Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/misc/sgi-gru/grukservices.c
15111 views
1
/*
2
* SN Platform GRU Driver
3
*
4
* KERNEL SERVICES THAT USE THE GRU
5
*
6
* Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
7
*
8
* This program is free software; you can redistribute it and/or modify
9
* it under the terms of the GNU General Public License as published by
10
* the Free Software Foundation; either version 2 of the License, or
11
* (at your option) any later version.
12
*
13
* This program is distributed in the hope that it will be useful,
14
* but WITHOUT ANY WARRANTY; without even the implied warranty of
15
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16
* GNU General Public License for more details.
17
*
18
* You should have received a copy of the GNU General Public License
19
* along with this program; if not, write to the Free Software
20
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21
*/
22
23
#include <linux/kernel.h>
24
#include <linux/errno.h>
25
#include <linux/slab.h>
26
#include <linux/mm.h>
27
#include <linux/spinlock.h>
28
#include <linux/device.h>
29
#include <linux/miscdevice.h>
30
#include <linux/proc_fs.h>
31
#include <linux/interrupt.h>
32
#include <linux/uaccess.h>
33
#include <linux/delay.h>
34
#include <asm/io_apic.h>
35
#include "gru.h"
36
#include "grulib.h"
37
#include "grutables.h"
38
#include "grukservices.h"
39
#include "gru_instructions.h"
40
#include <asm/uv/uv_hub.h>
41
42
/*
43
* Kernel GRU Usage
44
*
45
* The following is an interim algorithm for management of kernel GRU
46
* resources. This will likely be replaced when we better understand the
47
* kernel/user requirements.
48
*
49
* Blade percpu resources reserved for kernel use. These resources are
50
* reserved whenever the the kernel context for the blade is loaded. Note
51
* that the kernel context is not guaranteed to be always available. It is
52
* loaded on demand & can be stolen by a user if the user demand exceeds the
53
* kernel demand. The kernel can always reload the kernel context but
54
* a SLEEP may be required!!!.
55
*
56
* Async Overview:
57
*
58
* Each blade has one "kernel context" that owns GRU kernel resources
59
* located on the blade. Kernel drivers use GRU resources in this context
60
* for sending messages, zeroing memory, etc.
61
*
62
* The kernel context is dynamically loaded on demand. If it is not in
63
* use by the kernel, the kernel context can be unloaded & given to a user.
64
* The kernel context will be reloaded when needed. This may require that
65
* a context be stolen from a user.
66
* NOTE: frequent unloading/reloading of the kernel context is
67
* expensive. We are depending on batch schedulers, cpusets, sane
68
* drivers or some other mechanism to prevent the need for frequent
69
* stealing/reloading.
70
*
71
* The kernel context consists of two parts:
72
* - 1 CB & a few DSRs that are reserved for each cpu on the blade.
73
* Each cpu has it's own private resources & does not share them
74
* with other cpus. These resources are used serially, ie,
75
* locked, used & unlocked on each call to a function in
76
* grukservices.
77
* (Now that we have dynamic loading of kernel contexts, I
78
* may rethink this & allow sharing between cpus....)
79
*
80
* - Additional resources can be reserved long term & used directly
81
* by UV drivers located in the kernel. Drivers using these GRU
82
* resources can use asynchronous GRU instructions that send
83
* interrupts on completion.
84
* - these resources must be explicitly locked/unlocked
85
* - locked resources prevent (obviously) the kernel
86
* context from being unloaded.
87
* - drivers using these resource directly issue their own
88
* GRU instruction and must wait/check completion.
89
*
90
* When these resources are reserved, the caller can optionally
91
* associate a wait_queue with the resources and use asynchronous
92
* GRU instructions. When an async GRU instruction completes, the
93
* driver will do a wakeup on the event.
