Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/misc/sgi-xp/xpc_main.c
15111 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* Copyright (c) 2004-2009 Silicon Graphics, Inc. All Rights Reserved.
7
*/
8
9
/*
10
* Cross Partition Communication (XPC) support - standard version.
11
*
12
* XPC provides a message passing capability that crosses partition
13
* boundaries. This module is made up of two parts:
14
*
15
* partition This part detects the presence/absence of other
16
* partitions. It provides a heartbeat and monitors
17
* the heartbeats of other partitions.
18
*
19
* channel This part manages the channels and sends/receives
20
* messages across them to/from other partitions.
21
*
22
* There are a couple of additional functions residing in XP, which
23
* provide an interface to XPC for its users.
24
*
25
*
26
* Caveats:
27
*
28
* . Currently on sn2, we have no way to determine which nasid an IRQ
29
* came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
30
* followed by an IPI. The amo indicates where data is to be pulled
31
* from, so after the IPI arrives, the remote partition checks the amo
32
* word. The IPI can actually arrive before the amo however, so other
33
* code must periodically check for this case. Also, remote amo
34
* operations do not reliably time out. Thus we do a remote PIO read
35
* solely to know whether the remote partition is down and whether we
36
* should stop sending IPIs to it. This remote PIO read operation is
37
* set up in a special nofault region so SAL knows to ignore (and
38
* cleanup) any errors due to the remote amo write, PIO read, and/or
39
* PIO write operations.
40
*
41
* If/when new hardware solves this IPI problem, we should abandon
42
* the current approach.
43
*
44
*/
45
46
#include <linux/module.h>
47
#include <linux/slab.h>
48
#include <linux/sysctl.h>
49
#include <linux/device.h>
50
#include <linux/delay.h>
51
#include <linux/reboot.h>
52
#include <linux/kdebug.h>
53
#include <linux/kthread.h>
54
#include "xpc.h"
55
56
/* define two XPC debug device structures to be used with dev_dbg() et al */
57
58
struct device_driver xpc_dbg_name = {
59
.name = "xpc"
60
};
61
62
struct device xpc_part_dbg_subname = {
63
.init_name = "", /* set to "part" at xpc_init() time */
64
.driver = &xpc_dbg_name
65
};
66
67
struct device xpc_chan_dbg_subname = {
68
.init_name = "", /* set to "chan" at xpc_init() time */
69
.driver = &xpc_dbg_name
70
};
71
72
struct device *xpc_part = &xpc_part_dbg_subname;
73
struct device *xpc_chan = &xpc_chan_dbg_subname;
74
75
static int xpc_kdebug_ignore;
76
77
/* systune related variables for /proc/sys directories */
78
79
static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
80
static int xpc_hb_min_interval = 1;
81
static int xpc_hb_max_interval = 10;
82
83
static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
84
static int xpc_hb_check_min_interval = 10;
85
static int xpc_hb_check_max_interval = 120;
86
87
int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
88
static int xpc_disengage_min_timelimit; /* = 0 */
89
static int xpc_disengage_max_timelimit = 120;
90
91
static ctl_table xpc_sys_xpc_hb_dir[] = {
92
{
93
.procname = "hb_interval",
94
.data = &xpc_hb_interval,
95
.maxlen = sizeof(int),
96
.mode = 0644,
97
.proc_handler = proc_dointvec_minmax,
98
.extra1 = &xpc_hb_min_interval,
99
.extra2 = &xpc_hb_max_interval},
100
{
101
.procname = "hb_check_interval",
102
.data = &xpc_hb_check_interval,
103
.maxlen = sizeof(int),
104
.mode = 0644,
105
.proc_handler = proc_dointvec_minmax,
106
.extra1 = &xpc_hb_check_min_interval,
107
.extra2 = &xpc_hb_check_max_interval},
108
{}
109
};
110
static ctl_table xpc_sys_xpc_dir[] = {
111
{
112
.procname = "hb",
113
.mode = 0555,
114
.child = xpc_sys_xpc_hb_dir},
115
{
116
.procname = "disengage_timelimit",
117
.data = &xpc_disengage_timelimit,
118
.maxlen = sizeof(int),
119
.mode = 0644,
120
.proc_handler = proc_dointvec_minmax,
121
.extra1 = &xpc_disengage_min_timelimit,
122
.extra2 = &xpc_disengage_max_timelimit},
123
{}
124
};
125
static ctl_table xpc_sys_dir[] = {
126
{
127
.procname = "xpc",
128
.mode = 0555,
129
.child = xpc_sys_xpc_dir},
130
{}
131
};
132
static struct ctl_table_header *xpc_sysctl;
133
134
/* non-zero if any remote partition disengage was timed out */
135
int xpc_disengage_timedout;
136
137
/* #of activate IRQs received and not yet processed */
138
int xpc_activate_IRQ_rcvd;
139
DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
140
141
/* IRQ handler notifies this wait queue on receipt of an IRQ */
142
DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
143
144
static unsigned long xpc_hb_check_timeout;
145
static struct timer_list xpc_hb_timer;
146
147
/* notification that the xpc_hb_checker thread has exited */
148
static DECLARE_COMPLETION(xpc_hb_checker_exited);
149
150
/* notification that the xpc_discovery thread has exited */
151
static DECLARE_COMPLETION(xpc_discovery_exited);
152
153
static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
154
155
static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
156
static struct notifier_block xpc_reboot_notifier = {
157
.notifier_call = xpc_system_reboot,
158
};
159
160
static int xpc_system_die(struct notifier_block *, unsigned long, void *);
161
static struct notifier_block xpc_die_notifier = {
162
.notifier_call = xpc_system_die,
163
};
164
165
struct xpc_arch_operations xpc_arch_ops;
166
167
/*
168
* Timer function to enforce the timelimit on the partition disengage.
