Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/misc/pti.c
15109 views
1
/*
2
* pti.c - PTI driver for cJTAG data extration
3
*
4
* Copyright (C) Intel 2010
5
*
6
* This program is free software; you can redistribute it and/or modify
7
* it under the terms of the GNU General Public License version 2 as
8
* published by the Free Software Foundation.
9
*
10
* This program is distributed in the hope that it will be useful,
11
* but WITHOUT ANY WARRANTY; without even the implied warranty of
12
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
* GNU General Public License for more details.
14
*
15
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16
*
17
* The PTI (Parallel Trace Interface) driver directs trace data routed from
18
* various parts in the system out through the Intel Penwell PTI port and
19
* out of the mobile device for analysis with a debugging tool
20
* (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7,
21
* compact JTAG, standard.
22
*/
23
24
#include <linux/init.h>
25
#include <linux/sched.h>
26
#include <linux/interrupt.h>
27
#include <linux/console.h>
28
#include <linux/kernel.h>
29
#include <linux/module.h>
30
#include <linux/tty.h>
31
#include <linux/tty_driver.h>
32
#include <linux/pci.h>
33
#include <linux/mutex.h>
34
#include <linux/miscdevice.h>
35
#include <linux/pti.h>
36
37
#define DRIVERNAME "pti"
38
#define PCINAME "pciPTI"
39
#define TTYNAME "ttyPTI"
40
#define CHARNAME "pti"
41
#define PTITTY_MINOR_START 0
42
#define PTITTY_MINOR_NUM 2
43
#define MAX_APP_IDS 16 /* 128 channel ids / u8 bit size */
44
#define MAX_OS_IDS 16 /* 128 channel ids / u8 bit size */
45
#define MAX_MODEM_IDS 16 /* 128 channel ids / u8 bit size */
46
#define MODEM_BASE_ID 71 /* modem master ID address */
47
#define CONTROL_ID 72 /* control master ID address */
48
#define CONSOLE_ID 73 /* console master ID address */
49
#define OS_BASE_ID 74 /* base OS master ID address */
50
#define APP_BASE_ID 80 /* base App master ID address */
51
#define CONTROL_FRAME_LEN 32 /* PTI control frame maximum size */
52
#define USER_COPY_SIZE 8192 /* 8Kb buffer for user space copy */
53
#define APERTURE_14 0x3800000 /* offset to first OS write addr */
54
#define APERTURE_LEN 0x400000 /* address length */
55
56
struct pti_tty {
57
struct pti_masterchannel *mc;
58
};
59
60
struct pti_dev {
61
struct tty_port port;
62
unsigned long pti_addr;
63
unsigned long aperture_base;
64
void __iomem *pti_ioaddr;
65
u8 ia_app[MAX_APP_IDS];
66
u8 ia_os[MAX_OS_IDS];
67
u8 ia_modem[MAX_MODEM_IDS];
68
};
69
70
/*
71
* This protects access to ia_app, ia_os, and ia_modem,
72
* which keeps track of channels allocated in
73
* an aperture write id.
74
*/
75
static DEFINE_MUTEX(alloclock);
76
77
static struct pci_device_id pci_ids[] __devinitconst = {
78
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)},
79
{0}
80
};
81
82
static struct tty_driver *pti_tty_driver;
83
static struct pti_dev *drv_data;
84
85
static unsigned int pti_console_channel;
86
static unsigned int pti_control_channel;
87
88
/**
89
* pti_write_to_aperture()- The private write function to PTI HW.
90
*
91
* @mc: The 'aperture'. It's part of a write address that holds
92
* a master and channel ID.
93
* @buf: Data being written to the HW that will ultimately be seen
94
* in a debugging tool (Fido, Lauterbach).
95
* @len: Size of buffer.
96
*
97
* Since each aperture is specified by a unique
98
* master/channel ID, no two processes will be writing
99
* to the same aperture at the same time so no lock is required. The
100
* PTI-Output agent will send these out in the order that they arrived, and
101
* thus, it will intermix these messages. The debug tool can then later
102
* regroup the appropriate message segments together reconstituting each
103
* message.
