Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/misc/carma/carma-fpga.c
15111 views
1
/*
2
* CARMA DATA-FPGA Access Driver
3
*
4
* Copyright (c) 2009-2011 Ira W. Snyder <[email protected]>
5
*
6
* This program is free software; you can redistribute it and/or modify it
7
* under the terms of the GNU General Public License as published by the
8
* Free Software Foundation; either version 2 of the License, or (at your
9
* option) any later version.
10
*/
11
12
/*
13
* FPGA Memory Dump Format
14
*
15
* FPGA #0 control registers (32 x 32-bit words)
16
* FPGA #1 control registers (32 x 32-bit words)
17
* FPGA #2 control registers (32 x 32-bit words)
18
* FPGA #3 control registers (32 x 32-bit words)
19
* SYSFPGA control registers (32 x 32-bit words)
20
* FPGA #0 correlation array (NUM_CORL0 correlation blocks)
21
* FPGA #1 correlation array (NUM_CORL1 correlation blocks)
22
* FPGA #2 correlation array (NUM_CORL2 correlation blocks)
23
* FPGA #3 correlation array (NUM_CORL3 correlation blocks)
24
*
25
* Each correlation array consists of:
26
*
27
* Correlation Data (2 x NUM_LAGSn x 32-bit words)
28
* Pipeline Metadata (2 x NUM_METAn x 32-bit words)
29
* Quantization Counters (2 x NUM_QCNTn x 32-bit words)
30
*
31
* The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
32
* the FPGA configuration registers. They do not change once the FPGA's
33
* have been programmed, they only change on re-programming.
34
*/
35
36
/*
37
* Basic Description:
38
*
39
* This driver is used to capture correlation spectra off of the four data
40
* processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
41
* this driver supports dynamic enable/disable of capture while the device
42
* remains open.
43
*
44
* The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
45
* capture rate, all buffers are pre-allocated to avoid any potentially long
46
* running memory allocations while capturing.
47
*
48
* There are two lists and one pointer which are used to keep track of the
49
* different states of data buffers.
50
*
51
* 1) free list
52
* This list holds all empty data buffers which are ready to receive data.
53
*
54
* 2) inflight pointer
55
* This pointer holds the currently inflight data buffer. This buffer is having
56
* data copied into it by the DMA engine.
57
*
58
* 3) used list
59
* This list holds data buffers which have been filled, and are waiting to be
60
* read by userspace.
61
*
62
* All buffers start life on the free list, then move successively to the
63
* inflight pointer, and then to the used list. After they have been read by
64
* userspace, they are moved back to the free list. The cycle repeats as long
65
* as necessary.
66
*
67
* It should be noted that all buffers are mapped and ready for DMA when they
68
* are on any of the three lists. They are only unmapped when they are in the
69
* process of being read by userspace.
70
*/
71
72
/*
73
* Notes on the IRQ masking scheme:
74
*
75
* The IRQ masking scheme here is different than most other hardware. The only
76
* way for the DATA-FPGAs to detect if the kernel has taken too long to copy
77
* the data is if the status registers are not cleared before the next
78
* correlation data dump is ready.
79
*
80
* The interrupt line is connected to the status registers, such that when they
81
* are cleared, the interrupt is de-asserted. Therein lies our problem. We need
82
* to schedule a long-running DMA operation and return from the interrupt
83
* handler quickly, but we cannot clear the status registers.
84
*
85
* To handle this, the system controller FPGA has the capability to connect the
86
* interrupt line to a user-controlled GPIO pin. This pin is driven high
87
* (unasserted) and left that way. To mask the interrupt, we change the
88
* interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
89
*/
90
91
#include <linux/of_platform.h>
92
#include <linux/dma-mapping.h>
93
#include <linux/miscdevice.h>
94
#include <linux/interrupt.h>
95
#include <linux/dmaengine.h>
96
#include <linux/seq_file.h>
97
#include <linux/highmem.h>
98
#include <linux/debugfs.h>
99
#include <linux/kernel.h>
100
#include <linux/module.h>
101
#include <linux/poll.h>
102
#include <linux/init.h>
103
#include <linux/slab.h>
104
#include <linux/kref.h>
105
#include <linux/io.h>
106
107
#include <media/videobuf-dma-sg.h>
108
109
/* system controller registers */
110
#define SYS_IRQ_SOURCE_CTL 0x24
111
#define SYS_IRQ_OUTPUT_EN 0x28
112
#define SYS_IRQ_OUTPUT_DATA 0x2C
113
#define SYS_IRQ_INPUT_DATA 0x30
114
#define SYS_FPGA_CONFIG_STATUS 0x44
115
116
/* GPIO IRQ line assignment */
117
#define IRQ_CORL_DONE 0x10
118
119
/* FPGA registers */
120
#define MMAP_REG_VERSION 0x00
121
#define MMAP_REG_CORL_CONF1 0x08
122
#define MMAP_REG_CORL_CONF2 0x0C
123
#define MMAP_REG_STATUS 0x48
124
125
