#define OSM_NAME "proc-osm"
#define OSM_VERSION "1.316"
#define OSM_DESCRIPTION "I2O ProcFS OSM"
#define I2O_MAX_MODULES 4
#define FMT_U64_HEX "0x%08x%08x"
#define U64_VAL(pu64) *((u32*)(pu64)+1), *((u32*)(pu64))
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/i2o.h>
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/byteorder.h>
typedef struct _i2o_proc_entry_t {
char *name;
mode_t mode;
const struct file_operations *fops;
} i2o_proc_entry;
static struct proc_dir_entry *i2o_proc_dir_root;
static struct i2o_driver i2o_proc_driver = {
.name = OSM_NAME,
};
static int print_serial_number(struct seq_file *seq, u8 * serialno, int max_len)
{
int i;
switch (serialno[0]) {
case I2O_SNFORMAT_BINARY:
seq_printf(seq, "0x");
for (i = 0; i < serialno[1]; i++) {
seq_printf(seq, "%02X", serialno[2 + i]);
}
break;
case I2O_SNFORMAT_ASCII:
if (serialno[1] < ' ') {
max_len =
(max_len < serialno[1]) ? max_len : serialno[1];
serialno[1 + max_len] = '\0';
seq_printf(seq, "%s", &serialno[2]);
} else {
for (i = 0; i < serialno[1]; i++) {
seq_printf(seq, "%c", serialno[2 + i]);
}
}
break;
case I2O_SNFORMAT_UNICODE:
seq_printf(seq, "UNICODE Format. Can't Display\n");
break;
case I2O_SNFORMAT_LAN48_MAC:
seq_printf(seq, "LAN-48 MAC address @ %pM", &serialno[2]);
break;
case I2O_SNFORMAT_WAN:
seq_printf(seq, "WAN Access Address");
break;
case I2O_SNFORMAT_LAN64_MAC:
seq_printf(seq,
"LAN-64 MAC address @ [?:%02X:%02X:?] %pM",
serialno[8], serialno[9], &serialno[2]);
break;
case I2O_SNFORMAT_DDM:
seq_printf(seq,
"DDM: Tid=%03Xh, Rsvd=%04Xh, OrgId=%04Xh",
*(u16 *) & serialno[2],
*(u16 *) & serialno[4], *(u16 *) & serialno[6]);
break;
case I2O_SNFORMAT_IEEE_REG64:
case I2O_SNFORMAT_IEEE_REG128:
seq_printf(seq,
"IEEE NodeName(hi,lo)=(%08Xh:%08Xh), PortName(hi,lo)=(%08Xh:%08Xh)\n",
*(u32 *) & serialno[2],
*(u32 *) & serialno[6],
*(u32 *) & serialno[10], *(u32 *) & serialno[14]);
break;
case I2O_SNFORMAT_UNKNOWN:
case I2O_SNFORMAT_UNKNOWN2:
default:
seq_printf(seq, "Unknown data format (0x%02x)", serialno[0]);
break;
}
return 0;
}
static const char *i2o_get_class_name(int class)
{
int idx = 16;
static char *i2o_class_name[] = {
"Executive",
"Device Driver Module",
"Block Device",
"Tape Device",
"LAN Interface",
"WAN Interface",
"Fibre Channel Port",
"Fibre Channel Device",
"SCSI Device",
"ATE Port",
"ATE Device",
"Floppy Controller",
"Floppy Device",
"Secondary Bus Port",
"Peer Transport Agent",
"Peer Transport",
"Unknown"
};
switch (class & 0xfff) {
case I2O_CLASS_EXECUTIVE:
idx = 0;
break;
case I2O_CLASS_DDM:
idx = 1;
break;
case I2O_CLASS_RANDOM_BLOCK_STORAGE:
idx = 2;
break;
case I2O_CLASS_SEQUENTIAL_STORAGE:
idx = 3;
break;
case I2O_CLASS_LAN:
idx = 4;
break;
case I2O_CLASS_WAN:
idx = 5;
break;
case I2O_CLASS_FIBRE_CHANNEL_PORT:
idx = 6;
break;
case I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL:
idx = 7;
break;
case I2O_CLASS_SCSI_PERIPHERAL:
idx = 8;
break;
case I2O_CLASS_ATE_PORT:
idx = 9;
break;
case I2O_CLASS_ATE_PERIPHERAL:
idx = 10;
break;
case I2O_CLASS_FLOPPY_CONTROLLER:
idx = 11;
break;
case I2O_CLASS_FLOPPY_DEVICE:
idx = 12;
break;
case I2O_CLASS_BUS_ADAPTER:
idx = 13;
break;
case I2O_CLASS_PEER_TRANSPORT_AGENT:
idx = 14;
break;
case I2O_CLASS_PEER_TRANSPORT:
idx = 15;
break;
}
return i2o_class_name[idx];
}
#define SCSI_TABLE_SIZE 13
static char *scsi_devices[] = {
"Direct-Access Read/Write",
"Sequential-Access Storage",
"Printer",
"Processor",
"WORM Device",
"CD-ROM Device",
"Scanner Device",
"Optical Memory Device",
"Medium Changer Device",
"Communications Device",
"Graphics Art Pre-Press Device",
"Graphics Art Pre-Press Device",
"Array Controller Device"
};
static char *chtostr(u8 * chars, int n)
{
char tmp[256];
tmp[0] = 0;
return strncat(tmp, (char *)chars, n);
}
static int i2o_report_query_status(struct seq_file *seq, int block_status,
char *group)
{
switch (block_status) {
case -ETIMEDOUT:
return seq_printf(seq, "Timeout reading group %s.\n", group);
case -ENOMEM:
return seq_printf(seq, "No free memory to read the table.\n");
case -I2O_PARAMS_STATUS_INVALID_GROUP_ID:
return seq_printf(seq, "Group %s not supported.\n", group);
default:
return seq_printf(seq,
"Error reading group %s. BlockStatus 0x%02X\n",
group, -block_status);
}
}
static char *bus_strings[] = {
"Local Bus",
"ISA",
"EISA",
"MCA",
"PCI",
"PCMCIA",
"NUBUS",
"CARDBUS"
};
static int i2o_seq_show_hrt(struct seq_file *seq, void *v)
{
struct i2o_controller *c = (struct i2o_controller *)seq->private;
i2o_hrt *hrt = (i2o_hrt *) c->hrt.virt;
u32 bus;
int i;
if (hrt->hrt_version) {
seq_printf(seq,
"HRT table for controller is too new a version.\n");
return 0;
}
seq_printf(seq, "HRT has %d entries of %d bytes each.\n",
hrt->num_entries, hrt->entry_len << 2);
for (i = 0; i < hrt->num_entries; i++) {
seq_printf(seq, "Entry %d:\n", i);
seq_printf(seq, " Adapter ID: %0#10x\n",
hrt->hrt_entry[i].adapter_id);
seq_printf(seq, " Controlling tid: %0#6x\n",
hrt->hrt_entry[i].parent_tid);
if (hrt->hrt_entry[i].bus_type != 0x80) {
bus = hrt->hrt_entry[i].bus_type;
seq_printf(seq, " %s Information\n",
bus_strings[bus]);
switch (bus) {
case I2O_BUS_LOCAL:
seq_printf(seq, " IOBase: %0#6x,",
hrt->hrt_entry[i].bus.local_bus.
