Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/media/video/cx88/cx88-dsp.c
17768 views
1
/*
2
*
3
* Stereo and SAP detection for cx88
4
*
5
* Copyright (c) 2009 Marton Balint <[email protected]>
6
*
7
* This program is free software; you can redistribute it and/or modify
8
* it under the terms of the GNU General Public License as published by
9
* the Free Software Foundation; either version 2 of the License, or
10
* (at your option) any later version.
11
*
12
* This program is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15
* GNU General Public License for more details.
16
*
17
* You should have received a copy of the GNU General Public License
18
* along with this program; if not, write to the Free Software
19
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
*/
21
22
#include <linux/slab.h>
23
#include <linux/kernel.h>
24
#include <linux/module.h>
25
#include <linux/jiffies.h>
26
#include <asm/div64.h>
27
28
#include "cx88.h"
29
#include "cx88-reg.h"
30
31
#define INT_PI ((s32)(3.141592653589 * 32768.0))
32
33
#define compat_remainder(a, b) \
34
((float)(((s32)((a)*100))%((s32)((b)*100)))/100.0)
35
36
#define baseband_freq(carrier, srate, tone) ((s32)( \
37
(compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI))
38
39
/* We calculate the baseband frequencies of the carrier and the pilot tones
40
* based on the the sampling rate of the audio rds fifo. */
41
42
#define FREQ_A2_CARRIER baseband_freq(54687.5, 2689.36, 0.0)
43
#define FREQ_A2_DUAL baseband_freq(54687.5, 2689.36, 274.1)
44
#define FREQ_A2_STEREO baseband_freq(54687.5, 2689.36, 117.5)
45
46
/* The frequencies below are from the reference driver. They probably need
47
* further adjustments, because they are not tested at all. You may even need
48
* to play a bit with the registers of the chip to select the proper signal
49
* for the input of the audio rds fifo, and measure it's sampling rate to
50
* calculate the proper baseband frequencies... */
51
52
#define FREQ_A2M_CARRIER ((s32)(2.114516 * 32768.0))
53
#define FREQ_A2M_DUAL ((s32)(2.754916 * 32768.0))
54
#define FREQ_A2M_STEREO ((s32)(2.462326 * 32768.0))
55
56
#define FREQ_EIAJ_CARRIER ((s32)(1.963495 * 32768.0)) /* 5pi/8 */
57
#define FREQ_EIAJ_DUAL ((s32)(2.562118 * 32768.0))
58
#define FREQ_EIAJ_STEREO ((s32)(2.601053 * 32768.0))
59
60
#define FREQ_BTSC_DUAL ((s32)(1.963495 * 32768.0)) /* 5pi/8 */
61
#define FREQ_BTSC_DUAL_REF ((s32)(1.374446 * 32768.0)) /* 7pi/16 */
62
63
#define FREQ_BTSC_SAP ((s32)(2.471532 * 32768.0))
64
#define FREQ_BTSC_SAP_REF ((s32)(1.730072 * 32768.0))
65
66
/* The spectrum of the signal should be empty between these frequencies. */
67
#define FREQ_NOISE_START ((s32)(0.100000 * 32768.0))
68
#define FREQ_NOISE_END ((s32)(1.200000 * 32768.0))
69
70
static unsigned int dsp_debug;
71
module_param(dsp_debug, int, 0644);
72
MODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages");
73
74
#define dprintk(level, fmt, arg...) if (dsp_debug >= level) \
75
printk(KERN_DEBUG "%s/0: " fmt, core->name , ## arg)
76
77
static s32 int_cos(u32 x)
78
{
79
u32 t2, t4, t6, t8;
80
s32 ret;
81
u16 period = x / INT_PI;
82
if (period % 2)
83
return -int_cos(x - INT_PI);
84
x = x % INT_PI;
85
if (x > INT_PI/2)
86
return -int_cos(INT_PI/2 - (x % (INT_PI/2)));
87
/* Now x is between 0 and INT_PI/2.