#define SYS_FPGA_BLOCK 0xF0000000
126
127
#define DATA_FPGA_START 0x400000
128
#define DATA_FPGA_SIZE 0x80000
129
130
static const char drv_name[] = "carma-fpga";
131
132
#define NUM_FPGA 4
133
134
#define MIN_DATA_BUFS 8
135
#define MAX_DATA_BUFS 64
136
137
struct fpga_info {
138
unsigned int num_lag_ram;
139
unsigned int blk_size;
140
};
141
142
struct data_buf {
143
struct list_head entry;
144
struct videobuf_dmabuf vb;
145
size_t size;
146
};
147
148
struct fpga_device {
149
/* character device */
150
struct miscdevice miscdev;
151
struct device *dev;
152
struct mutex mutex;
153
154
/* reference count */
155
struct kref ref;
156
157
/* FPGA registers and information */
158
struct fpga_info info[NUM_FPGA];
159
void __iomem *regs;
160
int irq;
161
162
/* FPGA Physical Address/Size Information */
163
resource_size_t phys_addr;
164
size_t phys_size;
165
166
/* DMA structures */
167
struct sg_table corl_table;
168
unsigned int corl_nents;
169
struct dma_chan *chan;
170
171
/* Protection for all members below */
172
spinlock_t lock;
173
174
/* Device enable/disable flag */
175
bool enabled;
176
177
/* Correlation data buffers */
178
wait_queue_head_t wait;
179
struct list_head free;
180
struct list_head used;
181
struct data_buf *inflight;
182
183
/* Information about data buffers */
184
unsigned int num_dropped;
185
unsigned int num_buffers;
186
size_t bufsize;
187
struct dentry *dbg_entry;
188
};
189
190
struct fpga_reader {
191
struct fpga_device *priv;
192
struct data_buf *buf;
193
off_t buf_start;
194
};
195
196
static void fpga_device_release(struct kref *ref)
197
{
198
struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
199
200
/* the last reader has exited, cleanup the last bits */
201
mutex_destroy(&priv->mutex);
202
kfree(priv);
203
}
204
205
/*
206
* Data Buffer Allocation Helpers
207
*/
208
209
/**
210
* data_free_buffer() - free a single data buffer and all allocated memory
211
* @buf: the buffer to free
212
*
213
* This will free all of the pages allocated to the given data buffer, and
214
* then free the structure itself
215
*/
216
static void data_free_buffer(struct data_buf *buf)
217
{
218
/* It is ok to free a NULL buffer */
219
if (!buf)
220
return;
221
222
/* free all memory */
223
videobuf_dma_free(&buf->vb);
224
kfree(buf);
225
}
226
227
/**
228
* data_alloc_buffer() - allocate and fill a data buffer with pages
229
* @bytes: the number of bytes required
230
*
231
* This allocates all space needed for a data buffer. It must be mapped before
232
* use in a DMA transaction using videobuf_dma_map().
233
*
234
* Returns NULL on failure
235
*/
236
static struct data_buf *data_alloc_buffer(const size_t bytes)
237
{
238
unsigned int nr_pages;
239
struct data_buf *buf;
240
int ret;
241
242
/* calculate the number of pages necessary */
243
nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
244
245
/* allocate the buffer structure */
246
buf = kzalloc(sizeof(*buf), GFP_KERNEL);
247
if (!buf)
248
goto out_return;
249
250
/* initialize internal fields */
251
INIT_LIST_HEAD(&buf->entry);
252
buf->size = bytes;
253
254
/* allocate the videobuf */
255
videobuf_dma_init(&buf->vb);
256
ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
257
if (ret)
258
goto out_free_buf;
259
260
return buf;
261
262
out_free_buf:
263
kfree(buf);
264
out_return:
265
return NULL;
266
}
267
268
/**
269
* data_free_buffers() - free all allocated buffers
270
* @priv: the driver's private data structure
271
*
272
* Free all buffers allocated by the driver (except those currently in the
273
* process of being read by userspace).
274
*
275
* LOCKING: must hold dev->mutex
276
* CONTEXT: user
277
*/
278
static void data_free_buffers(struct fpga_device *priv)
279
{
280
struct data_buf *buf, *tmp;
281
282
/* the device should be stopped, no DMA in progress */
283
BUG_ON(priv->inflight != NULL);
284
285
list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
286
list_del_init(&buf->entry);
287
videobuf_dma_unmap(priv->dev, &buf->vb);
288
data_free_buffer(buf);
289
}
290
291
list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
292
list_del_init(&buf->entry);
293
videobuf_dma_unmap(priv->dev, &buf->vb);
294
data_free_buffer(buf);
295
}
296
297
priv->num_buffers = 0;
298
priv->bufsize = 0;
299
}
300
301
/**
302
* data_alloc_buffers() - allocate 1 seconds worth of data buffers
303
* @priv: the driver's private data structure
304
*
305
* Allocate enough buffers for a whole second worth of data
306
*
307
* This routine will attempt to degrade nicely by succeeding even if a full
308
* second worth of data buffers could not be allocated, as long as a minimum
309
* number were allocated. In this case, it will print a message to the kernel
310
* log.
311
*
312
* The device must not be modifying any lists when this is called.
