Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/misc/sgi-gru/grufault.c
15111 views
1
/*
2
* SN Platform GRU Driver
3
*
4
* FAULT HANDLER FOR GRU DETECTED TLB MISSES
5
*
6
* This file contains code that handles TLB misses within the GRU.
7
* These misses are reported either via interrupts or user polling of
8
* the user CB.
9
*
10
* Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
11
*
12
* This program is free software; you can redistribute it and/or modify
13
* it under the terms of the GNU General Public License as published by
14
* the Free Software Foundation; either version 2 of the License, or
15
* (at your option) any later version.
16
*
17
* This program is distributed in the hope that it will be useful,
18
* but WITHOUT ANY WARRANTY; without even the implied warranty of
19
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20
* GNU General Public License for more details.
21
*
22
* You should have received a copy of the GNU General Public License
23
* along with this program; if not, write to the Free Software
24
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25
*/
26
27
#include <linux/kernel.h>
28
#include <linux/errno.h>
29
#include <linux/spinlock.h>
30
#include <linux/mm.h>
31
#include <linux/hugetlb.h>
32
#include <linux/device.h>
33
#include <linux/io.h>
34
#include <linux/uaccess.h>
35
#include <linux/security.h>
36
#include <linux/prefetch.h>
37
#include <asm/pgtable.h>
38
#include "gru.h"
39
#include "grutables.h"
40
#include "grulib.h"
41
#include "gru_instructions.h"
42
#include <asm/uv/uv_hub.h>
43
44
/* Return codes for vtop functions */
45
#define VTOP_SUCCESS 0
46
#define VTOP_INVALID -1
47
#define VTOP_RETRY -2
48
49
50
/*
51
* Test if a physical address is a valid GRU GSEG address
52
*/
53
static inline int is_gru_paddr(unsigned long paddr)
54
{
55
return paddr >= gru_start_paddr && paddr < gru_end_paddr;
56
}
57
58
/*
59
* Find the vma of a GRU segment. Caller must hold mmap_sem.
60
*/
61
struct vm_area_struct *gru_find_vma(unsigned long vaddr)
62
{
63
struct vm_area_struct *vma;
64
65
vma = find_vma(current->mm, vaddr);
66
if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
67
return vma;
68
return NULL;
69
}
70
71
/*
72
* Find and lock the gts that contains the specified user vaddr.
73
*
74
* Returns:
75
* - *gts with the mmap_sem locked for read and the GTS locked.
76
* - NULL if vaddr invalid OR is not a valid GSEG vaddr.
77
*/
78
79
static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
80
{
81
struct mm_struct *mm = current->mm;
82
struct vm_area_struct *vma;
83
struct gru_thread_state *gts = NULL;
84
85
down_read(&mm->mmap_sem);
86
vma = gru_find_vma(vaddr);
87
if (vma)
88
gts = gru_find_thread_state(vma, TSID(vaddr, vma));
89
if (gts)
90
mutex_lock(&gts->ts_ctxlock);
91
else
92
up_read(&mm->mmap_sem);
93
return gts;
94
}
95
96
static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
97
{
98
struct mm_struct *mm = current->mm;
99
struct vm_area_struct *vma;
100
struct gru_thread_state *gts = ERR_PTR(-EINVAL);
101
102
down_write(&mm->mmap_sem);
103
vma = gru_find_vma(vaddr);
104
if (!vma)
105
goto err;
106
107
gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
108
if (IS_ERR(gts))
109
goto err;
110
mutex_lock(&gts->ts_ctxlock);
111
downgrade_write(&mm->mmap_sem);
112
return gts;
113
114
err:
115
up_write(&mm->mmap_sem);
116
return gts;
117
}
118
119
/*
120
* Unlock a GTS that was previously locked with gru_find_lock_gts().
121
*/
122
static void gru_unlock_gts(struct gru_thread_state *gts)
123
{
124
mutex_unlock(&gts->ts_ctxlock);
125
up_read(&current->mm->mmap_sem);
126
}
127
128
/*
129
* Set a CB.istatus to active using a user virtual address. This must be done
130
* just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
131
* If the line is evicted, the status may be lost. The in-cache update
132
* is necessary to prevent the user from seeing a stale cb.istatus that will
133
* change as soon as the TFH restart is complete. Races may cause an
134
* occasional failure to clear the cb.istatus, but that is ok.
