Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/media/video/cx25840/cx25840-ir.c
17745 views
1
/*
2
* Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
3
*
4
* Integrated Consumer Infrared Controller
5
*
6
* Copyright (C) 2010 Andy Walls <[email protected]>
7
*
8
* This program is free software; you can redistribute it and/or
9
* modify it under the terms of the GNU General Public License
10
* as published by the Free Software Foundation; either version 2
11
* of the License, or (at your option) any later version.
12
*
13
* This program is distributed in the hope that it will be useful,
14
* but WITHOUT ANY WARRANTY; without even the implied warranty of
15
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16
* GNU General Public License for more details.
17
*
18
* You should have received a copy of the GNU General Public License
19
* along with this program; if not, write to the Free Software
20
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21
* 02110-1301, USA.
22
*/
23
24
#include <linux/slab.h>
25
#include <linux/kfifo.h>
26
#include <media/cx25840.h>
27
#include <media/rc-core.h>
28
29
#include "cx25840-core.h"
30
31
static unsigned int ir_debug;
32
module_param(ir_debug, int, 0644);
33
MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");
34
35
#define CX25840_IR_REG_BASE 0x200
36
37
#define CX25840_IR_CNTRL_REG 0x200
38
#define CNTRL_WIN_3_3 0x00000000
39
#define CNTRL_WIN_4_3 0x00000001
40
#define CNTRL_WIN_3_4 0x00000002
41
#define CNTRL_WIN_4_4 0x00000003
42
#define CNTRL_WIN 0x00000003
43
#define CNTRL_EDG_NONE 0x00000000
44
#define CNTRL_EDG_FALL 0x00000004
45
#define CNTRL_EDG_RISE 0x00000008
46
#define CNTRL_EDG_BOTH 0x0000000C
47
#define CNTRL_EDG 0x0000000C
48
#define CNTRL_DMD 0x00000010
49
#define CNTRL_MOD 0x00000020
50
#define CNTRL_RFE 0x00000040
51
#define CNTRL_TFE 0x00000080
52
#define CNTRL_RXE 0x00000100
53
#define CNTRL_TXE 0x00000200
54
#define CNTRL_RIC 0x00000400
55
#define CNTRL_TIC 0x00000800
56
#define CNTRL_CPL 0x00001000
57
#define CNTRL_LBM 0x00002000
58
#define CNTRL_R 0x00004000
59
60
#define CX25840_IR_TXCLK_REG 0x204
61
#define TXCLK_TCD 0x0000FFFF
62
63
#define CX25840_IR_RXCLK_REG 0x208
64
#define RXCLK_RCD 0x0000FFFF
65
66
#define CX25840_IR_CDUTY_REG 0x20C
67
#define CDUTY_CDC 0x0000000F
68
69
#define CX25840_IR_STATS_REG 0x210
70
#define STATS_RTO 0x00000001
71
#define STATS_ROR 0x00000002
72
#define STATS_RBY 0x00000004
73
#define STATS_TBY 0x00000008
74
#define STATS_RSR 0x00000010
75
#define STATS_TSR 0x00000020
76
77
#define CX25840_IR_IRQEN_REG 0x214
78
#define IRQEN_RTE 0x00000001
79
#define IRQEN_ROE 0x00000002
80
#define IRQEN_RSE 0x00000010
81
#define IRQEN_TSE 0x00000020
82
#define IRQEN_MSK 0x00000033
83
84
#define CX25840_IR_FILTR_REG 0x218
85
#define FILTR_LPF 0x0000FFFF
86
87
#define CX25840_IR_FIFO_REG 0x23C
88
#define FIFO_RXTX 0x0000FFFF
89
#define FIFO_RXTX_LVL 0x00010000
90
#define FIFO_RXTX_RTO 0x0001FFFF
91
#define FIFO_RX_NDV 0x00020000
92
#define FIFO_RX_DEPTH 8
93
#define FIFO_TX_DEPTH 8
94
95
#define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
96
#define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2)
97
98
/*
99
* We use this union internally for convenience, but callers to tx_write
100
* and rx_read will be expecting records of type struct ir_raw_event.
101
* Always ensure the size of this union is dictated by struct ir_raw_event.
102
*/
103
union cx25840_ir_fifo_rec {
104
u32 hw_fifo_data;
105
struct ir_raw_event ir_core_data;
106
};
107
108
#define CX25840_IR_RX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
109
#define CX25840_IR_TX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
110
111
struct cx25840_ir_state {
112
struct i2c_client *c;
113
114
struct v4l2_subdev_ir_parameters rx_params;
115
struct mutex rx_params_lock; /* protects Rx parameter settings cache */
116
atomic_t rxclk_divider;
117
atomic_t rx_invert;
118
119
struct kfifo rx_kfifo;
120
spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */
121
122
struct v4l2_subdev_ir_parameters tx_params;
123
struct mutex tx_params_lock; /* protects Tx parameter settings cache */
124
atomic_t txclk_divider;
125
};
126
127
static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
128
{
129
struct cx25840_state *state = to_state(sd);
130
return state ? state->ir_state : NULL;
131
}
132
133
134
/*
135
* Rx and Tx Clock Divider register computations
136
*
137
* Note the largest clock divider value of 0xffff corresponds to:
138
* (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
139
* which fits in 21 bits, so we'll use unsigned int for time arguments.