313
*
314
* CONTEXT: user
315
* LOCKING: must hold dev->mutex
316
*
317
* Returns 0 on success, -ERRNO otherwise
318
*/
319
static int data_alloc_buffers(struct fpga_device *priv)
320
{
321
struct data_buf *buf;
322
int i, ret;
323
324
for (i = 0; i < MAX_DATA_BUFS; i++) {
325
326
/* allocate a buffer */
327
buf = data_alloc_buffer(priv->bufsize);
328
if (!buf)
329
break;
330
331
/* map it for DMA */
332
ret = videobuf_dma_map(priv->dev, &buf->vb);
333
if (ret) {
334
data_free_buffer(buf);
335
break;
336
}
337
338
/* add it to the list of free buffers */
339
list_add_tail(&buf->entry, &priv->free);
340
priv->num_buffers++;
341
}
342
343
/* Make sure we allocated the minimum required number of buffers */
344
if (priv->num_buffers < MIN_DATA_BUFS) {
345
dev_err(priv->dev, "Unable to allocate enough data buffers\n");
346
data_free_buffers(priv);
347
return -ENOMEM;
348
}
349
350
/* Warn if we are running in a degraded state, but do not fail */
351
if (priv->num_buffers < MAX_DATA_BUFS) {
352
dev_warn(priv->dev,
353
"Unable to allocate %d buffers, using %d buffers instead\n",
354
MAX_DATA_BUFS, i);
355
}
356
357
return 0;
358
}
359
360
/*
361
* DMA Operations Helpers
362
*/
363
364
/**
365
* fpga_start_addr() - get the physical address a DATA-FPGA
366
* @priv: the driver's private data structure
367
* @fpga: the DATA-FPGA number (zero based)
368
*/
369
static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
370
{
371
return priv->phys_addr + 0x400000 + (0x80000 * fpga);
372
}
373
374
/**
375
* fpga_block_addr() - get the physical address of a correlation data block
376
* @priv: the driver's private data structure
377
* @fpga: the DATA-FPGA number (zero based)
378
* @blknum: the correlation block number (zero based)
379
*/
380
static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
381
unsigned int blknum)
382
{
383
return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
384
}
385
386
#define REG_BLOCK_SIZE (32 * 4)
387
388
/**
389
* data_setup_corl_table() - create the scatterlist for correlation dumps
390
* @priv: the driver's private data structure
391
*
392
* Create the scatterlist for transferring a correlation dump from the
393
* DATA FPGAs. This structure will be reused for each buffer than needs
394
* to be filled with correlation data.
395
*
396
* Returns 0 on success, -ERRNO otherwise
397
*/
398
static int data_setup_corl_table(struct fpga_device *priv)
399
{
400
struct sg_table *table = &priv->corl_table;
401
struct scatterlist *sg;
402
struct fpga_info *info;
403
int i, j, ret;
404
405
/* Calculate the number of entries needed */
406
priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
407
for (i = 0; i < NUM_FPGA; i++)
408
priv->corl_nents += priv->info[i].num_lag_ram;
409
410
/* Allocate the scatterlist table */
411
ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
412
if (ret) {
413
dev_err(priv->dev, "unable to allocate DMA table\n");
414
return ret;
415
}
416
417
/* Add the DATA FPGA registers to the scatterlist */
418
sg = table->sgl;
419
for (i = 0; i < NUM_FPGA; i++) {
420
sg_dma_address(sg) = fpga_start_addr(priv, i);
421
sg_dma_len(sg) = REG_BLOCK_SIZE;
422
sg = sg_next(sg);
423
}
424
425
/* Add the SYS-FPGA registers to the scatterlist */
426
sg_dma_address(sg) = SYS_FPGA_BLOCK;
427
sg_dma_len(sg) = REG_BLOCK_SIZE;
428
sg = sg_next(sg);
429
430
/* Add the FPGA correlation data blocks to the scatterlist */
431
for (i = 0; i < NUM_FPGA; i++) {
432
info = &priv->info[i];
433
for (j = 0; j < info->num_lag_ram; j++) {
434
sg_dma_address(sg) = fpga_block_addr(priv, i, j);
435
sg_dma_len(sg) = info->blk_size;
436
sg = sg_next(sg);
437
}
438
}
439
440
/*
441
* All physical addresses and lengths are present in the structure
442
* now. It can be reused for every FPGA DATA interrupt
443
*/
444
return 0;
445
}
446
447
/*
448
* FPGA Register Access Helpers
449
*/
450
451
static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
452
unsigned int reg, u32 val)
453
{
454
const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
455
iowrite32be(val, priv->regs + fpga_start + reg);
456
}
457
458
static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
459
unsigned int reg)
460
{
461
const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
462
return ioread32be(priv->regs + fpga_start + reg);
463
}
464
465
/**
466
* data_calculate_bufsize() - calculate the data buffer size required
467
* @priv: the driver's private data structure
468
*
469
* Calculate the total buffer size needed to hold a single block
470
* of correlation data
471
*
472
* CONTEXT: user
473
*
474
* Returns 0 on success, -ERRNO otherwise
475
*/
476
static int data_calculate_bufsize(struct fpga_device *priv)
477
{
478
u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
479
u32 conf1, conf2, version;
480
u32 num_lag_ram, blk_size;
481
int i;
482
483
/* Each buffer starts with the 5 FPGA register areas */
484
priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
485
486
/* Read and store the configuration data for each FPGA */
487
for (i = 0; i < NUM_FPGA; i++) {
488
version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
489
conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
490
conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
491
492
/* minor version 2 and later */
493
if ((version & 0x000000FF) >= 2) {
494
num_corl = (conf1 & 0x000000F0) >> 4;
495
num_pack = (conf1 & 0x00000F00) >> 8;
496
num_lags = (conf1 & 0x00FFF000) >> 12;
497
num_meta = (conf1 & 0x7F000000) >> 24;
498
num_qcnt = (conf2 & 0x00000FFF) >> 0;
499
} else {
500
num_corl = (conf1 & 0x000000F0) >> 4;
501
num_pack = 1; /* implied */
502
num_lags = (conf1 & 0x000FFF00) >> 8;
503
num_meta = (conf1 & 0x7FF00000) >> 20;
504
num_qcnt = (conf2 & 0x00000FFF) >> 0;
505
}
506
507
num_lag_ram = (num_corl + num_pack - 1) / num_pack;
508
blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
509
510
priv->info[i].num_lag_ram = num_lag_ram;
511
priv->info[i].blk_size = blk_size;
512
priv->bufsize += num_lag_ram * blk_size;
513
514
dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
515
dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
516
dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
517
dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
518
dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
519
dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
520
}
521
522
dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
523
return 0;
524
}
525
526
/*
527
* Interrupt Handling
528
*/
529
530
/**
531
* data_disable_interrupts() - stop the device from generating interrupts
532
* @priv: the driver's private data structure
533
*
534
* Hide interrupts by switching to GPIO interrupt source
535
*
536
* LOCKING: must hold dev->lock
537
*/
538
static void data_disable_interrupts(struct fpga_device *priv)
539
{
540
/* hide the interrupt by switching the IRQ driver to GPIO */
541
iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
542
}
543
544
/**
545
* data_enable_interrupts() - allow the device to generate interrupts
546
* @priv: the driver's private data structure
547
*
548
* Unhide interrupts by switching to the FPGA interrupt source. At the
549
* same time, clear the DATA-FPGA status registers.
