Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/misc/sgi-gru/grutables.h
15111 views
1
/*
2
* SN Platform GRU Driver
3
*
4
* GRU DRIVER TABLES, MACROS, externs, etc
5
*
6
* Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
7
*
8
* This program is free software; you can redistribute it and/or modify
9
* it under the terms of the GNU General Public License as published by
10
* the Free Software Foundation; either version 2 of the License, or
11
* (at your option) any later version.
12
*
13
* This program is distributed in the hope that it will be useful,
14
* but WITHOUT ANY WARRANTY; without even the implied warranty of
15
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16
* GNU General Public License for more details.
17
*
18
* You should have received a copy of the GNU General Public License
19
* along with this program; if not, write to the Free Software
20
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21
*/
22
23
#ifndef __GRUTABLES_H__
24
#define __GRUTABLES_H__
25
26
/*
27
* GRU Chiplet:
28
* The GRU is a user addressible memory accelerator. It provides
29
* several forms of load, store, memset, bcopy instructions. In addition, it
30
* contains special instructions for AMOs, sending messages to message
31
* queues, etc.
32
*
33
* The GRU is an integral part of the node controller. It connects
34
* directly to the cpu socket. In its current implementation, there are 2
35
* GRU chiplets in the node controller on each blade (~node).
36
*
37
* The entire GRU memory space is fully coherent and cacheable by the cpus.
38
*
39
* Each GRU chiplet has a physical memory map that looks like the following:
40
*
41
* +-----------------+
42
* |/////////////////|
43
* |/////////////////|
44
* |/////////////////|
45
* |/////////////////|
46
* |/////////////////|
47
* |/////////////////|
48
* |/////////////////|
49
* |/////////////////|
50
* +-----------------+
51
* | system control |
52
* +-----------------+ _______ +-------------+
53
* |/////////////////| / | |
54
* |/////////////////| / | |
55
* |/////////////////| / | instructions|
56
* |/////////////////| / | |
57
* |/////////////////| / | |
58
* |/////////////////| / |-------------|
59
* |/////////////////| / | |
60
* +-----------------+ | |
61
* | context 15 | | data |
62
* +-----------------+ | |
63
* | ...... | \ | |
64
* +-----------------+ \____________ +-------------+
65
* | context 1 |
66
* +-----------------+
67
* | context 0 |
68
* +-----------------+
69
*
70
* Each of the "contexts" is a chunk of memory that can be mmaped into user
71
* space. The context consists of 2 parts:
72
*
73
* - an instruction space that can be directly accessed by the user
74
* to issue GRU instructions and to check instruction status.
75
*
76
* - a data area that acts as normal RAM.
77
*
78
* User instructions contain virtual addresses of data to be accessed by the
79
* GRU. The GRU contains a TLB that is used to convert these user virtual
80
* addresses to physical addresses.
81
*
82
* The "system control" area of the GRU chiplet is used by the kernel driver
83
* to manage user contexts and to perform functions such as TLB dropin and
84
* purging.
85
*
86
* One context may be reserved for the kernel and used for cross-partition
87
* communication. The GRU will also be used to asynchronously zero out
88
* large blocks of memory (not currently implemented).
89
*
90
*
91
* Tables:
92
*
93
* VDATA-VMA Data - Holds a few parameters. Head of linked list of
94
* GTS tables for threads using the GSEG
95
* GTS - Gru Thread State - contains info for managing a GSEG context. A
96
* GTS is allocated for each thread accessing a
97
* GSEG.
98
* GTD - GRU Thread Data - contains shadow copy of GRU data when GSEG is
99
* not loaded into a GRU
100
* GMS - GRU Memory Struct - Used to manage TLB shootdowns. Tracks GRUs
101
* where a GSEG has been loaded. Similar to
102
* an mm_struct but for GRU.
103
*
104
* GS - GRU State - Used to manage the state of a GRU chiplet
105
* BS - Blade State - Used to manage state of all GRU chiplets
106
* on a blade
107
*
108
*
109
* Normal task tables for task using GRU.