140
*/
141
static inline u16 count_to_clock_divider(unsigned int d)
142
{
143
if (d > RXCLK_RCD + 1)
144
d = RXCLK_RCD;
145
else if (d < 2)
146
d = 1;
147
else
148
d--;
149
return (u16) d;
150
}
151
152
static inline u16 ns_to_clock_divider(unsigned int ns)
153
{
154
return count_to_clock_divider(
155
DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
156
}
157
158
static inline unsigned int clock_divider_to_ns(unsigned int divider)
159
{
160
/* Period of the Rx or Tx clock in ns */
161
return DIV_ROUND_CLOSEST((divider + 1) * 1000,
162
CX25840_IR_REFCLK_FREQ / 1000000);
163
}
164
165
static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
166
{
167
return count_to_clock_divider(
168
DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
169
}
170
171
static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
172
{
173
return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
174
}
175
176
static inline u16 freq_to_clock_divider(unsigned int freq,
177
unsigned int rollovers)
178
{
179
return count_to_clock_divider(
180
DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers));
181
}
182
183
static inline unsigned int clock_divider_to_freq(unsigned int divider,
184
unsigned int rollovers)
185
{
186
return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
187
(divider + 1) * rollovers);
188
}
189
190
/*
191
* Low Pass Filter register calculations
192
*
193
* Note the largest count value of 0xffff corresponds to:
194
* 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
195
* which fits in 21 bits, so we'll use unsigned int for time arguments.
196
*/
197
static inline u16 count_to_lpf_count(unsigned int d)
198
{
199
if (d > FILTR_LPF)
200
d = FILTR_LPF;
201
else if (d < 4)
202
d = 0;
203
return (u16) d;
204
}
205
206
static inline u16 ns_to_lpf_count(unsigned int ns)
207
{
208
return count_to_lpf_count(
209
DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
210
}
211
212
static inline unsigned int lpf_count_to_ns(unsigned int count)
213
{
214
/* Duration of the Low Pass Filter rejection window in ns */
215
return DIV_ROUND_CLOSEST(count * 1000,
216
CX25840_IR_REFCLK_FREQ / 1000000);
217
}
218
219
static inline unsigned int lpf_count_to_us(unsigned int count)
220
{
221
/* Duration of the Low Pass Filter rejection window in us */
222
return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
223
}
224
225
/*
226
* FIFO register pulse width count compuations
227
*/
228
static u32 clock_divider_to_resolution(u16 divider)
229
{
230
/*
231
* Resolution is the duration of 1 tick of the readable portion of
232
* of the pulse width counter as read from the FIFO. The two lsb's are
233
* not readable, hence the << 2. This function returns ns.
234
*/
235
return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
236
CX25840_IR_REFCLK_FREQ / 1000000);
237
}
238
239
static u64 pulse_width_count_to_ns(u16 count, u16 divider)
240
{
241
u64 n;
242
u32 rem;
243
244
/*
245
* The 2 lsb's of the pulse width timer count are not readable, hence
246
* the (count << 2) | 0x3
247
*/
248
n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
249
rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
250
if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
251
n++;
252
return n;
253
}
254
255
#if 0
256
/* Keep as we will need this for Transmit functionality */
257
static u16 ns_to_pulse_width_count(u32 ns, u16 divider)
258
{
259
u64 n;
260
u32 d;
261
u32 rem;
262
263
/*
264
* The 2 lsb's of the pulse width timer count are not accessible, hence
265
* the (1 << 2)
266
*/
267
n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */
268
d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */
269
rem = do_div(n, d);
270
if (rem >= d / 2)
271
n++;
272
273
if (n > FIFO_RXTX)
274
n = FIFO_RXTX;
275
else if (n == 0)
276
n = 1;
277
return (u16) n;
278
}
279
280
#endif
281
static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
282
{
283
u64 n;
284
u32 rem;
285
286
/*
287
* The 2 lsb's of the pulse width timer count are not readable, hence
288
* the (count << 2) | 0x3
289
*/
290
n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
291
rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
292
if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
293
n++;
294
return (unsigned int) n;
295
}
296
297
/*
298
* Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
299
*
300
* The total pulse clock count is an 18 bit pulse width timer count as the most
301
* significant part and (up to) 16 bit clock divider count as a modulus.
302
* When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
303
* width timer count's least significant bit.