88
* To calculate cos(x) we use it's Taylor polinom. */
89
t2 = x*x/32768/2;
90
t4 = t2*x/32768*x/32768/3/4;
91
t6 = t4*x/32768*x/32768/5/6;
92
t8 = t6*x/32768*x/32768/7/8;
93
ret = 32768-t2+t4-t6+t8;
94
return ret;
95
}
96
97
static u32 int_goertzel(s16 x[], u32 N, u32 freq)
98
{
99
/* We use the Goertzel algorithm to determine the power of the
100
* given frequency in the signal */
101
s32 s_prev = 0;
102
s32 s_prev2 = 0;
103
s32 coeff = 2*int_cos(freq);
104
u32 i;
105
106
u64 tmp;
107
u32 divisor;
108
109
for (i = 0; i < N; i++) {
110
s32 s = x[i] + ((s64)coeff*s_prev/32768) - s_prev2;
111
s_prev2 = s_prev;
112
s_prev = s;
113
}
114
115
tmp = (s64)s_prev2 * s_prev2 + (s64)s_prev * s_prev -
116
(s64)coeff * s_prev2 * s_prev / 32768;
117
118
/* XXX: N must be low enough so that N*N fits in s32.
119
* Else we need two divisions. */
120
divisor = N * N;
121
do_div(tmp, divisor);
122
123
return (u32) tmp;
124
}
125
126
static u32 freq_magnitude(s16 x[], u32 N, u32 freq)
127
{
128
u32 sum = int_goertzel(x, N, freq);
129
return (u32)int_sqrt(sum);
130
}
131
132
static u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end)
133
{
134
int i;
135
u32 sum = 0;
136
u32 freq_step;
137
int samples = 5;
138
139
if (N > 192) {
140
/* The last 192 samples are enough for noise detection */
141
x += (N-192);
142
N = 192;
143
}
144
145
freq_step = (freq_end - freq_start) / (samples - 1);
146
147
for (i = 0; i < samples; i++) {
148
sum += int_goertzel(x, N, freq_start);
149
freq_start += freq_step;
150
}
151
152
return (u32)int_sqrt(sum / samples);
153
}
154
155
static s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N)
156
{
157
s32 carrier, stereo, dual, noise;
158
s32 carrier_freq, stereo_freq, dual_freq;
159
s32 ret;
160
161
switch (core->tvaudio) {
162
case WW_BG:
163
case WW_DK:
164
carrier_freq = FREQ_A2_CARRIER;
165
stereo_freq = FREQ_A2_STEREO;
166
dual_freq = FREQ_A2_DUAL;
167
break;
168
case WW_M:
169
carrier_freq = FREQ_A2M_CARRIER;
170
stereo_freq = FREQ_A2M_STEREO;
171
dual_freq = FREQ_A2M_DUAL;
172
break;
173
case WW_EIAJ:
174
carrier_freq = FREQ_EIAJ_CARRIER;
175
stereo_freq = FREQ_EIAJ_STEREO;
176
dual_freq = FREQ_EIAJ_DUAL;
177
break;
178
default:
179
printk(KERN_WARNING "%s/0: unsupported audio mode %d for %s\n",
180
core->name, core->tvaudio, __func__);
181
return UNSET;
182
}
183
184
carrier = freq_magnitude(x, N, carrier_freq);
185
stereo = freq_magnitude(x, N, stereo_freq);
186
dual = freq_magnitude(x, N, dual_freq);
187
noise = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END);
188
189
dprintk(1, "detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, "
190
"noise=%d\n", carrier, stereo, dual, noise);
191
192
if (stereo > dual)
193
ret = V4L2_TUNER_SUB_STEREO;
194
else
195
ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
196
197
if (core->tvaudio == WW_EIAJ) {
198
/* EIAJ checks may need adjustments */
199
if ((carrier > max(stereo, dual)*2) &&
200
(carrier < max(stereo, dual)*6) &&
201
(carrier > 20 && carrier < 200) &&
202
(max(stereo, dual) > min(stereo, dual))) {
203
/* For EIAJ the carrier is always present,
204
so we probably don't need noise detection */
205
return ret;
206
}
207
} else {