104
*/
105
static void pti_write_to_aperture(struct pti_masterchannel *mc,
106
u8 *buf,
107
int len)
108
{
109
int dwordcnt;
110
int final;
111
int i;
112
u32 ptiword;
113
u32 __iomem *aperture;
114
u8 *p = buf;
115
116
/*
117
* calculate the aperture offset from the base using the master and
118
* channel id's.
119
*/
120
aperture = drv_data->pti_ioaddr + (mc->master << 15)
121
+ (mc->channel << 8);
122
123
dwordcnt = len >> 2;
124
final = len - (dwordcnt << 2); /* final = trailing bytes */
125
if (final == 0 && dwordcnt != 0) { /* always need a final dword */
126
final += 4;
127
dwordcnt--;
128
}
129
130
for (i = 0; i < dwordcnt; i++) {
131
ptiword = be32_to_cpu(*(u32 *)p);
132
p += 4;
133
iowrite32(ptiword, aperture);
134
}
135
136
aperture += PTI_LASTDWORD_DTS; /* adding DTS signals that is EOM */
137
138
ptiword = 0;
139
for (i = 0; i < final; i++)
140
ptiword |= *p++ << (24-(8*i));
141
142
iowrite32(ptiword, aperture);
143
return;
144
}
145
146
/**
147
* pti_control_frame_built_and_sent()- control frame build and send function.
148
*
149
* @mc: The master / channel structure on which the function
150
* built a control frame.
151
*
152
* To be able to post process the PTI contents on host side, a control frame
153
* is added before sending any PTI content. So the host side knows on
154
* each PTI frame the name of the thread using a dedicated master / channel.
155
* The thread name is retrieved from the 'current' global variable.
156
* This function builds this frame and sends it to a master ID CONTROL_ID.
157
* The overhead is only 32 bytes since the driver only writes to HW
158
* in 32 byte chunks.
159
*/
160
161
static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc)
162
{
163
struct pti_masterchannel mccontrol = {.master = CONTROL_ID,
164
.channel = 0};
165
const char *control_format = "%3d %3d %s";
166
u8 control_frame[CONTROL_FRAME_LEN];
167
168
/*
169
* Since we access the comm member in current's task_struct,
170
* we only need to be as large as what 'comm' in that
171
* structure is.
172
*/
173
char comm[TASK_COMM_LEN];
174
175
if (!in_interrupt())
176
get_task_comm(comm, current);
177
else
178
strncpy(comm, "Interrupt", TASK_COMM_LEN);
179
180
/* Absolutely ensure our buffer is zero terminated. */
181
comm[TASK_COMM_LEN-1] = 0;
182
183
mccontrol.channel = pti_control_channel;
184
pti_control_channel = (pti_control_channel + 1) & 0x7f;
185
186
snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master,
187
mc->channel, comm);
188
pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame));
189
}
190
191
/**
192
* pti_write_full_frame_to_aperture()- high level function to
193
* write to PTI.
194
*
195
* @mc: The 'aperture'. It's part of a write address that holds
196
* a master and channel ID.
197
* @buf: Data being written to the HW that will ultimately be seen
198
* in a debugging tool (Fido, Lauterbach).
199
* @len: Size of buffer.
200
*
201
* All threads sending data (either console, user space application, ...)
202
* are calling the high level function to write to PTI meaning that it is
203
* possible to add a control frame before sending the content.
204
*/
205
static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc,
206
const unsigned char *buf,
207
int len)
208
{
209
pti_control_frame_built_and_sent(mc);
210
pti_write_to_aperture(mc, (u8 *)buf, len);
211
}
212
213
/**
214
* get_id()- Allocate a master and channel ID.
215
*
216
* @id_array: an array of bits representing what channel
217
* id's are allocated for writing.
218
* @max_ids: The max amount of available write IDs to use.
219
* @base_id: The starting SW channel ID, based on the Intel
220
* PTI arch.