304
*/
305
static u64 ns_to_pulse_clocks(u32 ns)
306
{
307
u64 clocks;
308
u32 rem;
309
clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
310
rem = do_div(clocks, 1000); /* /1000 = cycles */
311
if (rem >= 1000 / 2)
312
clocks++;
313
return clocks;
314
}
315
316
static u16 pulse_clocks_to_clock_divider(u64 count)
317
{
318
u32 rem;
319
320
rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
321
322
/* net result needs to be rounded down and decremented by 1 */
323
if (count > RXCLK_RCD + 1)
324
count = RXCLK_RCD;
325
else if (count < 2)
326
count = 1;
327
else
328
count--;
329
return (u16) count;
330
}
331
332
/*
333
* IR Control Register helpers
334
*/
335
enum tx_fifo_watermark {
336
TX_FIFO_HALF_EMPTY = 0,
337
TX_FIFO_EMPTY = CNTRL_TIC,
338
};
339
340
enum rx_fifo_watermark {
341
RX_FIFO_HALF_FULL = 0,
342
RX_FIFO_NOT_EMPTY = CNTRL_RIC,
343
};
344
345
static inline void control_tx_irq_watermark(struct i2c_client *c,
346
enum tx_fifo_watermark level)
347
{
348
cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
349
}
350
351
static inline void control_rx_irq_watermark(struct i2c_client *c,
352
enum rx_fifo_watermark level)
353
{
354
cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
355
}
356
357
static inline void control_tx_enable(struct i2c_client *c, bool enable)
358
{
359
cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
360
enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
361
}
362
363
static inline void control_rx_enable(struct i2c_client *c, bool enable)
364
{
365
cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
366
enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
367
}
368
369
static inline void control_tx_modulation_enable(struct i2c_client *c,
370
bool enable)
371
{
372
cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
373
enable ? CNTRL_MOD : 0);
374
}
375
376
static inline void control_rx_demodulation_enable(struct i2c_client *c,
377
bool enable)
378
{
379
cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
380
enable ? CNTRL_DMD : 0);
381
}
382
383
static inline void control_rx_s_edge_detection(struct i2c_client *c,
384
u32 edge_types)
385
{
386
cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
387
edge_types & CNTRL_EDG_BOTH);
388
}
389
390
static void control_rx_s_carrier_window(struct i2c_client *c,
391
unsigned int carrier,
392
unsigned int *carrier_range_low,
393
unsigned int *carrier_range_high)
394
{
395
u32 v;
396
unsigned int c16 = carrier * 16;
397
398
if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
399
v = CNTRL_WIN_3_4;
400
*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
401
} else {
402
v = CNTRL_WIN_3_3;
403
*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
404
}
405
406
if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
407
v |= CNTRL_WIN_4_3;
408
*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
409
} else {
410
v |= CNTRL_WIN_3_3;
411
*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
412
}
413
cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
414
}
415
416
static inline void control_tx_polarity_invert(struct i2c_client *c,
417
bool invert)
418
{
419
cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
420
invert ? CNTRL_CPL : 0);
421
}
422
423
/*
424
* IR Rx & Tx Clock Register helpers
425
*/
426
static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
427
unsigned int freq,
428
u16 *divider)
429
{
430
*divider = carrier_freq_to_clock_divider(freq);
431
cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
432
return clock_divider_to_carrier_freq(*divider);
433
}
434
435
static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
436
unsigned int freq,
437
u16 *divider)
438
{
439
*divider = carrier_freq_to_clock_divider(freq);
440
cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
441
return clock_divider_to_carrier_freq(*divider);
442
}
443
444
static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
445
u16 *divider)
446
{
447
u64 pulse_clocks;
448
449
if (ns > IR_MAX_DURATION)
450
ns = IR_MAX_DURATION;
451
pulse_clocks = ns_to_pulse_clocks(ns);
452
*divider = pulse_clocks_to_clock_divider(pulse_clocks);
453
cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
454
return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
455
}
456
457
static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
458
u16 *divider)
459
{
460
u64 pulse_clocks;
461
462
if (ns > IR_MAX_DURATION)
463
ns = IR_MAX_DURATION;
464
pulse_clocks = ns_to_pulse_clocks(ns);
465
*divider = pulse_clocks_to_clock_divider(pulse_clocks);
466
cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
467
return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
468
}
469
470
/*
471
* IR Tx Carrier Duty Cycle register helpers
472
*/
473
static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
474
unsigned int duty_cycle)
475
{
476
u32 n;
477
n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
478
if (n != 0)
479
n--;
480
if (n > 15)
481
n = 15;
482
cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
483
return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
484
}
485
486
/*
487
* IR Filter Register helpers
488
*/
489
static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
490
{
491
u32 count = ns_to_lpf_count(min_width_ns);
492
cx25840_write4(c, CX25840_IR_FILTR_REG, count);
493
return lpf_count_to_ns(count);
494
}
495
496
/*
497
* IR IRQ Enable Register helpers
498
*/
499
static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
500
{
501
struct cx25840_state *state = to_state(sd);
502
503
if (is_cx23885(state) || is_cx23887(state))
504
mask ^= IRQEN_MSK;
505
mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
506
cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