LbBaseIOPort);
seq_printf(seq, " MemoryBase: %0#10x\n",
hrt->hrt_entry[i].bus.local_bus.
LbBaseMemoryAddress);
break;
case I2O_BUS_ISA:
seq_printf(seq, " IOBase: %0#6x,",
hrt->hrt_entry[i].bus.isa_bus.
IsaBaseIOPort);
seq_printf(seq, " MemoryBase: %0#10x,",
hrt->hrt_entry[i].bus.isa_bus.
IsaBaseMemoryAddress);
seq_printf(seq, " CSN: %0#4x,",
hrt->hrt_entry[i].bus.isa_bus.CSN);
break;
case I2O_BUS_EISA:
seq_printf(seq, " IOBase: %0#6x,",
hrt->hrt_entry[i].bus.eisa_bus.
EisaBaseIOPort);
seq_printf(seq, " MemoryBase: %0#10x,",
hrt->hrt_entry[i].bus.eisa_bus.
EisaBaseMemoryAddress);
seq_printf(seq, " Slot: %0#4x,",
hrt->hrt_entry[i].bus.eisa_bus.
EisaSlotNumber);
break;
case I2O_BUS_MCA:
seq_printf(seq, " IOBase: %0#6x,",
hrt->hrt_entry[i].bus.mca_bus.
McaBaseIOPort);
seq_printf(seq, " MemoryBase: %0#10x,",
hrt->hrt_entry[i].bus.mca_bus.
McaBaseMemoryAddress);
seq_printf(seq, " Slot: %0#4x,",
hrt->hrt_entry[i].bus.mca_bus.
McaSlotNumber);
break;
case I2O_BUS_PCI:
seq_printf(seq, " Bus: %0#4x",
hrt->hrt_entry[i].bus.pci_bus.
PciBusNumber);
seq_printf(seq, " Dev: %0#4x",
hrt->hrt_entry[i].bus.pci_bus.
PciDeviceNumber);
seq_printf(seq, " Func: %0#4x",
hrt->hrt_entry[i].bus.pci_bus.
PciFunctionNumber);
seq_printf(seq, " Vendor: %0#6x",
hrt->hrt_entry[i].bus.pci_bus.
PciVendorID);
seq_printf(seq, " Device: %0#6x\n",
hrt->hrt_entry[i].bus.pci_bus.
PciDeviceID);
break;
default:
seq_printf(seq, " Unsupported Bus Type\n");
}
} else
seq_printf(seq, " Unknown Bus Type\n");
}
return 0;
}
static int i2o_seq_show_lct(struct seq_file *seq, void *v)
{
struct i2o_controller *c = (struct i2o_controller *)seq->private;
i2o_lct *lct = (i2o_lct *) c->lct;
int entries;
int i;
#define BUS_TABLE_SIZE 3
static char *bus_ports[] = {
"Generic Bus",
"SCSI Bus",
"Fibre Channel Bus"
};
entries = (lct->table_size - 3) / 9;
seq_printf(seq, "LCT contains %d %s\n", entries,
entries == 1 ? "entry" : "entries");
if (lct->boot_tid)
seq_printf(seq, "Boot Device @ ID %d\n", lct->boot_tid);
seq_printf(seq, "Current Change Indicator: %#10x\n", lct->change_ind);
for (i = 0; i < entries; i++) {
seq_printf(seq, "Entry %d\n", i);
seq_printf(seq, " Class, SubClass : %s",
i2o_get_class_name(lct->lct_entry[i].class_id));
switch (lct->lct_entry[i].class_id & 0xFFF) {
case I2O_CLASS_RANDOM_BLOCK_STORAGE:
switch (lct->lct_entry[i].sub_class) {
case 0x00:
seq_printf(seq, ", Direct-Access Read/Write");
break;
case 0x04:
seq_printf(seq, ", WORM Drive");
break;
case 0x05:
seq_printf(seq, ", CD-ROM Drive");
break;
case 0x07:
seq_printf(seq, ", Optical Memory Device");
break;
default:
seq_printf(seq, ", Unknown (0x%02x)",
lct->lct_entry[i].sub_class);
break;
}
break;
case I2O_CLASS_LAN:
switch (lct->lct_entry[i].sub_class & 0xFF) {
case 0x30:
seq_printf(seq, ", Ethernet");
break;
case 0x40:
seq_printf(seq, ", 100base VG");
break;
case 0x50:
seq_printf(seq, ", IEEE 802.5/Token-Ring");
break;
case 0x60:
seq_printf(seq, ", ANSI X3T9.5 FDDI");
break;
case 0x70:
seq_printf(seq, ", Fibre Channel");
break;
default:
seq_printf(seq, ", Unknown Sub-Class (0x%02x)",
lct->lct_entry[i].sub_class & 0xFF);
break;
}
break;
case I2O_CLASS_SCSI_PERIPHERAL:
if (lct->lct_entry[i].sub_class < SCSI_TABLE_SIZE)
seq_printf(seq, ", %s",
scsi_devices[lct->lct_entry[i].
sub_class]);
else
seq_printf(seq, ", Unknown Device Type");
break;
case I2O_CLASS_BUS_ADAPTER:
if (lct->lct_entry[i].sub_class < BUS_TABLE_SIZE)
seq_printf(seq, ", %s",
bus_ports[lct->lct_entry[i].