135
*/
136
static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
137
{
138
if (cbk) {
139
cbk->istatus = CBS_ACTIVE;
140
}
141
}
142
143
/*
144
* Read & clear a TFM
145
*
146
* The GRU has an array of fault maps. A map is private to a cpu
147
* Only one cpu will be accessing a cpu's fault map.
148
*
149
* This function scans the cpu-private fault map & clears all bits that
150
* are set. The function returns a bitmap that indicates the bits that
151
* were cleared. Note that sense the maps may be updated asynchronously by
152
* the GRU, atomic operations must be used to clear bits.
153
*/
154
static void get_clear_fault_map(struct gru_state *gru,
155
struct gru_tlb_fault_map *imap,
156
struct gru_tlb_fault_map *dmap)
157
{
158
unsigned long i, k;
159
struct gru_tlb_fault_map *tfm;
160
161
tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
162
prefetchw(tfm); /* Helps on hardware, required for emulator */
163
for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
164
k = tfm->fault_bits[i];
165
if (k)
166
k = xchg(&tfm->fault_bits[i], 0UL);
167
imap->fault_bits[i] = k;
168
k = tfm->done_bits[i];
169
if (k)
170
k = xchg(&tfm->done_bits[i], 0UL);
171
dmap->fault_bits[i] = k;
172
}
173
174
/*
175
* Not functionally required but helps performance. (Required
176
* on emulator)
177
*/
178
gru_flush_cache(tfm);
179
}
180
181
/*
182
* Atomic (interrupt context) & non-atomic (user context) functions to
183
* convert a vaddr into a physical address. The size of the page
184
* is returned in pageshift.
185
* returns:
186
* 0 - successful
187
* < 0 - error code
188
* 1 - (atomic only) try again in non-atomic context
189
*/
190
static int non_atomic_pte_lookup(struct vm_area_struct *vma,
191
unsigned long vaddr, int write,
192
unsigned long *paddr, int *pageshift)
193
{
194
struct page *page;
195
196
#ifdef CONFIG_HUGETLB_PAGE
197
*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
198
#else
199
*pageshift = PAGE_SHIFT;
200
#endif
201
if (get_user_pages
202
(current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0)
203
return -EFAULT;
204
*paddr = page_to_phys(page);
205
put_page(page);
206
return 0;
207
}
208
209
/*
210
* atomic_pte_lookup
211
*
212
* Convert a user virtual address to a physical address
213
* Only supports Intel large pages (2MB only) on x86_64.
214
* ZZZ - hugepage support is incomplete
215
*
216
* NOTE: mmap_sem is already held on entry to this function. This
217
* guarantees existence of the page tables.
218
*/
219
static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
220
int write, unsigned long *paddr, int *pageshift)
221
{
222
pgd_t *pgdp;
223
pmd_t *pmdp;
224
pud_t *pudp;
225
pte_t pte;
226
227
pgdp = pgd_offset(vma->vm_mm, vaddr);
228
if (unlikely(pgd_none(*pgdp)))
229
goto err;
230
231
pudp = pud_offset(pgdp, vaddr);
232
if (unlikely(pud_none(*pudp)))
233
goto err;
234
235
pmdp = pmd_offset(pudp, vaddr);
236
if (unlikely(pmd_none(*pmdp)))
237
goto err;
238
#ifdef CONFIG_X86_64
239
if (unlikely(pmd_large(*pmdp)))
240
pte = *(pte_t *) pmdp;
241
else
242
#endif
243
pte = *pte_offset_kernel(pmdp, vaddr);
244
245
if (unlikely(!pte_present(pte) ||
246
(write && (!pte_write(pte) || !pte_dirty(pte)))))
247
return 1;
248
249
*paddr = pte_pfn(pte) << PAGE_SHIFT;
250
#ifdef CONFIG_HUGETLB_PAGE
251
*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
252
#else
253
*pageshift = PAGE_SHIFT;
254
#endif
255
return 0;
256
257
err:
258
return 1;
259
}
260
261
static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
262
int write, int atomic, unsigned long *gpa, int *pageshift)
263
{
264
struct mm_struct *mm = gts->ts_mm;
265
struct vm_area_struct *vma;
266
unsigned long paddr;
267
int ret, ps;
268
269
vma = find_vma(mm, vaddr);
270
if (!vma)
271
goto inval;
272
273
/*
274
* Atomic lookup is faster & usually works even if called in non-atomic
275
* context.