507
~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
508
}
509
510
static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
511
{
512
struct cx25840_state *state = to_state(sd);
513
514
if (is_cx23885(state) || is_cx23887(state))
515
mask ^= IRQEN_MSK;
516
mask &= IRQEN_TSE;
517
cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
518
}
519
520
/*
521
* V4L2 Subdevice IR Ops
522
*/
523
int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
524
{
525
struct cx25840_state *state = to_state(sd);
526
struct cx25840_ir_state *ir_state = to_ir_state(sd);
527
struct i2c_client *c = NULL;
528
unsigned long flags;
529
530
union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
531
unsigned int i, j, k;
532
u32 events, v;
533
int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
534
u32 cntrl, irqen, stats;
535
536
*handled = false;
537
if (ir_state == NULL)
538
return -ENODEV;
539
540
c = ir_state->c;
541
542
/* Only support the IR controller for the CX2388[57] AV Core for now */
543
if (!(is_cx23885(state) || is_cx23887(state)))
544
return -ENODEV;
545
546
cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
547
irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
548
if (is_cx23885(state) || is_cx23887(state))
549
irqen ^= IRQEN_MSK;
550
stats = cx25840_read4(c, CX25840_IR_STATS_REG);
551
552
tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
553
rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
554
rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
555
ror = stats & STATS_ROR; /* Rx FIFO Over Run */
556
557
tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
558
rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
559
rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
560
roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
561
562
v4l2_dbg(2, ir_debug, sd, "IR IRQ Status: %s %s %s %s %s %s\n",
563
tsr ? "tsr" : " ", rsr ? "rsr" : " ",
564
rto ? "rto" : " ", ror ? "ror" : " ",
565
stats & STATS_TBY ? "tby" : " ",
566
stats & STATS_RBY ? "rby" : " ");
567
568
v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
569
tse ? "tse" : " ", rse ? "rse" : " ",
570
rte ? "rte" : " ", roe ? "roe" : " ");
571
572
/*
573
* Transmitter interrupt service
574
*/
575
if (tse && tsr) {
576
/*
577
* TODO:
578
* Check the watermark threshold setting
579
* Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
580
* Push the data to the hardware FIFO.
581
* If there was nothing more to send in the tx_kfifo, disable
582
* the TSR IRQ and notify the v4l2_device.
583
* If there was something in the tx_kfifo, check the tx_kfifo
584
* level and notify the v4l2_device, if it is low.
585
*/
586
/* For now, inhibit TSR interrupt until Tx is implemented */
587
irqenable_tx(sd, 0);
588
events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
589
v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
590
*handled = true;
591
}
592
593
/*
594
* Receiver interrupt service
595
*/
596
kror = 0;
597
if ((rse && rsr) || (rte && rto)) {
598
/*
599
* Receive data on RSR to clear the STATS_RSR.
600
* Receive data on RTO, since we may not have yet hit the RSR
601
* watermark when we receive the RTO.
602
*/
603
for (i = 0, v = FIFO_RX_NDV;
604
(v & FIFO_RX_NDV) && !kror; i = 0) {
605
for (j = 0;
606
(v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
607
v = cx25840_read4(c, CX25840_IR_FIFO_REG);
608
rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
609
i++;
610
}
611
if (i == 0)
612
break;
613
j = i * sizeof(union cx25840_ir_fifo_rec);
614
k = kfifo_in_locked(&ir_state->rx_kfifo,
615
(unsigned char *) rx_data, j,
616
&ir_state->rx_kfifo_lock);
617
if (k != j)
618
kror++; /* rx_kfifo over run */
619
}
620
*handled = true;
621
}
622
623
events = 0;
624
v = 0;
625
if (kror) {
626
events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
627
v4l2_err(sd, "IR receiver software FIFO overrun\n");
628
}
629
if (roe && ror) {
630
/*
631
* The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
632
* the Rx FIFO Over Run status (STATS_ROR)
633
*/
634
v |= CNTRL_RFE;
635
events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
636
v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
637
}
638
if (rte && rto) {
639
/*
640
* The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
641
* the Rx Pulse Width Timer Time Out (STATS_RTO)
642
*/
643
v |= CNTRL_RXE;
644
events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
645
}
646
if (v) {
647
/* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
648
cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
649
cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
650
*handled = true;
651
}
652
spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
653
if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
654
events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
655
spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
656
657
if (events)
658
v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
659
return 0;
660
}
661
662
/* Receiver */
663
static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
664
ssize_t *num)
665
{
666
struct cx25840_ir_state *ir_state = to_ir_state(sd);
667
bool invert;
668
u16 divider;
669
unsigned int i, n;
670
union cx25840_ir_fifo_rec *p;
671
unsigned u, v;
672
673
if (ir_state == NULL)
674
return -ENODEV;
675
676
invert = (bool) atomic_read(&ir_state->rx_invert);
677
divider = (u16) atomic_read(&ir_state->rxclk_divider);
678
679
n = count / sizeof(union cx25840_ir_fifo_rec)
680
* sizeof(union cx25840_ir_fifo_rec);
681
if (n == 0) {
682
*num = 0;
683
return 0;
684
}
685
686
n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
687