550
*
551
* LOCKING: must hold dev->lock
552
*/
553
static void data_enable_interrupts(struct fpga_device *priv)
554
{
555
/* clear the actual FPGA corl_done interrupt */
556
fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
557
fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
558
fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
559
fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
560
561
/* flush the writes */
562
fpga_read_reg(priv, 0, MMAP_REG_STATUS);
563
564
/* switch back to the external interrupt source */
565
iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
566
}
567
568
/**
569
* data_dma_cb() - DMAEngine callback for DMA completion
570
* @data: the driver's private data structure
571
*
572
* Complete a DMA transfer from the DATA-FPGA's
573
*
574
* This is called via the DMA callback mechanism, and will handle moving the
575
* completed DMA transaction to the used list, and then wake any processes
576
* waiting for new data
577
*
578
* CONTEXT: any, softirq expected
579
*/
580
static void data_dma_cb(void *data)
581
{
582
struct fpga_device *priv = data;
583
unsigned long flags;
584
585
spin_lock_irqsave(&priv->lock, flags);
586
587
/* If there is no inflight buffer, we've got a bug */
588
BUG_ON(priv->inflight == NULL);
589
590
/* Move the inflight buffer onto the used list */
591
list_move_tail(&priv->inflight->entry, &priv->used);
592
priv->inflight = NULL;
593
594
/* clear the FPGA status and re-enable interrupts */
595
data_enable_interrupts(priv);
596
597
spin_unlock_irqrestore(&priv->lock, flags);
598
599
/*
600
* We've changed both the inflight and used lists, so we need
601
* to wake up any processes that are blocking for those events
602
*/
603
wake_up(&priv->wait);
604
}
605
606
/**
607
* data_submit_dma() - prepare and submit the required DMA to fill a buffer
608
* @priv: the driver's private data structure
609
* @buf: the data buffer
610
*
611
* Prepare and submit the necessary DMA transactions to fill a correlation
612
* data buffer.
613
*
614
* LOCKING: must hold dev->lock
615
* CONTEXT: hardirq only
616
*
617
* Returns 0 on success, -ERRNO otherwise
618
*/
619
static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
620
{
621
struct scatterlist *dst_sg, *src_sg;
622
unsigned int dst_nents, src_nents;
623
struct dma_chan *chan = priv->chan;
624
struct dma_async_tx_descriptor *tx;
625
dma_cookie_t cookie;
626
dma_addr_t dst, src;
627
628
dst_sg = buf->vb.sglist;
629
dst_nents = buf->vb.sglen;
630
631
src_sg = priv->corl_table.sgl;
632
src_nents = priv->corl_nents;
633
634
/*
635
* All buffers passed to this function should be ready and mapped
636
* for DMA already. Therefore, we don't need to do anything except
637
* submit it to the Freescale DMA Engine for processing
638
*/
639
640
/* setup the scatterlist to scatterlist transfer */
641
tx = chan->device->device_prep_dma_sg(chan,
642
dst_sg, dst_nents,
643
src_sg, src_nents,
644
0);
645
if (!tx) {
646
dev_err(priv->dev, "unable to prep scatterlist DMA\n");
647
return -ENOMEM;
648
}
649
650
/* submit the transaction to the DMA controller */
651
cookie = tx->tx_submit(tx);
652
if (dma_submit_error(cookie)) {
653
dev_err(priv->dev, "unable to submit scatterlist DMA\n");
654
return -ENOMEM;
655
}
656
657
/* Prepare the re-read of the SYS-FPGA block */
658
dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
659
src = SYS_FPGA_BLOCK;
660
tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
661
REG_BLOCK_SIZE,
662
DMA_PREP_INTERRUPT);
663
if (!tx) {
664
dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
665
return -ENOMEM;
666
}
667
668
/* Setup the callback */
669
tx->callback = data_dma_cb;
670
tx->callback_param = priv;
671
672
/* submit the transaction to the DMA controller */
673
cookie = tx->tx_submit(tx);
674
if (dma_submit_error(cookie)) {
675
dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
676
return -ENOMEM;
677
}
678
679
return 0;
680
}
681
682
#define CORL_DONE 0x1
683
#define CORL_ERR 0x2
684
685
static irqreturn_t data_irq(int irq, void *dev_id)
686
{
687
struct fpga_device *priv = dev_id;
688
bool submitted = false;
689
struct data_buf *buf;
690
u32 status;
691
int i;
692
693
/* detect spurious interrupts via FPGA status */
694
for (i = 0; i < 4; i++) {
695
status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
696
if (!(status & (CORL_DONE | CORL_ERR))) {
697
dev_err(priv->dev, "spurious irq detected (FPGA)\n");
698
return IRQ_NONE;
699
}
700
}
701
702
/* detect spurious interrupts via raw IRQ pin readback */
703
status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
704
if (status & IRQ_CORL_DONE) {
705
dev_err(priv->dev, "spurious irq detected (IRQ)\n");
706
return IRQ_NONE;
707
}
708
709
spin_lock(&priv->lock);
710
711
/* hide the interrupt by switching the IRQ driver to GPIO */
712
data_disable_interrupts(priv);
713
714
/* If there are no free buffers, drop this data */
715
if (list_empty(&priv->free)) {
716
priv->num_dropped++;
717
goto out;
718
}
719
720
buf = list_first_entry(&priv->free, struct data_buf, entry);
721
list_del_init(&buf->entry);
722
BUG_ON(buf->size != priv->bufsize);
723
724
/* Submit a DMA transfer to get the correlation data */
725
if (data_submit_dma(priv, buf)) {
726
dev_err(priv->dev, "Unable to setup DMA transfer\n");
727
list_move_tail(&buf->entry, &priv->free);
728
goto out;
729
}
730
731
/* Save the buffer for the DMA callback */
732
priv->inflight = buf;
733
submitted = true;
734
735
/* Start the DMA Engine */
736
dma_async_memcpy_issue_pending(priv->chan);
737
738
out:
739
/* If no DMA was submitted, re-enable interrupts */
740
if (!submitted)
741
data_enable_interrupts(priv);
742
743
spin_unlock(&priv->lock);
744
return IRQ_HANDLED;
745
}
746
747
/*
748
* Realtime Device Enable Helpers
749
*/
750
751
/**
752
* data_device_enable() - enable the device for buffered dumping
753
* @priv: the driver's private data structure
754
*
755
* Enable the device for buffered dumping. Allocates buffers and hooks up
756
* the interrupt handler. When this finishes, data will come pouring in.