94
*
95
*/
96
97
98
#define ASYNC_HAN_TO_BID(h) ((h) - 1)
99
#define ASYNC_BID_TO_HAN(b) ((b) + 1)
100
#define ASYNC_HAN_TO_BS(h) gru_base[ASYNC_HAN_TO_BID(h)]
101
102
#define GRU_NUM_KERNEL_CBR 1
103
#define GRU_NUM_KERNEL_DSR_BYTES 256
104
#define GRU_NUM_KERNEL_DSR_CL (GRU_NUM_KERNEL_DSR_BYTES / \
105
GRU_CACHE_LINE_BYTES)
106
107
/* GRU instruction attributes for all instructions */
108
#define IMA IMA_CB_DELAY
109
110
/* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
111
#define __gru_cacheline_aligned__ \
112
__attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
113
114
#define MAGIC 0x1234567887654321UL
115
116
/* Default retry count for GRU errors on kernel instructions */
117
#define EXCEPTION_RETRY_LIMIT 3
118
119
/* Status of message queue sections */
120
#define MQS_EMPTY 0
121
#define MQS_FULL 1
122
#define MQS_NOOP 2
123
124
/*----------------- RESOURCE MANAGEMENT -------------------------------------*/
125
/* optimized for x86_64 */
126
struct message_queue {
127
union gru_mesqhead head __gru_cacheline_aligned__; /* CL 0 */
128
int qlines; /* DW 1 */
129
long hstatus[2];
130
void *next __gru_cacheline_aligned__;/* CL 1 */
131
void *limit;
132
void *start;
133
void *start2;
134
char data ____cacheline_aligned; /* CL 2 */
135
};
136
137
/* First word in every message - used by mesq interface */
138
struct message_header {
139
char present;
140
char present2;
141
char lines;
142
char fill;
143
};
144
145
#define HSTATUS(mq, h) ((mq) + offsetof(struct message_queue, hstatus[h]))
146
147
/*
148
* Reload the blade's kernel context into a GRU chiplet. Called holding
149
* the bs_kgts_sema for READ. Will steal user contexts if necessary.
150
*/
151
static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id)
152
{
153
struct gru_state *gru;
154
struct gru_thread_state *kgts;
155
void *vaddr;
156
int ctxnum, ncpus;
157
158
up_read(&bs->bs_kgts_sema);
159
down_write(&bs->bs_kgts_sema);
160
161
if (!bs->bs_kgts) {
162
bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0, 0);
163
bs->bs_kgts->ts_user_blade_id = blade_id;
164
}
165
kgts = bs->bs_kgts;
166
167
if (!kgts->ts_gru) {
168
STAT(load_kernel_context);
169
ncpus = uv_blade_nr_possible_cpus(blade_id);
170
kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU(
171
GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs);
172
kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU(
173
GRU_NUM_KERNEL_DSR_BYTES * ncpus +
174
bs->bs_async_dsr_bytes);
175
while (!gru_assign_gru_context(kgts)) {
176
msleep(1);
177
gru_steal_context(kgts);
178
}
179
gru_load_context(kgts);
180
gru = bs->bs_kgts->ts_gru;
181
vaddr = gru->gs_gru_base_vaddr;
182
ctxnum = kgts->ts_ctxnum;
183
bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0);
184
bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0);
185
}
186
downgrade_write(&bs->bs_kgts_sema);
187
}
188
189
/*
190
* Free all kernel contexts that are not currently in use.
191
* Returns 0 if all freed, else number of inuse context.
192
*/
193
static int gru_free_kernel_contexts(void)
194
{
195
struct gru_blade_state *bs;
196
struct gru_thread_state *kgts;
197
int bid, ret = 0;
198
199
for (bid = 0; bid < GRU_MAX_BLADES; bid++) {
200
bs = gru_base[bid];
201
if (!bs)
202
continue;
203
204
/* Ignore busy contexts. Don't want to block here. */
205
if (down_write_trylock(&bs->bs_kgts_sema)) {
206
kgts = bs->bs_kgts;
207
if (kgts && kgts->ts_gru)
208
gru_unload_context(kgts, 0);
209
bs->bs_kgts = NULL;
210
up_write(&bs->bs_kgts_sema);
211
kfree(kgts);
212
} else {
213
ret++;
214
}
215
}
216
return ret;
217
}
218
219
/*
220
* Lock & load the kernel context for the specified blade.
221
*/
222
static struct gru_blade_state *gru_lock_kernel_context(int blade_id)
223
{
224
struct gru_blade_state *bs;
225
int bid;
226
227
STAT(lock_kernel_context);
228
again:
229
bid = blade_id < 0 ? uv_numa_blade_id() : blade_id;
230
bs = gru_base[bid];
231
232
/* Handle the case where migration occurred while waiting for the sema */
233
down_read(&bs->bs_kgts_sema);
234
if (blade_id < 0 && bid != uv_numa_blade_id()) {
235
up_read(&bs->bs_kgts_sema);
236
goto again;
237
}
238
if (!bs->bs_kgts || !bs->bs_kgts->ts_gru)
239
gru_load_kernel_context(bs, bid);
240
return bs;
241
242
}
243
244
/*
245
* Unlock the kernel context for the specified blade. Context is not
246
* unloaded but may be stolen before next use.
