Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/media/video/cx25840/cx25840-audio.c
17745 views
1
/* cx25840 audio functions
2
*
3
* This program is free software; you can redistribute it and/or
4
* modify it under the terms of the GNU General Public License
5
* as published by the Free Software Foundation; either version 2
6
* of the License, or (at your option) any later version.
7
*
8
* This program is distributed in the hope that it will be useful,
9
* but WITHOUT ANY WARRANTY; without even the implied warranty of
10
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11
* GNU General Public License for more details.
12
*
13
* You should have received a copy of the GNU General Public License
14
* along with this program; if not, write to the Free Software
15
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
16
*/
17
18
19
#include <linux/videodev2.h>
20
#include <linux/i2c.h>
21
#include <media/v4l2-common.h>
22
#include <media/cx25840.h>
23
24
#include "cx25840-core.h"
25
26
/*
27
* Note: The PLL and SRC parameters are based on a reference frequency that
28
* would ideally be:
29
*
30
* NTSC Color subcarrier freq * 8 = 4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
31
*
32
* However, it's not the exact reference frequency that matters, only that the
33
* firmware and modules that comprise the driver for a particular board all
34
* use the same value (close to the ideal value).
35
*
36
* Comments below will note which reference frequency is assumed for various
37
* parameters. They will usually be one of
38
*
39
* ref_freq = 28.636360 MHz
40
* or
41
* ref_freq = 28.636363 MHz
42
*/
43
44
static int cx25840_set_audclk_freq(struct i2c_client *client, u32 freq)
45
{
46
struct cx25840_state *state = to_state(i2c_get_clientdata(client));
47
48
if (state->aud_input != CX25840_AUDIO_SERIAL) {
49
switch (freq) {
50
case 32000:
51
/*
52
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
53
* AUX_PLL Integer = 0x06, AUX PLL Post Divider = 0x10
54
*/
55
cx25840_write4(client, 0x108, 0x1006040f);
56
57
/*
58
* VID_PLL Fraction (register 0x10c) = 0x2be2fe
59
* 28636360 * 0xf.15f17f0/4 = 108 MHz
60
* 432 MHz pre-postdivide
61
*/
62
63
/*
64
* AUX_PLL Fraction = 0x1bb39ee
65
* 28636363 * 0x6.dd9cf70/0x10 = 32000 * 384
66
* 196.6 MHz pre-postdivide
67
* FIXME < 200 MHz is out of specified valid range
68
* FIXME 28636363 ref_freq doesn't match VID PLL ref
69
*/
70
cx25840_write4(client, 0x110, 0x01bb39ee);
71
72
/*
73
* SA_MCLK_SEL = 1
74
* SA_MCLK_DIV = 0x10 = 384/384 * AUX_PLL post dvivider
75
*/
76
cx25840_write(client, 0x127, 0x50);
77
78
if (is_cx2583x(state))
79
break;
80
81
/* src3/4/6_ctl */
82
/* 0x1.f77f = (4 * 28636360/8 * 2/455) / 32000 */
83
cx25840_write4(client, 0x900, 0x0801f77f);
84
cx25840_write4(client, 0x904, 0x0801f77f);
85
cx25840_write4(client, 0x90c, 0x0801f77f);
86
break;
87
88
case 44100:
89
/*
90
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
91
* AUX_PLL Integer = 0x09, AUX PLL Post Divider = 0x10
92
*/
93
cx25840_write4(client, 0x108, 0x1009040f);
94
95
/*
96
* VID_PLL Fraction (register 0x10c) = 0x2be2fe
97
* 28636360 * 0xf.15f17f0/4 = 108 MHz
98
* 432 MHz pre-postdivide
99
*/
100