&ir_state->rx_kfifo_lock);
688
689
n /= sizeof(union cx25840_ir_fifo_rec);
690
*num = n * sizeof(union cx25840_ir_fifo_rec);
691
692
for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
693
694
if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
695
/* Assume RTO was because of no IR light input */
696
u = 0;
697
v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
698
} else {
699
u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
700
if (invert)
701
u = u ? 0 : 1;
702
}
703
704
v = (unsigned) pulse_width_count_to_ns(
705
(u16) (p->hw_fifo_data & FIFO_RXTX), divider);
706
if (v > IR_MAX_DURATION)
707
v = IR_MAX_DURATION;
708
709
init_ir_raw_event(&p->ir_core_data);
710
p->ir_core_data.pulse = u;
711
p->ir_core_data.duration = v;
712
713
v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns %s\n",
714
v, u ? "mark" : "space");
715
}
716
return 0;
717
}
718
719
static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
720
struct v4l2_subdev_ir_parameters *p)
721
{
722
struct cx25840_ir_state *ir_state = to_ir_state(sd);
723
724
if (ir_state == NULL)
725
return -ENODEV;
726
727
mutex_lock(&ir_state->rx_params_lock);
728
memcpy(p, &ir_state->rx_params,
729
sizeof(struct v4l2_subdev_ir_parameters));
730
mutex_unlock(&ir_state->rx_params_lock);
731
return 0;
732
}
733
734
static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
735
{
736
struct cx25840_ir_state *ir_state = to_ir_state(sd);
737
struct i2c_client *c;
738
739
if (ir_state == NULL)
740
return -ENODEV;
741
742
c = ir_state->c;
743
mutex_lock(&ir_state->rx_params_lock);
744
745
/* Disable or slow down all IR Rx circuits and counters */
746
irqenable_rx(sd, 0);
747
control_rx_enable(c, false);
748
control_rx_demodulation_enable(c, false);
749
control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
750
filter_rx_s_min_width(c, 0);
751
cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);
752
753
ir_state->rx_params.shutdown = true;
754
755
mutex_unlock(&ir_state->rx_params_lock);
756
return 0;
757
}
758
759
static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
760
struct v4l2_subdev_ir_parameters *p)
761
{
762
struct cx25840_ir_state *ir_state = to_ir_state(sd);
763
struct i2c_client *c;
764
struct v4l2_subdev_ir_parameters *o;
765
u16 rxclk_divider;
766
767
if (ir_state == NULL)
768
return -ENODEV;
769
770
if (p->shutdown)
771
return cx25840_ir_rx_shutdown(sd);
772
773
if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
774
return -ENOSYS;
775
776
c = ir_state->c;
777
o = &ir_state->rx_params;
778
779
mutex_lock(&ir_state->rx_params_lock);
780
781
o->shutdown = p->shutdown;
782
783
p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
784
o->mode = p->mode;
785
786
p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
787
o->bytes_per_data_element = p->bytes_per_data_element;
788
789
/* Before we tweak the hardware, we have to disable the receiver */
790
irqenable_rx(sd, 0);
791
control_rx_enable(c, false);
792
793
control_rx_demodulation_enable(c, p->modulation);
794
o->modulation = p->modulation;
795
796
if (p->modulation) {
797
p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
798
&rxclk_divider);
799
800
o->carrier_freq = p->carrier_freq;
801
802
p->duty_cycle = 50;
803
o->duty_cycle = p->duty_cycle;
804
805
control_rx_s_carrier_window(c, p->carrier_freq,
806
&p->carrier_range_lower,
807
&p->carrier_range_upper);
808
o->carrier_range_lower = p->carrier_range_lower;
809
o->carrier_range_upper = p->carrier_range_upper;
810
811
p->max_pulse_width =
812
(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
813
} else {
814
p->max_pulse_width =
815
rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
816
&rxclk_divider);
817
}
818
o->max_pulse_width = p->max_pulse_width;
819
atomic_set(&ir_state->rxclk_divider, rxclk_divider);
820
821
p->noise_filter_min_width =
822
filter_rx_s_min_width(c, p->noise_filter_min_width);
823
o->noise_filter_min_width = p->noise_filter_min_width;
824
825
p->resolution = clock_divider_to_resolution(rxclk_divider);
826
o->resolution = p->resolution;
827
828
/* FIXME - make this dependent on resolution for better performance */
829
control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);
830
831
control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);
832
833
o->invert_level = p->invert_level;
834
atomic_set(&ir_state->rx_invert, p->invert_level);
835
836
o->interrupt_enable = p->interrupt_enable;
837
o->enable = p->enable;
838
if (p->enable) {
839
unsigned long flags;
840
841
spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
842
kfifo_reset(&ir_state->rx_kfifo);
843
spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
844
if (p->interrupt_enable)
845
irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
846
control_rx_enable(c, p->enable);
847
}
848
849
mutex_unlock(&ir_state->rx_params_lock);
850
return 0;
851
}
852
853
/* Transmitter */
854
static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
855
ssize_t *num)
856
{
857
struct cx25840_ir_state *ir_state = to_ir_state(sd);
858
struct i2c_client *c;
859
860
if (ir_state == NULL)
861
return -ENODEV;
862
863
c = ir_state->c;
864
#if 0
865
/*
866
* FIXME - the code below is an incomplete and untested sketch of what
867
* may need to be done. The critical part is to get 4 (or 8) pulses
868
* from the tx_kfifo, or converted from ns to the proper units from the
869
* input, and push them off to the hardware Tx FIFO right away, if the
870
* HW TX fifo needs service. The rest can be pushed to the tx_kfifo in
871
* a less critical timeframe. Also watch out for overruning the
872
* tx_kfifo - don't let it happen and let the caller know not all his
873
* pulses were written.