208
if ((carrier > max(stereo, dual)*2) &&
209
(carrier < max(stereo, dual)*8) &&
210
(carrier > 20 && carrier < 200) &&
211
(noise < 10) &&
212
(max(stereo, dual) > min(stereo, dual)*2)) {
213
return ret;
214
}
215
}
216
return V4L2_TUNER_SUB_MONO;
217
}
218
219
static s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N)
220
{
221
s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF);
222
s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP);
223
s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF);
224
s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL);
225
dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d"
226
"\n", dual_ref, dual, sap_ref, sap);
227
/* FIXME: Currently not supported */
228
return UNSET;
229
}
230
231
static s16 *read_rds_samples(struct cx88_core *core, u32 *N)
232
{
233
const struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27];
234
s16 *samples;
235
236
unsigned int i;
237
unsigned int bpl = srch->fifo_size/AUD_RDS_LINES;
238
unsigned int spl = bpl/4;
239
unsigned int sample_count = spl*(AUD_RDS_LINES-1);
240
241
u32 current_address = cx_read(srch->ptr1_reg);
242
u32 offset = (current_address - srch->fifo_start + bpl);
243
244
dprintk(1, "read RDS samples: current_address=%08x (offset=%08x), "
245
"sample_count=%d, aud_intstat=%08x\n", current_address,
246
current_address - srch->fifo_start, sample_count,
247
cx_read(MO_AUD_INTSTAT));
248
249
samples = kmalloc(sizeof(s16)*sample_count, GFP_KERNEL);
250
if (!samples)
251
return NULL;
252
253
*N = sample_count;
254
255
for (i = 0; i < sample_count; i++) {
256
offset = offset % (AUD_RDS_LINES*bpl);
257
samples[i] = cx_read(srch->fifo_start + offset);
258
offset += 4;
259
}
260
261
if (dsp_debug >= 2) {
262
dprintk(2, "RDS samples dump: ");
263
for (i = 0; i < sample_count; i++)
264
printk("%hd ", samples[i]);
265
printk(".\n");
266
}
267
268
return samples;
269
}
270
271
s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core)
272
{
273
s16 *samples;
274
u32 N = 0;
275
s32 ret = UNSET;
276
277
/* If audio RDS fifo is disabled, we can't read the samples */
278
if (!(cx_read(MO_AUD_DMACNTRL) & 0x04))
279
return ret;
280
if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS))
281
return ret;
282
283
/* Wait at least 500 ms after an audio standard change */
284
if (time_before(jiffies, core->last_change + msecs_to_jiffies(500)))
285
return ret;
286
287
samples = read_rds_samples(core, &N);
288
289
if (!samples)
290
return ret;
291
292
switch (core->tvaudio) {
293
case WW_BG:
294
case WW_DK:
295
case WW_EIAJ:
296
case WW_M:
297
ret = detect_a2_a2m_eiaj(core, samples, N);
298
break;
299
case WW_BTSC:
300
ret = detect_btsc(core, samples, N);
301
break;
302
case WW_NONE:
303
case WW_I:
304
case WW_L:
305
case WW_I2SPT:
306
case WW_FM:
307
case WW_I2SADC:
308
break;
309
}
310
311
kfree(samples);
312
313
if (UNSET != ret)
314
dprintk(1, "stereo/sap detection result:%s%s%s\n",
315
(ret & V4L2_TUNER_SUB_MONO) ? " mono" : "",
316
(ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "",
317
(ret & V4L2_TUNER_SUB_LANG2) ? " dual" : "");
318
319
return ret;
320
}
321
EXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);
322
323
324