Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/mfd/ab8500-gpadc.c
15109 views
1
/*
2
* Copyright (C) ST-Ericsson SA 2010
3
*
4
* License Terms: GNU General Public License v2
5
* Author: Arun R Murthy <[email protected]>
6
* Author: Daniel Willerud <[email protected]>
7
* Author: Johan Palsson <[email protected]>
8
*/
9
#include <linux/init.h>
10
#include <linux/module.h>
11
#include <linux/device.h>
12
#include <linux/interrupt.h>
13
#include <linux/spinlock.h>
14
#include <linux/delay.h>
15
#include <linux/platform_device.h>
16
#include <linux/completion.h>
17
#include <linux/regulator/consumer.h>
18
#include <linux/err.h>
19
#include <linux/slab.h>
20
#include <linux/list.h>
21
#include <linux/mfd/ab8500.h>
22
#include <linux/mfd/abx500.h>
23
#include <linux/mfd/ab8500/gpadc.h>
24
25
/*
26
* GPADC register offsets
27
* Bank : 0x0A
28
*/
29
#define AB8500_GPADC_CTRL1_REG 0x00
30
#define AB8500_GPADC_CTRL2_REG 0x01
31
#define AB8500_GPADC_CTRL3_REG 0x02
32
#define AB8500_GPADC_AUTO_TIMER_REG 0x03
33
#define AB8500_GPADC_STAT_REG 0x04
34
#define AB8500_GPADC_MANDATAL_REG 0x05
35
#define AB8500_GPADC_MANDATAH_REG 0x06
36
#define AB8500_GPADC_AUTODATAL_REG 0x07
37
#define AB8500_GPADC_AUTODATAH_REG 0x08
38
#define AB8500_GPADC_MUX_CTRL_REG 0x09
39
40
/*
41
* OTP register offsets
42
* Bank : 0x15
43
*/
44
#define AB8500_GPADC_CAL_1 0x0F
45
#define AB8500_GPADC_CAL_2 0x10
46
#define AB8500_GPADC_CAL_3 0x11
47
#define AB8500_GPADC_CAL_4 0x12
48
#define AB8500_GPADC_CAL_5 0x13
49
#define AB8500_GPADC_CAL_6 0x14
50
#define AB8500_GPADC_CAL_7 0x15
51
52
/* gpadc constants */
53
#define EN_VINTCORE12 0x04
54
#define EN_VTVOUT 0x02
55
#define EN_GPADC 0x01
56
#define DIS_GPADC 0x00
57
#define SW_AVG_16 0x60
58
#define ADC_SW_CONV 0x04
59
#define EN_ICHAR 0x80
60
#define BTEMP_PULL_UP 0x08
61
#define EN_BUF 0x40
62
#define DIS_ZERO 0x00
63
#define GPADC_BUSY 0x01
64
65
/* GPADC constants from AB8500 spec, UM0836 */
66
#define ADC_RESOLUTION 1024
67
#define ADC_CH_BTEMP_MIN 0
68
#define ADC_CH_BTEMP_MAX 1350
69
#define ADC_CH_DIETEMP_MIN 0
70
#define ADC_CH_DIETEMP_MAX 1350
71
#define ADC_CH_CHG_V_MIN 0
72
#define ADC_CH_CHG_V_MAX 20030
73
#define ADC_CH_ACCDET2_MIN 0
74
#define ADC_CH_ACCDET2_MAX 2500
75
#define ADC_CH_VBAT_MIN 2300
76
#define ADC_CH_VBAT_MAX 4800
77
#define ADC_CH_CHG_I_MIN 0
78
#define ADC_CH_CHG_I_MAX 1500
79
#define ADC_CH_BKBAT_MIN 0
80
#define ADC_CH_BKBAT_MAX 3200
81
82
/* This is used to not lose precision when dividing to get gain and offset */
83
#define CALIB_SCALE 1000
84
85
enum cal_channels {
86
ADC_INPUT_VMAIN = 0,
87
ADC_INPUT_BTEMP,
88
ADC_INPUT_VBAT,
89
NBR_CAL_INPUTS,
90
};
91
92
/**
93
* struct adc_cal_data - Table for storing gain and offset for the calibrated
94
* ADC channels
95
* @gain: Gain of the ADC channel
96
* @offset: Offset of the ADC channel
97
*/
98
struct adc_cal_data {
99
u64 gain;
100
u64 offset;
101
};
102
103
/**
104
* struct ab8500_gpadc - AB8500 GPADC device information
105
* @chip_id ABB chip id
106
* @dev: pointer to the struct device
107
* @node: a list of AB8500 GPADCs, hence prepared for
108
reentrance
109
* @ab8500_gpadc_complete: pointer to the struct completion, to indicate
110
* the completion of gpadc conversion
111
* @ab8500_gpadc_lock: structure of type mutex
112
* @regu: pointer to the struct regulator
113
* @irq: interrupt number that is used by gpadc
114
* @cal_data array of ADC calibration data structs
115
*/
116