110
* - 2 threads in process
111
* - 2 GSEGs open in process
112
* - GSEG1 is being used by both threads
113
* - GSEG2 is used only by thread 2
114
*
115
* task -->|
116
* task ---+---> mm ->------ (notifier) -------+-> gms
117
* | |
118
* |--> vma -> vdata ---> gts--->| GSEG1 (thread1)
119
* | | |
120
* | +-> gts--->| GSEG1 (thread2)
121
* | |
122
* |--> vma -> vdata ---> gts--->| GSEG2 (thread2)
123
* .
124
* .
125
*
126
* GSEGs are marked DONTCOPY on fork
127
*
128
* At open
129
* file.private_data -> NULL
130
*
131
* At mmap,
132
* vma -> vdata
133
*
134
* After gseg reference
135
* vma -> vdata ->gts
136
*
137
* After fork
138
* parent
139
* vma -> vdata -> gts
140
* child
141
* (vma is not copied)
142
*
143
*/
144
145
#include <linux/rmap.h>
146
#include <linux/interrupt.h>
147
#include <linux/mutex.h>
148
#include <linux/wait.h>
149
#include <linux/mmu_notifier.h>
150
#include "gru.h"
151
#include "grulib.h"
152
#include "gruhandles.h"
153
154
extern struct gru_stats_s gru_stats;
155
extern struct gru_blade_state *gru_base[];
156
extern unsigned long gru_start_paddr, gru_end_paddr;
157
extern void *gru_start_vaddr;
158
extern unsigned int gru_max_gids;
159
160
#define GRU_MAX_BLADES MAX_NUMNODES
161
#define GRU_MAX_GRUS (GRU_MAX_BLADES * GRU_CHIPLETS_PER_BLADE)
162
163
#define GRU_DRIVER_ID_STR "SGI GRU Device Driver"
164
#define GRU_DRIVER_VERSION_STR "0.85"
165
166
/*
167
* GRU statistics.
168
*/
169
struct gru_stats_s {
170
atomic_long_t vdata_alloc;
171
atomic_long_t vdata_free;
172
atomic_long_t gts_alloc;
173
atomic_long_t gts_free;
174
atomic_long_t gms_alloc;
175
atomic_long_t gms_free;
176
atomic_long_t gts_double_allocate;
177
atomic_long_t assign_context;
178
atomic_long_t assign_context_failed;
179
atomic_long_t free_context;
180
atomic_long_t load_user_context;
181
atomic_long_t load_kernel_context;
182
atomic_long_t lock_kernel_context;
183
atomic_long_t unlock_kernel_context;
184
atomic_long_t steal_user_context;
185
atomic_long_t steal_kernel_context;
186
atomic_long_t steal_context_failed;
187
atomic_long_t nopfn;
188
atomic_long_t asid_new;
189
atomic_long_t asid_next;
190
atomic_long_t asid_wrap;
191
atomic_long_t asid_reuse;
192
atomic_long_t intr;
193
atomic_long_t intr_cbr;
194
atomic_long_t intr_tfh;
195
atomic_long_t intr_spurious;
196
atomic_long_t intr_mm_lock_failed;
197
atomic_long_t call_os;
198
atomic_long_t call_os_wait_queue;
199
atomic_long_t user_flush_tlb;
200
atomic_long_t user_unload_context;
201
atomic_long_t user_exception;
202
atomic_long_t set_context_option;
203
atomic_long_t check_context_retarget_intr;
204
atomic_long_t check_context_unload;
205
atomic_long_t tlb_dropin;
206
atomic_long_t tlb_preload_page;
207
atomic_long_t tlb_dropin_fail_no_asid;
208
atomic_long_t tlb_dropin_fail_upm;
209
atomic_long_t tlb_dropin_fail_invalid;
210
atomic_long_t tlb_dropin_fail_range_active;
211
atomic_long_t tlb_dropin_fail_idle;
212
atomic_long_t tlb_dropin_fail_fmm;
213
atomic_long_t tlb_dropin_fail_no_exception;
214
atomic_long_t tfh_stale_on_fault;