276
*/
277
rmb(); /* Must/check ms_range_active before loading PTEs */
278
ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
279
if (ret) {
280
if (atomic)
281
goto upm;
282
if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
283
goto inval;
284
}
285
if (is_gru_paddr(paddr))
286
goto inval;
287
paddr = paddr & ~((1UL << ps) - 1);
288
*gpa = uv_soc_phys_ram_to_gpa(paddr);
289
*pageshift = ps;
290
return VTOP_SUCCESS;
291
292
inval:
293
return VTOP_INVALID;
294
upm:
295
return VTOP_RETRY;
296
}
297
298
299
/*
300
* Flush a CBE from cache. The CBE is clean in the cache. Dirty the
301
* CBE cacheline so that the line will be written back to home agent.
302
* Otherwise the line may be silently dropped. This has no impact
303
* except on performance.
304
*/
305
static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe)
306
{
307
if (unlikely(cbe)) {
308
cbe->cbrexecstatus = 0; /* make CL dirty */
309
gru_flush_cache(cbe);
310
}
311
}
312
313
/*
314
* Preload the TLB with entries that may be required. Currently, preloading
315
* is implemented only for BCOPY. Preload <tlb_preload_count> pages OR to
316
* the end of the bcopy tranfer, whichever is smaller.
317
*/
318
static void gru_preload_tlb(struct gru_state *gru,
319
struct gru_thread_state *gts, int atomic,
320
unsigned long fault_vaddr, int asid, int write,
321
unsigned char tlb_preload_count,
322
struct gru_tlb_fault_handle *tfh,
323
struct gru_control_block_extended *cbe)
324
{
325
unsigned long vaddr = 0, gpa;
326
int ret, pageshift;
327
328
if (cbe->opccpy != OP_BCOPY)
329
return;
330
331
if (fault_vaddr == cbe->cbe_baddr0)
332
vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1;
333
else if (fault_vaddr == cbe->cbe_baddr1)
334
vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1;
335
336
fault_vaddr &= PAGE_MASK;
337
vaddr &= PAGE_MASK;
338
vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE);
339
340
while (vaddr > fault_vaddr) {
341
ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
342
if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write,
343
GRU_PAGESIZE(pageshift)))
344
return;
345
gru_dbg(grudev,
346
"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n",
347
atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh,
348
vaddr, asid, write, pageshift, gpa);
349
vaddr -= PAGE_SIZE;
350
STAT(tlb_preload_page);
351
}
352
}
353
354
/*
355
* Drop a TLB entry into the GRU. The fault is described by info in an TFH.
356
* Input:
357
* cb Address of user CBR. Null if not running in user context
358
* Return:
359
* 0 = dropin, exception, or switch to UPM successful
360
* 1 = range invalidate active
361
* < 0 = error code
362
*
363
*/
364
static int gru_try_dropin(struct gru_state *gru,
365
struct gru_thread_state *gts,
366
struct gru_tlb_fault_handle *tfh,
367
struct gru_instruction_bits *cbk)
368
{
369
struct gru_control_block_extended *cbe = NULL;
370
unsigned char tlb_preload_count = gts->ts_tlb_preload_count;
371
int pageshift = 0, asid, write, ret, atomic = !cbk, indexway;
372
unsigned long gpa = 0, vaddr = 0;
373
374
/*
375
* NOTE: The GRU contains magic hardware that eliminates races between
376
* TLB invalidates and TLB dropins. If an invalidate occurs
377
* in the window between reading the TFH and the subsequent TLB dropin,
378
* the dropin is ignored. This eliminates the need for additional locks.