221
*
222
* Returns:
223
* pti_masterchannel struct with master, channel ID address
224
* 0 for error
225
*
226
* Each bit in the arrays ia_app and ia_os correspond to a master and
227
* channel id. The bit is one if the id is taken and 0 if free. For
228
* every master there are 128 channel id's.
229
*/
230
static struct pti_masterchannel *get_id(u8 *id_array, int max_ids, int base_id)
231
{
232
struct pti_masterchannel *mc;
233
int i, j, mask;
234
235
mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL);
236
if (mc == NULL)
237
return NULL;
238
239
/* look for a byte with a free bit */
240
for (i = 0; i < max_ids; i++)
241
if (id_array[i] != 0xff)
242
break;
243
if (i == max_ids) {
244
kfree(mc);
245
return NULL;
246
}
247
/* find the bit in the 128 possible channel opportunities */
248
mask = 0x80;
249
for (j = 0; j < 8; j++) {
250
if ((id_array[i] & mask) == 0)
251
break;
252
mask >>= 1;
253
}
254
255
/* grab it */
256
id_array[i] |= mask;
257
mc->master = base_id;
258
mc->channel = ((i & 0xf)<<3) + j;
259
/* write new master Id / channel Id allocation to channel control */
260
pti_control_frame_built_and_sent(mc);
261
return mc;
262
}
263
264
/*
265
* The following three functions:
266
* pti_request_mastercahannel(), mipi_release_masterchannel()
267
* and pti_writedata() are an API for other kernel drivers to
268
* access PTI.
269
*/
270
271
/**
272
* pti_request_masterchannel()- Kernel API function used to allocate
273
* a master, channel ID address
274
* to write to PTI HW.
275
*
276
* @type: 0- request Application master, channel aperture ID write address.
277
* 1- request OS master, channel aperture ID write
278
* address.
279
* 2- request Modem master, channel aperture ID
280
* write address.
281
* Other values, error.
282
*
283
* Returns:
284
* pti_masterchannel struct
285
* 0 for error
286
*/
287
struct pti_masterchannel *pti_request_masterchannel(u8 type)
288
{
289
struct pti_masterchannel *mc;
290
291
mutex_lock(&alloclock);
292
293
switch (type) {
294
295
case 0:
296
mc = get_id(drv_data->ia_app, MAX_APP_IDS, APP_BASE_ID);
297
break;
298
299
case 1:
300
mc = get_id(drv_data->ia_os, MAX_OS_IDS, OS_BASE_ID);
301
break;
302
303
case 2:
304
mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS, MODEM_BASE_ID);
305
break;
306
default:
307
mc = NULL;
308
}
309
310
mutex_unlock(&alloclock);
311
return mc;
312
}
313
EXPORT_SYMBOL_GPL(pti_request_masterchannel);
314
315
/**
316
* pti_release_masterchannel()- Kernel API function used to release
317
* a master, channel ID address
318
* used to write to PTI HW.
319
*
320
* @mc: master, channel apeture ID address to be released. This
321
* will de-allocate the structure via kfree().
322
*/
323
void pti_release_masterchannel(struct pti_masterchannel *mc)
324
{
325
u8 master, channel, i;
326
327
mutex_lock(&alloclock);
328
329
if (mc) {
330
master = mc->master;
331
channel = mc->channel;
332
333
if (master == APP_BASE_ID) {
334
i = channel >> 3;
335
drv_data->ia_app[i] &= ~(0x80>>(channel & 0x7));
336
} else if (master == OS_BASE_ID) {
337
i = channel >> 3;
338
drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7));
339
} else {
340
i = channel >> 3;
341
drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7));
342
}
343
344
kfree(mc);
345
}
346
347
mutex_unlock(&alloclock);
348
}
349
EXPORT_SYMBOL_GPL(pti_release_masterchannel);
350
351
/**
352
* pti_writedata()- Kernel API function used to write trace
353
* debugging data to PTI HW.
354
*
355
* @mc: Master, channel aperture ID address to write to.
356
* Null value will return with no write occurring.