215
atomic_long_t mmu_invalidate_range;
216
atomic_long_t mmu_invalidate_page;
217
atomic_long_t flush_tlb;
218
atomic_long_t flush_tlb_gru;
219
atomic_long_t flush_tlb_gru_tgh;
220
atomic_long_t flush_tlb_gru_zero_asid;
221
222
atomic_long_t copy_gpa;
223
atomic_long_t read_gpa;
224
225
atomic_long_t mesq_receive;
226
atomic_long_t mesq_receive_none;
227
atomic_long_t mesq_send;
228
atomic_long_t mesq_send_failed;
229
atomic_long_t mesq_noop;
230
atomic_long_t mesq_send_unexpected_error;
231
atomic_long_t mesq_send_lb_overflow;
232
atomic_long_t mesq_send_qlimit_reached;
233
atomic_long_t mesq_send_amo_nacked;
234
atomic_long_t mesq_send_put_nacked;
235
atomic_long_t mesq_page_overflow;
236
atomic_long_t mesq_qf_locked;
237
atomic_long_t mesq_qf_noop_not_full;
238
atomic_long_t mesq_qf_switch_head_failed;
239
atomic_long_t mesq_qf_unexpected_error;
240
atomic_long_t mesq_noop_unexpected_error;
241
atomic_long_t mesq_noop_lb_overflow;
242
atomic_long_t mesq_noop_qlimit_reached;
243
atomic_long_t mesq_noop_amo_nacked;
244
atomic_long_t mesq_noop_put_nacked;
245
atomic_long_t mesq_noop_page_overflow;
246
247
};
248
249
enum mcs_op {cchop_allocate, cchop_start, cchop_interrupt, cchop_interrupt_sync,
250
cchop_deallocate, tfhop_write_only, tfhop_write_restart,
251
tghop_invalidate, mcsop_last};
252
253
struct mcs_op_statistic {
254
atomic_long_t count;
255
atomic_long_t total;
256
unsigned long max;
257
};
258
259
extern struct mcs_op_statistic mcs_op_statistics[mcsop_last];
260
261
#define OPT_DPRINT 1
262
#define OPT_STATS 2
263
264
265
#define IRQ_GRU 110 /* Starting IRQ number for interrupts */
266
267
/* Delay in jiffies between attempts to assign a GRU context */
268
#define GRU_ASSIGN_DELAY ((HZ * 20) / 1000)
269
270
/*
271
* If a process has it's context stolen, min delay in jiffies before trying to
272
* steal a context from another process.
273
*/
274
#define GRU_STEAL_DELAY ((HZ * 200) / 1000)
275
276
#define STAT(id) do { \
277
if (gru_options & OPT_STATS) \
278
atomic_long_inc(&gru_stats.id); \
279
} while (0)
280
281
#ifdef CONFIG_SGI_GRU_DEBUG
282
#define gru_dbg(dev, fmt, x...) \
283
do { \
284
if (gru_options & OPT_DPRINT) \
285
printk(KERN_DEBUG "GRU:%d %s: " fmt, smp_processor_id(), __func__, x);\
286
} while (0)
287
#else
288
#define gru_dbg(x...)
289
#endif
290
291
/*-----------------------------------------------------------------------------
292
* ASID management
293
*/
294
#define MAX_ASID 0xfffff0
295
#define MIN_ASID 8
296
#define ASID_INC 8 /* number of regions */
297
298
/* Generate a GRU asid value from a GRU base asid & a virtual address. */
299
#define VADDR_HI_BIT 64
300
#define GRUREGION(addr) ((addr) >> (VADDR_HI_BIT - 3) & 3)
301
#define GRUASID(asid, addr) ((asid) + GRUREGION(addr))
302
303
/*------------------------------------------------------------------------------
304
* File & VMS Tables
305
*/
306
307
struct gru_state;
308
309
/*
310
* This structure is pointed to from the mmstruct via the notifier pointer.
311
* There is one of these per address space.