sub_class]);
else
seq_printf(seq, ", Unknown Bus Type");
break;
}
seq_printf(seq, "\n");
seq_printf(seq, " Local TID : 0x%03x\n",
lct->lct_entry[i].tid);
seq_printf(seq, " User TID : 0x%03x\n",
lct->lct_entry[i].user_tid);
seq_printf(seq, " Parent TID : 0x%03x\n",
lct->lct_entry[i].parent_tid);
seq_printf(seq, " Identity Tag : 0x%x%x%x%x%x%x%x%x\n",
lct->lct_entry[i].identity_tag[0],
lct->lct_entry[i].identity_tag[1],
lct->lct_entry[i].identity_tag[2],
lct->lct_entry[i].identity_tag[3],
lct->lct_entry[i].identity_tag[4],
lct->lct_entry[i].identity_tag[5],
lct->lct_entry[i].identity_tag[6],
lct->lct_entry[i].identity_tag[7]);
seq_printf(seq, " Change Indicator : %0#10x\n",
lct->lct_entry[i].change_ind);
seq_printf(seq, " Event Capab Mask : %0#10x\n",
lct->lct_entry[i].device_flags);
}
return 0;
}
static int i2o_seq_show_status(struct seq_file *seq, void *v)
{
struct i2o_controller *c = (struct i2o_controller *)seq->private;
char prodstr[25];
int version;
i2o_status_block *sb = c->status_block.virt;
i2o_status_get(c);
seq_printf(seq, "Organization ID : %0#6x\n", sb->org_id);
version = sb->i2o_version;
seq_printf(seq, "IOP ID : %0#5x\n", sb->iop_id);
seq_printf(seq, "Host Unit ID : %0#6x\n", sb->host_unit_id);
seq_printf(seq, "Segment Number : %0#5x\n", sb->segment_number);
seq_printf(seq, "I2O version : ");
switch (version) {
case 0x00:
seq_printf(seq, "1.0\n");
break;
case 0x01:
seq_printf(seq, "1.5\n");
break;
case 0x02:
seq_printf(seq, "2.0\n");
break;
default:
seq_printf(seq, "Unknown version\n");
}
seq_printf(seq, "IOP State : ");
switch (sb->iop_state) {
case 0x01:
seq_printf(seq, "INIT\n");
break;
case 0x02:
seq_printf(seq, "RESET\n");
break;
case 0x04:
seq_printf(seq, "HOLD\n");
break;
case 0x05:
seq_printf(seq, "READY\n");
break;
case 0x08:
seq_printf(seq, "OPERATIONAL\n");
break;
case 0x10:
seq_printf(seq, "FAILED\n");
break;
case 0x11:
seq_printf(seq, "FAULTED\n");
break;
default:
seq_printf(seq, "Unknown\n");
break;
}
seq_printf(seq, "Messenger Type : ");
switch (sb->msg_type) {
case 0x00:
seq_printf(seq, "Memory mapped\n");
break;
case 0x01:
seq_printf(seq, "Memory mapped only\n");
break;
case 0x02:
seq_printf(seq, "Remote only\n");
break;
case 0x03:
seq_printf(seq, "Memory mapped and remote\n");
break;
default:
seq_printf(seq, "Unknown\n");
}
seq_printf(seq, "Inbound Frame Size : %d bytes\n",
sb->inbound_frame_size << 2);
seq_printf(seq, "Max Inbound Frames : %d\n",
sb->max_inbound_frames);
seq_printf(seq, "Current Inbound Frames : %d\n",
sb->cur_inbound_frames);
seq_printf(seq, "Max Outbound Frames : %d\n",
sb->max_outbound_frames);
memcpy(prodstr, sb->product_id, 24);
prodstr[24] = '\0';
seq_printf(seq, "Product ID : %s\n", prodstr);
seq_printf(seq, "Expected LCT Size : %d bytes\n",
sb->expected_lct_size);
seq_printf(seq, "IOP Capabilities\n");
seq_printf(seq, " Context Field Size Support : ");
switch (sb->iop_capabilities & 0x0000003) {
case 0:
seq_printf(seq, "Supports only 32-bit context fields\n");
break;
case 1:
seq_printf(seq, "Supports only 64-bit context fields\n");
break;
case 2:
seq_printf(seq, "Supports 32-bit and 64-bit context fields, "
"but not concurrently\n");
break;
case 3:
seq_printf(seq, "Supports 32-bit and 64-bit context fields "
"concurrently\n");
break;
default:
seq_printf(seq, "0x%08x\n", sb->iop_capabilities);
}
seq_printf(seq, " Current Context Field Size : ");
switch (sb->iop_capabilities & 0x0000000C) {
case 0:
seq_printf(seq, "not configured\n");
break;
case 4:
seq_printf(seq, "Supports only 32-bit context fields\n");
break;
case 8:
seq_printf(seq, "Supports only 64-bit context fields\n");
break;
case 12:
seq_printf(seq, "Supports both 32-bit or 64-bit context fields "
"concurrently\n");
break;
default:
seq_printf(seq, "\n");
}
seq_printf(seq, " Inbound Peer Support : %s\n",
(sb->
iop_capabilities & 0x00000010) ? "Supported" :
"Not supported");
seq_printf(seq, " Outbound Peer Support : %s\n",
(sb->
iop_capabilities & 0x00000020) ? "Supported" :
"Not supported");
seq_printf(seq, " Peer to Peer Support : %s\n",
(sb->
iop_capabilities & 0x00000040) ? "Supported" :
"Not supported");
seq_printf(seq, "Desired private memory size : %d kB\n",
sb->desired_mem_size >> 10);
seq_printf(seq, "Allocated private memory size : %d kB\n",
sb->current_mem_size >> 10);
seq_printf(seq, "Private memory base address : %0#10x\n",
sb->current_mem_base);
seq_printf(seq, "Desired private I/O size : %d kB\n",
sb->desired_io_size >> 10);
seq_printf(seq, "Allocated private I/O size : %d kB\n",
sb->current_io_size >> 10);
seq_printf(seq, "Private I/O base address : %0#10x\n",
sb->current_io_base);
return 0;
}
static int i2o_seq_show_hw(struct seq_file *seq, void *v)
{
struct i2o_controller *c = (struct i2o_controller *)seq->private;
static u32 work32[5];
static u8 *work8 = (u8 *) work32;
static u16 *work16 = (u16 *) work32;
int token;
u32 hwcap;
static char *cpu_table[] = {
"Intel 80960 series",
"AMD2900 series",
"Motorola 68000 series",
"ARM series",
"MIPS series",
"Sparc series",
"PowerPC series",
"Intel x86 series"
};
token =
i2o_parm_field_get(c->exec, 0x0000, -1, &work32, sizeof(work32));
if (token < 0) {
i2o_report_query_status(seq, token, "0x0000 IOP Hardware");
return 0;
}
seq_printf(seq, "I2O Vendor ID : %0#6x\n", work16[0]);
seq_printf(seq, "Product ID : %0#6x\n", work16[1]);
seq_printf(seq, "CPU : ");
if (work8[16] > 8)
seq_printf(seq, "Unknown\n");
else
seq_printf(seq, "%s\n", cpu_table[work8[16]]);