101
/*
102
* AUX_PLL Fraction = 0x0ec6bd6
103
* 28636363 * 0x9.7635eb0/0x10 = 44100 * 384
104
* 271 MHz pre-postdivide
105
* FIXME 28636363 ref_freq doesn't match VID PLL ref
106
*/
107
cx25840_write4(client, 0x110, 0x00ec6bd6);
108
109
/*
110
* SA_MCLK_SEL = 1
111
* SA_MCLK_DIV = 0x10 = 384/384 * AUX_PLL post dvivider
112
*/
113
cx25840_write(client, 0x127, 0x50);
114
115
if (is_cx2583x(state))
116
break;
117
118
/* src3/4/6_ctl */
119
/* 0x1.6d59 = (4 * 28636360/8 * 2/455) / 44100 */
120
cx25840_write4(client, 0x900, 0x08016d59);
121
cx25840_write4(client, 0x904, 0x08016d59);
122
cx25840_write4(client, 0x90c, 0x08016d59);
123
break;
124
125
case 48000:
126
/*
127
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
128
* AUX_PLL Integer = 0x0a, AUX PLL Post Divider = 0x10
129
*/
130
cx25840_write4(client, 0x108, 0x100a040f);
131
132
/*
133
* VID_PLL Fraction (register 0x10c) = 0x2be2fe
134
* 28636360 * 0xf.15f17f0/4 = 108 MHz
135
* 432 MHz pre-postdivide
136
*/
137
138
/*
139
* AUX_PLL Fraction = 0x098d6e5
140
* 28636363 * 0xa.4c6b728/0x10 = 48000 * 384
141
* 295 MHz pre-postdivide
142
* FIXME 28636363 ref_freq doesn't match VID PLL ref
143
*/
144
cx25840_write4(client, 0x110, 0x0098d6e5);
145
146
/*
147
* SA_MCLK_SEL = 1
148
* SA_MCLK_DIV = 0x10 = 384/384 * AUX_PLL post dvivider
149
*/
150
cx25840_write(client, 0x127, 0x50);
151
152
if (is_cx2583x(state))
153
break;
154
155
/* src3/4/6_ctl */
156
/* 0x1.4faa = (4 * 28636360/8 * 2/455) / 48000 */
157
cx25840_write4(client, 0x900, 0x08014faa);
158
cx25840_write4(client, 0x904, 0x08014faa);
159
cx25840_write4(client, 0x90c, 0x08014faa);
160
break;
161
}
162
} else {
163
switch (freq) {
164
case 32000:
165
/*
166
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
167
* AUX_PLL Integer = 0x08, AUX PLL Post Divider = 0x1e
168
*/
169
cx25840_write4(client, 0x108, 0x1e08040f);
170
171
/*
172
* VID_PLL Fraction (register 0x10c) = 0x2be2fe
173
* 28636360 * 0xf.15f17f0/4 = 108 MHz
174
* 432 MHz pre-postdivide
175
*/
176
177
/*
178
* AUX_PLL Fraction = 0x12a0869
179
* 28636363 * 0x8.9504348/0x1e = 32000 * 256
180
* 246 MHz pre-postdivide
181
* FIXME 28636363 ref_freq doesn't match VID PLL ref
182
*/
183
cx25840_write4(client, 0x110, 0x012a0869);
184
185
/*
186
* SA_MCLK_SEL = 1
187
* SA_MCLK_DIV = 0x14 = 256/384 * AUX_PLL post dvivider
188
*/
189
cx25840_write(client, 0x127, 0x54);
190
191
if (is_cx2583x(state))
192
break;
193
194
/* src1_ctl */
195
/* 0x1.0000 = 32000/32000 */
196
cx25840_write4(client, 0x8f8, 0x08010000);
197
198
/* src3/4/6_ctl */
199
/* 0x2.0000 = 2 * (32000/32000) */
200
cx25840_write4(client, 0x900, 0x08020000);
201
cx25840_write4(client, 0x904, 0x08020000);
202
cx25840_write4(client, 0x90c, 0x08020000);
203
break;
204
205
case 44100:
206
/*
207
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
208
* AUX_PLL Integer = 0x09, AUX PLL Post Divider = 0x18
209
*/
210
cx25840_write4(client, 0x108, 0x1809040f);
211
212
/*
213
* VID_PLL Fraction (register 0x10c) = 0x2be2fe
214
* 28636360 * 0xf.15f17f0/4 = 108 MHz
215
* 432 MHz pre-postdivide
216
*/
217
218
/*
219
* AUX_PLL Fraction = 0x0ec6bd6
220
* 28636363 * 0x9.7635eb0/0x18 = 44100 * 256
221
* 271 MHz pre-postdivide