312
*/
313
struct gru_mm_tracker { /* pack to reduce size */
314
unsigned int mt_asid_gen:24; /* ASID wrap count */
315
unsigned int mt_asid:24; /* current base ASID for gru */
316
unsigned short mt_ctxbitmap:16;/* bitmap of contexts using
317
asid */
318
} __attribute__ ((packed));
319
320
struct gru_mm_struct {
321
struct mmu_notifier ms_notifier;
322
atomic_t ms_refcnt;
323
spinlock_t ms_asid_lock; /* protects ASID assignment */
324
atomic_t ms_range_active;/* num range_invals active */
325
char ms_released;
326
wait_queue_head_t ms_wait_queue;
327
DECLARE_BITMAP(ms_asidmap, GRU_MAX_GRUS);
328
struct gru_mm_tracker ms_asids[GRU_MAX_GRUS];
329
};
330
331
/*
332
* One of these structures is allocated when a GSEG is mmaped. The
333
* structure is pointed to by the vma->vm_private_data field in the vma struct.
334
*/
335
struct gru_vma_data {
336
spinlock_t vd_lock; /* Serialize access to vma */
337
struct list_head vd_head; /* head of linked list of gts */
338
long vd_user_options;/* misc user option flags */
339
int vd_cbr_au_count;
340
int vd_dsr_au_count;
341
unsigned char vd_tlb_preload_count;
342
};
343
344
/*
345
* One of these is allocated for each thread accessing a mmaped GRU. A linked
346
* list of these structure is hung off the struct gru_vma_data in the mm_struct.
347
*/
348
struct gru_thread_state {
349
struct list_head ts_next; /* list - head at vma-private */
350
struct mutex ts_ctxlock; /* load/unload CTX lock */
351
struct mm_struct *ts_mm; /* mm currently mapped to
352
context */
353
struct vm_area_struct *ts_vma; /* vma of GRU context */
354
struct gru_state *ts_gru; /* GRU where the context is
355
loaded */
356
struct gru_mm_struct *ts_gms; /* asid & ioproc struct */
357
unsigned char ts_tlb_preload_count; /* TLB preload pages */
358
unsigned long ts_cbr_map; /* map of allocated CBRs */
359
unsigned long ts_dsr_map; /* map of allocated DATA
360
resources */
361
unsigned long ts_steal_jiffies;/* jiffies when context last
362
stolen */
363
long ts_user_options;/* misc user option flags */
364
pid_t ts_tgid_owner; /* task that is using the
365
context - for migration */
366
short ts_user_blade_id;/* user selected blade */
367
char ts_user_chiplet_id;/* user selected chiplet */
368
unsigned short ts_sizeavail; /* Pagesizes in use */
369
int ts_tsid; /* thread that owns the
370
structure */
371
int ts_tlb_int_select;/* target cpu if interrupts
372
enabled */
373
int ts_ctxnum; /* context number where the
374
context is loaded */
375
atomic_t ts_refcnt; /* reference count GTS */
376
unsigned char ts_dsr_au_count;/* Number of DSR resources
377
required for contest */
378
unsigned char ts_cbr_au_count;/* Number of CBR resources
379
required for contest */
380
char ts_cch_req_slice;/* CCH packet slice */
381
char ts_blade; /* If >= 0, migrate context if
382
ref from different blade */
383
char ts_force_cch_reload;
384
char ts_cbr_idx[GRU_CBR_AU];/* CBR numbers of each
385
allocated CB */
386
int ts_data_valid; /* Indicates if ts_gdata has
387
valid data */
388
struct gru_gseg_statistics ustats; /* User statistics */
389
unsigned long ts_gdata[0]; /* save area for GRU data (CB,
390
DS, CBE) */
391
};
392
393
/*
394
* Threaded programs actually allocate an array of GSEGs when a context is
395
* created. Each thread uses a separate GSEG. TSID is the index into the GSEG
396
* array.
397
*/
398
#define TSID(a, v) (((a) - (v)->vm_start) / GRU_GSEG_PAGESIZE)
399
#define UGRUADDR(gts) ((gts)->ts_vma->vm_start + \
400
(gts)->ts_tsid * GRU_GSEG_PAGESIZE)
401
402
#define NULLCTX (-1) /* if context not loaded into GRU */
403
404
/*-----------------------------------------------------------------------------
405
* GRU State Tables
406
*/
407
408
/*
409
* One of these exists for each GRU chiplet.
