam, core, g_chip_ident, chip);
1711
}
1712
1713
static int cafe_vidioc_enum_framesizes(struct file *filp, void *priv,
1714
struct v4l2_frmsizeenum *sizes)
1715
{
1716
struct cafe_camera *cam = priv;
1717
int ret;
1718
1719
mutex_lock(&cam->s_mutex);
1720
ret = sensor_call(cam, video, enum_framesizes, sizes);
1721
mutex_unlock(&cam->s_mutex);
1722
return ret;
1723
}
1724
1725
static int cafe_vidioc_enum_frameintervals(struct file *filp, void *priv,
1726
struct v4l2_frmivalenum *interval)
1727
{
1728
struct cafe_camera *cam = priv;
1729
int ret;
1730
1731
mutex_lock(&cam->s_mutex);
1732
ret = sensor_call(cam, video, enum_frameintervals, interval);
1733
mutex_unlock(&cam->s_mutex);
1734
return ret;
1735
}
1736
1737
#ifdef CONFIG_VIDEO_ADV_DEBUG
1738
static int cafe_vidioc_g_register(struct file *file, void *priv,
1739
struct v4l2_dbg_register *reg)
1740
{
1741
struct cafe_camera *cam = priv;
1742
1743
if (v4l2_chip_match_host(&reg->match)) {
1744
reg->val = cafe_reg_read(cam, reg->reg);
1745
reg->size = 4;
1746
return 0;
1747
}
1748
return sensor_call(cam, core, g_register, reg);
1749
}
1750
1751
static int cafe_vidioc_s_register(struct file *file, void *priv,
1752
struct v4l2_dbg_register *reg)
1753
{
1754
struct cafe_camera *cam = priv;
1755
1756
if (v4l2_chip_match_host(&reg->match)) {
1757
cafe_reg_write(cam, reg->reg, reg->val);
1758
return 0;
1759
}
1760
return sensor_call(cam, core, s_register, reg);
1761
}
1762
#endif
1763
1764
/*
1765
* This template device holds all of those v4l2 methods; we
1766
* clone it for specific real devices.
1767
*/
1768
1769
static const struct v4l2_file_operations cafe_v4l_fops = {
1770
.owner = THIS_MODULE,
1771
.open = cafe_v4l_open,
1772
.release = cafe_v4l_release,
1773
.read = cafe_v4l_read,
1774
.poll = cafe_v4l_poll,
1775
.mmap = cafe_v4l_mmap,
1776
.unlocked_ioctl = video_ioctl2,
1777
};
1778
1779
static const struct v4l2_ioctl_ops cafe_v4l_ioctl_ops = {
1780
.vidioc_querycap = cafe_vidioc_querycap,
1781
.vidioc_enum_fmt_vid_cap = cafe_vidioc_enum_fmt_vid_cap,
1782
.vidioc_try_fmt_vid_cap = cafe_vidioc_try_fmt_vid_cap,
1783
.vidioc_s_fmt_vid_cap = cafe_vidioc_s_fmt_vid_cap,
1784
.vidioc_g_fmt_vid_cap = cafe_vidioc_g_fmt_vid_cap,
1785
.vidioc_enum_input = cafe_vidioc_enum_input,
1786
.vidioc_g_input = cafe_vidioc_g_input,
1787
.vidioc_s_input = cafe_vidioc_s_input,
1788
.vidioc_s_std = cafe_vidioc_s_std,
1789
.vidioc_reqbufs = cafe_vidioc_reqbufs,
1790
.vidioc_querybuf = cafe_vidioc_querybuf,
1791
.vidioc_qbuf = cafe_vidioc_qbuf,
1792
.vidioc_dqbuf = cafe_vidioc_dqbuf,
1793
.vidioc_streamon = cafe_vidioc_streamon,
1794
.vidioc_streamoff = cafe_vidioc_streamoff,
1795
.vidioc_queryctrl = cafe_vidioc_queryctrl,
1796
.vidioc_g_ctrl = cafe_vidioc_g_ctrl,
1797
.vidioc_s_ctrl = cafe_vidioc_s_ctrl,
1798
.vidioc_g_parm = cafe_vidioc_g_parm,
1799
.vidioc_s_parm = cafe_vidioc_s_parm,
1800
.vidioc_enum_framesizes = cafe_vidioc_enum_framesizes,
1801
.vidioc_enum_frameintervals = cafe_vidioc_enum_frameintervals,
1802
.vidioc_g_chip_ident = cafe_vidioc_g_chip_ident,
1803
#ifdef CONFIG_VIDEO_ADV_DEBUG
1804
