Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/misc/sgi-xp/xpc_sn2.c
15111 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* Copyright (c) 2008-2009 Silicon Graphics, Inc. All Rights Reserved.
7
*/
8
9
/*
10
* Cross Partition Communication (XPC) sn2-based functions.
11
*
12
* Architecture specific implementation of common functions.
13
*
14
*/
15
16
#include <linux/delay.h>
17
#include <linux/slab.h>
18
#include <asm/uncached.h>
19
#include <asm/sn/mspec.h>
20
#include <asm/sn/sn_sal.h>
21
#include "xpc.h"
22
23
/*
24
* Define the number of u64s required to represent all the C-brick nasids
25
* as a bitmap. The cross-partition kernel modules deal only with
26
* C-brick nasids, thus the need for bitmaps which don't account for
27
* odd-numbered (non C-brick) nasids.
28
*/
29
#define XPC_MAX_PHYSNODES_SN2 (MAX_NUMALINK_NODES / 2)
30
#define XP_NASID_MASK_BYTES_SN2 ((XPC_MAX_PHYSNODES_SN2 + 7) / 8)
31
#define XP_NASID_MASK_WORDS_SN2 ((XPC_MAX_PHYSNODES_SN2 + 63) / 64)
32
33
/*
34
* Memory for XPC's amo variables is allocated by the MSPEC driver. These
35
* pages are located in the lowest granule. The lowest granule uses 4k pages
36
* for cached references and an alternate TLB handler to never provide a
37
* cacheable mapping for the entire region. This will prevent speculative
38
* reading of cached copies of our lines from being issued which will cause
39
* a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
40
* amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of
41
* NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify
42
* the senders of ACTIVATE IRQs, 1 amo variable to identify which remote
43
* partitions (i.e., XPCs) consider themselves currently engaged with the
44
* local XPC and 1 amo variable to request partition deactivation.
45
*/
46
#define XPC_NOTIFY_IRQ_AMOS_SN2 0
47
#define XPC_ACTIVATE_IRQ_AMOS_SN2 (XPC_NOTIFY_IRQ_AMOS_SN2 + \
48
XP_MAX_NPARTITIONS_SN2)
49
#define XPC_ENGAGED_PARTITIONS_AMO_SN2 (XPC_ACTIVATE_IRQ_AMOS_SN2 + \
50
XP_NASID_MASK_WORDS_SN2)
51
#define XPC_DEACTIVATE_REQUEST_AMO_SN2 (XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1)
52
53
/*
54
* Buffer used to store a local copy of portions of a remote partition's
55
* reserved page (either its header and part_nasids mask, or its vars).
56
*/
57
static void *xpc_remote_copy_buffer_base_sn2;
58
static char *xpc_remote_copy_buffer_sn2;
59
60
static struct xpc_vars_sn2 *xpc_vars_sn2;
61
static struct xpc_vars_part_sn2 *xpc_vars_part_sn2;
62
63
static int
64
xpc_setup_partitions_sn2(void)
65
{
66
/* nothing needs to be done */
67
return 0;
68
}
69
70
static void
71
xpc_teardown_partitions_sn2(void)
72
{
73
/* nothing needs to be done */
74
}
75
76
/* SH_IPI_ACCESS shub register value on startup */
77
static u64 xpc_sh1_IPI_access_sn2;
78
static u64 xpc_sh2_IPI_access0_sn2;
79
static u64 xpc_sh2_IPI_access1_sn2;
80
static u64 xpc_sh2_IPI_access2_sn2;
81
static u64 xpc_sh2_IPI_access3_sn2;
82
83
/*
84
* Change protections to allow IPI operations.
85
*/
86
static void
87
xpc_allow_IPI_ops_sn2(void)
88
{
89
int node;
90
int nasid;
91
92
/* !!! The following should get moved into SAL. */
93
if (is_shub2()) {
94
xpc_sh2_IPI_access0_sn2 =
95
(u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
96
xpc_sh2_IPI_access1_sn2 =
97
(u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
98
xpc_sh2_IPI_access2_sn2 =
99
(u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
100
xpc_sh2_IPI_access3_sn2 =
101
(u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
102
103
for_each_online_node(node) {
104
nasid = cnodeid_to_nasid(node);
105
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
106
-1UL);
107
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
108
-1UL);
109
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
110
-1UL);
111
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
112
-1UL);
113
}
114
} else {
115
xpc_sh1_IPI_access_sn2 =
116
(u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
117
118
for_each_online_node(node) {
119
nasid = cnodeid_to_nasid(node);
120
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
121
-1UL);
122
}
123
}
124
}
125
126
/*
127
* Restrict protections to disallow IPI operations.