410
*/
411
struct gru_state {
412
struct gru_blade_state *gs_blade; /* GRU state for entire
413
blade */
414
unsigned long gs_gru_base_paddr; /* Physical address of
415
gru segments (64) */
416
void *gs_gru_base_vaddr; /* Virtual address of
417
gru segments (64) */
418
unsigned short gs_gid; /* unique GRU number */
419
unsigned short gs_blade_id; /* blade of GRU */
420
unsigned char gs_chiplet_id; /* blade chiplet of GRU */
421
unsigned char gs_tgh_local_shift; /* used to pick TGH for
422
local flush */
423
unsigned char gs_tgh_first_remote; /* starting TGH# for
424
remote flush */
425
spinlock_t gs_asid_lock; /* lock used for
426
assigning asids */
427
spinlock_t gs_lock; /* lock used for
428
assigning contexts */
429
430
/* -- the following are protected by the gs_asid_lock spinlock ---- */
431
unsigned int gs_asid; /* Next availe ASID */
432
unsigned int gs_asid_limit; /* Limit of available
433
ASIDs */
434
unsigned int gs_asid_gen; /* asid generation.
435
Inc on wrap */
436
437
/* --- the following fields are protected by the gs_lock spinlock --- */
438
unsigned long gs_context_map; /* bitmap to manage
439
contexts in use */
440
unsigned long gs_cbr_map; /* bitmap to manage CB
441
resources */
442
unsigned long gs_dsr_map; /* bitmap used to manage
443
DATA resources */
444
unsigned int gs_reserved_cbrs; /* Number of kernel-
445
reserved cbrs */
446
unsigned int gs_reserved_dsr_bytes; /* Bytes of kernel-
447
reserved dsrs */
448
unsigned short gs_active_contexts; /* number of contexts
449
in use */
450
struct gru_thread_state *gs_gts[GRU_NUM_CCH]; /* GTS currently using
451
the context */
452
int gs_irq[GRU_NUM_TFM]; /* Interrupt irqs */
453
};
454
455
/*
456
* This structure contains the GRU state for all the GRUs on a blade.
457
*/
458
struct gru_blade_state {
459
void *kernel_cb; /* First kernel
460
reserved cb */
461
void *kernel_dsr; /* First kernel
462
reserved DSR */
463
struct rw_semaphore bs_kgts_sema; /* lock for kgts */
464
struct gru_thread_state *bs_kgts; /* GTS for kernel use */
465
466
/* ---- the following are used for managing kernel async GRU CBRs --- */
467
int bs_async_dsr_bytes; /* DSRs for async */
468
int bs_async_cbrs; /* CBRs AU for async */
469
struct completion *bs_async_wq;
470
471
/* ---- the following are protected by the bs_lock spinlock ---- */
472
spinlock_t bs_lock; /* lock used for
473
stealing contexts */
474
int bs_lru_ctxnum; /* STEAL - last context
475
stolen */
476
struct gru_state *bs_lru_gru; /* STEAL - last gru
477
stolen */
478
479
struct gru_state bs_grus[GRU_CHIPLETS_PER_BLADE];
480
};
481
482
/*-----------------------------------------------------------------------------
483
* Address Primitives
484
*/
485
#define get_tfm_for_cpu(g, c) \
486
((struct gru_tlb_fault_map *)get_tfm((g)->gs_gru_base_vaddr, (c)))
487
#define get_tfh_by_index(g, i) \
488
((struct gru_tlb_fault_handle *)get_tfh((g)->gs_gru_base_vaddr, (i)))
489
#define get_tgh_by_index(g, i) \
490
((struct gru_tlb_global_handle *)get_tgh((g)->gs_gru_base_vaddr, (i)))
491
#define get_cbe_by_index(g, i) \
492
((struct gru_control_block_extended *)get_cbe((g)->gs_gru_base_vaddr,\
493
(i)))
494
495
/*-----------------------------------------------------------------------------
496
* Useful Macros
497
*/
498
499
/* Given a blade# & chiplet#, get a pointer to the GRU */
500
#define get_gru(b, c) (&gru_base[b]->bs_grus[c])
501
502
/* Number of bytes to save/restore when unloading/loading GRU contexts */
503
#define DSR_BYTES(dsr) ((dsr) * GRU_DSR_AU_BYTES)
504