357
* @buf: Trace debuging data to write to the PTI HW.
358
* Null value will return with no write occurring.
359
* @count: Size of buf. Value of 0 or a negative number will
360
* return with no write occuring.
361
*/
362
void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count)
363
{
364
/*
365
* since this function is exported, this is treated like an
366
* API function, thus, all parameters should
367
* be checked for validity.
368
*/
369
if ((mc != NULL) && (buf != NULL) && (count > 0))
370
pti_write_to_aperture(mc, buf, count);
371
return;
372
}
373
EXPORT_SYMBOL_GPL(pti_writedata);
374
375
/**
376
* pti_pci_remove()- Driver exit method to remove PTI from
377
* PCI bus.
378
* @pdev: variable containing pci info of PTI.
379
*/
380
static void __devexit pti_pci_remove(struct pci_dev *pdev)
381
{
382
struct pti_dev *drv_data;
383
384
drv_data = pci_get_drvdata(pdev);
385
if (drv_data != NULL) {
386
pci_iounmap(pdev, drv_data->pti_ioaddr);
387
pci_set_drvdata(pdev, NULL);
388
kfree(drv_data);
389
pci_release_region(pdev, 1);
390
pci_disable_device(pdev);
391
}
392
}
393
394
/*
395
* for the tty_driver_*() basic function descriptions, see tty_driver.h.
396
* Specific header comments made for PTI-related specifics.
397
*/
398
399
/**
400
* pti_tty_driver_open()- Open an Application master, channel aperture
401
* ID to the PTI device via tty device.
402
*
403
* @tty: tty interface.
404
* @filp: filp interface pased to tty_port_open() call.
405
*
406
* Returns:
407
* int, 0 for success
408
* otherwise, fail value
409
*
410
* The main purpose of using the tty device interface is for
411
* each tty port to have a unique PTI write aperture. In an
412
* example use case, ttyPTI0 gets syslogd and an APP aperture
413
* ID and ttyPTI1 is where the n_tracesink ldisc hooks to route
414
* modem messages into PTI. Modem trace data does not have to
415
* go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct
416
* master IDs. These messages go through the PTI HW and out of
417
* the handheld platform and to the Fido/Lauterbach device.
418
*/
419
static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp)
420
{
421
/*
422
* we actually want to allocate a new channel per open, per
423
* system arch. HW gives more than plenty channels for a single
424
* system task to have its own channel to write trace data. This
425
* also removes a locking requirement for the actual write
426
* procedure.
427
*/
428
return tty_port_open(&drv_data->port, tty, filp);
429
}
430
431
/**
432
* pti_tty_driver_close()- close tty device and release Application
433
* master, channel aperture ID to the PTI device via tty device.
434
*
435
* @tty: tty interface.
436
* @filp: filp interface pased to tty_port_close() call.
437
*
438
* The main purpose of using the tty device interface is to route
439
* syslog daemon messages to the PTI HW and out of the handheld platform
440
* and to the Fido/Lauterbach device.
441
*/
442
static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp)
443
{
444
tty_port_close(&drv_data->port, tty, filp);
445
}
446
447
/**
448
* pti_tty_intstall()- Used to set up specific master-channels
449
* to tty ports for organizational purposes when
450
* tracing viewed from debuging tools.
451
*
452
* @driver: tty driver information.
453
* @tty: tty struct containing pti information.
454
*
455
* Returns:
456
* 0 for success
457
* otherwise, error
458
*/
459
static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty)
460
{
461
int idx = tty->index;
462
struct pti_tty *pti_tty_data;
463
int ret = tty_init_termios(tty);
464
465
if (ret == 0) {
466
tty_driver_kref_get(driver);
467
tty->count++;
468
driver->ttys[idx] = tty;
469
470
pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL);
471
if (pti_tty_data == NULL)
472
return -ENOMEM;
473
474
if (idx == PTITTY_MINOR_START)
475
pti_tty_data->mc = pti_request_masterchannel(0);
476
else
477
pti_tty_data->mc = pti_request_masterchannel(2);
478
479
if (pti_tty_data->mc == NULL) {
480
kfree(pti_tty_data);
481
return -ENXIO;
482
}
483
tty->driver_data = pti_tty_data;
484
}
485
486
return ret;
487
}
488
489
/**
490
* pti_tty_cleanup()- Used to de-allocate master-channel resources
491
* tied to tty's of this driver.