.vidioc_g_register = cafe_vidioc_g_register,
1805
.vidioc_s_register = cafe_vidioc_s_register,
1806
#endif
1807
};
1808
1809
static struct video_device cafe_v4l_template = {
1810
.name = "cafe",
1811
.tvnorms = V4L2_STD_NTSC_M,
1812
.current_norm = V4L2_STD_NTSC_M, /* make mplayer happy */
1813
1814
.fops = &cafe_v4l_fops,
1815
.ioctl_ops = &cafe_v4l_ioctl_ops,
1816
.release = video_device_release_empty,
1817
};
1818
1819
1820
/* ---------------------------------------------------------------------- */
1821
/*
1822
* Interrupt handler stuff
1823
*/
1824
1825
1826
1827
static void cafe_frame_tasklet(unsigned long data)
1828
{
1829
struct cafe_camera *cam = (struct cafe_camera *) data;
1830
int i;
1831
unsigned long flags;
1832
struct cafe_sio_buffer *sbuf;
1833
1834
spin_lock_irqsave(&cam->dev_lock, flags);
1835
for (i = 0; i < cam->nbufs; i++) {
1836
int bufno = cam->next_buf;
1837
if (bufno < 0) { /* "will never happen" */
1838
cam_err(cam, "No valid bufs in tasklet!\n");
1839
break;
1840
}
1841
if (++(cam->next_buf) >= cam->nbufs)
1842
cam->next_buf = 0;
1843
if (! test_bit(bufno, &cam->flags))
1844
continue;
1845
if (list_empty(&cam->sb_avail))
1846
break; /* Leave it valid, hope for better later */
1847
clear_bit(bufno, &cam->flags);
1848
sbuf = list_entry(cam->sb_avail.next,
1849
struct cafe_sio_buffer, list);
1850
/*
1851
* Drop the lock during the big copy. This *should* be safe...
1852
*/
1853
spin_unlock_irqrestore(&cam->dev_lock, flags);
1854
memcpy(sbuf->buffer, cam->dma_bufs[bufno],
1855
cam->pix_format.sizeimage);
1856
sbuf->v4lbuf.bytesused = cam->pix_format.sizeimage;
1857
sbuf->v4lbuf.sequence = cam->buf_seq[bufno];
1858
sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_QUEUED;
1859
sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_DONE;
1860
spin_lock_irqsave(&cam->dev_lock, flags);
1861
list_move_tail(&sbuf->list, &cam->sb_full);
1862
}
1863
if (! list_empty(&cam->sb_full))
1864
wake_up(&cam->iowait);
1865
spin_unlock_irqrestore(&cam->dev_lock, flags);
1866
}
1867
1868
1869
1870
static void cafe_frame_complete(struct cafe_camera *cam, int frame)
1871
{
1872
/*
1873
* Basic frame housekeeping.
1874
*/
1875
if (test_bit(frame, &cam->flags) && printk_ratelimit())
1876
cam_err(cam, "Frame overrun on %d, frames lost\n", frame);
1877
set_bit(frame, &cam->flags);
1878
clear_bit(CF_DMA_ACTIVE, &cam->flags);
1879
if (cam->next_buf < 0)
1880
cam->next_buf = frame;
1881
cam->buf_seq[frame] = ++(cam->sequence);
1882
1883
switch (cam->state) {
1884
/*
1885
* If in single read mode, try going speculative.
1886
*/
1887
case S_SINGLEREAD:
1888
cam->state = S_SPECREAD;
1889
cam->specframes = 0;
1890
wake_up(&cam->iowait);
1891
break;
1892
1893
/*
1894
* If we are already doing speculative reads, and nobody is
1895
* reading them, just stop.
1896
*/
1897
case S_SPECREAD:
1898
if (++(cam->specframes) >= cam->nbufs) {
1899
cafe_ctlr_stop(cam);
1900
cafe_ctlr_irq_disable(cam);
1901
cam->state = S_IDLE;
1902
}
1903
wake_up(&cam->iowait);
1904
break;
1905
/*
1906
* For the streaming case, we defer the real work to the
1907
* camera tasklet.