#define CBR_BYTES(cbr) ((cbr) * GRU_HANDLE_BYTES * GRU_CBR_AU_SIZE * 2)
505
506
/* Convert a user CB number to the actual CBRNUM */
507
#define thread_cbr_number(gts, n) ((gts)->ts_cbr_idx[(n) / GRU_CBR_AU_SIZE] \
508
* GRU_CBR_AU_SIZE + (n) % GRU_CBR_AU_SIZE)
509
510
/* Convert a gid to a pointer to the GRU */
511
#define GID_TO_GRU(gid) \
512
(gru_base[(gid) / GRU_CHIPLETS_PER_BLADE] ? \
513
(&gru_base[(gid) / GRU_CHIPLETS_PER_BLADE]-> \
514
bs_grus[(gid) % GRU_CHIPLETS_PER_BLADE]) : \
515
NULL)
516
517
/* Scan all active GRUs in a GRU bitmap */
518
#define for_each_gru_in_bitmap(gid, map) \
519
for_each_set_bit((gid), (map), GRU_MAX_GRUS)
520
521
/* Scan all active GRUs on a specific blade */
522
#define for_each_gru_on_blade(gru, nid, i) \
523
for ((gru) = gru_base[nid]->bs_grus, (i) = 0; \
524
(i) < GRU_CHIPLETS_PER_BLADE; \
525
(i)++, (gru)++)
526
527
/* Scan all GRUs */
528
#define foreach_gid(gid) \
529
for ((gid) = 0; (gid) < gru_max_gids; (gid)++)
530
531
/* Scan all active GTSs on a gru. Note: must hold ss_lock to use this macro. */
532
#define for_each_gts_on_gru(gts, gru, ctxnum) \
533
for ((ctxnum) = 0; (ctxnum) < GRU_NUM_CCH; (ctxnum)++) \
534
if (((gts) = (gru)->gs_gts[ctxnum]))
535
536
/* Scan each CBR whose bit is set in a TFM (or copy of) */
537
#define for_each_cbr_in_tfm(i, map) \
538
for_each_set_bit((i), (map), GRU_NUM_CBE)
539
540
/* Scan each CBR in a CBR bitmap. Note: multiple CBRs in an allocation unit */
541
#define for_each_cbr_in_allocation_map(i, map, k) \
542
for_each_set_bit((k), (map), GRU_CBR_AU) \
543
for ((i) = (k)*GRU_CBR_AU_SIZE; \
544
(i) < ((k) + 1) * GRU_CBR_AU_SIZE; (i)++)
545
546
/* Scan each DSR in a DSR bitmap. Note: multiple DSRs in an allocation unit */
547
#define for_each_dsr_in_allocation_map(i, map, k) \
548
for_each_set_bit((k), (const unsigned long *)(map), GRU_DSR_AU) \
549
for ((i) = (k) * GRU_DSR_AU_CL; \
550
(i) < ((k) + 1) * GRU_DSR_AU_CL; (i)++)
551
552
#define gseg_physical_address(gru, ctxnum) \
553
((gru)->gs_gru_base_paddr + ctxnum * GRU_GSEG_STRIDE)
554
#define gseg_virtual_address(gru, ctxnum) \
555
((gru)->gs_gru_base_vaddr + ctxnum * GRU_GSEG_STRIDE)
556
557
/*-----------------------------------------------------------------------------
558
* Lock / Unlock GRU handles
559
* Use the "delresp" bit in the handle as a "lock" bit.
560
*/
561
562
/* Lock hierarchy checking enabled only in emulator */
563
564
/* 0 = lock failed, 1 = locked */
565
static inline int __trylock_handle(void *h)
566
{
567
return !test_and_set_bit(1, h);
568
}
569
570
static inline void __lock_handle(void *h)
571
{
572
while (test_and_set_bit(1, h))
573
cpu_relax();
574
}
575
576
static inline void __unlock_handle(void *h)
577
{
578
clear_bit(1, h);
579
}
580
581
static inline int trylock_cch_handle(struct gru_context_configuration_handle *cch)
582
{
583
return __trylock_handle(cch);
584
}
585
586
static inline void lock_cch_handle(struct gru_context_configuration_handle *cch)
587
{
588
__lock_handle(cch);
589
}
590
591
static inline void unlock_cch_handle(struct gru_context_configuration_handle
592
*cch)
593
{
594
__unlock_handle(cch);
595
}
596
597
static inline void lock_tgh_handle(struct gru_tlb_global_handle *tgh)
598
{
599
__lock_handle(tgh);
600
}
601
602
static inline void unlock_tgh_handle(struct gru_tlb_global_handle *tgh)
603
{
604
__unlock_handle(tgh);
605
}
606
607
static inline int is_kernel_context(struct gru_thread_state *gts)
608
{
609
return !gts->ts_mm;
610
}
611
612
/*
613
* The following are for Nehelem-EX. A more general scheme is needed for
614
* future processors.