169
*/
170
static void
171
xpc_timeout_partition_disengage(unsigned long data)
172
{
173
struct xpc_partition *part = (struct xpc_partition *)data;
174
175
DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
176
177
(void)xpc_partition_disengaged(part);
178
179
DBUG_ON(part->disengage_timeout != 0);
180
DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
181
}
182
183
/*
184
* Timer to produce the heartbeat. The timer structures function is
185
* already set when this is initially called. A tunable is used to
186
* specify when the next timeout should occur.
187
*/
188
static void
189
xpc_hb_beater(unsigned long dummy)
190
{
191
xpc_arch_ops.increment_heartbeat();
192
193
if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
194
wake_up_interruptible(&xpc_activate_IRQ_wq);
195
196
xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
197
add_timer(&xpc_hb_timer);
198
}
199
200
static void
201
xpc_start_hb_beater(void)
202
{
203
xpc_arch_ops.heartbeat_init();
204
init_timer(&xpc_hb_timer);
205
xpc_hb_timer.function = xpc_hb_beater;
206
xpc_hb_beater(0);
207
}
208
209
static void
210
xpc_stop_hb_beater(void)
211
{
212
del_timer_sync(&xpc_hb_timer);
213
xpc_arch_ops.heartbeat_exit();
214
}
215
216
/*
217
* At periodic intervals, scan through all active partitions and ensure
218
* their heartbeat is still active. If not, the partition is deactivated.
219
*/
220
static void
221
xpc_check_remote_hb(void)
222
{
223
struct xpc_partition *part;
224
short partid;
225
enum xp_retval ret;
226
227
for (partid = 0; partid < xp_max_npartitions; partid++) {
228
229
if (xpc_exiting)
230
break;
231
232
if (partid == xp_partition_id)
233
continue;
234
235
part = &xpc_partitions[partid];
236
237
if (part->act_state == XPC_P_AS_INACTIVE ||
238
part->act_state == XPC_P_AS_DEACTIVATING) {
239
continue;
240
}
241
242
ret = xpc_arch_ops.get_remote_heartbeat(part);
243
if (ret != xpSuccess)
244
XPC_DEACTIVATE_PARTITION(part, ret);
245
}
246
}
247
248
/*
249
* This thread is responsible for nearly all of the partition
250
* activation/deactivation.
251
*/
252
static int
253
xpc_hb_checker(void *ignore)
254
{
255
int force_IRQ = 0;
256
257
/* this thread was marked active by xpc_hb_init() */
258
259
set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
260
261
/* set our heartbeating to other partitions into motion */
262
xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
263
xpc_start_hb_beater();
264
265
while (!xpc_exiting) {
266
267
dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
268
"been received\n",
269
(int)(xpc_hb_check_timeout - jiffies),
270
xpc_activate_IRQ_rcvd);
271
272
/* checking of remote heartbeats is skewed by IRQ handling */
273
if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
274
xpc_hb_check_timeout = jiffies +
275
(xpc_hb_check_interval * HZ);
276
277
dev_dbg(xpc_part, "checking remote heartbeats\n");
278
xpc_check_remote_hb();
279
280
/*
281
* On sn2 we need to periodically recheck to ensure no
282
* IRQ/amo pairs have been missed.
283
*/
284
if (is_shub())
285
force_IRQ = 1;
286
}
287
288
/* check for outstanding IRQs */
289
if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
290
force_IRQ = 0;
291
dev_dbg(xpc_part, "processing activate IRQs "
292
"received\n");
293
xpc_arch_ops.process_activate_IRQ_rcvd();
294
}
295
296
/* wait for IRQ or timeout */
297
(void)wait_event_interruptible(xpc_activate_IRQ_wq,
298
(time_is_before_eq_jiffies(
299
xpc_hb_check_timeout) ||
300
xpc_activate_IRQ_rcvd > 0 ||
301
xpc_exiting));
302
}
303
304
xpc_stop_hb_beater();
305
306
dev_dbg(xpc_part, "heartbeat checker is exiting\n");
307
308
/* mark this thread as having exited */
309
complete(&xpc_hb_checker_exited);
310
return 0;
311
}
312
313
/*
314
* This thread will attempt to discover other partitions to activate
315
* based on info provided by SAL. This new thread is short lived and
316
* will exit once discovery is complete.
317
*/
318
static int
319
xpc_initiate_discovery(void *ignore)
320
{
321
xpc_discovery();
322
323
dev_dbg(xpc_part, "discovery thread is exiting\n");
324
325
/* mark this thread as having exited */
326
complete(&xpc_discovery_exited);
327
return 0;
328
}
329
330
/*
331
* The first kthread assigned to a newly activated partition is the one
332
* created by XPC HB with which it calls xpc_activating(). XPC hangs on to
333
* that kthread until the partition is brought down, at which time that kthread
334
* returns back to XPC HB. (The return of that kthread will signify to XPC HB
335
* that XPC has dismantled all communication infrastructure for the associated
336
* partition.) This kthread becomes the channel manager for that partition.