128
*/
129
static void
130
xpc_disallow_IPI_ops_sn2(void)
131
{
132
int node;
133
int nasid;
134
135
/* !!! The following should get moved into SAL. */
136
if (is_shub2()) {
137
for_each_online_node(node) {
138
nasid = cnodeid_to_nasid(node);
139
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
140
xpc_sh2_IPI_access0_sn2);
141
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
142
xpc_sh2_IPI_access1_sn2);
143
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
144
xpc_sh2_IPI_access2_sn2);
145
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
146
xpc_sh2_IPI_access3_sn2);
147
}
148
} else {
149
for_each_online_node(node) {
150
nasid = cnodeid_to_nasid(node);
151
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
152
xpc_sh1_IPI_access_sn2);
153
}
154
}
155
}
156
157
/*
158
* The following set of functions are used for the sending and receiving of
159
* IRQs (also known as IPIs). There are two flavors of IRQs, one that is
160
* associated with partition activity (SGI_XPC_ACTIVATE) and the other that
161
* is associated with channel activity (SGI_XPC_NOTIFY).
162
*/
163
164
static u64
165
xpc_receive_IRQ_amo_sn2(struct amo *amo)
166
{
167
return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
168
}
169
170
static enum xp_retval
171
xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
172
int vector)
173
{
174
int ret = 0;
175
unsigned long irq_flags;
176
177
local_irq_save(irq_flags);
178
179
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
180
sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
181
182
/*
183
* We must always use the nofault function regardless of whether we
184
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
185
* didn't, we'd never know that the other partition is down and would
186
* keep sending IRQs and amos to it until the heartbeat times out.
187
*/
188
ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
189
xp_nofault_PIOR_target));
190
191
local_irq_restore(irq_flags);
192
193
return (ret == 0) ? xpSuccess : xpPioReadError;
194
}
195
196
static struct amo *
197
xpc_init_IRQ_amo_sn2(int index)
198
{
199
struct amo *amo = xpc_vars_sn2->amos_page + index;
200
201
(void)xpc_receive_IRQ_amo_sn2(amo); /* clear amo variable */
202
return amo;
203
}
204
205
/*
206
* Functions associated with SGI_XPC_ACTIVATE IRQ.
207
*/
208
209
/*
210
* Notify the heartbeat check thread that an activate IRQ has been received.
211
*/
212
static irqreturn_t
213
xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
214
{
215
unsigned long irq_flags;
216
217
spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
218
xpc_activate_IRQ_rcvd++;
219
spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
220
221
wake_up_interruptible(&xpc_activate_IRQ_wq);
222
return IRQ_HANDLED;
223
}
224
225
/*
226
* Flag the appropriate amo variable and send an IRQ to the specified node.
227
*/
228
static void
229
xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa, int from_nasid,
230
int to_nasid, int to_phys_cpuid)
231
{
232
struct amo *amos = (struct amo *)__va(amos_page_pa +
233
(XPC_ACTIVATE_IRQ_AMOS_SN2 *
234
sizeof(struct amo)));
235
236
(void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)],
237
BIT_MASK(from_nasid / 2), to_nasid,
238
to_phys_cpuid, SGI_XPC_ACTIVATE);
239
}
240
241
static void
242
xpc_send_local_activate_IRQ_sn2(int from_nasid)
243
{
244
unsigned long irq_flags;
245
struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa +
246
(XPC_ACTIVATE_IRQ_AMOS_SN2 *
247
sizeof(struct amo)));
248
249
/* fake the sending and receipt of an activate IRQ from remote nasid */
250
FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable),
251
FETCHOP_OR, BIT_MASK(from_nasid / 2));
252
253
spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
254
xpc_activate_IRQ_rcvd++;
255
spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
256
257
wake_up_interruptible(&xpc_activate_IRQ_wq);
258
}
259
260
/*
261
* Functions associated with SGI_XPC_NOTIFY IRQ.
262
*/
263
264
/*
265
* Check to see if any chctl flags were sent from the specified partition.
266
*/
267
static void
268
xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
269
{
270
union xpc_channel_ctl_flags chctl;
271
unsigned long irq_flags;
272
273
chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
274
local_chctl_amo_va);
275
if (chctl.all_flags == 0)
276
return;
277
278
spin_lock_irqsave(&part->chctl_lock, irq_flags);
279
part->chctl.all_flags |= chctl.all_flags;
280
spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
281
282
dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
283
"0x%llx\n", XPC_PARTID(part), chctl.all_flags);
284
285
xpc_wakeup_channel_mgr(part);
286
}
287
288
/*
289
* Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
290
* partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
291
* than one partition, we use an amo structure per partition to indicate
292
* whether a partition has sent an IRQ or not. If it has, then wake up the
293
* associated kthread to handle it.
294
*
295
* All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
296
* running on other partitions.
297
*
298
* Noteworthy Arguments:
299
*
300
* irq - Interrupt ReQuest number. NOT USED.
301
*
302
* dev_id - partid of IRQ's potential sender.
303
*/
304
static irqreturn_t
305
xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
306
{
307
short partid = (short)(u64)dev_id;
308
struct xpc_partition *part = &xpc_partitions[partid];
309
310
DBUG_ON(partid < 0 || partid >= XP_MAX_NPARTITIONS_SN2);
311
312
if (xpc_part_ref(part)) {
313
xpc_check_for_sent_chctl_flags_sn2(part);
314
315
xpc_part_deref(part);
316
}
317
return IRQ_HANDLED;
318
}
319
320
/*
321
* Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
322
* because the write to their associated amo variable completed after the IRQ
323
* was received.