247
*/
248
static void gru_unlock_kernel_context(int blade_id)
249
{
250
struct gru_blade_state *bs;
251
252
bs = gru_base[blade_id];
253
up_read(&bs->bs_kgts_sema);
254
STAT(unlock_kernel_context);
255
}
256
257
/*
258
* Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
259
* - returns with preemption disabled
260
*/
261
static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr)
262
{
263
struct gru_blade_state *bs;
264
int lcpu;
265
266
BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES);
267
preempt_disable();
268
bs = gru_lock_kernel_context(-1);
269
lcpu = uv_blade_processor_id();
270
*cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE;
271
*dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES;
272
return 0;
273
}
274
275
/*
276
* Free the current cpus reserved DSR/CBR resources.
277
*/
278
static void gru_free_cpu_resources(void *cb, void *dsr)
279
{
280
gru_unlock_kernel_context(uv_numa_blade_id());
281
preempt_enable();
282
}
283
284
/*
285
* Reserve GRU resources to be used asynchronously.
286
* Note: currently supports only 1 reservation per blade.
287
*
288
* input:
289
* blade_id - blade on which resources should be reserved
290
* cbrs - number of CBRs
291
* dsr_bytes - number of DSR bytes needed
292
* output:
293
* handle to identify resource
294
* (0 = async resources already reserved)
295
*/
296
unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes,
297
struct completion *cmp)
298
{
299
struct gru_blade_state *bs;
300
struct gru_thread_state *kgts;
301
int ret = 0;
302
303
bs = gru_base[blade_id];
304
305
down_write(&bs->bs_kgts_sema);
306
307
/* Verify no resources already reserved */
308
if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs)
309
goto done;
310
bs->bs_async_dsr_bytes = dsr_bytes;
311
bs->bs_async_cbrs = cbrs;
312
bs->bs_async_wq = cmp;
313
kgts = bs->bs_kgts;
314
315
/* Resources changed. Unload context if already loaded */
316
if (kgts && kgts->ts_gru)
317
gru_unload_context(kgts, 0);
318
ret = ASYNC_BID_TO_HAN(blade_id);
319
320
done:
321
up_write(&bs->bs_kgts_sema);
322
return ret;
323
}
324
325
/*
326
* Release async resources previously reserved.
327
*
328
* input:
329
* han - handle to identify resources
330
*/
331
void gru_release_async_resources(unsigned long han)
332
{
333
struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
334
335
down_write(&bs->bs_kgts_sema);
336
bs->bs_async_dsr_bytes = 0;
337
bs->bs_async_cbrs = 0;
338
bs->bs_async_wq = NULL;
339
up_write(&bs->bs_kgts_sema);
340
}
341
342
/*
343
* Wait for async GRU instructions to complete.
344
*
345
* input:
346
* han - handle to identify resources
347
*/
348
void gru_wait_async_cbr(unsigned long han)
349
{
350
struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
351
352
wait_for_completion(bs->bs_async_wq);
353
mb();
354
}
355
356
/*
357
* Lock previous reserved async GRU resources
358
*
359
* input:
360
* han - handle to identify resources
361
* output:
362
* cb - pointer to first CBR
363
* dsr - pointer to first DSR
364
*/
365
void gru_lock_async_resource(unsigned long han, void **cb, void **dsr)
366
{
367
struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
368
int blade_id = ASYNC_HAN_TO_BID(han);
369
int ncpus;
370
371
gru_lock_kernel_context(blade_id);
372
ncpus = uv_blade_nr_possible_cpus(blade_id);
373
if (cb)
374
*cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE;
375
if (dsr)
376
*dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES;
377
}
378
379
/*
380
* Unlock previous reserved async GRU resources
381
*
382
* input:
383
* han - handle to identify resources
384
*/
385
void gru_unlock_async_resource(unsigned long han)
386
{
387
int blade_id = ASYNC_HAN_TO_BID(han);
388
389
gru_unlock_kernel_context(blade_id);
390
}
391
392
/*----------------------------------------------------------------------*/
393
int gru_get_cb_exception_detail(void *cb,
394
struct control_block_extended_exc_detail *excdet)
395
{
396
struct gru_control_block_extended *cbe;
397
struct gru_thread_state *kgts = NULL;
398
unsigned long off;
399
int cbrnum, bid;
400
401
/*
402
* Locate kgts for cb. This algorithm is SLOW but
403
* this function is rarely called (ie., almost never).
404
* Performance does not matter.