222
* FIXME 28636363 ref_freq doesn't match VID PLL ref
223
*/
224
cx25840_write4(client, 0x110, 0x00ec6bd6);
225
226
/*
227
* SA_MCLK_SEL = 1
228
* SA_MCLK_DIV = 0x10 = 256/384 * AUX_PLL post dvivider
229
*/
230
cx25840_write(client, 0x127, 0x50);
231
232
if (is_cx2583x(state))
233
break;
234
235
/* src1_ctl */
236
/* 0x1.60cd = 44100/32000 */
237
cx25840_write4(client, 0x8f8, 0x080160cd);
238
239
/* src3/4/6_ctl */
240
/* 0x1.7385 = 2 * (32000/44100) */
241
cx25840_write4(client, 0x900, 0x08017385);
242
cx25840_write4(client, 0x904, 0x08017385);
243
cx25840_write4(client, 0x90c, 0x08017385);
244
break;
245
246
case 48000:
247
/*
248
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
249
* AUX_PLL Integer = 0x0a, AUX PLL Post Divider = 0x18
250
*/
251
cx25840_write4(client, 0x108, 0x180a040f);
252
253
/*
254
* VID_PLL Fraction (register 0x10c) = 0x2be2fe
255
* 28636360 * 0xf.15f17f0/4 = 108 MHz
256
* 432 MHz pre-postdivide
257
*/
258
259
/*
260
* AUX_PLL Fraction = 0x098d6e5
261
* 28636363 * 0xa.4c6b728/0x18 = 48000 * 256
262
* 295 MHz pre-postdivide
263
* FIXME 28636363 ref_freq doesn't match VID PLL ref
264
*/
265
cx25840_write4(client, 0x110, 0x0098d6e5);
266
267
/*
268
* SA_MCLK_SEL = 1
269
* SA_MCLK_DIV = 0x10 = 256/384 * AUX_PLL post dvivider
270
*/
271
cx25840_write(client, 0x127, 0x50);
272
273
if (is_cx2583x(state))
274
break;
275
276
/* src1_ctl */
277
/* 0x1.8000 = 48000/32000 */
278
cx25840_write4(client, 0x8f8, 0x08018000);
279
280
/* src3/4/6_ctl */
281
/* 0x1.5555 = 2 * (32000/48000) */
282
cx25840_write4(client, 0x900, 0x08015555);
283
cx25840_write4(client, 0x904, 0x08015555);
284
cx25840_write4(client, 0x90c, 0x08015555);
285
break;
286
}
287
}
288
289
state->audclk_freq = freq;
290
291
return 0;
292
}
293
294
static inline int cx25836_set_audclk_freq(struct i2c_client *client, u32 freq)
295
{
296
return cx25840_set_audclk_freq(client, freq);
297
}
298
299
static int cx23885_set_audclk_freq(struct i2c_client *client, u32 freq)
300
{
301
struct cx25840_state *state = to_state(i2c_get_clientdata(client));
302
303
if (state->aud_input != CX25840_AUDIO_SERIAL) {
304
switch (freq) {
305
case 32000:
306
case 44100:
307
case 48000:
308
/* We don't have register values
309
* so avoid destroying registers. */
310
/* FIXME return -EINVAL; */
311
break;
312
}
313
} else {
314
switch (freq) {
315
case 32000:
316
case 44100:
317
/* We don't have register values
318
* so avoid destroying registers. */
319
/* FIXME return -EINVAL; */
320
break;
321
322
case 48000:
323
/* src1_ctl */
324
/* 0x1.867c = 48000 / (2 * 28636360/8 * 2/455) */
325
cx25840_write4(client, 0x8f8, 0x0801867c);
326
327
/* src3/4/6_ctl */
328
/* 0x1.4faa = (4 * 28636360/8 * 2/455) / 48000 */
329
cx25840_write4(client, 0x900, 0x08014faa);
330
cx25840_write4(client, 0x904, 0x08014faa);
331
cx25840_write4(client, 0x90c, 0x08014faa);
332
break;
333
}
334
}
335
336
state->audclk_freq = freq;
337
338
return 0;
339
}
340
341
static int cx231xx_set_audclk_freq(struct i2c_client *client, u32 freq)
342
{
343
struct cx25840_state *state = to_state(i2c_get_clientdata(client));
344
345
if (state->aud_input != CX25840_AUDIO_SERIAL) {
346
switch (freq) {
347