492
*
493
* @tty: tty struct containing pti information.
494
*/
495
static void pti_tty_cleanup(struct tty_struct *tty)
496
{
497
struct pti_tty *pti_tty_data = tty->driver_data;
498
if (pti_tty_data == NULL)
499
return;
500
pti_release_masterchannel(pti_tty_data->mc);
501
kfree(pti_tty_data);
502
tty->driver_data = NULL;
503
}
504
505
/**
506
* pti_tty_driver_write()- Write trace debugging data through the char
507
* interface to the PTI HW. Part of the misc device implementation.
508
*
509
* @filp: Contains private data which is used to obtain
510
* master, channel write ID.
511
* @data: trace data to be written.
512
* @len: # of byte to write.
513
*
514
* Returns:
515
* int, # of bytes written
516
* otherwise, error
517
*/
518
static int pti_tty_driver_write(struct tty_struct *tty,
519
const unsigned char *buf, int len)
520
{
521
struct pti_tty *pti_tty_data = tty->driver_data;
522
if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) {
523
pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len);
524
return len;
525
}
526
/*
527
* we can't write to the pti hardware if the private driver_data
528
* and the mc address is not there.
529
*/
530
else
531
return -EFAULT;
532
}
533
534
/**
535
* pti_tty_write_room()- Always returns 2048.
536
*
537
* @tty: contains tty info of the pti driver.
538
*/
539
static int pti_tty_write_room(struct tty_struct *tty)
540
{
541
return 2048;
542
}
543
544
/**
545
* pti_char_open()- Open an Application master, channel aperture
546
* ID to the PTI device. Part of the misc device implementation.
547
*
548
* @inode: not used.
549
* @filp: Output- will have a masterchannel struct set containing
550
* the allocated application PTI aperture write address.
551
*
552
* Returns:
553
* int, 0 for success
554
* otherwise, a fail value
555
*/
556
static int pti_char_open(struct inode *inode, struct file *filp)
557
{
558
struct pti_masterchannel *mc;
559
560
/*
561
* We really do want to fail immediately if
562
* pti_request_masterchannel() fails,
563
* before assigning the value to filp->private_data.
564
* Slightly easier to debug if this driver needs debugging.
565
*/
566
mc = pti_request_masterchannel(0);
567
if (mc == NULL)
568
return -ENOMEM;
569
filp->private_data = mc;
570
return 0;
571
}
572
573
/**
574
* pti_char_release()- Close a char channel to the PTI device. Part
575
* of the misc device implementation.
576
*
577
* @inode: Not used in this implementaiton.
578
* @filp: Contains private_data that contains the master, channel
579
* ID to be released by the PTI device.
580
*
581
* Returns:
582
* always 0
583
*/
584
static int pti_char_release(struct inode *inode, struct file *filp)
585
{
586
pti_release_masterchannel(filp->private_data);
587
filp->private_data = NULL;
588
return 0;
589
}
590
591
/**
592
* pti_char_write()- Write trace debugging data through the char
593
* interface to the PTI HW. Part of the misc device implementation.
594
*
595
* @filp: Contains private data which is used to obtain
596
* master, channel write ID.
597
* @data: trace data to be written.
598
* @len: # of byte to write.
599
* @ppose: Not used in this function implementation.
600
*
601
* Returns:
602
* int, # of bytes written
603
* otherwise, error value
604
*
605
* Notes: From side discussions with Alan Cox and experimenting
606
* with PTI debug HW like Nokia's Fido box and Lauterbach
607
* devices, 8192 byte write buffer used by USER_COPY_SIZE was
608
* deemed an appropriate size for this type of usage with
609
* debugging HW.