379
*/
380
381
/*
382
* Prefetch the CBE if doing TLB preloading
383
*/
384
if (unlikely(tlb_preload_count)) {
385
cbe = gru_tfh_to_cbe(tfh);
386
prefetchw(cbe);
387
}
388
389
/*
390
* Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
391
* Might be a hardware race OR a stupid user. Ignore FMM because FMM
392
* is a transient state.
393
*/
394
if (tfh->status != TFHSTATUS_EXCEPTION) {
395
gru_flush_cache(tfh);
396
sync_core();
397
if (tfh->status != TFHSTATUS_EXCEPTION)
398
goto failnoexception;
399
STAT(tfh_stale_on_fault);
400
}
401
if (tfh->state == TFHSTATE_IDLE)
402
goto failidle;
403
if (tfh->state == TFHSTATE_MISS_FMM && cbk)
404
goto failfmm;
405
406
write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
407
vaddr = tfh->missvaddr;
408
asid = tfh->missasid;
409
indexway = tfh->indexway;
410
if (asid == 0)
411
goto failnoasid;
412
413
rmb(); /* TFH must be cache resident before reading ms_range_active */
414
415
/*
416
* TFH is cache resident - at least briefly. Fail the dropin
417
* if a range invalidate is active.
418
*/
419
if (atomic_read(&gts->ts_gms->ms_range_active))
420
goto failactive;
421
422
ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
423
if (ret == VTOP_INVALID)
424
goto failinval;
425
if (ret == VTOP_RETRY)
426
goto failupm;
427
428
if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
429
gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
430
if (atomic || !gru_update_cch(gts)) {
431
gts->ts_force_cch_reload = 1;
432
goto failupm;
433
}
434
}
435
436
if (unlikely(cbe) && pageshift == PAGE_SHIFT) {
437
gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe);
438
gru_flush_cache_cbe(cbe);
439
}
440
441
gru_cb_set_istatus_active(cbk);
442
gts->ustats.tlbdropin++;
443
tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
444
GRU_PAGESIZE(pageshift));
445
gru_dbg(grudev,
446
"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x,"
447
" rw %d, ps %d, gpa 0x%lx\n",
448
atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid,
449
indexway, write, pageshift, gpa);
450
STAT(tlb_dropin);
451
return 0;
452
453
failnoasid:
454
/* No asid (delayed unload). */
455
STAT(tlb_dropin_fail_no_asid);
456
gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
457
if (!cbk)
458
tfh_user_polling_mode(tfh);
459
else
460
gru_flush_cache(tfh);
461
gru_flush_cache_cbe(cbe);
462
return -EAGAIN;
463
464
failupm:
465
/* Atomic failure switch CBR to UPM */
466
tfh_user_polling_mode(tfh);
467
gru_flush_cache_cbe(cbe);
468
STAT(tlb_dropin_fail_upm);
469
gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
470
return 1;
471
472
failfmm:
473
/* FMM state on UPM call */
474
gru_flush_cache(tfh);
475
gru_flush_cache_cbe(cbe);
476
STAT(tlb_dropin_fail_fmm);
477
gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
478
return 0;
479
480
failnoexception:
481
/* TFH status did not show exception pending */
482
gru_flush_cache(tfh);
483
gru_flush_cache_cbe(cbe);
484
if (cbk)
485
gru_flush_cache(cbk);
486
STAT(tlb_dropin_fail_no_exception);
487
gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
488
tfh, tfh->status, tfh->state);
489
return 0;
490
491
failidle:
492
/* TFH state was idle - no miss pending */
493
gru_flush_cache(tfh);
494
gru_flush_cache_cbe(cbe);
495
if (cbk)
496
gru_flush_cache(cbk);
497
STAT(tlb_dropin_fail_idle);
498
gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
499
return 0;
500
501
failinval:
502
/* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
503
tfh_exception(tfh);
504
gru_flush_cache_cbe(cbe);
505
STAT(tlb_dropin_fail_invalid);
506
gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
507
return -EFAULT;
508
509
failactive:
510
/* Range invalidate active. Switch to UPM iff atomic */
511
if (!cbk)
512
tfh_user_polling_mode(tfh);
513
else
514
gru_flush_cache(tfh);
515
gru_flush_cache_cbe(cbe);
516
STAT(tlb_dropin_fail_range_active);
517
gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
518
tfh, vaddr);
519
return 1;
520
}
521
522
/*
523
* Process an external interrupt from the GRU. This interrupt is
524
* caused by a TLB miss.