757
*
758
* LOCKING: must hold dev->mutex
759
* CONTEXT: user context only
760
*
761
* Returns 0 on success, -ERRNO otherwise
762
*/
763
static int data_device_enable(struct fpga_device *priv)
764
{
765
u32 val;
766
int ret;
767
768
/* multiple enables are safe: they do nothing */
769
if (priv->enabled)
770
return 0;
771
772
/* check that the FPGAs are programmed */
773
val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
774
if (!(val & (1 << 18))) {
775
dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
776
return -ENODATA;
777
}
778
779
/* read the FPGAs to calculate the buffer size */
780
ret = data_calculate_bufsize(priv);
781
if (ret) {
782
dev_err(priv->dev, "unable to calculate buffer size\n");
783
goto out_error;
784
}
785
786
/* allocate the correlation data buffers */
787
ret = data_alloc_buffers(priv);
788
if (ret) {
789
dev_err(priv->dev, "unable to allocate buffers\n");
790
goto out_error;
791
}
792
793
/* setup the source scatterlist for dumping correlation data */
794
ret = data_setup_corl_table(priv);
795
if (ret) {
796
dev_err(priv->dev, "unable to setup correlation DMA table\n");
797
goto out_error;
798
}
799
800
/* hookup the irq handler */
801
ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
802
if (ret) {
803
dev_err(priv->dev, "unable to request IRQ handler\n");
804
goto out_error;
805
}
806
807
/* switch to the external FPGA IRQ line */
808
data_enable_interrupts(priv);
809
810
/* success, we're enabled */
811
priv->enabled = true;
812
return 0;
813
814
out_error:
815
sg_free_table(&priv->corl_table);
816
priv->corl_nents = 0;
817
818
data_free_buffers(priv);
819
return ret;
820
}
821
822
/**
823
* data_device_disable() - disable the device for buffered dumping
824
* @priv: the driver's private data structure
825
*
826
* Disable the device for buffered dumping. Stops new DMA transactions from
827
* being generated, waits for all outstanding DMA to complete, and then frees
828
* all buffers.
829
*
830
* LOCKING: must hold dev->mutex
831
* CONTEXT: user only
832
*
833
* Returns 0 on success, -ERRNO otherwise
834
*/
835
static int data_device_disable(struct fpga_device *priv)
836
{
837
int ret;
838
839
/* allow multiple disable */
840
if (!priv->enabled)
841
return 0;
842
843
/* switch to the internal GPIO IRQ line */
844
data_disable_interrupts(priv);
845
846
/* unhook the irq handler */
847
free_irq(priv->irq, priv);
848
849
/*
850
* wait for all outstanding DMA to complete
851
*
852
* Device interrupts are disabled, therefore another buffer cannot
853
* be marked inflight.
854
*/
855
ret = wait_event_interruptible(priv->wait, priv->inflight == NULL);
856
if (ret)
857
return ret;
858
859
/* free the correlation table */
860
sg_free_table(&priv->corl_table);
861
priv->corl_nents = 0;
862
863
/*
864
* We are taking the spinlock not to protect priv->enabled, but instead
865
* to make sure that there are no readers in the process of altering
866
* the free or used lists while we are setting this flag.