405
*/
406
for_each_possible_blade(bid) {
407
if (!gru_base[bid])
408
break;
409
kgts = gru_base[bid]->bs_kgts;
410
if (!kgts || !kgts->ts_gru)
411
continue;
412
off = cb - kgts->ts_gru->gs_gru_base_vaddr;
413
if (off < GRU_SIZE)
414
break;
415
kgts = NULL;
416
}
417
BUG_ON(!kgts);
418
cbrnum = thread_cbr_number(kgts, get_cb_number(cb));
419
cbe = get_cbe(GRUBASE(cb), cbrnum);
420
gru_flush_cache(cbe); /* CBE not coherent */
421
sync_core();
422
excdet->opc = cbe->opccpy;
423
excdet->exopc = cbe->exopccpy;
424
excdet->ecause = cbe->ecause;
425
excdet->exceptdet0 = cbe->idef1upd;
426
excdet->exceptdet1 = cbe->idef3upd;
427
gru_flush_cache(cbe);
428
return 0;
429
}
430
431
char *gru_get_cb_exception_detail_str(int ret, void *cb,
432
char *buf, int size)
433
{
434
struct gru_control_block_status *gen = (void *)cb;
435
struct control_block_extended_exc_detail excdet;
436
437
if (ret > 0 && gen->istatus == CBS_EXCEPTION) {
438
gru_get_cb_exception_detail(cb, &excdet);
439
snprintf(buf, size,
440
"GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
441
"excdet0 0x%lx, excdet1 0x%x", smp_processor_id(),
442
gen, excdet.opc, excdet.exopc, excdet.ecause,
443
excdet.exceptdet0, excdet.exceptdet1);
444
} else {
445
snprintf(buf, size, "No exception");
446
}
447
return buf;
448
}
449
450
static int gru_wait_idle_or_exception(struct gru_control_block_status *gen)
451
{
452
while (gen->istatus >= CBS_ACTIVE) {
453
cpu_relax();
454
barrier();
455
}
456
return gen->istatus;
457
}
458
459
static int gru_retry_exception(void *cb)
460
{
461
struct gru_control_block_status *gen = (void *)cb;
462
struct control_block_extended_exc_detail excdet;
463
int retry = EXCEPTION_RETRY_LIMIT;
464
465
while (1) {
466
if (gru_wait_idle_or_exception(gen) == CBS_IDLE)
467
return CBS_IDLE;
468
if (gru_get_cb_message_queue_substatus(cb))
469
return CBS_EXCEPTION;
470
gru_get_cb_exception_detail(cb, &excdet);
471
if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) ||
472
(excdet.cbrexecstatus & CBR_EXS_ABORT_OCC))
473
break;
474
if (retry-- == 0)
475
break;
476
gen->icmd = 1;
477
gru_flush_cache(gen);
478
}
479
return CBS_EXCEPTION;
480
}
481
482
int gru_check_status_proc(void *cb)
483
{
484
struct gru_control_block_status *gen = (void *)cb;
485
int ret;
486
487
ret = gen->istatus;
488
if (ret == CBS_EXCEPTION)
489
ret = gru_retry_exception(cb);
490
rmb();
491
return ret;
492
493
}
494
495
int gru_wait_proc(void *cb)
496
{
497
struct gru_control_block_status *gen = (void *)cb;
498
int ret;
499
500
ret = gru_wait_idle_or_exception(gen);
501
if (ret == CBS_EXCEPTION)
502
ret = gru_retry_exception(cb);
503
rmb();
504
return ret;
505
}
506
507
void gru_abort(int ret, void *cb, char *str)
508
{
509
char buf[GRU_EXC_STR_SIZE];
510
511
panic("GRU FATAL ERROR: %s - %s\n", str,
512
gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf)));
513
}
514
515
void gru_wait_abort_proc(void *cb)
516
{
517
int ret;
518
519
ret = gru_wait_proc(cb);
520
if (ret)
521
gru_abort(ret, cb, "gru_wait_abort");
522
}
523
524
525
/*------------------------------ MESSAGE QUEUES -----------------------------*/
526
527
/* Internal status . These are NOT returned to the user. */
528
#define MQIE_AGAIN -1 /* try again */
529
530
531
/*
532
* Save/restore the "present" flag that is in the second line of 2-line
533
* messages
534
*/
535
static inline int get_present2(void *p)
536
{
537
struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
538
return mhdr->present;
539
}
540
541
static inline void restore_present2(void *p, int val)
542
{
543
struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
544
mhdr->present = val;
545
}
546
547
/*
548
* Create a message queue.
549
* qlines - message queue size in cache lines. Includes 2-line header.