874
*/
875
u32 *ns_pulse = (u32 *) buf;
876
unsigned int n;
877
u32 fifo_pulse[FIFO_TX_DEPTH];
878
u32 mark;
879
880
/* Compute how much we can fit in the tx kfifo */
881
n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo);
882
n = min(n, (unsigned int) count);
883
n /= sizeof(u32);
884
885
/* FIXME - turn on Tx Fifo service interrupt
886
* check hardware fifo level, and other stuff
887
*/
888
for (i = 0; i < n; ) {
889
for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) {
890
mark = ns_pulse[i] & LEVEL_MASK;
891
fifo_pulse[j] = ns_to_pulse_width_count(
892
ns_pulse[i] &
893
~LEVEL_MASK,
894
ir_state->txclk_divider);
895
if (mark)
896
fifo_pulse[j] &= FIFO_RXTX_LVL;
897
i++;
898
}
899
kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse,
900
j * sizeof(u32));
901
}
902
*num = n * sizeof(u32);
903
#else
904
/* For now enable the Tx FIFO Service interrupt & pretend we did work */
905
irqenable_tx(sd, IRQEN_TSE);
906
*num = count;
907
#endif
908
return 0;
909
}
910
911
static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
912
struct v4l2_subdev_ir_parameters *p)
913
{
914
struct cx25840_ir_state *ir_state = to_ir_state(sd);
915
916
if (ir_state == NULL)
917
return -ENODEV;
918
919
mutex_lock(&ir_state->tx_params_lock);
920
memcpy(p, &ir_state->tx_params,
921
sizeof(struct v4l2_subdev_ir_parameters));
922
mutex_unlock(&ir_state->tx_params_lock);
923
return 0;
924
}
925
926
static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
927
{
928
struct cx25840_ir_state *ir_state = to_ir_state(sd);
929
struct i2c_client *c;
930
931
if (ir_state == NULL)
932
return -ENODEV;
933
934
c = ir_state->c;
935
mutex_lock(&ir_state->tx_params_lock);
936
937
/* Disable or slow down all IR Tx circuits and counters */
938
irqenable_tx(sd, 0);
939
control_tx_enable(c, false);
940
control_tx_modulation_enable(c, false);
941
cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);
942
943
ir_state->tx_params.shutdown = true;
944
945
mutex_unlock(&ir_state->tx_params_lock);
946
return 0;
947
}
948
949
static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
950
struct v4l2_subdev_ir_parameters *p)
951
{
952
struct cx25840_ir_state *ir_state = to_ir_state(sd);
953
struct i2c_client *c;
954
struct v4l2_subdev_ir_parameters *o;
955
u16 txclk_divider;
956
957
if (ir_state == NULL)
958
return -ENODEV;
959
960
if (p->shutdown)
961
return cx25840_ir_tx_shutdown(sd);
962
963
if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
964
return -ENOSYS;
965
966
c = ir_state->c;
967
o = &ir_state->tx_params;
968
mutex_lock(&ir_state->tx_params_lock);
969
970
o->shutdown = p->shutdown;
971
972
p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
973
o->mode = p->mode;
974
975
p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
976
o->bytes_per_data_element = p->bytes_per_data_element;
977
978
/* Before we tweak the hardware, we have to disable the transmitter */
979
irqenable_tx(sd, 0);
980
control_tx_enable(c, false);
981
982
control_tx_modulation_enable(c, p->modulation);
983
o->modulation = p->modulation;
984
985
if (p->modulation) {
986
p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
987
&txclk_divider);
988
o->carrier_freq = p->carrier_freq;
989
990
p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
991
o->duty_cycle = p->duty_cycle;
992
993
p->max_pulse_width =
994
(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
995
} else {
996
p->max_pulse_width =
997
txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
998
&txclk_divider);
999
}
1000
o->max_pulse_width = p->max_pulse_width;
1001
atomic_set(&ir_state->txclk_divider, txclk_divider);
1002
1003
p->resolution = clock_divider_to_resolution(txclk_divider);
1004
o->resolution = p->resolution;
1005
1006
/* FIXME - make this dependent on resolution for better performance */
1007
control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);
1008
1009
control_tx_polarity_invert(c, p->invert_carrier_sense);
1010
o->invert_carrier_sense = p->invert_carrier_sense;
1011
1012
/*
1013
* FIXME: we don't have hardware help for IO pin level inversion
1014
* here like we have on the CX23888.