867
*/
868
spin_lock_irq(&priv->lock);
869
priv->enabled = false;
870
spin_unlock_irq(&priv->lock);
871
872
/* free all buffers: the free and used lists are not being changed */
873
data_free_buffers(priv);
874
return 0;
875
}
876
877
/*
878
* DEBUGFS Interface
879
*/
880
#ifdef CONFIG_DEBUG_FS
881
882
/*
883
* Count the number of entries in the given list
884
*/
885
static unsigned int list_num_entries(struct list_head *list)
886
{
887
struct list_head *entry;
888
unsigned int ret = 0;
889
890
list_for_each(entry, list)
891
ret++;
892
893
return ret;
894
}
895
896
static int data_debug_show(struct seq_file *f, void *offset)
897
{
898
struct fpga_device *priv = f->private;
899
int ret;
900
901
/*
902
* Lock the mutex first, so that we get an accurate value for enable
903
* Lock the spinlock next, to get accurate list counts
904
*/
905
ret = mutex_lock_interruptible(&priv->mutex);
906
if (ret)
907
return ret;
908
909
spin_lock_irq(&priv->lock);
910
911
seq_printf(f, "enabled: %d\n", priv->enabled);
912
seq_printf(f, "bufsize: %d\n", priv->bufsize);
913
seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
914
seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
915
seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
916
seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
917
seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
918
919
spin_unlock_irq(&priv->lock);
920
mutex_unlock(&priv->mutex);
921
return 0;
922
}
923
924
static int data_debug_open(struct inode *inode, struct file *file)
925
{
926
return single_open(file, data_debug_show, inode->i_private);
927
}
928
929
static const struct file_operations data_debug_fops = {
930
.owner = THIS_MODULE,
931
.open = data_debug_open,
932
.read = seq_read,
933
.llseek = seq_lseek,
934
.release = single_release,
935
};
936
937
static int data_debugfs_init(struct fpga_device *priv)
938
{
939
priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
940
&data_debug_fops);
941
if (IS_ERR(priv->dbg_entry))
942
return PTR_ERR(priv->dbg_entry);
943
944
return 0;
945
}
946
947
static void data_debugfs_exit(struct fpga_device *priv)
948
{
949
debugfs_remove(priv->dbg_entry);
950
}
951
952
#else
953
954
static inline int data_debugfs_init(struct fpga_device *priv)
955
{
956
return 0;
957
}
958
959
static inline void data_debugfs_exit(struct fpga_device *priv)
960
{
961
}
962
963
#endif /* CONFIG_DEBUG_FS */
964
965
/*
966
* SYSFS Attributes
967
*/
968
969
static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
970
char *buf)
971
{
972
struct fpga_device *priv = dev_get_drvdata(dev);
973
return snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
974
}
975
976
static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
977
const char *buf, size_t count)
978
{
979
struct fpga_device *priv = dev_get_drvdata(dev);
980
unsigned long enable;
981
int ret;
982
983
ret = strict_strtoul(buf, 0, &enable);
984
if (ret) {
985
dev_err(priv->dev, "unable to parse enable input\n");
986
return -EINVAL;
987
}
988
989
ret = mutex_lock_interruptible(&priv->mutex);
990
if (ret)
991
return ret;
992
993
if (enable)
994
ret = data_device_enable(priv);
995
else
996
ret = data_device_disable(priv);
997
998
if (ret) {
999
dev_err(priv->dev, "device %s failed\n",
1000
enable ? "enable" : "disable");
1001
count = ret;
1002
goto out_unlock;
1003
}
1004
1005
out_unlock:
1006
mutex_unlock(&priv->mutex);
1007
return count;
1008
}
1009
1010
static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
1011
1012
static struct attribute *data_sysfs_attrs[] = {
1013
&dev_attr_enable.attr,
1014
NULL,
1015
};
1016
1017
static const struct attribute_group rt_sysfs_attr_group = {
1018
.attrs = data_sysfs_attrs,
1019
};
1020
1021
/*
1022
* FPGA Realtime Data Character Device
1023
*/
1024
1025
static int data_open(struct inode *inode, struct file *filp)
1026
{
1027
/*
1028
* The miscdevice layer puts our struct miscdevice into the
1029
* filp->private_data field. We use this to find our private
1030
* data and then overwrite it with our own private structure.
1031
*/
1032
struct fpga_device *priv = container_of(filp->private_data,
1033
struct fpga_device, miscdev);
1034
struct fpga_reader *reader;
1035
int ret;
1036
1037
/* allocate private data */
1038
reader = kzalloc(sizeof(*reader), GFP_KERNEL);
1039
if (!reader)
1040
return -ENOMEM;
1041
1042
reader->priv = priv;
1043
reader->buf = NULL;
1044
1045
filp->private_data = reader;
1046
ret = nonseekable_open(inode, filp);
1047
if (ret) {
1048
dev_err(priv->dev, "nonseekable-open failed\n");
1049
kfree(reader);
1050
return ret;
1051
}
1052
1053
/*
1054
* success, increase the reference count of the private data structure
1055
* so that it doesn't disappear if the device is unbound
1056
*/
1057
kref_get(&priv->ref);
1058
return 0;
1059
}
1060
1061
static int data_release(struct inode *inode, struct file *filp)
1062
{
1063
struct fpga_reader *reader = filp->private_data;
1064
struct fpga_device *priv = reader->priv;
1065
1066
/* free the per-reader structure */
1067
data_free_buffer(reader->buf);
1068
kfree(reader);
1069
filp->private_data = NULL;
1070
1071
/* decrement our reference count to the private data */
1072
kref_put(&priv->ref, fpga_device_release);
1073
return 0;
1074
}
1075
1076
static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
1077
loff_t *f_pos)
1078
{
1079
struct fpga_reader *reader = filp->private_data;
1080
struct fpga_device *priv = reader->priv;
1081
struct list_head *used = &priv->used;
1082
struct data_buf *dbuf;
1083
size_t avail;
1084
void *data;
1085
int ret;
1086
1087
/* check if we already have a partial buffer */
1088
if (reader->buf) {
1089
dbuf = reader->buf;
1090
goto have_buffer;
1091
}
1092
1093
spin_lock_irq(&priv->lock);
1094
1095
/* Block until there is at least one buffer on the used list */
1096
while (list_empty(used)) {
1097
spin_unlock_irq(&priv->lock);
1098
1099
if (filp->f_flags & O_NONBLOCK)
1100
return -EAGAIN;
1101
1102
ret = wait_event_interruptible(priv->wait, !list_empty(used));
1103
if (ret)
1104
return ret;
1105
1106
spin_lock_irq(&priv->lock);
1107
}
1108
1109
/* Grab the first buffer off of the used list */
1110
dbuf = list_first_entry(used, struct data_buf, entry);
1111
list_del_init(&dbuf->entry);
1112
1113
spin_unlock_irq(&priv->lock);
1114
1115
/* Buffers are always mapped: unmap it */
1116
videobuf_dma_unmap(priv->dev, &dbuf->vb);
1117
1118
/* save the buffer for later */
1119
reader->buf = dbuf;
1120
reader->buf_start = 0;
1121
1122
have_buffer:
1123
/* Get the number of bytes available */
1124
avail = dbuf->size - reader->buf_start;
1125
data = dbuf->vb.vaddr + reader->buf_start;
1126
1127
/* Get the number of bytes we can transfer */
1128
count = min(count, avail);
1129
1130
/* Copy the data to the userspace buffer */
1131
if (copy_to_user(ubuf, data, count))
1132
return -EFAULT;
1133
1134
/* Update the amount of available space */
1135
avail -= count;
1136
1137
/*
1138
* If there is still some data available, save the buffer for the
1139
* next userspace call to read() and return
1140
*/
1141
if (avail > 0) {
1142
reader->buf_start += count;
1143
reader->buf = dbuf;
1144
return count;
1145
}
1146
1147
/*
1148
* Get the buffer ready to be reused for DMA
1149
*
1150
* If it fails, we pretend that the read never happed and return
1151
* -EFAULT to userspace. The read will be retried.