550
*/
551
int gru_create_message_queue(struct gru_message_queue_desc *mqd,
552
void *p, unsigned int bytes, int nasid, int vector, int apicid)
553
{
554
struct message_queue *mq = p;
555
unsigned int qlines;
556
557
qlines = bytes / GRU_CACHE_LINE_BYTES - 2;
558
memset(mq, 0, bytes);
559
mq->start = &mq->data;
560
mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES;
561
mq->next = &mq->data;
562
mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES;
563
mq->qlines = qlines;
564
mq->hstatus[0] = 0;
565
mq->hstatus[1] = 1;
566
mq->head = gru_mesq_head(2, qlines / 2 + 1);
567
mqd->mq = mq;
568
mqd->mq_gpa = uv_gpa(mq);
569
mqd->qlines = qlines;
570
mqd->interrupt_pnode = nasid >> 1;
571
mqd->interrupt_vector = vector;
572
mqd->interrupt_apicid = apicid;
573
return 0;
574
}
575
EXPORT_SYMBOL_GPL(gru_create_message_queue);
576
577
/*
578
* Send a NOOP message to a message queue
579
* Returns:
580
* 0 - if queue is full after the send. This is the normal case
581
* but various races can change this.
582
* -1 - if mesq sent successfully but queue not full
583
* >0 - unexpected error. MQE_xxx returned
584
*/
585
static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd,
586
void *mesg)
587
{
588
const struct message_header noop_header = {
589
.present = MQS_NOOP, .lines = 1};
590
unsigned long m;
591
int substatus, ret;
592
struct message_header save_mhdr, *mhdr = mesg;
593
594
STAT(mesq_noop);
595
save_mhdr = *mhdr;
596
*mhdr = noop_header;
597
gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA);
598
ret = gru_wait(cb);
599
600
if (ret) {
601
substatus = gru_get_cb_message_queue_substatus(cb);
602
switch (substatus) {
603
case CBSS_NO_ERROR:
604
STAT(mesq_noop_unexpected_error);
605
ret = MQE_UNEXPECTED_CB_ERR;
606
break;
607
case CBSS_LB_OVERFLOWED:
608
STAT(mesq_noop_lb_overflow);
609
ret = MQE_CONGESTION;
610
break;
611
case CBSS_QLIMIT_REACHED:
612
STAT(mesq_noop_qlimit_reached);
613
ret = 0;
614
break;
615
case CBSS_AMO_NACKED:
616
STAT(mesq_noop_amo_nacked);
617
ret = MQE_CONGESTION;
618
break;
619
case CBSS_PUT_NACKED:
620
STAT(mesq_noop_put_nacked);
621
m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
622
gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1,
623
IMA);
624
if (gru_wait(cb) == CBS_IDLE)
625
ret = MQIE_AGAIN;
626
else
627
ret = MQE_UNEXPECTED_CB_ERR;
628
break;
629
case CBSS_PAGE_OVERFLOW:
630
STAT(mesq_noop_page_overflow);
631
/* fallthru */
632
default:
633
BUG();
634
}
635
}
636
*mhdr = save_mhdr;
637
return ret;
638
}
639
640
/*
641
* Handle a gru_mesq full.
642
*/
643
static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd,
644
void *mesg, int lines)
645
{
646
union gru_mesqhead mqh;
647
unsigned int limit, head;
648
unsigned long avalue;
649
int half, qlines;
650
651
/* Determine if switching to first/second half of q */
652
avalue = gru_get_amo_value(cb);
653
head = gru_get_amo_value_head(cb);
654
limit = gru_get_amo_value_limit(cb);
655
656
qlines = mqd->qlines;
657
half = (limit != qlines);
658
659
if (half)
660
mqh = gru_mesq_head(qlines / 2 + 1, qlines);
661
else
662
mqh = gru_mesq_head(2, qlines / 2 + 1);
663
664
/* Try to get lock for switching head pointer */
665
gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA);
666
if (gru_wait(cb) != CBS_IDLE)
667
goto cberr;
668
if (!gru_get_amo_value(cb)) {
669
STAT(mesq_qf_locked);
670
return MQE_QUEUE_FULL;
671
}
672
673
/* Got the lock. Send optional NOP if queue not full, */
674
if (head != limit) {
675
if (send_noop_message(cb, mqd, mesg)) {
676
gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half),
677
XTYPE_DW, IMA);
678
if (gru_wait(cb) != CBS_IDLE)
679
goto cberr;
680
STAT(mesq_qf_noop_not_full);
681
return MQIE_AGAIN;
682
}
683
avalue++;
684
}
685
686
/* Then flip queuehead to other half of queue. */
687
gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue,
688
IMA);
689
if (gru_wait(cb) != CBS_IDLE)
690
goto cberr;
691
692
/* If not successfully in swapping queue head, clear the hstatus lock */
693
if (gru_get_amo_value(cb) != avalue) {
694
STAT(mesq_qf_switch_head_failed);
695
gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW,
696
IMA);
697
if (gru_wait(cb) != CBS_IDLE)
698
goto cberr;
699
}
700
return MQIE_AGAIN;
701
cberr:
702
STAT(mesq_qf_unexpected_error);
703
return MQE_UNEXPECTED_CB_ERR;
704
}
705
706
/*
707
* Handle a PUT failure. Note: if message was a 2-line message, one of the
708
* lines might have successfully have been written. Before sending the
709
* message, "present" must be cleared in BOTH lines to prevent the receiver
710
* from prematurely seeing the full message.