1908
*
1909
* FIXME: if the application is not consuming the buffers,
1910
* we should eventually put things on hold and restart in
1911
* vidioc_dqbuf().
1912
*/
1913
case S_STREAMING:
1914
tasklet_schedule(&cam->s_tasklet);
1915
break;
1916
1917
default:
1918
cam_err(cam, "Frame interrupt in non-operational state\n");
1919
break;
1920
}
1921
}
1922
1923
1924
1925
1926
static void cafe_frame_irq(struct cafe_camera *cam, unsigned int irqs)
1927
{
1928
unsigned int frame;
1929
1930
cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
1931
/*
1932
* Handle any frame completions. There really should
1933
* not be more than one of these, or we have fallen
1934
* far behind.
1935
*/
1936
for (frame = 0; frame < cam->nbufs; frame++)
1937
if (irqs & (IRQ_EOF0 << frame))
1938
cafe_frame_complete(cam, frame);
1939
/*
1940
* If a frame starts, note that we have DMA active. This
1941
* code assumes that we won't get multiple frame interrupts
1942
* at once; may want to rethink that.
1943
*/
1944
if (irqs & (IRQ_SOF0 | IRQ_SOF1 | IRQ_SOF2))
1945
set_bit(CF_DMA_ACTIVE, &cam->flags);
1946
}
1947
1948
1949
1950
static irqreturn_t cafe_irq(int irq, void *data)
1951
{
1952
struct cafe_camera *cam = data;
1953
unsigned int irqs;
1954
1955
spin_lock(&cam->dev_lock);
1956
irqs = cafe_reg_read(cam, REG_IRQSTAT);
1957
if ((irqs & ALLIRQS) == 0) {
1958
spin_unlock(&cam->dev_lock);
1959
return IRQ_NONE;
1960
}
1961
if (irqs & FRAMEIRQS)
1962
cafe_frame_irq(cam, irqs);
1963
if (irqs & TWSIIRQS) {
1964
cafe_reg_write(cam, REG_IRQSTAT, TWSIIRQS);
1965
wake_up(&cam->smbus_wait);
1966
}
1967
spin_unlock(&cam->dev_lock);
1968
return IRQ_HANDLED;
1969
}
1970
1971
1972
/* -------------------------------------------------------------------------- */
1973
/*
1974
* PCI interface stuff.
1975
*/
1976
1977
static const struct dmi_system_id olpc_xo1_dmi[] = {
1978
{
1979
.matches = {
1980
DMI_MATCH(DMI_SYS_VENDOR, "OLPC"),
1981
DMI_MATCH(DMI_PRODUCT_NAME, "XO"),
1982
DMI_MATCH(DMI_PRODUCT_VERSION, "1"),
1983
},
1984
},
1985
{ }
1986
};
1987
1988
static int cafe_pci_probe(struct pci_dev *pdev,
1989
const struct pci_device_id *id)
1990
{
1991
int ret;
1992
struct cafe_camera *cam;
1993
struct ov7670_config sensor_cfg = {
1994
/* This controller only does SMBUS */
1995
.use_smbus = true,
1996
1997
/*
1998
* Exclude QCIF mode, because it only captures a tiny portion
1999
* of the sensor FOV
2000
*/
2001
.min_width = 320,
2002
.min_height = 240,
2003
};
2004
struct i2c_board_info ov7670_info = {
2005
.type = "ov7670",
2006
.addr = 0x42,
2007
.platform_data = &sensor_cfg,
2008
};
2009
2010
/*
2011
* Start putting together one of our big camera structures.
