Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/message/i2o/memory.c
15111 views
1
/*
2
* Functions to handle I2O memory
3
*
4
* Pulled from the inlines in i2o headers and uninlined
5
*
6
*
7
* This program is free software; you can redistribute it and/or modify it
8
* under the terms of the GNU General Public License as published by the
9
* Free Software Foundation; either version 2 of the License, or (at your
10
* option) any later version.
11
*/
12
13
#include <linux/module.h>
14
#include <linux/i2o.h>
15
#include <linux/delay.h>
16
#include <linux/string.h>
17
#include <linux/slab.h>
18
#include "core.h"
19
20
/* Protects our 32/64bit mask switching */
21
static DEFINE_MUTEX(mem_lock);
22
23
/**
24
* i2o_sg_tablesize - Calculate the maximum number of elements in a SGL
25
* @c: I2O controller for which the calculation should be done
26
* @body_size: maximum body size used for message in 32-bit words.
27
*
28
* Return the maximum number of SG elements in a SG list.
29
*/
30
u16 i2o_sg_tablesize(struct i2o_controller *c, u16 body_size)
31
{
32
i2o_status_block *sb = c->status_block.virt;
33
u16 sg_count =
34
(sb->inbound_frame_size - sizeof(struct i2o_message) / 4) -
35
body_size;
36
37
if (c->pae_support) {
38
/*
39
* for 64-bit a SG attribute element must be added and each
40
* SG element needs 12 bytes instead of 8.
41
*/
42
sg_count -= 2;
43
sg_count /= 3;
44
} else
45
sg_count /= 2;
46
47
if (c->short_req && (sg_count > 8))
48
sg_count = 8;
49
50
return sg_count;
51
}
52
EXPORT_SYMBOL_GPL(i2o_sg_tablesize);
53
54
55
/**
56
* i2o_dma_map_single - Map pointer to controller and fill in I2O message.
57
* @c: I2O controller
58
* @ptr: pointer to the data which should be mapped
59
* @size: size of data in bytes
60
* @direction: DMA_TO_DEVICE / DMA_FROM_DEVICE
61
* @sg_ptr: pointer to the SG list inside the I2O message
62
*
63
* This function does all necessary DMA handling and also writes the I2O
64
* SGL elements into the I2O message. For details on DMA handling see also
65
* dma_map_single(). The pointer sg_ptr will only be set to the end of the
66
* SG list if the allocation was successful.
67
*
68
* Returns DMA address which must be checked for failures using
69
* dma_mapping_error().
70
*/
71
dma_addr_t i2o_dma_map_single(struct i2o_controller *c, void *ptr,
72
size_t size,
73
enum dma_data_direction direction,
74
u32 ** sg_ptr)
75
{
76
u32 sg_flags;
77
u32 *mptr = *sg_ptr;
78
dma_addr_t dma_addr;
79
80
switch (direction) {
81
case DMA_TO_DEVICE:
82
sg_flags = 0xd4000000;
83
break;
84
case DMA_FROM_DEVICE:
85
sg_flags = 0xd0000000;
86
break;
87
default:
88
return 0;
89
}
90
91
dma_addr = dma_map_single(&c->pdev->dev, ptr, size, direction);
92
if (!dma_mapping_error(&c->pdev->dev, dma_addr)) {
93
#ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64
94
if ((sizeof(dma_addr_t) > 4) && c->pae_support) {
95
*mptr++ = cpu_to_le32(0x7C020002);
96
*mptr++ = cpu_to_le32(PAGE_SIZE);
97
}
98
#endif
99
100
*mptr++ = cpu_to_le32(sg_flags | size);
101
*mptr++ = cpu_to_le32(i2o_dma_low(dma_addr));
102
#ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64
103
if ((sizeof(dma_addr_t) > 4) && c->pae_support)
104
*mptr++ = cpu_to_le32(i2o_dma_high(dma_addr));
105
#endif
106
*sg_ptr = mptr;
107
}
108
return dma_addr;
109
}
110
EXPORT_SYMBOL_GPL(i2o_dma_map_single);
111
112
/**
113
* i2o_dma_map_sg - Map a SG List to controller and fill in I2O message.
114
* @c: I2O controller
115
* @sg: SG list to be mapped
116
* @sg_count: number of elements in the SG list
117
* @direction: DMA_TO_DEVICE / DMA_FROM_DEVICE
118
* @sg_ptr: pointer to the SG list inside the I2O message
119
*
120
* This function does all necessary DMA handling and also writes the I2O
121
* SGL elements into the I2O message. For details on DMA handling see also
122
* dma_map_sg(). The pointer sg_ptr will only be set to the end of the SG
123
* list if the allocation was successful.
124
*
125
* Returns 0 on failure or 1 on success.