610
*/
611
static ssize_t pti_char_write(struct file *filp, const char __user *data,
612
size_t len, loff_t *ppose)
613
{
614
struct pti_masterchannel *mc;
615
void *kbuf;
616
const char __user *tmp;
617
size_t size = USER_COPY_SIZE;
618
size_t n = 0;
619
620
tmp = data;
621
mc = filp->private_data;
622
623
kbuf = kmalloc(size, GFP_KERNEL);
624
if (kbuf == NULL) {
625
pr_err("%s(%d): buf allocation failed\n",
626
__func__, __LINE__);
627
return -ENOMEM;
628
}
629
630
do {
631
if (len - n > USER_COPY_SIZE)
632
size = USER_COPY_SIZE;
633
else
634
size = len - n;
635
636
if (copy_from_user(kbuf, tmp, size)) {
637
kfree(kbuf);
638
return n ? n : -EFAULT;
639
}
640
641
pti_write_to_aperture(mc, kbuf, size);
642
n += size;
643
tmp += size;
644
645
} while (len > n);
646
647
kfree(kbuf);
648
return len;
649
}
650
651
static const struct tty_operations pti_tty_driver_ops = {
652
.open = pti_tty_driver_open,
653
.close = pti_tty_driver_close,
654
.write = pti_tty_driver_write,
655
.write_room = pti_tty_write_room,
656
.install = pti_tty_install,
657
.cleanup = pti_tty_cleanup
658
};
659
660
static const struct file_operations pti_char_driver_ops = {
661
.owner = THIS_MODULE,
662
.write = pti_char_write,
663
.open = pti_char_open,
664
.release = pti_char_release,
665
};
666
667
static struct miscdevice pti_char_driver = {
668
.minor = MISC_DYNAMIC_MINOR,
669
.name = CHARNAME,
670
.fops = &pti_char_driver_ops
671
};
672
673
/**
674
* pti_console_write()- Write to the console that has been acquired.
675
*
676
* @c: Not used in this implementaiton.
677
* @buf: Data to be written.
678
* @len: Length of buf.
679
*/
680
static void pti_console_write(struct console *c, const char *buf, unsigned len)
681
{
682
static struct pti_masterchannel mc = {.master = CONSOLE_ID,
683
.channel = 0};
684
685
mc.channel = pti_console_channel;
686
pti_console_channel = (pti_console_channel + 1) & 0x7f;
687
688
pti_write_full_frame_to_aperture(&mc, buf, len);
689
}
690
691
/**
692
* pti_console_device()- Return the driver tty structure and set the
693
* associated index implementation.
694
*
695
* @c: Console device of the driver.
696
* @index: index associated with c.
697
*
698
* Returns:
699
* always value of pti_tty_driver structure when this function
700
* is called.
701
*/
702
static struct tty_driver *pti_console_device(struct console *c, int *index)
703
{
704
*index = c->index;
705
return pti_tty_driver;
706
}
707
708
/**
709
* pti_console_setup()- Initialize console variables used by the driver.
710
*
711
* @c: Not used.
712
* @opts: Not used.
713
*
714
* Returns:
715
* always 0.
716
*/
717
static int pti_console_setup(struct console *c, char *opts)
718
{
719
pti_console_channel = 0;
720
pti_control_channel = 0;
721
return 0;
722
}
723
724
/*
725
* pti_console struct, used to capture OS printk()'s and shift
726
* out to the PTI device for debugging. This cannot be
727
* enabled upon boot because of the possibility of eating
728
* any serial console printk's (race condition discovered).
729
* The console should be enabled upon when the tty port is
730
* used for the first time. Since the primary purpose for
731
* the tty port is to hook up syslog to it, the tty port
732
* will be open for a really long time.
733
*/
734
static struct console pti_console = {
735
.name = TTYNAME,
736
.write = pti_console_write,
737
.device = pti_console_device,
738
.setup = pti_console_setup,
739
.flags = CON_PRINTBUFFER,
740
.index = 0,
741
};
742
743
/**
744
* pti_port_activate()- Used to start/initialize any items upon
745
* first opening of tty_port().