337
*
338
* Each active partition has a channel manager, who, besides connecting and
339
* disconnecting channels, will ensure that each of the partition's connected
340
* channels has the required number of assigned kthreads to get the work done.
341
*/
342
static void
343
xpc_channel_mgr(struct xpc_partition *part)
344
{
345
while (part->act_state != XPC_P_AS_DEACTIVATING ||
346
atomic_read(&part->nchannels_active) > 0 ||
347
!xpc_partition_disengaged(part)) {
348
349
xpc_process_sent_chctl_flags(part);
350
351
/*
352
* Wait until we've been requested to activate kthreads or
353
* all of the channel's message queues have been torn down or
354
* a signal is pending.
355
*
356
* The channel_mgr_requests is set to 1 after being awakened,
357
* This is done to prevent the channel mgr from making one pass
358
* through the loop for each request, since he will
359
* be servicing all the requests in one pass. The reason it's
360
* set to 1 instead of 0 is so that other kthreads will know
361
* that the channel mgr is running and won't bother trying to
362
* wake him up.
363
*/
364
atomic_dec(&part->channel_mgr_requests);
365
(void)wait_event_interruptible(part->channel_mgr_wq,
366
(atomic_read(&part->channel_mgr_requests) > 0 ||
367
part->chctl.all_flags != 0 ||
368
(part->act_state == XPC_P_AS_DEACTIVATING &&
369
atomic_read(&part->nchannels_active) == 0 &&
370
xpc_partition_disengaged(part))));
371
atomic_set(&part->channel_mgr_requests, 1);
372
}
373
}
374
375
/*
376
* Guarantee that the kzalloc'd memory is cacheline aligned.
377
*/
378
void *
379
xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
380
{
381
/* see if kzalloc will give us cachline aligned memory by default */
382
*base = kzalloc(size, flags);
383
if (*base == NULL)
384
return NULL;
385
386
if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
387
return *base;
388
389
kfree(*base);
390
391
/* nope, we'll have to do it ourselves */
392
*base = kzalloc(size + L1_CACHE_BYTES, flags);
393
if (*base == NULL)
394
return NULL;
395
396
return (void *)L1_CACHE_ALIGN((u64)*base);
397
}
398
399
/*
400
* Setup the channel structures necessary to support XPartition Communication
401
* between the specified remote partition and the local one.
402
*/
403
static enum xp_retval
404
xpc_setup_ch_structures(struct xpc_partition *part)
405
{
406
enum xp_retval ret;
407
int ch_number;
408
struct xpc_channel *ch;
409
short partid = XPC_PARTID(part);
410
411
/*
412
* Allocate all of the channel structures as a contiguous chunk of
413
* memory.
414
*/
415
DBUG_ON(part->channels != NULL);
416
part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
417
GFP_KERNEL);
418
if (part->channels == NULL) {
419
dev_err(xpc_chan, "can't get memory for channels\n");
420
return xpNoMemory;
421
}
422
423
/* allocate the remote open and close args */
424
425
part->remote_openclose_args =
426
xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
427
GFP_KERNEL, &part->
428
remote_openclose_args_base);
429
if (part->remote_openclose_args == NULL) {
430
dev_err(xpc_chan, "can't get memory for remote connect args\n");
431
ret = xpNoMemory;
432
goto out_1;
433
}
434
435
part->chctl.all_flags = 0;
436
spin_lock_init(&part->chctl_lock);
437
438
atomic_set(&part->channel_mgr_requests, 1);
439
init_waitqueue_head(&part->channel_mgr_wq);
440
441
part->nchannels = XPC_MAX_NCHANNELS;
442
443
atomic_set(&part->nchannels_active, 0);
444
atomic_set(&part->nchannels_engaged, 0);
445
446
for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
447
ch = &part->channels[ch_number];
448
449
ch->partid = partid;
450
ch->number = ch_number;
451
ch->flags = XPC_C_DISCONNECTED;
452
453
atomic_set(&ch->kthreads_assigned, 0);
454
atomic_set(&ch->kthreads_idle, 0);
455
atomic_set(&ch->kthreads_active, 0);
456
457
atomic_set(&ch->references, 0);
458
atomic_set(&ch->n_to_notify, 0);
459
460
spin_lock_init(&ch->lock);
461
init_completion(&ch->wdisconnect_wait);
462
463
atomic_set(&ch->n_on_msg_allocate_wq, 0);
464
init_waitqueue_head(&ch->msg_allocate_wq);
465
init_waitqueue_head(&ch->idle_wq);
466
}
467
468
ret = xpc_arch_ops.setup_ch_structures(part);
469
if (ret != xpSuccess)
470
goto out_2;
471
472
/*
473
* With the setting of the partition setup_state to XPC_P_SS_SETUP,
474
* we're declaring that this partition is ready to go.
475
*/
476
part->setup_state = XPC_P_SS_SETUP;
477
478
return xpSuccess;
479
480
/* setup of ch structures failed */
481
out_2:
482
kfree(part->remote_openclose_args_base);
483
part->remote_openclose_args = NULL;
484
out_1:
485
kfree(part->channels);
486
part->channels = NULL;
487
return ret;
488
}
489
490
/*
491
* Teardown the channel structures necessary to support XPartition Communication
492
* between the specified remote partition and the local one.
493
*/
494
static void
495
xpc_teardown_ch_structures(struct xpc_partition *part)
496
{
497
DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
498
DBUG_ON(atomic_read(&part->nchannels_active) != 0);
499
500
/*
501
* Make this partition inaccessible to local processes by marking it
502
* as no longer setup. Then wait before proceeding with the teardown
503
* until all existing references cease.