1152
*/
1153
ret = videobuf_dma_map(priv->dev, &dbuf->vb);
1154
if (ret) {
1155
dev_err(priv->dev, "unable to remap buffer for DMA\n");
1156
return -EFAULT;
1157
}
1158
1159
/* Lock against concurrent enable/disable */
1160
spin_lock_irq(&priv->lock);
1161
1162
/* the reader is finished with this buffer */
1163
reader->buf = NULL;
1164
1165
/*
1166
* One of two things has happened, the device is disabled, or the
1167
* device has been reconfigured underneath us. In either case, we
1168
* should just throw away the buffer.
1169
*/
1170
if (!priv->enabled || dbuf->size != priv->bufsize) {
1171
videobuf_dma_unmap(priv->dev, &dbuf->vb);
1172
data_free_buffer(dbuf);
1173
goto out_unlock;
1174
}
1175
1176
/* The buffer is safe to reuse, so add it back to the free list */
1177
list_add_tail(&dbuf->entry, &priv->free);
1178
1179
out_unlock:
1180
spin_unlock_irq(&priv->lock);
1181
return count;
1182
}
1183
1184
static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
1185
{
1186
struct fpga_reader *reader = filp->private_data;
1187
struct fpga_device *priv = reader->priv;
1188
unsigned int mask = 0;
1189
1190
poll_wait(filp, &priv->wait, tbl);
1191
1192
if (!list_empty(&priv->used))
1193
mask |= POLLIN | POLLRDNORM;
1194
1195
return mask;
1196
}
1197
1198
static int data_mmap(struct file *filp, struct vm_area_struct *vma)
1199
{
1200
struct fpga_reader *reader = filp->private_data;
1201
struct fpga_device *priv = reader->priv;
1202
unsigned long offset, vsize, psize, addr;
1203
1204
/* VMA properties */
1205
offset = vma->vm_pgoff << PAGE_SHIFT;
1206
vsize = vma->vm_end - vma->vm_start;
1207
psize = priv->phys_size - offset;
1208
addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
1209
1210
/* Check against the FPGA region's physical memory size */
1211
if (vsize > psize) {
1212
dev_err(priv->dev, "requested mmap mapping too large\n");
1213
return -EINVAL;
1214
}
1215
1216
/* IO memory (stop cacheing) */
1217
vma->vm_flags |= VM_IO | VM_RESERVED;
1218
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1219
1220
return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
1221
vma->vm_page_prot);
1222
}
1223
1224
static const struct file_operations data_fops = {
1225
.owner = THIS_MODULE,
1226
.open = data_open,
1227
.release = data_release,
1228
.read = data_read,
1229
.poll = data_poll,
1230
.mmap = data_mmap,
1231
.llseek = no_llseek,
1232
};
1233
1234
/*
1235
* OpenFirmware Device Subsystem
1236
*/
1237
1238
static bool dma_filter(struct dma_chan *chan, void *data)
1239
{
1240
/*
1241
* DMA Channel #0 is used for the FPGA Programmer, so ignore it
1242
*
1243
* This probably won't survive an unload/load cycle of the Freescale
1244
* DMAEngine driver, but that won't be a problem
1245
*/
1246
if (chan->chan_id == 0 && chan->device->dev_id == 0)
1247
return false;
1248
1249
return true;
1250
}
1251
1252
static int data_of_probe(struct platform_device *op,
1253
const struct of_device_id *match)
1254
{
1255
struct device_node *of_node = op->dev.of_node;
1256
struct device *this_device;
1257
struct fpga_device *priv;
1258
struct resource res;
1259
dma_cap_mask_t mask;
1260
int ret;
1261
1262
/* Allocate private data */
1263
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1264
if (!priv) {
1265
dev_err(&op->dev, "Unable to allocate device private data\n");
1266
ret = -ENOMEM;
1267
goto out_return;
1268
}
1269
1270
dev_set_drvdata(&op->dev, priv);
1271
priv->dev = &op->dev;
1272
kref_init(&priv->ref);
1273
mutex_init(&priv->mutex);
1274
1275
dev_set_drvdata(priv->dev, priv);
1276
spin_lock_init(&priv->lock);
1277
INIT_LIST_HEAD(&priv->free);
1278
INIT_LIST_HEAD(&priv->used);
1279
init_waitqueue_head(&priv->wait);
1280
1281
/* Setup the misc device */
1282
priv->miscdev.minor = MISC_DYNAMIC_MINOR;
1283
priv->miscdev.name = drv_name;
1284
priv->miscdev.fops = &data_fops;
1285
1286
/* Get the physical address of the FPGA registers */
1287
ret = of_address_to_resource(of_node, 0, &res);
1288
if (ret) {
1289
dev_err(&op->dev, "Unable to find FPGA physical address\n");