525
* Note that this is the interrupt handler that is registered with linux
526
* interrupt handlers.
527
*/
528
static irqreturn_t gru_intr(int chiplet, int blade)
529
{
530
struct gru_state *gru;
531
struct gru_tlb_fault_map imap, dmap;
532
struct gru_thread_state *gts;
533
struct gru_tlb_fault_handle *tfh = NULL;
534
struct completion *cmp;
535
int cbrnum, ctxnum;
536
537
STAT(intr);
538
539
gru = &gru_base[blade]->bs_grus[chiplet];
540
if (!gru) {
541
dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n",
542
raw_smp_processor_id(), chiplet);
543
return IRQ_NONE;
544
}
545
get_clear_fault_map(gru, &imap, &dmap);
546
gru_dbg(grudev,
547
"cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n",
548
smp_processor_id(), chiplet, gru->gs_gid,
549
imap.fault_bits[0], imap.fault_bits[1],
550
dmap.fault_bits[0], dmap.fault_bits[1]);
551
552
for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
553
STAT(intr_cbr);
554
cmp = gru->gs_blade->bs_async_wq;
555
if (cmp)
556
complete(cmp);
557
gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
558
gru->gs_gid, cbrnum, cmp ? cmp->done : -1);
559
}
560
561
for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
562
STAT(intr_tfh);
563
tfh = get_tfh_by_index(gru, cbrnum);
564
prefetchw(tfh); /* Helps on hdw, required for emulator */
565
566
/*
567
* When hardware sets a bit in the faultmap, it implicitly
568
* locks the GRU context so that it cannot be unloaded.
569
* The gts cannot change until a TFH start/writestart command
570
* is issued.
571
*/
572
ctxnum = tfh->ctxnum;
573
gts = gru->gs_gts[ctxnum];
574
575
/* Spurious interrupts can cause this. Ignore. */
576
if (!gts) {
577
STAT(intr_spurious);
578
continue;
579
}
580
581
/*
582
* This is running in interrupt context. Trylock the mmap_sem.
583
* If it fails, retry the fault in user context.
584
*/
585
gts->ustats.fmm_tlbmiss++;
586
if (!gts->ts_force_cch_reload &&
587
down_read_trylock(&gts->ts_mm->mmap_sem)) {
588
gru_try_dropin(gru, gts, tfh, NULL);
589
up_read(&gts->ts_mm->mmap_sem);
590
} else {
591
tfh_user_polling_mode(tfh);
592
STAT(intr_mm_lock_failed);
593
}
594
}
595
return IRQ_HANDLED;
596
}
597
598
irqreturn_t gru0_intr(int irq, void *dev_id)
599
{
600
return gru_intr(0, uv_numa_blade_id());
601
}
602
603
irqreturn_t gru1_intr(int irq, void *dev_id)
604
{
605
return gru_intr(1, uv_numa_blade_id());
606
}
607
608
irqreturn_t gru_intr_mblade(int irq, void *dev_id)
609
{
610
int blade;
611
612
for_each_possible_blade(blade) {
613
if (uv_blade_nr_possible_cpus(blade))
614
continue;
615
gru_intr(0, blade);
616
gru_intr(1, blade);
617
}
618
return IRQ_HANDLED;
619
}
620
621
622
static int gru_user_dropin(struct gru_thread_state *gts,
623
struct gru_tlb_fault_handle *tfh,
624
void *cb)
625
{
626
struct gru_mm_struct *gms = gts->ts_gms;
627
int ret;
628
629
gts->ustats.upm_tlbmiss++;
630
while (1) {
631
wait_event(gms->ms_wait_queue,
632
atomic_read(&gms->ms_range_active) == 0);
633
prefetchw(tfh); /* Helps on hdw, required for emulator */
634
ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb);
635
if (ret <= 0)
636
return ret;
637
STAT(call_os_wait_queue);
638
}
639
}
640
641
/*
642
* This interface is called as a result of a user detecting a "call OS" bit
643
* in a user CB. Normally means that a TLB fault has occurred.