1015
* Act on this with some mix of logical inversion of data levels,
1016
* carrier polarity, and carrier duty cycle.
1017
*/
1018
o->invert_level = p->invert_level;
1019
1020
o->interrupt_enable = p->interrupt_enable;
1021
o->enable = p->enable;
1022
if (p->enable) {
1023
/* reset tx_fifo here */
1024
if (p->interrupt_enable)
1025
irqenable_tx(sd, IRQEN_TSE);
1026
control_tx_enable(c, p->enable);
1027
}
1028
1029
mutex_unlock(&ir_state->tx_params_lock);
1030
return 0;
1031
}
1032
1033
1034
/*
1035
* V4L2 Subdevice Core Ops support
1036
*/
1037
int cx25840_ir_log_status(struct v4l2_subdev *sd)
1038
{
1039
struct cx25840_state *state = to_state(sd);
1040
struct i2c_client *c = state->c;
1041
char *s;
1042
int i, j;
1043
u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;
1044
1045
/* The CX23888 chip doesn't have an IR controller on the A/V core */
1046
if (is_cx23888(state))
1047
return 0;
1048
1049
cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
1050
txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
1051
rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
1052
cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
1053
stats = cx25840_read4(c, CX25840_IR_STATS_REG);
1054
irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
1055
if (is_cx23885(state) || is_cx23887(state))
1056
irqen ^= IRQEN_MSK;
1057
filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;
1058
1059
v4l2_info(sd, "IR Receiver:\n");
1060
v4l2_info(sd, "\tEnabled: %s\n",
1061
cntrl & CNTRL_RXE ? "yes" : "no");
1062
v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
1063
cntrl & CNTRL_DMD ? "enabled" : "disabled");
1064
v4l2_info(sd, "\tFIFO: %s\n",
1065
cntrl & CNTRL_RFE ? "enabled" : "disabled");
1066
switch (cntrl & CNTRL_EDG) {
1067
case CNTRL_EDG_NONE:
1068
s = "disabled";
1069
break;
1070
case CNTRL_EDG_FALL:
1071
s = "falling edge";
1072
break;
1073
case CNTRL_EDG_RISE:
1074
s = "rising edge";
1075
break;
1076
case CNTRL_EDG_BOTH:
1077
s = "rising & falling edges";
1078
break;
1079
default:
1080
s = "??? edge";
1081
break;
1082
}
1083
v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
1084
v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
1085
cntrl & CNTRL_R ? "not loaded" : "overflow marker");
1086
v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1087
cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
1088
v4l2_info(sd, "\tLoopback mode: %s\n",
1089
cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1090
if (cntrl & CNTRL_DMD) {
1091
v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
1092
clock_divider_to_carrier_freq(rxclk));
1093
switch (cntrl & CNTRL_WIN) {
1094
case CNTRL_WIN_3_3:
1095
i = 3;
1096
j = 3;
1097
break;
1098
case CNTRL_WIN_4_3:
1099
i = 4;
1100
j = 3;
1101
break;
1102
case CNTRL_WIN_3_4:
1103
i = 3;
1104
j = 4;
1105
break;
1106
case CNTRL_WIN_4_4:
1107
i = 4;
1108
j = 4;
1109
break;
1110
default:
1111
i = 0;
1112
j = 0;
1113
break;
1114
}
1115
v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
1116
"-%1d/+%1d, %u to %u Hz\n", i, j,
1117
clock_divider_to_freq(rxclk, 16 + j),
1118
clock_divider_to_freq(rxclk, 16 - i));
1119
}
1120
v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n",
1121
pulse_width_count_to_us(FIFO_RXTX, rxclk),
1122
pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1123
v4l2_info(sd, "\tLow pass filter: %s\n",
1124
filtr ? "enabled" : "disabled");
1125
if (filtr)
1126
v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
1127
"%u ns\n",
1128
lpf_count_to_us(filtr),
1129
lpf_count_to_ns(filtr));
1130
v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1131
stats & STATS_RTO ? "yes" : "no");
1132
v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1133
irqen & IRQEN_RTE ? "enabled" : "disabled");
1134
v4l2_info(sd, "\tFIFO overrun: %s\n",
1135
stats & STATS_ROR ? "yes" : "no");
1136
v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1137
irqen & IRQEN_ROE ? "enabled" : "disabled");
1138
v4l2_info(sd, "\tBusy: %s\n",
1139
stats & STATS_RBY ? "yes" : "no");
1140
v4l2_info(sd, "\tFIFO service requested: %s\n",
1141
stats & STATS_RSR ? "yes" : "no");
1142
v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1143
irqen & IRQEN_RSE ? "enabled" : "disabled");
1144
1145
v4l2_info(sd, "IR Transmitter:\n");
1146
v4l2_info(sd, "\tEnabled: %s\n",
1147
cntrl & CNTRL_TXE ? "yes" : "no");
1148
v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1149