case 32000:
348
/* src3/4/6_ctl */
349
/* 0x1.f77f = (4 * 28636360/8 * 2/455) / 32000 */
350
cx25840_write4(client, 0x900, 0x0801f77f);
351
cx25840_write4(client, 0x904, 0x0801f77f);
352
cx25840_write4(client, 0x90c, 0x0801f77f);
353
break;
354
355
case 44100:
356
/* src3/4/6_ctl */
357
/* 0x1.6d59 = (4 * 28636360/8 * 2/455) / 44100 */
358
cx25840_write4(client, 0x900, 0x08016d59);
359
cx25840_write4(client, 0x904, 0x08016d59);
360
cx25840_write4(client, 0x90c, 0x08016d59);
361
break;
362
363
case 48000:
364
/* src3/4/6_ctl */
365
/* 0x1.4faa = (4 * 28636360/8 * 2/455) / 48000 */
366
cx25840_write4(client, 0x900, 0x08014faa);
367
cx25840_write4(client, 0x904, 0x08014faa);
368
cx25840_write4(client, 0x90c, 0x08014faa);
369
break;
370
}
371
} else {
372
switch (freq) {
373
/* FIXME These cases make different assumptions about audclk */
374
case 32000:
375
/* src1_ctl */
376
/* 0x1.0000 = 32000/32000 */
377
cx25840_write4(client, 0x8f8, 0x08010000);
378
379
/* src3/4/6_ctl */
380
/* 0x2.0000 = 2 * (32000/32000) */
381
cx25840_write4(client, 0x900, 0x08020000);
382
cx25840_write4(client, 0x904, 0x08020000);
383
cx25840_write4(client, 0x90c, 0x08020000);
384
break;
385
386
case 44100:
387
/* src1_ctl */
388
/* 0x1.60cd = 44100/32000 */
389
cx25840_write4(client, 0x8f8, 0x080160cd);
390
391
/* src3/4/6_ctl */
392
/* 0x1.7385 = 2 * (32000/44100) */
393
cx25840_write4(client, 0x900, 0x08017385);
394
cx25840_write4(client, 0x904, 0x08017385);
395
cx25840_write4(client, 0x90c, 0x08017385);
396
break;
397
398
case 48000:
399
/* src1_ctl */
400
/* 0x1.867c = 48000 / (2 * 28636360/8 * 2/455) */
401
cx25840_write4(client, 0x8f8, 0x0801867c);
402
403
/* src3/4/6_ctl */
404
/* 0x1.4faa = (4 * 28636360/8 * 2/455) / 48000 */
405
cx25840_write4(client, 0x900, 0x08014faa);
406
cx25840_write4(client, 0x904, 0x08014faa);
407
cx25840_write4(client, 0x90c, 0x08014faa);
408
break;
409
}
410
}
411
412
state->audclk_freq = freq;
413
414
return 0;
415
}
416
417
static int set_audclk_freq(struct i2c_client *client, u32 freq)
418
{
419
struct cx25840_state *state = to_state(i2c_get_clientdata(client));
420
421
if (freq != 32000 && freq != 44100 && freq != 48000)
422
return -EINVAL;
423
424
if (is_cx231xx(state))
425
return cx231xx_set_audclk_freq(client, freq);
426
427
if (is_cx2388x(state))
428
return cx23885_set_audclk_freq(client, freq);
429
430
if (is_cx2583x(state))
431
return cx25836_set_audclk_freq(client, freq);
432
433
return cx25840_set_audclk_freq(client, freq);
434
}
435
436
void cx25840_audio_set_path(struct i2c_client *client)
437
{
438
struct cx25840_state *state = to_state(i2c_get_clientdata(client));
439
440
if (!is_cx2583x(state)) {
441
/* assert soft reset */
442
cx25840_and_or(client, 0x810, ~0x1, 0x01);
443
444
/* stop microcontroller */
445
cx25840_and_or(client, 0x803, ~0x10, 0);
446
447
/* Mute everything to prevent the PFFT! */
448
cx25840_write(client, 0x8d3, 0x1f);
449
450
if (state->aud_input == CX25840_AUDIO_SERIAL) {
451
/* Set Path1 to Serial Audio Input */
452
cx25840_write4(client, 0x8d0, 0x01011012);
453
454
/* The microcontroller should not be started for the
455
* non-tuner inputs: autodetection is specific for
456