746
*
747
* @port- The tty port number of the PTI device.
748
* @tty- The tty struct associated with this device.
749
*
750
* Returns:
751
* always returns 0
752
*
753
* Notes: The primary purpose of the PTI tty port 0 is to hook
754
* the syslog daemon to it; thus this port will be open for a
755
* very long time.
756
*/
757
static int pti_port_activate(struct tty_port *port, struct tty_struct *tty)
758
{
759
if (port->tty->index == PTITTY_MINOR_START)
760
console_start(&pti_console);
761
return 0;
762
}
763
764
/**
765
* pti_port_shutdown()- Used to stop/shutdown any items upon the
766
* last tty port close.
767
*
768
* @port- The tty port number of the PTI device.
769
*
770
* Notes: The primary purpose of the PTI tty port 0 is to hook
771
* the syslog daemon to it; thus this port will be open for a
772
* very long time.
773
*/
774
static void pti_port_shutdown(struct tty_port *port)
775
{
776
if (port->tty->index == PTITTY_MINOR_START)
777
console_stop(&pti_console);
778
}
779
780
static const struct tty_port_operations tty_port_ops = {
781
.activate = pti_port_activate,
782
.shutdown = pti_port_shutdown,
783
};
784
785
/*
786
* Note the _probe() call sets everything up and ties the char and tty
787
* to successfully detecting the PTI device on the pci bus.
788
*/
789
790
/**
791
* pti_pci_probe()- Used to detect pti on the pci bus and set
792
* things up in the driver.
793
*
794
* @pdev- pci_dev struct values for pti.
795
* @ent- pci_device_id struct for pti driver.
796
*
797
* Returns:
798
* 0 for success
799
* otherwise, error
800
*/
801
static int __devinit pti_pci_probe(struct pci_dev *pdev,
802
const struct pci_device_id *ent)
803
{
804
int retval = -EINVAL;
805
int pci_bar = 1;
806
807
dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__,
808
__func__, __LINE__, pdev->vendor, pdev->device);
809
810
retval = misc_register(&pti_char_driver);
811
if (retval) {
812
pr_err("%s(%d): CHAR registration failed of pti driver\n",
813
__func__, __LINE__);
814
pr_err("%s(%d): Error value returned: %d\n",
815
__func__, __LINE__, retval);
816
return retval;
817
}
818
819
retval = pci_enable_device(pdev);
820
if (retval != 0) {
821
dev_err(&pdev->dev,
822
"%s: pci_enable_device() returned error %d\n",
823
__func__, retval);
824
return retval;
825
}
826
827
drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL);
828
829
if (drv_data == NULL) {
830
retval = -ENOMEM;
831
dev_err(&pdev->dev,
832
"%s(%d): kmalloc() returned NULL memory.\n",
833
__func__, __LINE__);
834
return retval;
835
}
836
drv_data->pti_addr = pci_resource_start(pdev, pci_bar);
837
838
retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev));
839
if (retval != 0) {
840
dev_err(&pdev->dev,
841
"%s(%d): pci_request_region() returned error %d\n",
842
__func__, __LINE__, retval);
843
kfree(drv_data);
844
return retval;
845
}
846
drv_data->aperture_base = drv_data->pti_addr+APERTURE_14;
847
drv_data->pti_ioaddr =
848
ioremap_nocache((u32)drv_data->aperture_base,
849
APERTURE_LEN);
850
if (!drv_data->pti_ioaddr) {
851
pci_release_region(pdev, pci_bar);
852
retval = -ENOMEM;
853
kfree(drv_data);
854
return retval;
855
}
856
857
pci_set_drvdata(pdev, drv_data);
858
859
tty_port_init(&drv_data->port);
860
drv_data->port.ops = &tty_port_ops;
861
862
tty_register_device(pti_tty_driver, 0, &pdev->dev);
863
tty_register_device(pti_tty_driver, 1, &pdev->dev);
864
865
register_console(&pti_console);
866
867
return retval;
868
}
869
870
static struct pci_driver pti_pci_driver = {
871
.name = PCINAME,
872
.id_table = pci_ids,
873
.probe = pti_pci_probe,
874
.remove = pti_pci_remove,
875
};
876
877
/**
878
*
879
* pti_init()- Overall entry/init call to the pti driver.