seq_printf(seq, "RAM : %dkB\n", work32[1] >> 10);
seq_printf(seq, "Non-Volatile Mem : %dkB\n", work32[2] >> 10);
hwcap = work32[3];
seq_printf(seq, "Capabilities : 0x%08x\n", hwcap);
seq_printf(seq, " [%s] Self booting\n",
(hwcap & 0x00000001) ? "+" : "-");
seq_printf(seq, " [%s] Upgradable IRTOS\n",
(hwcap & 0x00000002) ? "+" : "-");
seq_printf(seq, " [%s] Supports downloading DDMs\n",
(hwcap & 0x00000004) ? "+" : "-");
seq_printf(seq, " [%s] Supports installing DDMs\n",
(hwcap & 0x00000008) ? "+" : "-");
seq_printf(seq, " [%s] Battery-backed RAM\n",
(hwcap & 0x00000010) ? "+" : "-");
return 0;
}
static int i2o_seq_show_ddm_table(struct seq_file *seq, void *v)
{
struct i2o_controller *c = (struct i2o_controller *)seq->private;
int token;
int i;
typedef struct _i2o_exec_execute_ddm_table {
u16 ddm_tid;
u8 module_type;
u8 reserved;
u16 i2o_vendor_id;
u16 module_id;
u8 module_name_version[28];
u32 data_size;
u32 code_size;
} i2o_exec_execute_ddm_table;
struct {
u16 result_count;
u16 pad;
u16 block_size;
u8 block_status;
u8 error_info_size;
u16 row_count;
u16 more_flag;
i2o_exec_execute_ddm_table ddm_table[I2O_MAX_MODULES];
} *result;
i2o_exec_execute_ddm_table ddm_table;
result = kmalloc(sizeof(*result), GFP_KERNEL);
if (!result)
return -ENOMEM;
token = i2o_parm_table_get(c->exec, I2O_PARAMS_TABLE_GET, 0x0003, -1,
NULL, 0, result, sizeof(*result));
if (token < 0) {
i2o_report_query_status(seq, token,
"0x0003 Executing DDM List");
goto out;
}
seq_printf(seq,
"Tid Module_type Vendor Mod_id Module_name Vrs Data_size Code_size\n");
ddm_table = result->ddm_table[0];
for (i = 0; i < result->row_count; ddm_table = result->ddm_table[++i]) {
seq_printf(seq, "0x%03x ", ddm_table.ddm_tid & 0xFFF);
switch (ddm_table.module_type) {
case 0x01:
seq_printf(seq, "Downloaded DDM ");
break;
case 0x22:
seq_printf(seq, "Embedded DDM ");
break;
default:
seq_printf(seq, " ");
}
seq_printf(seq, "%-#7x", ddm_table.i2o_vendor_id);
seq_printf(seq, "%-#8x", ddm_table.module_id);
seq_printf(seq, "%-29s",
chtostr(ddm_table.module_name_version, 28));
seq_printf(seq, "%9d ", ddm_table.data_size);
seq_printf(seq, "%8d", ddm_table.code_size);
seq_printf(seq, "\n");
}
out:
kfree(result);
return 0;
}
static int i2o_seq_show_driver_store(struct seq_file *seq, void *v)
{
struct i2o_controller *c = (struct i2o_controller *)seq->private;
u32 work32[8];
int token;
token =
i2o_parm_field_get(c->exec, 0x0004, -1, &work32, sizeof(work32));
if (token < 0) {
i2o_report_query_status(seq, token, "0x0004 Driver Store");
return 0;
}
seq_printf(seq, "Module limit : %d\n"
"Module count : %d\n"
"Current space : %d kB\n"
"Free space : %d kB\n",
work32[0], work32[1], work32[2] >> 10, work32[3] >> 10);
return 0;
}
static int i2o_seq_show_drivers_stored(struct seq_file *seq, void *v)
{
typedef struct _i2o_driver_store {
u16 stored_ddm_index;
u8 module_type;
u8 reserved;
u16 i2o_vendor_id;
u16 module_id;
u8 module_name_version[28];
u8 date[8];
u32 module_size;
u32 mpb_size;
u32 module_flags;
} i2o_driver_store_table;
struct i2o_controller *c = (struct i2o_controller *)seq->private;
int token;
int i;
typedef struct {
u16 result_count;
u16 pad;
u16 block_size;
u8 block_status;
u8 error_info_size;
u16 row_count;
u16 more_flag;
i2o_driver_store_table dst[I2O_MAX_MODULES];
} i2o_driver_result_table;
i2o_driver_result_table *result;
i2o_driver_store_table *dst;
result = kmalloc(sizeof(i2o_driver_result_table), GFP_KERNEL);
if (result == NULL)
return -ENOMEM;
token = i2o_parm_table_get(c->exec, I2O_PARAMS_TABLE_GET, 0x0005, -1,
NULL, 0, result, sizeof(*result));
if (token < 0) {
i2o_report_query_status(seq, token,
"0x0005 DRIVER STORE TABLE");
kfree(result);
return 0;
}
seq_printf(seq,
"# Module_type Vendor Mod_id Module_name Vrs"
"Date Mod_size Par_size Flags\n");
for (i = 0, dst = &result->dst[0]; i < result->row_count;
dst = &result->dst[++i]) {
seq_printf(seq, "%-3d", dst->stored_ddm_index);
switch (dst->module_type) {
case 0x01:
seq_printf(seq, "Downloaded DDM ");
break;
case 0x22:
seq_printf(seq, "Embedded DDM ");
break;
default:
seq_printf(seq, " ");
}
seq_printf(seq, "%-#7x", dst->i2o_vendor_id);
seq_printf(seq, "%-#8x", dst->module_id);
seq_printf(seq, "%-29s", chtostr(dst->module_name_version, 28));
seq_printf(seq, "%-9s", chtostr(dst->date, 8));
seq_printf(seq, "%8d ", dst->module_size);
seq_printf(seq, "%8d ", dst->mpb_size);
seq_printf(seq, "0x%04x", dst->module_flags);
seq_printf(seq, "\n");
}
kfree(result);
return 0;
}
static int i2o_seq_show_groups(struct seq_file *seq, void *v)
{
struct i2o_device *d = (struct i2o_device *)seq->private;
int token;
int i;
u8 properties;
typedef struct _i2o_group_info {
u16 group_number;
u16 field_count;
u16 row_count;
u8 properties;
u8 reserved;
} i2o_group_info;
struct {
u16 result_count;
u16 pad;
u16 block_size;
u8 block_status;
u8 error_info_size;
u16 row_count;
u16 more_flag;
i2o_group_info group[256];
} *result;
result = kmalloc(sizeof(*result), GFP_KERNEL);
if (!result)
return -ENOMEM;
token = i2o_parm_table_get(d, I2O_PARAMS_TABLE_GET, 0xF000, -1, NULL, 0,
result, sizeof(*result));
if (token < 0) {
i2o_report_query_status(seq, token, "0xF000 Params Descriptor");
goto out;
}
seq_printf(seq,
"# Group FieldCount RowCount Type Add Del Clear\n");
for (i = 0; i < result->row_count; i++) {
seq_printf(seq, "%-3d", i);
seq_printf(seq, "0x%04X ", result->group[i].group_number);
seq_printf(seq, "%10d ", result->group[i].field_count);