644
* cb - user virtual address of the CB
645
*/
646
int gru_handle_user_call_os(unsigned long cb)
647
{
648
struct gru_tlb_fault_handle *tfh;
649
struct gru_thread_state *gts;
650
void *cbk;
651
int ucbnum, cbrnum, ret = -EINVAL;
652
653
STAT(call_os);
654
655
/* sanity check the cb pointer */
656
ucbnum = get_cb_number((void *)cb);
657
if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
658
return -EINVAL;
659
660
gts = gru_find_lock_gts(cb);
661
if (!gts)
662
return -EINVAL;
663
gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
664
665
if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
666
goto exit;
667
668
gru_check_context_placement(gts);
669
670
/*
671
* CCH may contain stale data if ts_force_cch_reload is set.
672
*/
673
if (gts->ts_gru && gts->ts_force_cch_reload) {
674
gts->ts_force_cch_reload = 0;
675
gru_update_cch(gts);
676
}
677
678
ret = -EAGAIN;
679
cbrnum = thread_cbr_number(gts, ucbnum);
680
if (gts->ts_gru) {
681
tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
682
cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
683
gts->ts_ctxnum, ucbnum);
684
ret = gru_user_dropin(gts, tfh, cbk);
685
}
686
exit:
687
gru_unlock_gts(gts);
688
return ret;
689
}
690
691
/*
692
* Fetch the exception detail information for a CB that terminated with
693
* an exception.
694
*/
695
int gru_get_exception_detail(unsigned long arg)
696
{
697
struct control_block_extended_exc_detail excdet;
698
struct gru_control_block_extended *cbe;
699
struct gru_thread_state *gts;
700
int ucbnum, cbrnum, ret;
701
702
STAT(user_exception);
703
if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
704
return -EFAULT;
705
706
gts = gru_find_lock_gts(excdet.cb);
707
if (!gts)
708
return -EINVAL;
709
710
gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
711
ucbnum = get_cb_number((void *)excdet.cb);
712
if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
713
ret = -EINVAL;
714
} else if (gts->ts_gru) {
715
cbrnum = thread_cbr_number(gts, ucbnum);
716
cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
717
gru_flush_cache(cbe); /* CBE not coherent */
718
sync_core(); /* make sure we are have current data */
719
excdet.opc = cbe->opccpy;
720
excdet.exopc = cbe->exopccpy;
721
excdet.ecause = cbe->ecause;
722
excdet.exceptdet0 = cbe->idef1upd;
723
excdet.exceptdet1 = cbe->idef3upd;
724
excdet.cbrstate = cbe->cbrstate;
725
excdet.cbrexecstatus = cbe->cbrexecstatus;
726
gru_flush_cache_cbe(cbe);
727
ret = 0;
728
} else {
729
ret = -EAGAIN;
730
}
731
gru_unlock_gts(gts);
732
733
gru_dbg(grudev,
734
"cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
735
"exdet0 0x%lx, exdet1 0x%x\n",
736
excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
737
excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
738
if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
739
ret = -EFAULT;
740
return ret;
741
}
742
743
/*
744
* User request to unload a context. Content is saved for possible reload.