* TV audio. */
457
} else {
458
/* Set Path1 to Analog Demod Main Channel */
459
cx25840_write4(client, 0x8d0, 0x1f063870);
460
}
461
}
462
463
set_audclk_freq(client, state->audclk_freq);
464
465
if (!is_cx2583x(state)) {
466
if (state->aud_input != CX25840_AUDIO_SERIAL) {
467
/* When the microcontroller detects the
468
* audio format, it will unmute the lines */
469
cx25840_and_or(client, 0x803, ~0x10, 0x10);
470
}
471
472
/* deassert soft reset */
473
cx25840_and_or(client, 0x810, ~0x1, 0x00);
474
475
/* Ensure the controller is running when we exit */
476
if (is_cx2388x(state) || is_cx231xx(state))
477
cx25840_and_or(client, 0x803, ~0x10, 0x10);
478
}
479
}
480
481
static void set_volume(struct i2c_client *client, int volume)
482
{
483
int vol;
484
485
/* Convert the volume to msp3400 values (0-127) */
486
vol = volume >> 9;
487
488
/* now scale it up to cx25840 values
489
* -114dB to -96dB maps to 0
490
* this should be 19, but in my testing that was 4dB too loud */
491
if (vol <= 23) {
492
vol = 0;
493
} else {
494
vol -= 23;
495
}
496
497
/* PATH1_VOLUME */
498
cx25840_write(client, 0x8d4, 228 - (vol * 2));
499
}
500
501
static void set_balance(struct i2c_client *client, int balance)
502
{
503
int bal = balance >> 8;
504
if (bal > 0x80) {
505
/* PATH1_BAL_LEFT */
506
cx25840_and_or(client, 0x8d5, 0x7f, 0x80);
507
/* PATH1_BAL_LEVEL */
508
cx25840_and_or(client, 0x8d5, ~0x7f, bal & 0x7f);
509
} else {
510
/* PATH1_BAL_LEFT */
511
cx25840_and_or(client, 0x8d5, 0x7f, 0x00);
512
/* PATH1_BAL_LEVEL */
513
cx25840_and_or(client, 0x8d5, ~0x7f, 0x80 - bal);
514
}
515
}
516
517
int cx25840_s_clock_freq(struct v4l2_subdev *sd, u32 freq)
518
{
519
struct i2c_client *client = v4l2_get_subdevdata(sd);
520
struct cx25840_state *state = to_state(sd);
521
int retval;
522
523
if (!is_cx2583x(state))
524
cx25840_and_or(client, 0x810, ~0x1, 1);
525
if (state->aud_input != CX25840_AUDIO_SERIAL) {
526
cx25840_and_or(client, 0x803, ~0x10, 0);
527
cx25840_write(client, 0x8d3, 0x1f);
528
}
529
retval = set_audclk_freq(client, freq);
530
if (state->aud_input != CX25840_AUDIO_SERIAL)
531
cx25840_and_or(client, 0x803, ~0x10, 0x10);
532
if (!is_cx2583x(state))
533
cx25840_and_or(client, 0x810, ~0x1, 0);
534
return retval;
535
}
536
537
static int cx25840_audio_s_ctrl(struct v4l2_ctrl *ctrl)
538
{
539
struct v4l2_subdev *sd = to_sd(ctrl);
540
struct cx25840_state *state = to_state(sd);
541
struct i2c_client *client = v4l2_get_subdevdata(sd);
542
543
switch (ctrl->id) {
544
case V4L2_CID_AUDIO_VOLUME:
545
if (state->mute->val)
546
set_volume(client, 0);
547
else
548
set_volume(client, state->volume->val);
549
break;
550
case V4L2_CID_AUDIO_BASS:
551
/* PATH1_EQ_BASS_VOL */
552
cx25840_and_or(client, 0x8d9, ~0x3f,
553
48 - (ctrl->val * 48 / 0xffff));
554
break;
555
case V4L2_CID_AUDIO_TREBLE:
556
/* PATH1_EQ_TREBLE_VOL */
557
cx25840_and_or(client, 0x8db, ~0x3f,
558
48 - (ctrl->val * 48 / 0xffff));
559
break;
560
case V4L2_CID_AUDIO_BALANCE:
561
set_balance(client, ctrl->val);
562
break;
563
default:
564
return -EINVAL;
565
}
566
return 0;
567
}
568
569
const struct v4l2_ctrl_ops cx25840_audio_ctrl_ops = {
570
.s_ctrl = cx25840_audio_s_ctrl,
571
};
572
573