711
*/
712
static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
713
void *mesg, int lines)
714
{
715
unsigned long m, *val = mesg, gpa, save;
716
int ret;
717
718
m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
719
if (lines == 2) {
720
gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA);
721
if (gru_wait(cb) != CBS_IDLE)
722
return MQE_UNEXPECTED_CB_ERR;
723
}
724
gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA);
725
if (gru_wait(cb) != CBS_IDLE)
726
return MQE_UNEXPECTED_CB_ERR;
727
728
if (!mqd->interrupt_vector)
729
return MQE_OK;
730
731
/*
732
* Send a cross-partition interrupt to the SSI that contains the target
733
* message queue. Normally, the interrupt is automatically delivered by
734
* hardware but some error conditions require explicit delivery.
735
* Use the GRU to deliver the interrupt. Otherwise partition failures
736
* could cause unrecovered errors.
737
*/
738
gpa = uv_global_gru_mmr_address(mqd->interrupt_pnode, UVH_IPI_INT);
739
save = *val;
740
*val = uv_hub_ipi_value(mqd->interrupt_apicid, mqd->interrupt_vector,
741
dest_Fixed);
742
gru_vstore_phys(cb, gpa, gru_get_tri(mesg), IAA_REGISTER, IMA);
743
ret = gru_wait(cb);
744
*val = save;
745
if (ret != CBS_IDLE)
746
return MQE_UNEXPECTED_CB_ERR;
747
return MQE_OK;
748
}
749
750
/*
751
* Handle a gru_mesq failure. Some of these failures are software recoverable
752
* or retryable.
753
*/
754
static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd,
755
void *mesg, int lines)
756
{
757
int substatus, ret = 0;
758
759
substatus = gru_get_cb_message_queue_substatus(cb);
760
switch (substatus) {
761
case CBSS_NO_ERROR:
762
STAT(mesq_send_unexpected_error);
763
ret = MQE_UNEXPECTED_CB_ERR;
764
break;
765
case CBSS_LB_OVERFLOWED:
766
STAT(mesq_send_lb_overflow);
767
ret = MQE_CONGESTION;
768
break;
769
case CBSS_QLIMIT_REACHED:
770
STAT(mesq_send_qlimit_reached);
771
ret = send_message_queue_full(cb, mqd, mesg, lines);
772
break;
773
case CBSS_AMO_NACKED:
774
STAT(mesq_send_amo_nacked);
775
ret = MQE_CONGESTION;
776
break;
777
case CBSS_PUT_NACKED:
778
STAT(mesq_send_put_nacked);
779
ret = send_message_put_nacked(cb, mqd, mesg, lines);
780
break;
781
case CBSS_PAGE_OVERFLOW:
782
STAT(mesq_page_overflow);
783
/* fallthru */
784
default:
785
BUG();
786
}
787
return ret;
788
}
789
790
/*
791
* Send a message to a message queue
792
* mqd message queue descriptor
793
* mesg message. ust be vaddr within a GSEG
794
* bytes message size (<= 2 CL)
795
*/
796
int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg,
797
unsigned int bytes)
798
{
799
struct message_header *mhdr;
800
void *cb;
801
void *dsr;
802
int istatus, clines, ret;
803
804
STAT(mesq_send);
805
BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES);
806
807
clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES);
808
if (gru_get_cpu_resources(bytes, &cb, &dsr))
809
return MQE_BUG_NO_RESOURCES;
810
memcpy(dsr, mesg, bytes);
811
mhdr = dsr;
812
mhdr->present = MQS_FULL;
813
mhdr->lines = clines;
814
if (clines == 2) {
815
mhdr->present2 = get_present2(mhdr);
816
restore_present2(mhdr, MQS_FULL);
817
}
818
819
do {
820
ret = MQE_OK;
821
gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA);
822
istatus = gru_wait(cb);
823
if (istatus != CBS_IDLE)
824
ret = send_message_failure(cb, mqd, dsr, clines);
825
} while (ret == MQIE_AGAIN);
826
gru_free_cpu_resources(cb, dsr);
827
828
if (ret)
829
STAT(mesq_send_failed);
830
return ret;
831
}
832
EXPORT_SYMBOL_GPL(gru_send_message_gpa);
833
834
/*
835
* Advance the receive pointer for the queue to the next message.