745
*/
746
static int gru_unload_all_contexts(void)
747
{
748
struct gru_thread_state *gts;
749
struct gru_state *gru;
750
int gid, ctxnum;
751
752
if (!capable(CAP_SYS_ADMIN))
753
return -EPERM;
754
foreach_gid(gid) {
755
gru = GID_TO_GRU(gid);
756
spin_lock(&gru->gs_lock);
757
for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
758
gts = gru->gs_gts[ctxnum];
759
if (gts && mutex_trylock(&gts->ts_ctxlock)) {
760
spin_unlock(&gru->gs_lock);
761
gru_unload_context(gts, 1);
762
mutex_unlock(&gts->ts_ctxlock);
763
spin_lock(&gru->gs_lock);
764
}
765
}
766
spin_unlock(&gru->gs_lock);
767
}
768
return 0;
769
}
770
771
int gru_user_unload_context(unsigned long arg)
772
{
773
struct gru_thread_state *gts;
774
struct gru_unload_context_req req;
775
776
STAT(user_unload_context);
777
if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
778
return -EFAULT;
779
780
gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
781
782
if (!req.gseg)
783
return gru_unload_all_contexts();
784
785
gts = gru_find_lock_gts(req.gseg);
786
if (!gts)
787
return -EINVAL;
788
789
if (gts->ts_gru)
790
gru_unload_context(gts, 1);
791
gru_unlock_gts(gts);
792
793
return 0;
794
}
795
796
/*
797
* User request to flush a range of virtual addresses from the GRU TLB
798
* (Mainly for testing).
799
*/
800
int gru_user_flush_tlb(unsigned long arg)
801
{
802
struct gru_thread_state *gts;
803
struct gru_flush_tlb_req req;
804
struct gru_mm_struct *gms;
805
806
STAT(user_flush_tlb);
807
if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
808
return -EFAULT;
809
810
gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
811
req.vaddr, req.len);
812
813
gts = gru_find_lock_gts(req.gseg);
814
if (!gts)
815
return -EINVAL;
816
817
gms = gts->ts_gms;
818
gru_unlock_gts(gts);
819
gru_flush_tlb_range(gms, req.vaddr, req.len);
820
821
return 0;
822
}
823
824
/*
825
* Fetch GSEG statisticss
826
*/
827
long gru_get_gseg_statistics(unsigned long arg)
828
{
829
struct gru_thread_state *gts;
830
struct gru_get_gseg_statistics_req req;
831
832
if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
833
return -EFAULT;
834
835
/*
836
* The library creates arrays of contexts for threaded programs.
837
* If no gts exists in the array, the context has never been used & all
838
* statistics are implicitly 0.
839
*/
840
gts = gru_find_lock_gts(req.gseg);
841
if (gts) {
842
memcpy(&req.stats, &gts->ustats, sizeof(gts->ustats));
843
gru_unlock_gts(gts);
844
} else {
845
memset(&req.stats, 0, sizeof(gts->ustats));
846
}
847
848
if (copy_to_user((void __user *)arg, &req, sizeof(req)))
849
return -EFAULT;
850
851
return 0;
852
}
853
854
/*
855
* Register the current task as the user of the GSEG slice.
856
* Needed for TLB fault interrupt targeting.
857
*/
858
int gru_set_context_option(unsigned long arg)
859
{
860
struct gru_thread_state *gts;
861
struct gru_set_context_option_req req;
862
int ret = 0;
863
864
STAT(set_context_option);
865
if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
866
return -EFAULT;
867
gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
868
869
gts = gru_find_lock_gts(req.gseg);
870
if (!gts) {
871
gts = gru_alloc_locked_gts(req.gseg);
872
if (IS_ERR(gts))
873
return PTR_ERR(gts);
874
}
875
876
switch (req.op) {
877
case sco_blade_chiplet:
878
/* Select blade/chiplet for GRU context */
879
if (req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || !gru_base[req.val1] ||
880
req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB) {
881
ret = -EINVAL;
882
} else {
883
gts->ts_user_blade_id = req.val1;
884
gts->ts_user_chiplet_id = req.val0;
885
gru_check_context_placement(gts);
886
}
887
break;
888
case sco_gseg_owner:
889
/* Register the current task as the GSEG owner */
890
gts->ts_tgid_owner = current->tgid;
891
break;
892
case sco_cch_req_slice:
893
/* Set the CCH slice option */
894
gts->ts_cch_req_slice = req.val1 & 3;
895
break;
896
default:
897
ret = -EINVAL;
898
}
899
gru_unlock_gts(gts);
900
901
return ret;
902
}
903
904