615
*/
616
#define UV_MAX_INT_CORES 8
617
#define uv_cpu_socket_number(p) ((cpu_physical_id(p) >> 5) & 1)
618
#define uv_cpu_ht_number(p) (cpu_physical_id(p) & 1)
619
#define uv_cpu_core_number(p) (((cpu_physical_id(p) >> 2) & 4) | \
620
((cpu_physical_id(p) >> 1) & 3))
621
/*-----------------------------------------------------------------------------
622
* Function prototypes & externs
623
*/
624
struct gru_unload_context_req;
625
626
extern const struct vm_operations_struct gru_vm_ops;
627
extern struct device *grudev;
628
629
extern struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma,
630
int tsid);
631
extern struct gru_thread_state *gru_find_thread_state(struct vm_area_struct
632
*vma, int tsid);
633
extern struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct
634
*vma, int tsid);
635
extern struct gru_state *gru_assign_gru_context(struct gru_thread_state *gts);
636
extern void gru_load_context(struct gru_thread_state *gts);
637
extern void gru_steal_context(struct gru_thread_state *gts);
638
extern void gru_unload_context(struct gru_thread_state *gts, int savestate);
639
extern int gru_update_cch(struct gru_thread_state *gts);
640
extern void gts_drop(struct gru_thread_state *gts);
641
extern void gru_tgh_flush_init(struct gru_state *gru);
642
extern int gru_kservices_init(void);
643
extern void gru_kservices_exit(void);
644
extern irqreturn_t gru0_intr(int irq, void *dev_id);
645
extern irqreturn_t gru1_intr(int irq, void *dev_id);
646
extern irqreturn_t gru_intr_mblade(int irq, void *dev_id);
647
extern int gru_dump_chiplet_request(unsigned long arg);
648
extern long gru_get_gseg_statistics(unsigned long arg);
649
extern int gru_handle_user_call_os(unsigned long address);
650
extern int gru_user_flush_tlb(unsigned long arg);
651
extern int gru_user_unload_context(unsigned long arg);
652
extern int gru_get_exception_detail(unsigned long arg);
653
extern int gru_set_context_option(unsigned long address);
654
extern void gru_check_context_placement(struct gru_thread_state *gts);
655
extern int gru_cpu_fault_map_id(void);
656
extern struct vm_area_struct *gru_find_vma(unsigned long vaddr);
657
extern void gru_flush_all_tlb(struct gru_state *gru);
658
extern int gru_proc_init(void);
659
extern void gru_proc_exit(void);
660
661
extern struct gru_thread_state *gru_alloc_gts(struct vm_area_struct *vma,
662
int cbr_au_count, int dsr_au_count,
663
unsigned char tlb_preload_count, int options, int tsid);
664
extern unsigned long gru_reserve_cb_resources(struct gru_state *gru,
665
int cbr_au_count, char *cbmap);
666
extern unsigned long gru_reserve_ds_resources(struct gru_state *gru,
667
int dsr_au_count, char *dsmap);
668
extern int gru_fault(struct vm_area_struct *, struct vm_fault *vmf);
669
extern struct gru_mm_struct *gru_register_mmu_notifier(void);
670
extern void gru_drop_mmu_notifier(struct gru_mm_struct *gms);
671
672
extern int gru_ktest(unsigned long arg);
673
extern void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start,
674
unsigned long len);
675
676
extern unsigned long gru_options;
677
678
#endif /* __GRUTABLES_H__ */
679
680