struct ab8500_gpadc {
117
u8 chip_id;
118
struct device *dev;
119
struct list_head node;
120
struct completion ab8500_gpadc_complete;
121
struct mutex ab8500_gpadc_lock;
122
struct regulator *regu;
123
int irq;
124
struct adc_cal_data cal_data[NBR_CAL_INPUTS];
125
};
126
127
static LIST_HEAD(ab8500_gpadc_list);
128
129
/**
130
* ab8500_gpadc_get() - returns a reference to the primary AB8500 GPADC
131
* (i.e. the first GPADC in the instance list)
132
*/
133
struct ab8500_gpadc *ab8500_gpadc_get(char *name)
134
{
135
struct ab8500_gpadc *gpadc;
136
137
list_for_each_entry(gpadc, &ab8500_gpadc_list, node) {
138
if (!strcmp(name, dev_name(gpadc->dev)))
139
return gpadc;
140
}
141
142
return ERR_PTR(-ENOENT);
143
}
144
EXPORT_SYMBOL(ab8500_gpadc_get);
145
146
static int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 input,
147
int ad_value)
148
{
149
int res;
150
151
switch (input) {
152
case MAIN_CHARGER_V:
153
/* For some reason we don't have calibrated data */
154
if (!gpadc->cal_data[ADC_INPUT_VMAIN].gain) {
155
res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX -
156
ADC_CH_CHG_V_MIN) * ad_value /
157
ADC_RESOLUTION;
158
break;
159
}
160
/* Here we can use the calibrated data */
161
res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VMAIN].gain +
162
gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE;
163
break;
164
165
case BAT_CTRL:
166
case BTEMP_BALL:
167
case ACC_DETECT1:
168
case ADC_AUX1:
169
case ADC_AUX2:
170
/* For some reason we don't have calibrated data */
171
if (!gpadc->cal_data[ADC_INPUT_BTEMP].gain) {
172
res = ADC_CH_BTEMP_MIN + (ADC_CH_BTEMP_MAX -
173
ADC_CH_BTEMP_MIN) * ad_value /
174
ADC_RESOLUTION;
175
break;
176
}
177
/* Here we can use the calibrated data */
178
res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_BTEMP].gain +
179
gpadc->cal_data[ADC_INPUT_BTEMP].offset) / CALIB_SCALE;
180
break;
181
182
case MAIN_BAT_V:
183
/* For some reason we don't have calibrated data */
184
if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) {
185
res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX -
186
ADC_CH_VBAT_MIN) * ad_value /
187
ADC_RESOLUTION;
188
break;
189
}
190
/* Here we can use the calibrated data */
191
res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VBAT].gain +
192
gpadc->cal_data[ADC_INPUT_VBAT].offset) / CALIB_SCALE;
193
break;
194
195
case DIE_TEMP:
196
res = ADC_CH_DIETEMP_MIN +
197
(ADC_CH_DIETEMP_MAX - ADC_CH_DIETEMP_MIN) * ad_value /
198
ADC_RESOLUTION;
199
break;
200
201
case ACC_DETECT2:
202
res = ADC_CH_ACCDET2_MIN +
203
(ADC_CH_ACCDET2_MAX - ADC_CH_ACCDET2_MIN) * ad_value /
204
ADC_RESOLUTION;
205
break;
206
207
case VBUS_V:
208
res = ADC_CH_CHG_V_MIN +
209
(ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value /
210
ADC_RESOLUTION;
211
break;
212
213
case MAIN_CHARGER_C:
214
case USB_CHARGER_C:
215
res = ADC_CH_CHG_I_MIN +
216
(ADC_CH_CHG_I_MAX - ADC_CH_CHG_I_MIN) * ad_value /
217
ADC_RESOLUTION;
218
break;
219
220
case BK_BAT_V:
221
res = ADC_CH_BKBAT_MIN +
222
(ADC_CH_BKBAT_MAX - ADC_CH_BKBAT_MIN) * ad_value /
223
ADC_RESOLUTION;
224
break;
225
226
default:
227
dev_err(gpadc->dev,
228
"unknown channel, not possible to convert\n");
229
res = -EINVAL;
230
break;
231
232
}
233
return res;
234
}
235
236
/**
237
* ab8500_gpadc_convert() - gpadc conversion
238
* @input: analog input to be converted to digital data
239
*
240
* This function converts the selected analog i/p to digital
241
* data.