504
*/
505
DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
506
part->setup_state = XPC_P_SS_WTEARDOWN;
507
508
wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
509
510
/* now we can begin tearing down the infrastructure */
511
512
xpc_arch_ops.teardown_ch_structures(part);
513
514
kfree(part->remote_openclose_args_base);
515
part->remote_openclose_args = NULL;
516
kfree(part->channels);
517
part->channels = NULL;
518
519
part->setup_state = XPC_P_SS_TORNDOWN;
520
}
521
522
/*
523
* When XPC HB determines that a partition has come up, it will create a new
524
* kthread and that kthread will call this function to attempt to set up the
525
* basic infrastructure used for Cross Partition Communication with the newly
526
* upped partition.
527
*
528
* The kthread that was created by XPC HB and which setup the XPC
529
* infrastructure will remain assigned to the partition becoming the channel
530
* manager for that partition until the partition is deactivating, at which
531
* time the kthread will teardown the XPC infrastructure and then exit.
532
*/
533
static int
534
xpc_activating(void *__partid)
535
{
536
short partid = (u64)__partid;
537
struct xpc_partition *part = &xpc_partitions[partid];
538
unsigned long irq_flags;
539
540
DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
541
542
spin_lock_irqsave(&part->act_lock, irq_flags);
543
544
if (part->act_state == XPC_P_AS_DEACTIVATING) {
545
part->act_state = XPC_P_AS_INACTIVE;
546
spin_unlock_irqrestore(&part->act_lock, irq_flags);
547
part->remote_rp_pa = 0;
548
return 0;
549
}
550
551
/* indicate the thread is activating */
552
DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
553
part->act_state = XPC_P_AS_ACTIVATING;
554
555
XPC_SET_REASON(part, 0, 0);
556
spin_unlock_irqrestore(&part->act_lock, irq_flags);
557
558
dev_dbg(xpc_part, "activating partition %d\n", partid);
559
560
xpc_arch_ops.allow_hb(partid);
561
562
if (xpc_setup_ch_structures(part) == xpSuccess) {
563
(void)xpc_part_ref(part); /* this will always succeed */
564
565
if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
566
xpc_mark_partition_active(part);
567
xpc_channel_mgr(part);
568
/* won't return until partition is deactivating */
569
}
570
571
xpc_part_deref(part);
572
xpc_teardown_ch_structures(part);
573
}
574
575
xpc_arch_ops.disallow_hb(partid);
576
xpc_mark_partition_inactive(part);
577
578
if (part->reason == xpReactivating) {
579
/* interrupting ourselves results in activating partition */
580
xpc_arch_ops.request_partition_reactivation(part);
581
}
582
583
return 0;
584
}
585
586
void
587
xpc_activate_partition(struct xpc_partition *part)
588
{
589
short partid = XPC_PARTID(part);
590
unsigned long irq_flags;
591
struct task_struct *kthread;
592
593
spin_lock_irqsave(&part->act_lock, irq_flags);
594
595
DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
596
597
part->act_state = XPC_P_AS_ACTIVATION_REQ;
598
XPC_SET_REASON(part, xpCloneKThread, __LINE__);
599
600
spin_unlock_irqrestore(&part->act_lock, irq_flags);
601
602
kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
603
partid);
604
if (IS_ERR(kthread)) {
605
spin_lock_irqsave(&part->act_lock, irq_flags);
606
part->act_state = XPC_P_AS_INACTIVE;
607
XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
608
spin_unlock_irqrestore(&part->act_lock, irq_flags);
609
}
610
}
611
612
void
613
xpc_activate_kthreads(struct xpc_channel *ch, int needed)
614
{
615
int idle = atomic_read(&ch->kthreads_idle);
616
int assigned = atomic_read(&ch->kthreads_assigned);
617
int wakeup;
618
619
DBUG_ON(needed <= 0);
620
621
if (idle > 0) {
622
wakeup = (needed > idle) ? idle : needed;
623
needed -= wakeup;
624
625
dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
626
"channel=%d\n", wakeup, ch->partid, ch->number);
627
628
/* only wakeup the requested number of kthreads */
629
wake_up_nr(&ch->idle_wq, wakeup);
630
}
631
632
if (needed <= 0)
633
return;
634
635
if (needed + assigned > ch->kthreads_assigned_limit) {
636
needed = ch->kthreads_assigned_limit - assigned;
637
if (needed <= 0)
638
return;
639
}
640
641
dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
642
needed, ch->partid, ch->number);
643
644
xpc_create_kthreads(ch, needed, 0);
645
}
646
647
/*
648
* This function is where XPC's kthreads wait for messages to deliver.