2012
*/
2013
ret = -ENOMEM;
2014
cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL);
2015
if (cam == NULL)
2016
goto out;
2017
ret = v4l2_device_register(&pdev->dev, &cam->v4l2_dev);
2018
if (ret)
2019
goto out_free;
2020
2021
mutex_init(&cam->s_mutex);
2022
spin_lock_init(&cam->dev_lock);
2023
cam->state = S_NOTREADY;
2024
cafe_set_config_needed(cam, 1);
2025
init_waitqueue_head(&cam->smbus_wait);
2026
init_waitqueue_head(&cam->iowait);
2027
cam->pdev = pdev;
2028
cam->pix_format = cafe_def_pix_format;
2029
cam->mbus_code = cafe_def_mbus_code;
2030
INIT_LIST_HEAD(&cam->dev_list);
2031
INIT_LIST_HEAD(&cam->sb_avail);
2032
INIT_LIST_HEAD(&cam->sb_full);
2033
tasklet_init(&cam->s_tasklet, cafe_frame_tasklet, (unsigned long) cam);
2034
/*
2035
* Get set up on the PCI bus.
2036
*/
2037
ret = pci_enable_device(pdev);
2038
if (ret)
2039
goto out_unreg;
2040
pci_set_master(pdev);
2041
2042
ret = -EIO;
2043
cam->regs = pci_iomap(pdev, 0, 0);
2044
if (! cam->regs) {
2045
printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n");
2046
goto out_unreg;
2047
}
2048
ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam);
2049
if (ret)
2050
goto out_iounmap;
2051
/*
2052
* Initialize the controller and leave it powered up. It will
2053
* stay that way until the sensor driver shows up.
2054
*/
2055
cafe_ctlr_init(cam);
2056
cafe_ctlr_power_up(cam);
2057
/*
2058
* Set up I2C/SMBUS communications. We have to drop the mutex here
2059
* because the sensor could attach in this call chain, leading to
2060
* unsightly deadlocks.
2061
*/
2062
ret = cafe_smbus_setup(cam);
2063
if (ret)
2064
goto out_freeirq;
2065
2066
/* Apply XO-1 clock speed */
2067
if (dmi_check_system(olpc_xo1_dmi))
2068
sensor_cfg.clock_speed = 45;
2069
2070
cam->sensor_addr = ov7670_info.addr;
2071
cam->sensor = v4l2_i2c_new_subdev_board(&cam->v4l2_dev, &cam->i2c_adapter,
2072
&ov7670_info, NULL);
2073
if (cam->sensor == NULL) {
2074
ret = -ENODEV;
2075
goto out_smbus;
2076
}
2077
2078
ret = cafe_cam_init(cam);
2079
if (ret)
2080
goto out_smbus;
2081
2082
/*
2083
* Get the v4l2 setup done.
2084
*/
2085
mutex_lock(&cam->s_mutex);
2086
cam->vdev = cafe_v4l_template;
2087
cam->vdev.debug = 0;
2088
/* cam->vdev.debug = V4L2_DEBUG_IOCTL_ARG;*/
2089
cam->vdev.v4l2_dev = &cam->v4l2_dev;
2090
ret = video_register_device(&cam->vdev, VFL_TYPE_GRABBER, -1);
2091
if (ret)
2092
goto out_unlock;
2093
video_set_drvdata(&cam->vdev, cam);
2094
2095
/*
2096
* If so requested, try to get our DMA buffers now.
2097
*/
2098
if (!alloc_bufs_at_read) {
2099
if (cafe_alloc_dma_bufs(cam, 1))
2100
cam_warn(cam, "Unable to alloc DMA buffers at load"
2101
" will try again later.");
2102
}
2103
2104
mutex_unlock(&cam->s_mutex);
2105
return 0;
2106
2107
out_unlock:
2108
mutex_unlock(&cam->s_mutex);
2109
out_smbus:
2110
cafe_smbus_shutdown(cam);
2111
out_freeirq:
2112
cafe_ctlr_power_down(cam);
2113
free_irq(pdev->irq, cam);
2114
out_iounmap:
2115
pci_iounmap(pdev, cam->regs);
2116
out_free:
2117
v4l2_device_unregister(&cam->v4l2_dev);
2118
out_unreg:
2119
kfree(cam);
2120
out:
2121
return ret;
2122
}
2123
2124
2125
/*
2126
* Shut down an initialized device
2127
*/
2128
static void cafe_shutdown(struct cafe_camera *cam)
2129
{
2130
/* FIXME: Make sure we take care of everything here */
2131
if (cam->n_sbufs > 0)
2132
/* What if they are still mapped? Shouldn't be, but... */
2133
cafe_free_sio_buffers(cam);
2134
cafe_ctlr_stop_dma(cam);
2135
cafe_ctlr_power_down(cam);
2136
cafe_smbus_shutdown(cam);
2137
cafe_free_dma_bufs(cam);
2138
free_irq(cam->pdev->irq, cam);
2139
pci_iounmap(cam->pdev, cam->regs);
2140
video_unregister_device(&cam->vdev);
2141
}
2142
2143
2144
static void cafe_pci_remove(struct pci_dev *pdev)
2145
{
2146
struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2147
struct cafe_camera *cam = to_cam(v4l2_dev);
2148
2149
if (cam == NULL) {
2150
printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev);
2151
return;
2152
}
2153
mutex_lock(&cam->s_mutex);
2154
if (cam->users > 0)
2155
cam_warn(cam, "Removing a device with users!\n");
2156
cafe_shutdown(cam);
2157
v4l2_device_unregister(&cam->v4l2_dev);
2158
kfree(cam);
2159
/* No unlock - it no longer exists */
2160
}
2161
2162
2163
#ifdef CONFIG_PM
2164
/*
2165
* Basic power management.