seq_printf(seq, "%8d ", result->group[i].row_count);
properties = result->group[i].properties;
if (properties & 0x1)
seq_printf(seq, "Table ");
else
seq_printf(seq, "Scalar ");
if (properties & 0x2)
seq_printf(seq, " + ");
else
seq_printf(seq, " - ");
if (properties & 0x4)
seq_printf(seq, " + ");
else
seq_printf(seq, " - ");
if (properties & 0x8)
seq_printf(seq, " + ");
else
seq_printf(seq, " - ");
seq_printf(seq, "\n");
}
if (result->more_flag)
seq_printf(seq, "There is more...\n");
out:
kfree(result);
return 0;
}
static int i2o_seq_show_phys_device(struct seq_file *seq, void *v)
{
struct i2o_device *d = (struct i2o_device *)seq->private;
int token;
int i;
struct {
u16 result_count;
u16 pad;
u16 block_size;
u8 block_status;
u8 error_info_size;
u16 row_count;
u16 more_flag;
u32 adapter_id[64];
} result;
token = i2o_parm_table_get(d, I2O_PARAMS_TABLE_GET, 0xF001, -1, NULL, 0,
&result, sizeof(result));
if (token < 0) {
i2o_report_query_status(seq, token,
"0xF001 Physical Device Table");
return 0;
}
if (result.row_count)
seq_printf(seq, "# AdapterId\n");
for (i = 0; i < result.row_count; i++) {
seq_printf(seq, "%-2d", i);
seq_printf(seq, "%#7x\n", result.adapter_id[i]);
}
if (result.more_flag)
seq_printf(seq, "There is more...\n");
return 0;
}
static int i2o_seq_show_claimed(struct seq_file *seq, void *v)
{
struct i2o_device *d = (struct i2o_device *)seq->private;
int token;
int i;
struct {
u16 result_count;
u16 pad;
u16 block_size;
u8 block_status;
u8 error_info_size;
u16 row_count;
u16 more_flag;
u16 claimed_tid[64];
} result;
token = i2o_parm_table_get(d, I2O_PARAMS_TABLE_GET, 0xF002, -1, NULL, 0,
&result, sizeof(result));
if (token < 0) {
i2o_report_query_status(seq, token, "0xF002 Claimed Table");
return 0;
}
if (result.row_count)
seq_printf(seq, "# ClaimedTid\n");
for (i = 0; i < result.row_count; i++) {
seq_printf(seq, "%-2d", i);
seq_printf(seq, "%#7x\n", result.claimed_tid[i]);
}
if (result.more_flag)
seq_printf(seq, "There is more...\n");
return 0;
}
static int i2o_seq_show_users(struct seq_file *seq, void *v)
{
struct i2o_device *d = (struct i2o_device *)seq->private;
int token;
int i;
typedef struct _i2o_user_table {
u16 instance;
u16 user_tid;
u8 claim_type;
u8 reserved1;
u16 reserved2;
} i2o_user_table;
struct {
u16 result_count;
u16 pad;
u16 block_size;
u8 block_status;
u8 error_info_size;
u16 row_count;
u16 more_flag;
i2o_user_table user[64];
} *result;
result = kmalloc(sizeof(*result), GFP_KERNEL);
if (!result)
return -ENOMEM;
token = i2o_parm_table_get(d, I2O_PARAMS_TABLE_GET, 0xF003, -1, NULL, 0,
result, sizeof(*result));
if (token < 0) {
i2o_report_query_status(seq, token, "0xF003 User Table");
goto out;
}
seq_printf(seq, "# Instance UserTid ClaimType\n");
for (i = 0; i < result->row_count; i++) {
seq_printf(seq, "%-3d", i);
seq_printf(seq, "%#8x ", result->user[i].instance);
seq_printf(seq, "%#7x ", result->user[i].user_tid);
seq_printf(seq, "%#9x\n", result->user[i].claim_type);
}
if (result->more_flag)
seq_printf(seq, "There is more...\n");
out:
kfree(result);
return 0;
}
static int i2o_seq_show_priv_msgs(struct seq_file *seq, void *v)
{
struct i2o_device *d = (struct i2o_device *)seq->private;
int token;
int i;
typedef struct _i2o_private {
u16 ext_instance;
u16 organization_id;
u16 x_function_code;
} i2o_private;
struct {
u16 result_count;
u16 pad;
u16 block_size;
u8 block_status;
u8 error_info_size;
u16 row_count;
u16 more_flag;
i2o_private extension[64];
} result;
token = i2o_parm_table_get(d, I2O_PARAMS_TABLE_GET, 0xF000, -1, NULL, 0,
&result, sizeof(result));
if (token < 0) {
i2o_report_query_status(seq, token,
"0xF005 Private Message Extensions (optional)");
return 0;
}
seq_printf(seq, "Instance# OrgId FunctionCode\n");
for (i = 0; i < result.row_count; i++) {
seq_printf(seq, "%0#9x ", result.extension[i].ext_instance);
seq_printf(seq, "%0#6x ", result.extension[i].organization_id);
seq_printf(seq, "%0#6x", result.extension[i].x_function_code);
seq_printf(seq, "\n");
}
if (result.more_flag)
seq_printf(seq, "There is more...\n");
return 0;
}
static int i2o_seq_show_authorized_users(struct seq_file *seq, void *v)
{
struct i2o_device *d = (struct i2o_device *)seq->private;
int token;
int i;
struct {
u16 result_count;
u16 pad;
u16 block_size;
u8 block_status;
u8 error_info_size;
u16 row_count;
u16 more_flag;
u32 alternate_tid[64];
} result;
token = i2o_parm_table_get(d, I2O_PARAMS_TABLE_GET, 0xF006, -1, NULL, 0,
&result, sizeof(result));
if (token < 0) {
i2o_report_query_status(seq, token,
"0xF006 Autohorized User Table");
return 0;
}
if (result.row_count)
seq_printf(seq, "# AlternateTid\n");
for (i = 0; i < result.row_count; i++) {
seq_printf(seq, "%-2d", i);
seq_printf(seq, "%#7x ", result.alternate_tid[i]);
}
if (result.more_flag)
seq_printf(seq, "There is more...\n");
return 0;
}
static int i2o_seq_show_dev_identity(struct seq_file *seq, void *v)
{
struct i2o_device *d = (struct i2o_device *)seq->private;
static u32 work32[128];
static u16 *work16 = (u16 *) work32;
int token;
token = i2o_parm_field_get(d, 0xF100, -1, &work32, sizeof(work32));
if (token < 0) {
i2o_report_query_status(seq, token, "0xF100 Device Identity");
return 0;
}
seq_printf(seq, "Device Class : %s\n", i2o_get_class_name(work16[0]));
seq_printf(seq, "Owner TID : %0#5x\n", work16[2]);
seq_printf(seq, "Parent TID : %0#5x\n", work16[3]);
seq_printf(seq, "Vendor info : %s\n",
chtostr((u8 *) (work32 + 2), 16));