649
*/
650
static void
651
xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
652
{
653
int (*n_of_deliverable_payloads) (struct xpc_channel *) =
654
xpc_arch_ops.n_of_deliverable_payloads;
655
656
do {
657
/* deliver messages to their intended recipients */
658
659
while (n_of_deliverable_payloads(ch) > 0 &&
660
!(ch->flags & XPC_C_DISCONNECTING)) {
661
xpc_deliver_payload(ch);
662
}
663
664
if (atomic_inc_return(&ch->kthreads_idle) >
665
ch->kthreads_idle_limit) {
666
/* too many idle kthreads on this channel */
667
atomic_dec(&ch->kthreads_idle);
668
break;
669
}
670
671
dev_dbg(xpc_chan, "idle kthread calling "
672
"wait_event_interruptible_exclusive()\n");
673
674
(void)wait_event_interruptible_exclusive(ch->idle_wq,
675
(n_of_deliverable_payloads(ch) > 0 ||
676
(ch->flags & XPC_C_DISCONNECTING)));
677
678
atomic_dec(&ch->kthreads_idle);
679
680
} while (!(ch->flags & XPC_C_DISCONNECTING));
681
}
682
683
static int
684
xpc_kthread_start(void *args)
685
{
686
short partid = XPC_UNPACK_ARG1(args);
687
u16 ch_number = XPC_UNPACK_ARG2(args);
688
struct xpc_partition *part = &xpc_partitions[partid];
689
struct xpc_channel *ch;
690
int n_needed;
691
unsigned long irq_flags;
692
int (*n_of_deliverable_payloads) (struct xpc_channel *) =
693
xpc_arch_ops.n_of_deliverable_payloads;
694
695
dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
696
partid, ch_number);
697
698
ch = &part->channels[ch_number];
699
700
if (!(ch->flags & XPC_C_DISCONNECTING)) {
701
702
/* let registerer know that connection has been established */
703
704
spin_lock_irqsave(&ch->lock, irq_flags);
705
if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
706
ch->flags |= XPC_C_CONNECTEDCALLOUT;
707
spin_unlock_irqrestore(&ch->lock, irq_flags);
708
709
xpc_connected_callout(ch);
710
711
spin_lock_irqsave(&ch->lock, irq_flags);
712
ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
713
spin_unlock_irqrestore(&ch->lock, irq_flags);
714
715
/*
716
* It is possible that while the callout was being
717
* made that the remote partition sent some messages.
718
* If that is the case, we may need to activate
719
* additional kthreads to help deliver them. We only
720
* need one less than total #of messages to deliver.
721
*/
722
n_needed = n_of_deliverable_payloads(ch) - 1;
723
if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
724
xpc_activate_kthreads(ch, n_needed);
725
726
} else {
727
spin_unlock_irqrestore(&ch->lock, irq_flags);
728
}
729
730
xpc_kthread_waitmsgs(part, ch);
731
}
732
733
/* let registerer know that connection is disconnecting */
734
735
spin_lock_irqsave(&ch->lock, irq_flags);
736
if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
737
!(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
738
ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
739
spin_unlock_irqrestore(&ch->lock, irq_flags);
740
741
xpc_disconnect_callout(ch, xpDisconnecting);
742
743
spin_lock_irqsave(&ch->lock, irq_flags);
744
ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
745
}
746
spin_unlock_irqrestore(&ch->lock, irq_flags);
747
748
if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
749
atomic_dec_return(&part->nchannels_engaged) == 0) {
750
xpc_arch_ops.indicate_partition_disengaged(part);
751
}
752
753
xpc_msgqueue_deref(ch);
754
755
dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
756
partid, ch_number);
757
758
xpc_part_deref(part);
759
return 0;
760
}
761
762
/*
763
* For each partition that XPC has established communications with, there is
764
* a minimum of one kernel thread assigned to perform any operation that
765
* may potentially sleep or block (basically the callouts to the asynchronous
766
* functions registered via xpc_connect()).
767
*
768
* Additional kthreads are created and destroyed by XPC as the workload
769
* demands.
770
*
771
* A kthread is assigned to one of the active channels that exists for a given
772
* partition.
773
*/
774
void
775
xpc_create_kthreads(struct xpc_channel *ch, int needed,
776
int ignore_disconnecting)
777
{
778
unsigned long irq_flags;
779
u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
780
struct xpc_partition *part = &xpc_partitions[ch->partid];
781
struct task_struct *kthread;
782
void (*indicate_partition_disengaged) (struct xpc_partition *) =
783
xpc_arch_ops.indicate_partition_disengaged;
784
785
while (needed-- > 0) {
786
787
/*
788
* The following is done on behalf of the newly created
789
* kthread. That kthread is responsible for doing the
790
* counterpart to the following before it exits.
791
*/
792
if (ignore_disconnecting) {
793
if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
794
/* kthreads assigned had gone to zero */
795
BUG_ON(!(ch->flags &
796
XPC_C_DISCONNECTINGCALLOUT_MADE));
797
break;
798
}
799
800
} else if (ch->flags & XPC_C_DISCONNECTING) {
801
break;
802
803
} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
804
atomic_inc_return(&part->nchannels_engaged) == 1) {
805
xpc_arch_ops.indicate_partition_engaged(part);
806
}
807
(void)xpc_part_ref(part);
808
xpc_msgqueue_ref(ch);
809
810
kthread = kthread_run(xpc_kthread_start, (void *)args,
811
"xpc%02dc%d", ch->partid, ch->number);
812
if (IS_ERR(kthread)) {
813
/* the fork failed */
814
815
/*
816
* NOTE: if (ignore_disconnecting &&
817
* !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
818
* then we'll deadlock if all other kthreads assigned
819
* to this channel are blocked in the channel's
820
* registerer, because the only thing that will unblock
821
* them is the xpDisconnecting callout that this
822
* failed kthread_run() would have made.
823
*/
824
825
if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
826
atomic_dec_return(&part->nchannels_engaged) == 0) {
827
indicate_partition_disengaged(part);
828
}
829
xpc_msgqueue_deref(ch);
830
xpc_part_deref(part);
831
832
if (atomic_read(&ch->kthreads_assigned) <
833
ch->kthreads_idle_limit) {
834
/*
835
* Flag this as an error only if we have an
836
* insufficient #of kthreads for the channel
837
* to function.