2166
*/
2167
static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2168
{
2169
struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2170
struct cafe_camera *cam = to_cam(v4l2_dev);
2171
int ret;
2172
enum cafe_state cstate;
2173
2174
ret = pci_save_state(pdev);
2175
if (ret)
2176
return ret;
2177
cstate = cam->state; /* HACK - stop_dma sets to idle */
2178
cafe_ctlr_stop_dma(cam);
2179
cafe_ctlr_power_down(cam);
2180
pci_disable_device(pdev);
2181
cam->state = cstate;
2182
return 0;
2183
}
2184
2185
2186
static int cafe_pci_resume(struct pci_dev *pdev)
2187
{
2188
struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2189
struct cafe_camera *cam = to_cam(v4l2_dev);
2190
int ret = 0;
2191
2192
pci_restore_state(pdev);
2193
ret = pci_enable_device(pdev);
2194
2195
if (ret) {
2196
cam_warn(cam, "Unable to re-enable device on resume!\n");
2197
return ret;
2198
}
2199
cafe_ctlr_init(cam);
2200
2201
mutex_lock(&cam->s_mutex);
2202
if (cam->users > 0) {
2203
cafe_ctlr_power_up(cam);
2204
__cafe_cam_reset(cam);
2205
} else {
2206
cafe_ctlr_power_down(cam);
2207
}
2208
mutex_unlock(&cam->s_mutex);
2209
2210
set_bit(CF_CONFIG_NEEDED, &cam->flags);
2211
if (cam->state == S_SPECREAD)
2212
cam->state = S_IDLE; /* Don't bother restarting */
2213
else if (cam->state == S_SINGLEREAD || cam->state == S_STREAMING)
2214
ret = cafe_read_setup(cam, cam->state);
2215
return ret;
2216
}
2217
2218
#endif /* CONFIG_PM */
2219
2220
2221
static struct pci_device_id cafe_ids[] = {
2222
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL,
2223
PCI_DEVICE_ID_MARVELL_88ALP01_CCIC) },
2224
{ 0, }
2225
};
2226
2227
MODULE_DEVICE_TABLE(pci, cafe_ids);
2228
2229
static struct pci_driver cafe_pci_driver = {
2230
.name = "cafe1000-ccic",
2231
.id_table = cafe_ids,
2232
.probe = cafe_pci_probe,
2233
.remove = cafe_pci_remove,
2234
#ifdef CONFIG_PM
2235
.suspend = cafe_pci_suspend,
2236
.resume = cafe_pci_resume,
2237
#endif
2238
};
2239
2240
2241
2242
2243
static int __init cafe_init(void)
2244
{
2245
int ret;
2246
2247
printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
2248
CAFE_VERSION);
2249
ret = pci_register_driver(&cafe_pci_driver);
2250
if (ret) {
2251
printk(KERN_ERR "Unable to register cafe_ccic driver\n");
2252
goto out;
2253
}
2254
ret = 0;
2255
2256
out:
2257
return ret;
2258
}
2259
2260
2261
static void __exit cafe_exit(void)
2262
{
2263
pci_unregister_driver(&cafe_pci_driver);
2264
}
2265
2266
module_init(cafe_init);
2267
module_exit(cafe_exit);
2268
2269