242
*/
243
int ab8500_gpadc_convert(struct ab8500_gpadc *gpadc, u8 input)
244
{
245
int ret;
246
u16 data = 0;
247
int looplimit = 0;
248
u8 val, low_data, high_data;
249
250
if (!gpadc)
251
return -ENODEV;
252
253
mutex_lock(&gpadc->ab8500_gpadc_lock);
254
/* Enable VTVout LDO this is required for GPADC */
255
regulator_enable(gpadc->regu);
256
257
/* Check if ADC is not busy, lock and proceed */
258
do {
259
ret = abx500_get_register_interruptible(gpadc->dev,
260
AB8500_GPADC, AB8500_GPADC_STAT_REG, &val);
261
if (ret < 0)
262
goto out;
263
if (!(val & GPADC_BUSY))
264
break;
265
msleep(10);
266
} while (++looplimit < 10);
267
if (looplimit >= 10 && (val & GPADC_BUSY)) {
268
dev_err(gpadc->dev, "gpadc_conversion: GPADC busy");
269
ret = -EINVAL;
270
goto out;
271
}
272
273
/* Enable GPADC */
274
ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
275
AB8500_GPADC, AB8500_GPADC_CTRL1_REG, EN_GPADC, EN_GPADC);
276
if (ret < 0) {
277
dev_err(gpadc->dev, "gpadc_conversion: enable gpadc failed\n");
278
goto out;
279
}
280
281
/* Select the input source and set average samples to 16 */
282
ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
283
AB8500_GPADC_CTRL2_REG, (input | SW_AVG_16));
284
if (ret < 0) {
285
dev_err(gpadc->dev,
286
"gpadc_conversion: set avg samples failed\n");
287
goto out;
288
}
289
290
/*
291
* Enable ADC, buffering, select rising edge and enable ADC path
292
* charging current sense if it needed, ABB 3.0 needs some special
293
* treatment too.