cntrl & CNTRL_MOD ? "enabled" : "disabled");
1150
v4l2_info(sd, "\tFIFO: %s\n",
1151
cntrl & CNTRL_TFE ? "enabled" : "disabled");
1152
v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1153
cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1154
v4l2_info(sd, "\tCarrier polarity: %s\n",
1155
cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1156
: "space:noburst mark:burst");
1157
if (cntrl & CNTRL_MOD) {
1158
v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1159
clock_divider_to_carrier_freq(txclk));
1160
v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1161
cduty + 1);
1162
}
1163
v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n",
1164
pulse_width_count_to_us(FIFO_RXTX, txclk),
1165
pulse_width_count_to_ns(FIFO_RXTX, txclk));
1166
v4l2_info(sd, "\tBusy: %s\n",
1167
stats & STATS_TBY ? "yes" : "no");
1168
v4l2_info(sd, "\tFIFO service requested: %s\n",
1169
stats & STATS_TSR ? "yes" : "no");
1170
v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1171
irqen & IRQEN_TSE ? "enabled" : "disabled");
1172
1173
return 0;
1174
}
1175
1176
1177
const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
1178
.rx_read = cx25840_ir_rx_read,
1179
.rx_g_parameters = cx25840_ir_rx_g_parameters,
1180
.rx_s_parameters = cx25840_ir_rx_s_parameters,
1181
1182
.tx_write = cx25840_ir_tx_write,
1183
.tx_g_parameters = cx25840_ir_tx_g_parameters,
1184
.tx_s_parameters = cx25840_ir_tx_s_parameters,
1185
};
1186
1187
1188
static const struct v4l2_subdev_ir_parameters default_rx_params = {
1189
.bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1190
.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1191
1192
.enable = false,
1193
.interrupt_enable = false,
1194
.shutdown = true,
1195
1196
.modulation = true,
1197
.carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1198
1199
/* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1200
/* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1201
.noise_filter_min_width = 333333, /* ns */
1202
.carrier_range_lower = 35000,
1203
.carrier_range_upper = 37000,
1204
.invert_level = false,
1205
};
1206
1207
static const struct v4l2_subdev_ir_parameters default_tx_params = {
1208
.bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1209
.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1210
1211
.enable = false,
1212
.interrupt_enable = false,
1213
.shutdown = true,
1214
1215
.modulation = true,
1216
.carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1217
.duty_cycle = 25, /* 25 % - RC-5 carrier */
1218
.invert_level = false,
1219
.invert_carrier_sense = false,
1220
};
1221
1222
int cx25840_ir_probe(struct v4l2_subdev *sd)
1223
{
1224
struct cx25840_state *state = to_state(sd);
1225
struct cx25840_ir_state *ir_state;
1226
struct v4l2_subdev_ir_parameters default_params;
1227
1228
/* Only init the IR controller for the CX2388[57] AV Core for now */
1229
if (!(is_cx23885(state) || is_cx23887(state)))
1230
return 0;
1231
1232
ir_state = kzalloc(sizeof(struct cx25840_ir_state), GFP_KERNEL);
1233
if (ir_state == NULL)
1234
return -ENOMEM;
1235
1236
spin_lock_init(&ir_state->rx_kfifo_lock);
1237
if (kfifo_alloc(&ir_state->rx_kfifo,
1238
CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) {
1239
kfree(ir_state);
1240
return -ENOMEM;
1241
}
1242
1243
ir_state->c = state->c;
1244
state->ir_state = ir_state;
1245
1246
/* Ensure no interrupts arrive yet */
1247
if (is_cx23885(state) || is_cx23887(state))
1248
cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
1249
else
1250
cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);
1251
1252
mutex_init(&ir_state->rx_params_lock);
1253
memcpy(&default_params, &default_rx_params,
1254
sizeof(struct v4l2_subdev_ir_parameters));
1255
v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1256
1257
mutex_init(&ir_state->tx_params_lock);
1258
memcpy(&default_params, &default_tx_params,
1259
sizeof(struct v4l2_subdev_ir_parameters));
1260
v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1261
1262
return 0;
1263
}
1264
1265
int cx25840_ir_remove(struct v4l2_subdev *sd)
1266
{
1267
struct cx25840_state *state = to_state(sd);
1268
struct cx25840_ir_state *ir_state = to_ir_state(sd);
1269
1270
if (ir_state == NULL)
1271
return -ENODEV;
1272
1273
cx25840_ir_rx_shutdown(sd);
1274
cx25840_ir_tx_shutdown(sd);
1275
1276
kfifo_free(&ir_state->rx_kfifo);
1277
kfree(ir_state);
1278
state->ir_state = NULL;
1279
return 0;
1280
}
1281
1282