1290
ret = -ENODEV;
1291
goto out_free_priv;
1292
}
1293
1294
priv->phys_addr = res.start;
1295
priv->phys_size = resource_size(&res);
1296
1297
/* ioremap the registers for use */
1298
priv->regs = of_iomap(of_node, 0);
1299
if (!priv->regs) {
1300
dev_err(&op->dev, "Unable to ioremap registers\n");
1301
ret = -ENOMEM;
1302
goto out_free_priv;
1303
}
1304
1305
dma_cap_zero(mask);
1306
dma_cap_set(DMA_MEMCPY, mask);
1307
dma_cap_set(DMA_INTERRUPT, mask);
1308
dma_cap_set(DMA_SLAVE, mask);
1309
dma_cap_set(DMA_SG, mask);
1310
1311
/* Request a DMA channel */
1312
priv->chan = dma_request_channel(mask, dma_filter, NULL);
1313
if (!priv->chan) {
1314
dev_err(&op->dev, "Unable to request DMA channel\n");
1315
ret = -ENODEV;
1316
goto out_unmap_regs;
1317
}
1318
1319
/* Find the correct IRQ number */
1320
priv->irq = irq_of_parse_and_map(of_node, 0);
1321
if (priv->irq == NO_IRQ) {
1322
dev_err(&op->dev, "Unable to find IRQ line\n");
1323
ret = -ENODEV;
1324
goto out_release_dma;
1325
}
1326
1327
/* Drive the GPIO for FPGA IRQ high (no interrupt) */
1328
iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
1329
1330
/* Register the miscdevice */
1331
ret = misc_register(&priv->miscdev);
1332
if (ret) {
1333
dev_err(&op->dev, "Unable to register miscdevice\n");
1334
goto out_irq_dispose_mapping;
1335
}
1336
1337
/* Create the debugfs files */
1338
ret = data_debugfs_init(priv);
1339
if (ret) {
1340
dev_err(&op->dev, "Unable to create debugfs files\n");
1341
goto out_misc_deregister;
1342
}
1343
1344
/* Create the sysfs files */
1345
this_device = priv->miscdev.this_device;
1346
dev_set_drvdata(this_device, priv);
1347
ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
1348
if (ret) {
1349
dev_err(&op->dev, "Unable to create sysfs files\n");
1350
goto out_data_debugfs_exit;
1351
}
1352
1353
dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
1354
return 0;
1355
1356
out_data_debugfs_exit:
1357
data_debugfs_exit(priv);
1358
out_misc_deregister:
1359
misc_deregister(&priv->miscdev);
1360
out_irq_dispose_mapping:
1361
irq_dispose_mapping(priv->irq);
1362
out_release_dma:
1363
dma_release_channel(priv->chan);
1364
out_unmap_regs:
1365
iounmap(priv->regs);
1366
out_free_priv:
1367
kref_put(&priv->ref, fpga_device_release);
1368
out_return:
1369
return ret;
1370
}
1371
1372
static int data_of_remove(struct platform_device *op)
1373
{
1374
struct fpga_device *priv = dev_get_drvdata(&op->dev);
1375
struct device *this_device = priv->miscdev.this_device;
1376
1377
/* remove all sysfs files, now the device cannot be re-enabled */
1378
sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
1379
1380
/* remove all debugfs files */
1381
data_debugfs_exit(priv);
1382
1383
/* disable the device from generating data */
1384
data_device_disable(priv);
1385
1386
/* remove the character device to stop new readers from appearing */
1387
misc_deregister(&priv->miscdev);
1388
1389
/* cleanup everything not needed by readers */
1390
irq_dispose_mapping(priv->irq);
1391
dma_release_channel(priv->chan);
1392
iounmap(priv->regs);
1393
1394
/* release our reference */
1395
kref_put(&priv->ref, fpga_device_release);
1396
return 0;
1397
}
1398
1399
static struct of_device_id data_of_match[] = {
1400
{ .compatible = "carma,carma-fpga", },
1401
{},
1402
};
1403
1404
static struct of_platform_driver data_of_driver = {
1405
.probe = data_of_probe,
1406
.remove = data_of_remove,
1407
.driver = {
1408
.name = drv_name,
1409
.of_match_table = data_of_match,
1410
.owner = THIS_MODULE,
1411
},
1412
};
1413
1414
/*
1415
* Module Init / Exit
1416
*/
1417
1418
static int __init data_init(void)
1419
{
1420
return of_register_platform_driver(&data_of_driver);
1421
}
1422
1423
static void __exit data_exit(void)
1424
{
1425
of_unregister_platform_driver(&data_of_driver);
1426
}
1427
1428
MODULE_AUTHOR("Ira W. Snyder <[email protected]>");
1429
MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
1430
MODULE_LICENSE("GPL");
1431
1432
module_init(data_init);
1433
module_exit(data_exit);
1434
1435