838
*/
839
spin_lock_irqsave(&ch->lock, irq_flags);
840
XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
841
&irq_flags);
842
spin_unlock_irqrestore(&ch->lock, irq_flags);
843
}
844
break;
845
}
846
}
847
}
848
849
void
850
xpc_disconnect_wait(int ch_number)
851
{
852
unsigned long irq_flags;
853
short partid;
854
struct xpc_partition *part;
855
struct xpc_channel *ch;
856
int wakeup_channel_mgr;
857
858
/* now wait for all callouts to the caller's function to cease */
859
for (partid = 0; partid < xp_max_npartitions; partid++) {
860
part = &xpc_partitions[partid];
861
862
if (!xpc_part_ref(part))
863
continue;
864
865
ch = &part->channels[ch_number];
866
867
if (!(ch->flags & XPC_C_WDISCONNECT)) {
868
xpc_part_deref(part);
869
continue;
870
}
871
872
wait_for_completion(&ch->wdisconnect_wait);
873
874
spin_lock_irqsave(&ch->lock, irq_flags);
875
DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
876
wakeup_channel_mgr = 0;
877
878
if (ch->delayed_chctl_flags) {
879
if (part->act_state != XPC_P_AS_DEACTIVATING) {
880
spin_lock(&part->chctl_lock);
881
part->chctl.flags[ch->number] |=
882
ch->delayed_chctl_flags;
883
spin_unlock(&part->chctl_lock);
884
wakeup_channel_mgr = 1;
885
}
886
ch->delayed_chctl_flags = 0;
887
}
888
889
ch->flags &= ~XPC_C_WDISCONNECT;
890
spin_unlock_irqrestore(&ch->lock, irq_flags);
891
892
if (wakeup_channel_mgr)
893
xpc_wakeup_channel_mgr(part);
894
895
xpc_part_deref(part);
896
}
897
}
898
899
static int
900
xpc_setup_partitions(void)
901
{
902
short partid;
903
struct xpc_partition *part;
904
905
xpc_partitions = kzalloc(sizeof(struct xpc_partition) *
906
xp_max_npartitions, GFP_KERNEL);
907
if (xpc_partitions == NULL) {
908
dev_err(xpc_part, "can't get memory for partition structure\n");
909
return -ENOMEM;
910
}
911
912
/*
913
* The first few fields of each entry of xpc_partitions[] need to
914
* be initialized now so that calls to xpc_connect() and
915
* xpc_disconnect() can be made prior to the activation of any remote
916
* partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
917
* ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
918
* PARTITION HAS BEEN ACTIVATED.
919
*/
920
for (partid = 0; partid < xp_max_npartitions; partid++) {
921
part = &xpc_partitions[partid];
922
923
DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
924
925
part->activate_IRQ_rcvd = 0;
926
spin_lock_init(&part->act_lock);
927
part->act_state = XPC_P_AS_INACTIVE;
928
XPC_SET_REASON(part, 0, 0);
929
930
init_timer(&part->disengage_timer);
931
part->disengage_timer.function =
932
xpc_timeout_partition_disengage;
933
part->disengage_timer.data = (unsigned long)part;
934
935
part->setup_state = XPC_P_SS_UNSET;
936
init_waitqueue_head(&part->teardown_wq);
937
atomic_set(&part->references, 0);
938
}
939
940
return xpc_arch_ops.setup_partitions();
941
}
942
943
static void
944
xpc_teardown_partitions(void)
945
{
946
xpc_arch_ops.teardown_partitions();
947
kfree(xpc_partitions);
948
}
949
950
static void
951
xpc_do_exit(enum xp_retval reason)
952
{
953
short partid;
954
int active_part_count, printed_waiting_msg = 0;
955
struct xpc_partition *part;
956
unsigned long printmsg_time, disengage_timeout = 0;
957
958
/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
959
DBUG_ON(xpc_exiting == 1);
960
961
/*
962
* Let the heartbeat checker thread and the discovery thread
963
* (if one is running) know that they should exit. Also wake up
964
* the heartbeat checker thread in case it's sleeping.