836
*/
837
void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg)
838
{
839
struct message_queue *mq = mqd->mq;
840
struct message_header *mhdr = mq->next;
841
void *next, *pnext;
842
int half = -1;
843
int lines = mhdr->lines;
844
845
if (lines == 2)
846
restore_present2(mhdr, MQS_EMPTY);
847
mhdr->present = MQS_EMPTY;
848
849
pnext = mq->next;
850
next = pnext + GRU_CACHE_LINE_BYTES * lines;
851
if (next == mq->limit) {
852
next = mq->start;
853
half = 1;
854
} else if (pnext < mq->start2 && next >= mq->start2) {
855
half = 0;
856
}
857
858
if (half >= 0)
859
mq->hstatus[half] = 1;
860
mq->next = next;
861
}
862
EXPORT_SYMBOL_GPL(gru_free_message);
863
864
/*
865
* Get next message from message queue. Return NULL if no message
866
* present. User must call next_message() to move to next message.
867
* rmq message queue
868
*/
869
void *gru_get_next_message(struct gru_message_queue_desc *mqd)
870
{
871
struct message_queue *mq = mqd->mq;
872
struct message_header *mhdr = mq->next;
873
int present = mhdr->present;
874
875
/* skip NOOP messages */
876
while (present == MQS_NOOP) {
877
gru_free_message(mqd, mhdr);
878
mhdr = mq->next;
879
present = mhdr->present;
880
}
881
882
/* Wait for both halves of 2 line messages */
883
if (present == MQS_FULL && mhdr->lines == 2 &&
884
get_present2(mhdr) == MQS_EMPTY)
885
present = MQS_EMPTY;
886
887
if (!present) {
888
STAT(mesq_receive_none);
889
return NULL;
890
}
891
892
if (mhdr->lines == 2)
893
restore_present2(mhdr, mhdr->present2);
894
895
STAT(mesq_receive);
896
return mhdr;
897
}
898
EXPORT_SYMBOL_GPL(gru_get_next_message);
899
900
/* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
901
902
/*
903
* Load a DW from a global GPA. The GPA can be a memory or MMR address.
904
*/
905
int gru_read_gpa(unsigned long *value, unsigned long gpa)
906
{
907
void *cb;
908
void *dsr;
909
int ret, iaa;
910
911
STAT(read_gpa);
912
if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
913
return MQE_BUG_NO_RESOURCES;
914
iaa = gpa >> 62;
915
gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA);
916
ret = gru_wait(cb);
917
if (ret == CBS_IDLE)
918
*value = *(unsigned long *)dsr;
919
gru_free_cpu_resources(cb, dsr);
920
return ret;
921
}
922
EXPORT_SYMBOL_GPL(gru_read_gpa);
923
924
925
/*
926
* Copy a block of data using the GRU resources
927
*/
928
int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
929
unsigned int bytes)
930
{
931
void *cb;
932
void *dsr;
933
int ret;
934
935
STAT(copy_gpa);
936
if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
937
return MQE_BUG_NO_RESOURCES;
938
gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr),
939
XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA);
940
ret = gru_wait(cb);
941
gru_free_cpu_resources(cb, dsr);
942
return ret;
943
}
944
EXPORT_SYMBOL_GPL(gru_copy_gpa);
945
946
/* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
947
/* Temp - will delete after we gain confidence in the GRU */
948
949
static int quicktest0(unsigned long arg)
950
{
951
unsigned long word0;
952
unsigned long word1;
953
void *cb;
954
void *dsr;
955
unsigned long *p;
956
int ret = -EIO;
957
958
if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr))
959
return MQE_BUG_NO_RESOURCES;
960
p = dsr;
961
word0 = MAGIC;
962
word1 = 0;
963
964
gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
965
if (gru_wait(cb) != CBS_IDLE) {
966
printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id());
967
goto done;
968
}
969
970
if (*p != MAGIC) {
971
printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p);
972
goto done;
973
}
974
gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
975
if (gru_wait(cb) != CBS_IDLE) {
976
printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id());
977
goto done;
978
}
979
980
if (word0 != word1 || word1 != MAGIC) {
981
printk(KERN_DEBUG
982
"GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n",
983
smp_processor_id(), word1, MAGIC);
984
goto done;
985
}
986
ret = 0;
987
988
done:
989
gru_free_cpu_resources(cb, dsr);
990
return ret;
991
}
992
993
#define ALIGNUP(p, q) ((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