126
*/
127
int i2o_dma_map_sg(struct i2o_controller *c, struct scatterlist *sg,
128
int sg_count, enum dma_data_direction direction, u32 ** sg_ptr)
129
{
130
u32 sg_flags;
131
u32 *mptr = *sg_ptr;
132
133
switch (direction) {
134
case DMA_TO_DEVICE:
135
sg_flags = 0x14000000;
136
break;
137
case DMA_FROM_DEVICE:
138
sg_flags = 0x10000000;
139
break;
140
default:
141
return 0;
142
}
143
144
sg_count = dma_map_sg(&c->pdev->dev, sg, sg_count, direction);
145
if (!sg_count)
146
return 0;
147
148
#ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64
149
if ((sizeof(dma_addr_t) > 4) && c->pae_support) {
150
*mptr++ = cpu_to_le32(0x7C020002);
151
*mptr++ = cpu_to_le32(PAGE_SIZE);
152
}
153
#endif
154
155
while (sg_count-- > 0) {
156
if (!sg_count)
157
sg_flags |= 0xC0000000;
158
*mptr++ = cpu_to_le32(sg_flags | sg_dma_len(sg));
159
*mptr++ = cpu_to_le32(i2o_dma_low(sg_dma_address(sg)));
160
#ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64
161
if ((sizeof(dma_addr_t) > 4) && c->pae_support)
162
*mptr++ = cpu_to_le32(i2o_dma_high(sg_dma_address(sg)));
163
#endif
164
sg = sg_next(sg);
165
}
166
*sg_ptr = mptr;
167
168
return 1;
169
}
170
EXPORT_SYMBOL_GPL(i2o_dma_map_sg);
171
172
/**
173
* i2o_dma_alloc - Allocate DMA memory
174
* @dev: struct device pointer to the PCI device of the I2O controller
175
* @addr: i2o_dma struct which should get the DMA buffer
176
* @len: length of the new DMA memory
177
*
178
* Allocate a coherent DMA memory and write the pointers into addr.
179
*
180
* Returns 0 on success or -ENOMEM on failure.
181
*/
182
int i2o_dma_alloc(struct device *dev, struct i2o_dma *addr, size_t len)
183
{
184
struct pci_dev *pdev = to_pci_dev(dev);
185
int dma_64 = 0;
186
187
mutex_lock(&mem_lock);
188
if ((sizeof(dma_addr_t) > 4) && (pdev->dma_mask == DMA_BIT_MASK(64))) {
189
dma_64 = 1;
190
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
191
mutex_unlock(&mem_lock);
192
return -ENOMEM;
193
}
194
}
195
196
addr->virt = dma_alloc_coherent(dev, len, &addr->phys, GFP_KERNEL);
197
198
if ((sizeof(dma_addr_t) > 4) && dma_64)
199
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
200
printk(KERN_WARNING "i2o: unable to set 64-bit DMA");
201
mutex_unlock(&mem_lock);
202
203
if (!addr->virt)
204
return -ENOMEM;
205
206
memset(addr->virt, 0, len);
207
addr->len = len;
208
209
return 0;
210
}
211
EXPORT_SYMBOL_GPL(i2o_dma_alloc);
212
213
214
/**
215
* i2o_dma_free - Free DMA memory
216
* @dev: struct device pointer to the PCI device of the I2O controller
217
* @addr: i2o_dma struct which contains the DMA buffer
218
*
219
* Free a coherent DMA memory and set virtual address of addr to NULL.
220
*/
221
void i2o_dma_free(struct device *dev, struct i2o_dma *addr)
222
{
223
if (addr->virt) {
224
if (addr->phys)
225
dma_free_coherent(dev, addr->len, addr->virt,
226
addr->phys);
227
else
228
kfree(addr->virt);
229
addr->virt = NULL;
230
}
231
}
232
EXPORT_SYMBOL_GPL(i2o_dma_free);
233
234
235
/**
236
* i2o_dma_realloc - Realloc DMA memory
237
* @dev: struct device pointer to the PCI device of the I2O controller
238
* @addr: pointer to a i2o_dma struct DMA buffer
239
* @len: new length of memory
240
*
241
* If there was something allocated in the addr, free it first. If len > 0
242
* than try to allocate it and write the addresses back to the addr
243
* structure. If len == 0 set the virtual address to NULL.
244
*
245
* Returns the 0 on success or negative error code on failure.
246
*/
247
int i2o_dma_realloc(struct device *dev, struct i2o_dma *addr, size_t len)
248
{
249
i2o_dma_free(dev, addr);
250
251
if (len)
252
return i2o_dma_alloc(dev, addr, len);
253
254
return 0;
255
}
256
EXPORT_SYMBOL_GPL(i2o_dma_realloc);
257
258
/*
259
* i2o_pool_alloc - Allocate an slab cache and mempool
260
* @mempool: pointer to struct i2o_pool to write data into.
261
* @name: name which is used to identify cache
262
* @size: size of each object
263
* @min_nr: minimum number of objects
264
*
265
* First allocates a slab cache with name and size. Then allocates a
266
* mempool which uses the slab cache for allocation and freeing.
267
*
268
* Returns 0 on success or negative error code on failure.
269
*/
270
int i2o_pool_alloc(struct i2o_pool *pool, const char *name,
271
size_t size, int min_nr)
272
{
273
pool->name = kmalloc(strlen(name) + 1, GFP_KERNEL);
274
if (!pool->name)
275
goto exit;
276
strcpy(pool->name, name);
277
278
pool->slab =
279
kmem_cache_create(pool->name, size, 0, SLAB_HWCACHE_ALIGN, NULL);
280
if (!pool->slab)
281
goto free_name;
282
283
pool->mempool = mempool_create_slab_pool(min_nr, pool->slab);
284
if (!pool->mempool)
285
goto free_slab;
286
287
return 0;
288
289
free_slab:
290
kmem_cache_destroy(pool->slab);
291
292
free_name:
293
kfree(pool->name);
294
295
exit:
296
return -ENOMEM;
297
}
298
EXPORT_SYMBOL_GPL(i2o_pool_alloc);
299
300
/*
301
* i2o_pool_free - Free slab cache and mempool again
302
* @mempool: pointer to struct i2o_pool which should be freed
303
*
304
* Note that you have to return all objects to the mempool again before
305
* calling i2o_pool_free().
306
*/
307
void i2o_pool_free(struct i2o_pool *pool)
308
{
309
mempool_destroy(pool->mempool);
310
kmem_cache_destroy(pool->slab);
311
kfree(pool->name);
312
};
313
EXPORT_SYMBOL_GPL(i2o_pool_free);
314
315