seq_printf(seq, "Product info : %s\n",
chtostr((u8 *) (work32 + 6), 16));
seq_printf(seq, "Description : %s\n",
chtostr((u8 *) (work32 + 10), 16));
seq_printf(seq, "Product rev. : %s\n",
chtostr((u8 *) (work32 + 14), 8));
seq_printf(seq, "Serial number : ");
print_serial_number(seq, (u8 *) (work32 + 16),
sizeof(work32) - (16 * sizeof(u32)) - 2);
seq_printf(seq, "\n");
return 0;
}
static int i2o_seq_show_dev_name(struct seq_file *seq, void *v)
{
struct i2o_device *d = (struct i2o_device *)seq->private;
seq_printf(seq, "%s\n", dev_name(&d->device));
return 0;
}
static int i2o_seq_show_ddm_identity(struct seq_file *seq, void *v)
{
struct i2o_device *d = (struct i2o_device *)seq->private;
int token;
struct {
u16 ddm_tid;
u8 module_name[24];
u8 module_rev[8];
u8 sn_format;
u8 serial_number[12];
u8 pad[256];
} result;
token = i2o_parm_field_get(d, 0xF101, -1, &result, sizeof(result));
if (token < 0) {
i2o_report_query_status(seq, token, "0xF101 DDM Identity");
return 0;
}
seq_printf(seq, "Registering DDM TID : 0x%03x\n", result.ddm_tid);
seq_printf(seq, "Module name : %s\n",
chtostr(result.module_name, 24));
seq_printf(seq, "Module revision : %s\n",
chtostr(result.module_rev, 8));
seq_printf(seq, "Serial number : ");
print_serial_number(seq, result.serial_number, sizeof(result) - 36);
seq_printf(seq, "\n");
return 0;
}
static int i2o_seq_show_uinfo(struct seq_file *seq, void *v)
{
struct i2o_device *d = (struct i2o_device *)seq->private;
int token;
struct {
u8 device_name[64];
u8 service_name[64];
u8 physical_location[64];
u8 instance_number[4];
} result;
token = i2o_parm_field_get(d, 0xF102, -1, &result, sizeof(result));
if (token < 0) {
i2o_report_query_status(seq, token, "0xF102 User Information");
return 0;
}
seq_printf(seq, "Device name : %s\n",
chtostr(result.device_name, 64));
seq_printf(seq, "Service name : %s\n",
chtostr(result.service_name, 64));
seq_printf(seq, "Physical name : %s\n",
chtostr(result.physical_location, 64));
seq_printf(seq, "Instance number : %s\n",
chtostr(result.instance_number, 4));
return 0;
}
static int i2o_seq_show_sgl_limits(struct seq_file *seq, void *v)
{
struct i2o_device *d = (struct i2o_device *)seq->private;
static u32 work32[12];
static u16 *work16 = (u16 *) work32;
static u8 *work8 = (u8 *) work32;
int token;
token = i2o_parm_field_get(d, 0xF103, -1, &work32, sizeof(work32));
if (token < 0) {
i2o_report_query_status(seq, token,
"0xF103 SGL Operating Limits");
return 0;
}
seq_printf(seq, "SGL chain size : %d\n", work32[0]);
seq_printf(seq, "Max SGL chain size : %d\n", work32[1]);
seq_printf(seq, "SGL chain size target : %d\n", work32[2]);
seq_printf(seq, "SGL frag count : %d\n", work16[6]);
seq_printf(seq, "Max SGL frag count : %d\n", work16[7]);
seq_printf(seq, "SGL frag count target : %d\n", work16[8]);
seq_printf(seq, "SGL data alignment : %d\n", work16[8]);
seq_printf(seq, "SGL addr limit : %d\n", work8[20]);
seq_printf(seq, "SGL addr sizes supported : ");
if (work8[21] & 0x01)
seq_printf(seq, "32 bit ");
if (work8[21] & 0x02)
seq_printf(seq, "64 bit ");
if (work8[21] & 0x04)
seq_printf(seq, "96 bit ");
if (work8[21] & 0x08)
seq_printf(seq, "128 bit ");
seq_printf(seq, "\n");
return 0;
}
static int i2o_seq_show_sensors(struct seq_file *seq, void *v)
{
struct i2o_device *d = (struct i2o_device *)seq->private;
int token;
struct {
u16 sensor_instance;
u8 component;
u16 component_instance;
u8 sensor_class;
u8 sensor_type;
u8 scaling_exponent;
u32 actual_reading;
u32 minimum_reading;
u32 low2lowcat_treshold;
u32 lowcat2low_treshold;
u32 lowwarn2low_treshold;
u32 low2lowwarn_treshold;
u32 norm2lowwarn_treshold;
u32 lowwarn2norm_treshold;
u32 nominal_reading;
u32 hiwarn2norm_treshold;
u32 norm2hiwarn_treshold;
u32 high2hiwarn_treshold;
u32 hiwarn2high_treshold;
u32 hicat2high_treshold;
u32 hi2hicat_treshold;
u32 maximum_reading;
u8 sensor_state;
u16 event_enable;
} result;
token = i2o_parm_field_get(d, 0xF200, -1, &result, sizeof(result));
if (token < 0) {
i2o_report_query_status(seq, token,
"0xF200 Sensors (optional)");
return 0;
}
seq_printf(seq, "Sensor instance : %d\n", result.sensor_instance);
seq_printf(seq, "Component : %d = ", result.component);
switch (result.component) {
case 0:
seq_printf(seq, "Other");
break;
case 1:
seq_printf(seq, "Planar logic Board");
break;
case 2:
seq_printf(seq, "CPU");
break;
case 3:
seq_printf(seq, "Chassis");
break;
case 4:
seq_printf(seq, "Power Supply");
break;
case 5:
seq_printf(seq, "Storage");
break;
case 6:
seq_printf(seq, "External");
break;
}
seq_printf(seq, "\n");
seq_printf(seq, "Component instance : %d\n",
result.component_instance);
seq_printf(seq, "Sensor class : %s\n",
result.sensor_class ? "Analog" : "Digital");
seq_printf(seq, "Sensor type : %d = ", result.sensor_type);
switch (result.sensor_type) {
case 0:
seq_printf(seq, "Other\n");
break;
case 1:
seq_printf(seq, "Thermal\n");
break;
case 2:
seq_printf(seq, "DC voltage (DC volts)\n");
break;
case 3:
seq_printf(seq, "AC voltage (AC volts)\n");
break;
case 4:
seq_printf(seq, "DC current (DC amps)\n");
break;
case 5:
seq_printf(seq, "AC current (AC volts)\n");
break;
case 6:
seq_printf(seq, "Door open\n");
break;
case 7:
seq_printf(seq, "Fan operational\n");
break;
}
seq_printf(seq, "Scaling exponent : %d\n",
result.scaling_exponent);
seq_printf(seq, "Actual reading : %d\n", result.actual_reading);
seq_printf(seq, "Minimum reading : %d\n", result.minimum_reading);
seq_printf(seq, "Low2LowCat treshold : %d\n",