994
995
static int quicktest1(unsigned long arg)
996
{
997
struct gru_message_queue_desc mqd;
998
void *p, *mq;
999
unsigned long *dw;
1000
int i, ret = -EIO;
1001
char mes[GRU_CACHE_LINE_BYTES], *m;
1002
1003
/* Need 1K cacheline aligned that does not cross page boundary */
1004
p = kmalloc(4096, 0);
1005
if (p == NULL)
1006
return -ENOMEM;
1007
mq = ALIGNUP(p, 1024);
1008
memset(mes, 0xee, sizeof(mes));
1009
dw = mq;
1010
1011
gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0);
1012
for (i = 0; i < 6; i++) {
1013
mes[8] = i;
1014
do {
1015
ret = gru_send_message_gpa(&mqd, mes, sizeof(mes));
1016
} while (ret == MQE_CONGESTION);
1017
if (ret)
1018
break;
1019
}
1020
if (ret != MQE_QUEUE_FULL || i != 4) {
1021
printk(KERN_DEBUG "GRU:%d quicktest1: unexpect status %d, i %d\n",
1022
smp_processor_id(), ret, i);
1023
goto done;
1024
}
1025
1026
for (i = 0; i < 6; i++) {
1027
m = gru_get_next_message(&mqd);
1028
if (!m || m[8] != i)
1029
break;
1030
gru_free_message(&mqd, m);
1031
}
1032
if (i != 4) {
1033
printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n",
1034
smp_processor_id(), i, m, m ? m[8] : -1);
1035
goto done;
1036
}
1037
ret = 0;
1038
1039
done:
1040
kfree(p);
1041
return ret;
1042
}
1043
1044
static int quicktest2(unsigned long arg)
1045
{
1046
static DECLARE_COMPLETION(cmp);
1047
unsigned long han;
1048
int blade_id = 0;
1049
int numcb = 4;
1050
int ret = 0;
1051
unsigned long *buf;
1052
void *cb0, *cb;
1053
struct gru_control_block_status *gen;
1054
int i, k, istatus, bytes;
1055
1056
bytes = numcb * 4 * 8;
1057
buf = kmalloc(bytes, GFP_KERNEL);
1058
if (!buf)
1059
return -ENOMEM;
1060
1061
ret = -EBUSY;
1062
han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp);
1063
if (!han)
1064
goto done;
1065
1066
gru_lock_async_resource(han, &cb0, NULL);
1067
memset(buf, 0xee, bytes);
1068
for (i = 0; i < numcb; i++)
1069
gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0,
1070
XTYPE_DW, 4, 1, IMA_INTERRUPT);
1071
1072
ret = 0;
1073
k = numcb;
1074
do {
1075
gru_wait_async_cbr(han);
1076
for (i = 0; i < numcb; i++) {
1077
cb = cb0 + i * GRU_HANDLE_STRIDE;
1078
istatus = gru_check_status(cb);
1079
if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS)
1080
break;
1081
}
1082
if (i == numcb)
1083
continue;
1084
if (istatus != CBS_IDLE) {
1085
printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i);
1086
ret = -EFAULT;
1087
} else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] ||
1088
buf[4 * i + 3]) {
1089
printk(KERN_DEBUG "GRU:%d quicktest2:cb %d, buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n",
1090
smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]);
1091
ret = -EIO;
1092
}
1093
k--;
1094
gen = cb;
1095
gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */
1096
} while (k);
1097
BUG_ON(cmp.done);
1098
1099
gru_unlock_async_resource(han);
1100
gru_release_async_resources(han);
1101
done:
1102
kfree(buf);
1103
return ret;
1104
}
1105
1106
#define BUFSIZE 200
1107
static int quicktest3(unsigned long arg)
1108
{
1109
char buf1[BUFSIZE], buf2[BUFSIZE];
1110
int ret = 0;
1111
1112
memset(buf2, 0, sizeof(buf2));
1113
memset(buf1, get_cycles() & 255, sizeof(buf1));
1114
gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE);
1115
if (memcmp(buf1, buf2, BUFSIZE)) {
1116
printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id());
1117
ret = -EIO;
1118
}
1119
return ret;
1120
}
1121
1122
/*
1123
* Debugging only. User hook for various kernel tests
1124
* of driver & gru.
1125
*/
1126
int gru_ktest(unsigned long arg)
1127
{
1128
int ret = -EINVAL;
1129
1130
switch (arg & 0xff) {
1131
case 0:
1132
ret = quicktest0(arg);
1133
break;
1134
case 1:
1135
ret = quicktest1(arg);
1136
break;
1137
case 2:
1138
ret = quicktest2(arg);
1139
break;
1140
case 3:
1141
ret = quicktest3(arg);
1142
break;
1143
case 99:
1144
ret = gru_free_kernel_contexts();
1145
break;
1146
}
1147
return ret;
1148
1149
}
1150
1151
int gru_kservices_init(void)
1152
{
1153
return 0;
1154
}
1155
1156
void gru_kservices_exit(void)
1157
{
1158
if (gru_free_kernel_contexts())
1159
BUG();
1160
}
1161
1162
1163