965
*/
966
xpc_exiting = 1;
967
wake_up_interruptible(&xpc_activate_IRQ_wq);
968
969
/* wait for the discovery thread to exit */
970
wait_for_completion(&xpc_discovery_exited);
971
972
/* wait for the heartbeat checker thread to exit */
973
wait_for_completion(&xpc_hb_checker_exited);
974
975
/* sleep for a 1/3 of a second or so */
976
(void)msleep_interruptible(300);
977
978
/* wait for all partitions to become inactive */
979
980
printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
981
xpc_disengage_timedout = 0;
982
983
do {
984
active_part_count = 0;
985
986
for (partid = 0; partid < xp_max_npartitions; partid++) {
987
part = &xpc_partitions[partid];
988
989
if (xpc_partition_disengaged(part) &&
990
part->act_state == XPC_P_AS_INACTIVE) {
991
continue;
992
}
993
994
active_part_count++;
995
996
XPC_DEACTIVATE_PARTITION(part, reason);
997
998
if (part->disengage_timeout > disengage_timeout)
999
disengage_timeout = part->disengage_timeout;
1000
}
1001
1002
if (xpc_arch_ops.any_partition_engaged()) {
1003
if (time_is_before_jiffies(printmsg_time)) {
1004
dev_info(xpc_part, "waiting for remote "
1005
"partitions to deactivate, timeout in "
1006
"%ld seconds\n", (disengage_timeout -
1007
jiffies) / HZ);
1008
printmsg_time = jiffies +
1009
(XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1010
printed_waiting_msg = 1;
1011
}
1012
1013
} else if (active_part_count > 0) {
1014
if (printed_waiting_msg) {
1015
dev_info(xpc_part, "waiting for local partition"
1016
" to deactivate\n");
1017
printed_waiting_msg = 0;
1018
}
1019
1020
} else {
1021
if (!xpc_disengage_timedout) {
1022
dev_info(xpc_part, "all partitions have "
1023
"deactivated\n");
1024
}
1025
break;
1026
}
1027
1028
/* sleep for a 1/3 of a second or so */
1029
(void)msleep_interruptible(300);
1030
1031
} while (1);
1032
1033
DBUG_ON(xpc_arch_ops.any_partition_engaged());
1034
1035
xpc_teardown_rsvd_page();
1036
1037
if (reason == xpUnloading) {
1038
(void)unregister_die_notifier(&xpc_die_notifier);
1039
(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1040
}
1041
1042
/* clear the interface to XPC's functions */
1043
xpc_clear_interface();
1044
1045
if (xpc_sysctl)
1046
unregister_sysctl_table(xpc_sysctl);
1047
1048
xpc_teardown_partitions();
1049
1050
if (is_shub())
1051
xpc_exit_sn2();
1052
else if (is_uv())
1053
xpc_exit_uv();
1054
}
1055
1056
/*
1057
* This function is called when the system is being rebooted.
1058
*/
1059
static int
1060
xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1061
{
1062
enum xp_retval reason;
1063
1064
switch (event) {
1065
case SYS_RESTART:
1066
reason = xpSystemReboot;
1067
break;
1068
case SYS_HALT:
1069
reason = xpSystemHalt;
1070
break;
1071
case SYS_POWER_OFF:
1072
reason = xpSystemPoweroff;
1073
break;
1074
default:
1075
reason = xpSystemGoingDown;
1076
}
1077
1078
xpc_do_exit(reason);
1079
return NOTIFY_DONE;
1080
}
1081
1082
/*
1083
* Notify other partitions to deactivate from us by first disengaging from all
1084
* references to our memory.
1085
*/
1086
static void
1087
xpc_die_deactivate(void)
1088
{
1089
struct xpc_partition *part;
1090
short partid;
1091
int any_engaged;
1092
long keep_waiting;
1093
long wait_to_print;
1094
1095
/* keep xpc_hb_checker thread from doing anything (just in case) */
1096
xpc_exiting = 1;
1097
1098
xpc_arch_ops.disallow_all_hbs(); /*indicate we're deactivated */
1099
1100
for (partid = 0; partid < xp_max_npartitions; partid++) {
1101
part = &xpc_partitions[partid];
1102
1103
if (xpc_arch_ops.partition_engaged(partid) ||
1104
part->act_state != XPC_P_AS_INACTIVE) {
1105
xpc_arch_ops.request_partition_deactivation(part);
1106
xpc_arch_ops.indicate_partition_disengaged(part);
1107
}
1108
}
1109
1110
/*
1111
* Though we requested that all other partitions deactivate from us,
1112
* we only wait until they've all disengaged or we've reached the
1113
* defined timelimit.
1114
*
1115
* Given that one iteration through the following while-loop takes
1116
* approximately 200 microseconds, calculate the #of loops to take
1117
* before bailing and the #of loops before printing a waiting message.
1118
*/
1119
keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1120
wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1121
1122
while (1) {
1123
any_engaged = xpc_arch_ops.any_partition_engaged();
1124
if (!any_engaged) {
1125
dev_info(xpc_part, "all partitions have deactivated\n");
1126
break;
1127
}
1128
1129
if (!keep_waiting--) {
1130
for (partid = 0; partid < xp_max_npartitions;
1131
partid++) {
1132
if (xpc_arch_ops.partition_engaged(partid)) {
1133
dev_info(xpc_part, "deactivate from "
1134
"remote partition %d timed "
1135
"out\n", partid);
1136
}
1137
}
1138
break;
1139
}
1140
1141
if (!wait_to_print--) {
1142
dev_info(xpc_part, "waiting for remote partitions to "
1143
"deactivate, timeout in %ld seconds\n",
1144
keep_waiting / (1000 * 5));
1145
wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1146
1000 * 5;
1147
}
1148
1149
udelay(200);
1150
}
1151
}
1152
1153
/*
1154
* This function is called when the system is being restarted or halted due
1155
* to some sort of system failure. If this is the case we need to notify the
1156
* other partitions to disengage from all references to our memory.
1157
* This function can also be called when our heartbeater could be offlined
1158
* for a time. In this case we need to notify other partitions to not worry
1159
* about the lack of a heartbeat.