result.low2lowcat_treshold);
seq_printf(seq, "LowCat2Low treshold : %d\n",
result.lowcat2low_treshold);
seq_printf(seq, "LowWarn2Low treshold : %d\n",
result.lowwarn2low_treshold);
seq_printf(seq, "Low2LowWarn treshold : %d\n",
result.low2lowwarn_treshold);
seq_printf(seq, "Norm2LowWarn treshold : %d\n",
result.norm2lowwarn_treshold);
seq_printf(seq, "LowWarn2Norm treshold : %d\n",
result.lowwarn2norm_treshold);
seq_printf(seq, "Nominal reading : %d\n", result.nominal_reading);
seq_printf(seq, "HiWarn2Norm treshold : %d\n",
result.hiwarn2norm_treshold);
seq_printf(seq, "Norm2HiWarn treshold : %d\n",
result.norm2hiwarn_treshold);
seq_printf(seq, "High2HiWarn treshold : %d\n",
result.high2hiwarn_treshold);
seq_printf(seq, "HiWarn2High treshold : %d\n",
result.hiwarn2high_treshold);
seq_printf(seq, "HiCat2High treshold : %d\n",
result.hicat2high_treshold);
seq_printf(seq, "High2HiCat treshold : %d\n",
result.hi2hicat_treshold);
seq_printf(seq, "Maximum reading : %d\n", result.maximum_reading);
seq_printf(seq, "Sensor state : %d = ", result.sensor_state);
switch (result.sensor_state) {
case 0:
seq_printf(seq, "Normal\n");
break;
case 1:
seq_printf(seq, "Abnormal\n");
break;
case 2:
seq_printf(seq, "Unknown\n");
break;
case 3:
seq_printf(seq, "Low Catastrophic (LoCat)\n");
break;
case 4:
seq_printf(seq, "Low (Low)\n");
break;
case 5:
seq_printf(seq, "Low Warning (LoWarn)\n");
break;
case 6:
seq_printf(seq, "High Warning (HiWarn)\n");
break;
case 7:
seq_printf(seq, "High (High)\n");
break;
case 8:
seq_printf(seq, "High Catastrophic (HiCat)\n");
break;
}
seq_printf(seq, "Event_enable : 0x%02X\n", result.event_enable);
seq_printf(seq, " [%s] Operational state change. \n",
(result.event_enable & 0x01) ? "+" : "-");
seq_printf(seq, " [%s] Low catastrophic. \n",
(result.event_enable & 0x02) ? "+" : "-");
seq_printf(seq, " [%s] Low reading. \n",
(result.event_enable & 0x04) ? "+" : "-");
seq_printf(seq, " [%s] Low warning. \n",
(result.event_enable & 0x08) ? "+" : "-");
seq_printf(seq,
" [%s] Change back to normal from out of range state. \n",
(result.event_enable & 0x10) ? "+" : "-");
seq_printf(seq, " [%s] High warning. \n",
(result.event_enable & 0x20) ? "+" : "-");
seq_printf(seq, " [%s] High reading. \n",
(result.event_enable & 0x40) ? "+" : "-");
seq_printf(seq, " [%s] High catastrophic. \n",
(result.event_enable & 0x80) ? "+" : "-");
return 0;
}
static int i2o_seq_open_hrt(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_hrt, PDE(inode)->data);
};
static int i2o_seq_open_lct(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_lct, PDE(inode)->data);
};
static int i2o_seq_open_status(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_status, PDE(inode)->data);
};
static int i2o_seq_open_hw(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_hw, PDE(inode)->data);
};
static int i2o_seq_open_ddm_table(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_ddm_table, PDE(inode)->data);
};
static int i2o_seq_open_driver_store(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_driver_store, PDE(inode)->data);
};
static int i2o_seq_open_drivers_stored(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_drivers_stored, PDE(inode)->data);
};
static int i2o_seq_open_groups(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_groups, PDE(inode)->data);
};
static int i2o_seq_open_phys_device(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_phys_device, PDE(inode)->data);
};
static int i2o_seq_open_claimed(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_claimed, PDE(inode)->data);
};
static int i2o_seq_open_users(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_users, PDE(inode)->data);
};
static int i2o_seq_open_priv_msgs(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_priv_msgs, PDE(inode)->data);
};
static int i2o_seq_open_authorized_users(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_authorized_users,
PDE(inode)->data);
};
static int i2o_seq_open_dev_identity(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_dev_identity, PDE(inode)->data);
};
static int i2o_seq_open_ddm_identity(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_ddm_identity, PDE(inode)->data);
};
static int i2o_seq_open_uinfo(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_uinfo, PDE(inode)->data);
};
static int i2o_seq_open_sgl_limits(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_sgl_limits, PDE(inode)->data);
};
static int i2o_seq_open_sensors(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_sensors, PDE(inode)->data);
};
static int i2o_seq_open_dev_name(struct inode *inode, struct file *file)
{
return single_open(file, i2o_seq_show_dev_name, PDE(inode)->data);
};
static const struct file_operations i2o_seq_fops_lct = {
.open = i2o_seq_open_lct,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_hrt = {
.open = i2o_seq_open_hrt,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_status = {
.open = i2o_seq_open_status,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_hw = {
.open = i2o_seq_open_hw,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_ddm_table = {
.open = i2o_seq_open_ddm_table,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_driver_store = {
.open = i2o_seq_open_driver_store,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_drivers_stored = {
.open = i2o_seq_open_drivers_stored,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_groups = {