294
*/
295
switch (input) {
296
case MAIN_CHARGER_C:
297
case USB_CHARGER_C:
298
ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
299
AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
300
EN_BUF | EN_ICHAR,
301
EN_BUF | EN_ICHAR);
302
break;
303
case BTEMP_BALL:
304
if (gpadc->chip_id >= AB8500_CUT3P0) {
305
/* Turn on btemp pull-up on ABB 3.0 */
306
ret = abx500_mask_and_set_register_interruptible(
307
gpadc->dev,
308
AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
309
EN_BUF | BTEMP_PULL_UP,
310
EN_BUF | BTEMP_PULL_UP);
311
312
/*
313
* Delay might be needed for ABB8500 cut 3.0, if not, remove
314
* when hardware will be availible
315
*/
316
msleep(1);
317
break;
318
}
319
/* Intentional fallthrough */
320
default:
321
ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
322
AB8500_GPADC, AB8500_GPADC_CTRL1_REG, EN_BUF, EN_BUF);
323
break;
324
}
325
if (ret < 0) {
326
dev_err(gpadc->dev,
327
"gpadc_conversion: select falling edge failed\n");
328
goto out;
329
}
330
331
ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
332
AB8500_GPADC, AB8500_GPADC_CTRL1_REG, ADC_SW_CONV, ADC_SW_CONV);
333
if (ret < 0) {
334
dev_err(gpadc->dev,
335
"gpadc_conversion: start s/w conversion failed\n");
336
goto out;
337
}
338
/* wait for completion of conversion */
339
if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete, 2*HZ)) {
340
dev_err(gpadc->dev,
341
"timeout: didn't receive GPADC conversion interrupt\n");
342
ret = -EINVAL;
343
goto out;
344
}
345
346
/* Read the converted RAW data */
347
ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC,
348
AB8500_GPADC_MANDATAL_REG, &low_data);
349
if (ret < 0) {
350
dev_err(gpadc->dev, "gpadc_conversion: read low data failed\n");
351
goto out;
352
}
353
354
ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC,
355
AB8500_GPADC_MANDATAH_REG, &high_data);
356
if (ret < 0) {
357
dev_err(gpadc->dev,
358
"gpadc_conversion: read high data failed\n");
359
goto out;
360
}
361
362
data = (high_data << 8) | low_data;
363
/* Disable GPADC */
364
ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
365
AB8500_GPADC_CTRL1_REG, DIS_GPADC);
366
if (ret < 0) {
367
dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n");
368
goto out;
369
}
370
/* Disable VTVout LDO this is required for GPADC */
371
regulator_disable(gpadc->regu);
372
mutex_unlock(&gpadc->ab8500_gpadc_lock);
373
ret = ab8500_gpadc_ad_to_voltage(gpadc, input, data);
374
return ret;
375
376
out:
377
/*
378
* It has shown to be needed to turn off the GPADC if an error occurs,
379
* otherwise we might have problem when waiting for the busy bit in the
380
* GPADC status register to go low. In V1.1 there wait_for_completion
381
* seems to timeout when waiting for an interrupt.. Not seen in V2.0
382
*/
383
(void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
384
AB8500_GPADC_CTRL1_REG, DIS_GPADC);
385
regulator_disable(gpadc->regu);
386
mutex_unlock(&gpadc->ab8500_gpadc_lock);
387
dev_err(gpadc->dev,
388
"gpadc_conversion: Failed to AD convert channel %d\n", input);
389
return ret;
390
}
391
EXPORT_SYMBOL(ab8500_gpadc_convert);
392
393
/**
394
* ab8500_bm_gpswadcconvend_handler() - isr for s/w gpadc conversion completion
395
* @irq: irq number
396
* @data: pointer to the data passed during request irq
397
*
398
* This is a interrupt service routine for s/w gpadc conversion completion.
399
* Notifies the gpadc completion is completed and the converted raw value
400
* can be read from the registers.
401
* Returns IRQ status(IRQ_HANDLED)
402
*/
403
static irqreturn_t ab8500_bm_gpswadcconvend_handler(int irq, void *_gpadc)
404
{
405
struct ab8500_gpadc *gpadc = _gpadc;
406
407
complete(&gpadc->ab8500_gpadc_complete);
408
409
return IRQ_HANDLED;
410
}
411
412
static int otp_cal_regs[] = {
413
AB8500_GPADC_CAL_1,
414
AB8500_GPADC_CAL_2,
415
AB8500_GPADC_CAL_3,
416
AB8500_GPADC_CAL_4,
417
AB8500_GPADC_CAL_5,
418
AB8500_GPADC_CAL_6,
419
AB8500_GPADC_CAL_7,
420
};
421
422
static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
423
{
424
int i;
425
int ret[ARRAY_SIZE(otp_cal_regs)];
426
u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
427
428
int vmain_high, vmain_low;
429
int btemp_high, btemp_low;
430
int vbat_high, vbat_low;
431
432
/* First we read all OTP registers and store the error code */
433
for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
434
ret[i] = abx500_get_register_interruptible(gpadc->dev,
435
AB8500_OTP_EMUL, otp_cal_regs[i], &gpadc_cal[i]);
436
if (ret[i] < 0)
437
dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n",
438
__func__, otp_cal_regs[i]);
439
}
440
441
/*
442
* The ADC calibration data is stored in OTP registers.