1160
*/
1161
static int
1162
xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused)
1163
{
1164
#ifdef CONFIG_IA64 /* !!! temporary kludge */
1165
switch (event) {
1166
case DIE_MACHINE_RESTART:
1167
case DIE_MACHINE_HALT:
1168
xpc_die_deactivate();
1169
break;
1170
1171
case DIE_KDEBUG_ENTER:
1172
/* Should lack of heartbeat be ignored by other partitions? */
1173
if (!xpc_kdebug_ignore)
1174
break;
1175
1176
/* fall through */
1177
case DIE_MCA_MONARCH_ENTER:
1178
case DIE_INIT_MONARCH_ENTER:
1179
xpc_arch_ops.offline_heartbeat();
1180
break;
1181
1182
case DIE_KDEBUG_LEAVE:
1183
/* Is lack of heartbeat being ignored by other partitions? */
1184
if (!xpc_kdebug_ignore)
1185
break;
1186
1187
/* fall through */
1188
case DIE_MCA_MONARCH_LEAVE:
1189
case DIE_INIT_MONARCH_LEAVE:
1190
xpc_arch_ops.online_heartbeat();
1191
break;
1192
}
1193
#else
1194
xpc_die_deactivate();
1195
#endif
1196
1197
return NOTIFY_DONE;
1198
}
1199
1200
int __init
1201
xpc_init(void)
1202
{
1203
int ret;
1204
struct task_struct *kthread;
1205
1206
dev_set_name(xpc_part, "part");
1207
dev_set_name(xpc_chan, "chan");
1208
1209
if (is_shub()) {
1210
/*
1211
* The ia64-sn2 architecture supports at most 64 partitions.
1212
* And the inability to unregister remote amos restricts us
1213
* further to only support exactly 64 partitions on this
1214
* architecture, no less.
1215
*/
1216
if (xp_max_npartitions != 64) {
1217
dev_err(xpc_part, "max #of partitions not set to 64\n");
1218
ret = -EINVAL;
1219
} else {
1220
ret = xpc_init_sn2();
1221
}
1222
1223
} else if (is_uv()) {
1224
ret = xpc_init_uv();
1225
1226
} else {
1227
ret = -ENODEV;
1228
}
1229
1230
if (ret != 0)
1231
return ret;
1232
1233
ret = xpc_setup_partitions();
1234
if (ret != 0) {
1235
dev_err(xpc_part, "can't get memory for partition structure\n");
1236
goto out_1;
1237
}
1238
1239
xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1240
1241
/*
1242
* Fill the partition reserved page with the information needed by
1243
* other partitions to discover we are alive and establish initial
1244
* communications.
1245
*/
1246
ret = xpc_setup_rsvd_page();
1247
if (ret != 0) {
1248
dev_err(xpc_part, "can't setup our reserved page\n");
1249
goto out_2;
1250
}
1251
1252
/* add ourselves to the reboot_notifier_list */
1253
ret = register_reboot_notifier(&xpc_reboot_notifier);
1254
if (ret != 0)
1255
dev_warn(xpc_part, "can't register reboot notifier\n");
1256
1257
/* add ourselves to the die_notifier list */
1258
ret = register_die_notifier(&xpc_die_notifier);
1259
if (ret != 0)
1260
dev_warn(xpc_part, "can't register die notifier\n");
1261
1262
/*
1263
* The real work-horse behind xpc. This processes incoming
1264
* interrupts and monitors remote heartbeats.
1265
*/
1266
kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1267
if (IS_ERR(kthread)) {
1268
dev_err(xpc_part, "failed while forking hb check thread\n");
1269
ret = -EBUSY;
1270
goto out_3;
1271
}
1272
1273
/*
1274
* Startup a thread that will attempt to discover other partitions to
1275
* activate based on info provided by SAL. This new thread is short
1276
* lived and will exit once discovery is complete.
1277
*/
1278
kthread = kthread_run(xpc_initiate_discovery, NULL,
1279
XPC_DISCOVERY_THREAD_NAME);
1280
if (IS_ERR(kthread)) {
1281
dev_err(xpc_part, "failed while forking discovery thread\n");
1282
1283
/* mark this new thread as a non-starter */
1284
complete(&xpc_discovery_exited);
1285
1286
xpc_do_exit(xpUnloading);
1287
return -EBUSY;
1288
}
1289
1290
/* set the interface to point at XPC's functions */
1291
xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1292
xpc_initiate_send, xpc_initiate_send_notify,
1293
xpc_initiate_received, xpc_initiate_partid_to_nasids);
1294
1295
return 0;
1296
1297
/* initialization was not successful */
1298
out_3:
1299
xpc_teardown_rsvd_page();
1300
1301
(void)unregister_die_notifier(&xpc_die_notifier);
1302
(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1303
out_2:
1304
if (xpc_sysctl)
1305
unregister_sysctl_table(xpc_sysctl);
1306
1307
xpc_teardown_partitions();
1308
out_1:
1309
if (is_shub())
1310
xpc_exit_sn2();
1311
else if (is_uv())
1312
xpc_exit_uv();
1313
return ret;
1314
}
1315
1316
module_init(xpc_init);
1317
1318
void __exit
1319
xpc_exit(void)
1320
{
1321
xpc_do_exit(xpUnloading);
1322
}
1323
1324
module_exit(xpc_exit);
1325
1326
MODULE_AUTHOR("Silicon Graphics, Inc.");
1327
MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1328
MODULE_LICENSE("GPL");
1329
1330
module_param(xpc_hb_interval, int, 0);
1331
MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1332
"heartbeat increments.");
1333
1334
module_param(xpc_hb_check_interval, int, 0);
1335
MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1336
"heartbeat checks.");
1337
1338
module_param(xpc_disengage_timelimit, int, 0);
1339
MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1340
"for disengage to complete.");
1341
1342
module_param(xpc_kdebug_ignore, int, 0);
1343
MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1344
"other partitions when dropping into kdebug.");
1345
1346