.open = i2o_seq_open_groups,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_phys_device = {
.open = i2o_seq_open_phys_device,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_claimed = {
.open = i2o_seq_open_claimed,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_users = {
.open = i2o_seq_open_users,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_priv_msgs = {
.open = i2o_seq_open_priv_msgs,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_authorized_users = {
.open = i2o_seq_open_authorized_users,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_dev_name = {
.open = i2o_seq_open_dev_name,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_dev_identity = {
.open = i2o_seq_open_dev_identity,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_ddm_identity = {
.open = i2o_seq_open_ddm_identity,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_uinfo = {
.open = i2o_seq_open_uinfo,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_sgl_limits = {
.open = i2o_seq_open_sgl_limits,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations i2o_seq_fops_sensors = {
.open = i2o_seq_open_sensors,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static i2o_proc_entry i2o_proc_generic_iop_entries[] = {
{"hrt", S_IFREG | S_IRUGO, &i2o_seq_fops_hrt},
{"lct", S_IFREG | S_IRUGO, &i2o_seq_fops_lct},
{"status", S_IFREG | S_IRUGO, &i2o_seq_fops_status},
{"hw", S_IFREG | S_IRUGO, &i2o_seq_fops_hw},
{"ddm_table", S_IFREG | S_IRUGO, &i2o_seq_fops_ddm_table},
{"driver_store", S_IFREG | S_IRUGO, &i2o_seq_fops_driver_store},
{"drivers_stored", S_IFREG | S_IRUGO, &i2o_seq_fops_drivers_stored},
{NULL, 0, NULL}
};
static i2o_proc_entry generic_dev_entries[] = {
{"groups", S_IFREG | S_IRUGO, &i2o_seq_fops_groups},
{"phys_dev", S_IFREG | S_IRUGO, &i2o_seq_fops_phys_device},
{"claimed", S_IFREG | S_IRUGO, &i2o_seq_fops_claimed},
{"users", S_IFREG | S_IRUGO, &i2o_seq_fops_users},
{"priv_msgs", S_IFREG | S_IRUGO, &i2o_seq_fops_priv_msgs},
{"authorized_users", S_IFREG | S_IRUGO, &i2o_seq_fops_authorized_users},
{"dev_identity", S_IFREG | S_IRUGO, &i2o_seq_fops_dev_identity},
{"ddm_identity", S_IFREG | S_IRUGO, &i2o_seq_fops_ddm_identity},
{"user_info", S_IFREG | S_IRUGO, &i2o_seq_fops_uinfo},
{"sgl_limits", S_IFREG | S_IRUGO, &i2o_seq_fops_sgl_limits},
{"sensors", S_IFREG | S_IRUGO, &i2o_seq_fops_sensors},
{NULL, 0, NULL}
};
static i2o_proc_entry rbs_dev_entries[] = {
{"dev_name", S_IFREG | S_IRUGO, &i2o_seq_fops_dev_name},
{NULL, 0, NULL}
};
static int i2o_proc_create_entries(struct proc_dir_entry *dir,
i2o_proc_entry * i2o_pe, void *data)
{
struct proc_dir_entry *tmp;
while (i2o_pe->name) {
tmp = proc_create_data(i2o_pe->name, i2o_pe->mode, dir,
i2o_pe->fops, data);
if (!tmp)
return -1;
i2o_pe++;
}
return 0;
}
static void i2o_proc_subdir_remove(struct proc_dir_entry *dir)
{
struct proc_dir_entry *pe, *tmp;
pe = dir->subdir;
while (pe) {
tmp = pe->next;
i2o_proc_subdir_remove(pe);
remove_proc_entry(pe->name, dir);
pe = tmp;
}
};
static void i2o_proc_device_add(struct proc_dir_entry *dir,
struct i2o_device *dev)
{
char buff[10];
struct proc_dir_entry *devdir;
i2o_proc_entry *i2o_pe = NULL;
sprintf(buff, "%03x", dev->lct_data.tid);
osm_debug("adding device /proc/i2o/%s/%s\n", dev->iop->name, buff);
devdir = proc_mkdir(buff, dir);
if (!devdir) {
osm_warn("Could not allocate procdir!\n");
return;
}
devdir->data = dev;
i2o_proc_create_entries(devdir, generic_dev_entries, dev);
switch (dev->lct_data.class_id) {
case I2O_CLASS_SCSI_PERIPHERAL:
case I2O_CLASS_RANDOM_BLOCK_STORAGE:
i2o_pe = rbs_dev_entries;
break;
default:
break;
}
if (i2o_pe)
i2o_proc_create_entries(devdir, i2o_pe, dev);
}
static int i2o_proc_iop_add(struct proc_dir_entry *dir,
struct i2o_controller *c)
{
struct proc_dir_entry *iopdir;
struct i2o_device *dev;
osm_debug("adding IOP /proc/i2o/%s\n", c->name);
iopdir = proc_mkdir(c->name, dir);
if (!iopdir)
return -1;
iopdir->data = c;
i2o_proc_create_entries(iopdir, i2o_proc_generic_iop_entries, c);
list_for_each_entry(dev, &c->devices, list)
i2o_proc_device_add(iopdir, dev);
return 0;
}
static void i2o_proc_iop_remove(struct proc_dir_entry *dir,
struct i2o_controller *c)
{
struct proc_dir_entry *pe, *tmp;
pe = dir->subdir;
while (pe) {
tmp = pe->next;
if (pe->data == c) {
i2o_proc_subdir_remove(pe);
remove_proc_entry(pe->name, dir);
}
osm_debug("removing IOP /proc/i2o/%s\n", c->name);
pe = tmp;
}
}
static int __init i2o_proc_fs_create(void)
{
struct i2o_controller *c;
i2o_proc_dir_root = proc_mkdir("i2o", NULL);
if (!i2o_proc_dir_root)
return -1;
list_for_each_entry(c, &i2o_controllers, list)
i2o_proc_iop_add(i2o_proc_dir_root, c);
return 0;
};
static int __exit i2o_proc_fs_destroy(void)
{
struct i2o_controller *c;
list_for_each_entry(c, &i2o_controllers, list)
i2o_proc_iop_remove(i2o_proc_dir_root, c);
remove_proc_entry("i2o", NULL);
return 0;
};
static int __init i2o_proc_init(void)
{
int rc;
printk(KERN_INFO OSM_DESCRIPTION " v" OSM_VERSION "\n");
rc = i2o_driver_register(&i2o_proc_driver);
if (rc)
return rc;
rc = i2o_proc_fs_create();
if (rc) {
i2o_driver_unregister(&i2o_proc_driver);
return rc;
}
return 0;
};
static void __exit i2o_proc_exit(void)
{
i2o_driver_unregister(&i2o_proc_driver);
i2o_proc_fs_destroy();
};
MODULE_AUTHOR("Deepak Saxena");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(OSM_DESCRIPTION);
MODULE_VERSION(OSM_VERSION);
module_init(i2o_proc_init);
module_exit(i2o_proc_exit);