443
* The layout of the calibration data is outlined below and a more
444
* detailed description can be found in UM0836
445
*
446
* vm_h/l = vmain_high/low
447
* bt_h/l = btemp_high/low
448
* vb_h/l = vbat_high/low
449
*
450
* Data bits:
451
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
452
* |.......|.......|.......|.......|.......|.......|.......|.......
453
* | | vm_h9 | vm_h8
454
* |.......|.......|.......|.......|.......|.......|.......|.......
455
* | | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
456
* |.......|.......|.......|.......|.......|.......|.......|.......
457
* | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
458
* |.......|.......|.......|.......|.......|.......|.......|.......
459
* | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
460
* |.......|.......|.......|.......|.......|.......|.......|.......
461
* | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
462
* |.......|.......|.......|.......|.......|.......|.......|.......
463
* | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
464
* |.......|.......|.......|.......|.......|.......|.......|.......
465
* | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
466
* |.......|.......|.......|.......|.......|.......|.......|.......
467
*
468
*
469
* Ideal output ADC codes corresponding to injected input voltages
470
* during manufacturing is:
471
*
472
* vmain_high: Vin = 19500mV / ADC ideal code = 997
473
* vmain_low: Vin = 315mV / ADC ideal code = 16
474
* btemp_high: Vin = 1300mV / ADC ideal code = 985
475
* btemp_low: Vin = 21mV / ADC ideal code = 16
476
* vbat_high: Vin = 4700mV / ADC ideal code = 982
477
* vbat_low: Vin = 2380mV / ADC ideal code = 33
478
*/
479
480
/* Calculate gain and offset for VMAIN if all reads succeeded */
481
if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
482
vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
483
((gpadc_cal[1] & 0x3F) << 2) |
484
((gpadc_cal[2] & 0xC0) >> 6));
485
486
vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
487
488
gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
489
(19500 - 315) / (vmain_high - vmain_low);
490
491
gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * 19500 -
492
(CALIB_SCALE * (19500 - 315) /
493
(vmain_high - vmain_low)) * vmain_high;
494
} else {
495
gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
496
}
497
498
/* Calculate gain and offset for BTEMP if all reads succeeded */
499
if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
500
btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
501
(gpadc_cal[3] << 1) |
502
((gpadc_cal[4] & 0x80) >> 7));
503
504
btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
505
506
gpadc->cal_data[ADC_INPUT_BTEMP].gain =
507
CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
508
509
gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 -
510
(CALIB_SCALE * (1300 - 21) /
511
(btemp_high - btemp_low)) * btemp_high;
512
} else {
513
gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0;
514
}
515
516
/* Calculate gain and offset for VBAT if all reads succeeded */
517
if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) {
518
vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]);
519
vbat_low = ((gpadc_cal[6] & 0xFC) >> 2);
520
521
gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE *
522
(4700 - 2380) / (vbat_high - vbat_low);
523
524
gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 -
525
(CALIB_SCALE * (4700 - 2380) /
526
(vbat_high - vbat_low)) * vbat_high;