880
* It starts the registration process with the kernel.
881
*
882
* Returns:
883
* int __init, 0 for success
884
* otherwise value is an error
885
*
886
*/
887
static int __init pti_init(void)
888
{
889
int retval = -EINVAL;
890
891
/* First register module as tty device */
892
893
pti_tty_driver = alloc_tty_driver(1);
894
if (pti_tty_driver == NULL) {
895
pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n",
896
__func__, __LINE__);
897
return -ENOMEM;
898
}
899
900
pti_tty_driver->owner = THIS_MODULE;
901
pti_tty_driver->magic = TTY_DRIVER_MAGIC;
902
pti_tty_driver->driver_name = DRIVERNAME;
903
pti_tty_driver->name = TTYNAME;
904
pti_tty_driver->major = 0;
905
pti_tty_driver->minor_start = PTITTY_MINOR_START;
906
pti_tty_driver->minor_num = PTITTY_MINOR_NUM;
907
pti_tty_driver->num = PTITTY_MINOR_NUM;
908
pti_tty_driver->type = TTY_DRIVER_TYPE_SYSTEM;
909
pti_tty_driver->subtype = SYSTEM_TYPE_SYSCONS;
910
pti_tty_driver->flags = TTY_DRIVER_REAL_RAW |
911
TTY_DRIVER_DYNAMIC_DEV;
912
pti_tty_driver->init_termios = tty_std_termios;
913
914
tty_set_operations(pti_tty_driver, &pti_tty_driver_ops);
915
916
retval = tty_register_driver(pti_tty_driver);
917
if (retval) {
918
pr_err("%s(%d): TTY registration failed of pti driver\n",
919
__func__, __LINE__);
920
pr_err("%s(%d): Error value returned: %d\n",
921
__func__, __LINE__, retval);
922
923
pti_tty_driver = NULL;
924
return retval;
925
}
926
927
retval = pci_register_driver(&pti_pci_driver);
928
929
if (retval) {
930
pr_err("%s(%d): PCI registration failed of pti driver\n",
931
__func__, __LINE__);
932
pr_err("%s(%d): Error value returned: %d\n",
933
__func__, __LINE__, retval);
934
935
tty_unregister_driver(pti_tty_driver);
936
pr_err("%s(%d): Unregistering TTY part of pti driver\n",
937
__func__, __LINE__);
938
pti_tty_driver = NULL;
939
return retval;
940
}
941
942
return retval;
943
}
944
945
/**
946
* pti_exit()- Unregisters this module as a tty and pci driver.
947
*/
948
static void __exit pti_exit(void)
949
{
950
int retval;
951
952
tty_unregister_device(pti_tty_driver, 0);
953
tty_unregister_device(pti_tty_driver, 1);
954
955
retval = tty_unregister_driver(pti_tty_driver);
956
if (retval) {
957
pr_err("%s(%d): TTY unregistration failed of pti driver\n",
958
__func__, __LINE__);
959
pr_err("%s(%d): Error value returned: %d\n",
960
__func__, __LINE__, retval);
961
}
962
963
pci_unregister_driver(&pti_pci_driver);
964
965
retval = misc_deregister(&pti_char_driver);
966
if (retval) {
967
pr_err("%s(%d): CHAR unregistration failed of pti driver\n",
968
__func__, __LINE__);
969
pr_err("%s(%d): Error value returned: %d\n",
970
__func__, __LINE__, retval);
971
}
972
973
unregister_console(&pti_console);
974
return;
975
}
976
977
module_init(pti_init);
978
module_exit(pti_exit);
979
980
MODULE_LICENSE("GPL");
981
MODULE_AUTHOR("Ken Mills, Jay Freyensee");
982
MODULE_DESCRIPTION("PTI Driver");
983
984
985