527
} else {
528
gpadc->cal_data[ADC_INPUT_VBAT].gain = 0;
529
}
530
531
dev_dbg(gpadc->dev, "VMAIN gain %llu offset %llu\n",
532
gpadc->cal_data[ADC_INPUT_VMAIN].gain,
533
gpadc->cal_data[ADC_INPUT_VMAIN].offset);
534
535
dev_dbg(gpadc->dev, "BTEMP gain %llu offset %llu\n",
536
gpadc->cal_data[ADC_INPUT_BTEMP].gain,
537
gpadc->cal_data[ADC_INPUT_BTEMP].offset);
538
539
dev_dbg(gpadc->dev, "VBAT gain %llu offset %llu\n",
540
gpadc->cal_data[ADC_INPUT_VBAT].gain,
541
gpadc->cal_data[ADC_INPUT_VBAT].offset);
542
}
543
544
static int __devinit ab8500_gpadc_probe(struct platform_device *pdev)
545
{
546
int ret = 0;
547
struct ab8500_gpadc *gpadc;
548
549
gpadc = kzalloc(sizeof(struct ab8500_gpadc), GFP_KERNEL);
550
if (!gpadc) {
551
dev_err(&pdev->dev, "Error: No memory\n");
552
return -ENOMEM;
553
}
554
555
gpadc->irq = platform_get_irq_byname(pdev, "SW_CONV_END");
556
if (gpadc->irq < 0) {
557
dev_err(gpadc->dev, "failed to get platform irq-%d\n",
558
gpadc->irq);
559
ret = gpadc->irq;
560
goto fail;
561
}
562
563
gpadc->dev = &pdev->dev;
564
mutex_init(&gpadc->ab8500_gpadc_lock);
565
566
/* Initialize completion used to notify completion of conversion */
567
init_completion(&gpadc->ab8500_gpadc_complete);
568
569
/* Register interrupt - SwAdcComplete */
570
ret = request_threaded_irq(gpadc->irq, NULL,
571
ab8500_bm_gpswadcconvend_handler,
572
IRQF_NO_SUSPEND | IRQF_SHARED, "ab8500-gpadc", gpadc);
573
if (ret < 0) {
574
dev_err(gpadc->dev, "Failed to register interrupt, irq: %d\n",
575
gpadc->irq);
576
goto fail;
577
}
578
579
/* Get Chip ID of the ABB ASIC */
580
ret = abx500_get_chip_id(gpadc->dev);
581
if (ret < 0) {
582
dev_err(gpadc->dev, "failed to get chip ID\n");
583
goto fail_irq;
584
}
585
gpadc->chip_id = (u8) ret;
586
587
/* VTVout LDO used to power up ab8500-GPADC */
588
gpadc->regu = regulator_get(&pdev->dev, "vddadc");
589
if (IS_ERR(gpadc->regu)) {
590
ret = PTR_ERR(gpadc->regu);
591
dev_err(gpadc->dev, "failed to get vtvout LDO\n");
592
goto fail_irq;
593
}
594
ab8500_gpadc_read_calibration_data(gpadc);
595
list_add_tail(&gpadc->node, &ab8500_gpadc_list);
596
dev_dbg(gpadc->dev, "probe success\n");
597
return 0;
598
fail_irq:
599
free_irq(gpadc->irq, gpadc);
600
fail:
601
kfree(gpadc);
602
gpadc = NULL;
603
return ret;
604
}
605
606
static int __devexit ab8500_gpadc_remove(struct platform_device *pdev)
607
{
608
struct ab8500_gpadc *gpadc = platform_get_drvdata(pdev);
609
610
/* remove this gpadc entry from the list */
611
list_del(&gpadc->node);
612
/* remove interrupt - completion of Sw ADC conversion */
613
free_irq(gpadc->irq, gpadc);
614
/* disable VTVout LDO that is being used by GPADC */
615
regulator_put(gpadc->regu);
616
kfree(gpadc);
617
gpadc = NULL;
618
return 0;
619
}
620
621
static struct platform_driver ab8500_gpadc_driver = {
622
.probe = ab8500_gpadc_probe,
623
.remove = __devexit_p(ab8500_gpadc_remove),
624
.driver = {
625
.name = "ab8500-gpadc",
626
.owner = THIS_MODULE,
627
},
628
};
629
630
static int __init ab8500_gpadc_init(void)
631
{
632
return platform_driver_register(&ab8500_gpadc_driver);
633
}
634
635
static void __exit ab8500_gpadc_exit(void)
636
{
637
platform_driver_unregister(&ab8500_gpadc_driver);
638
}
639
640
subsys_initcall_sync(ab8500_gpadc_init);
641
module_exit(ab8500_gpadc_exit);
642
643
MODULE_LICENSE("GPL v2");
644
MODULE_AUTHOR("Arun R Murthy, Daniel Willerud, Johan Palsson");
645
MODULE_ALIAS("platform:ab8500_gpadc");
646
MODULE_DESCRIPTION("AB8500 GPADC driver");
647
648