324
*/
325
static void
326
xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part)
327
{
328
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
329
330
if (xpc_part_ref(part)) {
331
xpc_check_for_sent_chctl_flags_sn2(part);
332
333
part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
334
XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
335
add_timer(&part_sn2->dropped_notify_IRQ_timer);
336
xpc_part_deref(part);
337
}
338
}
339
340
/*
341
* Send a notify IRQ to the remote partition that is associated with the
342
* specified channel.
343
*/
344
static void
345
xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
346
char *chctl_flag_string, unsigned long *irq_flags)
347
{
348
struct xpc_partition *part = &xpc_partitions[ch->partid];
349
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
350
union xpc_channel_ctl_flags chctl = { 0 };
351
enum xp_retval ret;
352
353
if (likely(part->act_state != XPC_P_AS_DEACTIVATING)) {
354
chctl.flags[ch->number] = chctl_flag;
355
ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
356
chctl.all_flags,
357
part_sn2->notify_IRQ_nasid,
358
part_sn2->notify_IRQ_phys_cpuid,
359
SGI_XPC_NOTIFY);
360
dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
361
chctl_flag_string, ch->partid, ch->number, ret);
362
if (unlikely(ret != xpSuccess)) {
363
if (irq_flags != NULL)
364
spin_unlock_irqrestore(&ch->lock, *irq_flags);
365
XPC_DEACTIVATE_PARTITION(part, ret);
366
if (irq_flags != NULL)
367
spin_lock_irqsave(&ch->lock, *irq_flags);
368
}
369
}
370
}
371
372
#define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
373
xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
374
375
/*
376
* Make it look like the remote partition, which is associated with the
377
* specified channel, sent us a notify IRQ. This faked IRQ will be handled
378
* by xpc_check_for_dropped_notify_IRQ_sn2().
379
*/
380
static void
381
xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
382
char *chctl_flag_string)
383
{
384
struct xpc_partition *part = &xpc_partitions[ch->partid];
385
union xpc_channel_ctl_flags chctl = { 0 };
386
387
chctl.flags[ch->number] = chctl_flag;
388
FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
389
variable), FETCHOP_OR, chctl.all_flags);
390
dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
391
chctl_flag_string, ch->partid, ch->number);
392
}
393
394
#define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
395
xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
396
397
static void
398
xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
399
unsigned long *irq_flags)
400
{
401
struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
402
403
args->reason = ch->reason;
404
XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
405
}
406
407
static void
408
xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
409
{
410
XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
411
}
412
413
static void
414
xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
415
{
416
struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
417
418
args->entry_size = ch->entry_size;
419
args->local_nentries = ch->local_nentries;
420
XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
421
}
422
423
static void
424
xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
425
{
426
struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
427
428
args->remote_nentries = ch->remote_nentries;
429
args->local_nentries = ch->local_nentries;
430
args->local_msgqueue_pa = xp_pa(ch->sn.sn2.local_msgqueue);
431
XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
432
}
433
434
static void
435
xpc_send_chctl_opencomplete_sn2(struct xpc_channel *ch,
436
unsigned long *irq_flags)
437
{
438
XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENCOMPLETE, irq_flags);
439
}
440
441
static void
442
xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
443
{
444
XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
445
}
446
447
static void
448
xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
449
{
450
XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
451
}
452
453
static enum xp_retval
454
xpc_save_remote_msgqueue_pa_sn2(struct xpc_channel *ch,
455
unsigned long msgqueue_pa)
456
{
457
ch->sn.sn2.remote_msgqueue_pa = msgqueue_pa;
458
return xpSuccess;
459
}
460
461
/*
462
* This next set of functions are used to keep track of when a partition is
463
* potentially engaged in accessing memory belonging to another partition.
464
*/
465
466
static void
467
xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
468
{
469
unsigned long irq_flags;
470
struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
471
(XPC_ENGAGED_PARTITIONS_AMO_SN2 *
472
sizeof(struct amo)));
473
474
local_irq_save(irq_flags);
475
476
/* set bit corresponding to our partid in remote partition's amo */
477
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
478
BIT(sn_partition_id));
479
480
/*
481
* We must always use the nofault function regardless of whether we
482
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
483
* didn't, we'd never know that the other partition is down and would
484
* keep sending IRQs and amos to it until the heartbeat times out.
485
*/
486
(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
487
variable),
488
xp_nofault_PIOR_target));
489
490
local_irq_restore(irq_flags);
491
}
492
493
static void
494
xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
495
{
496
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
497
unsigned long irq_flags;
498
struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
499
(XPC_ENGAGED_PARTITIONS_AMO_SN2 *
500
sizeof(struct amo)));
501
502
local_irq_save(irq_flags);
503
504
/* clear bit corresponding to our partid in remote partition's amo */
505
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
506
~BIT(sn_partition_id));
507
508
/*
509
* We must always use the nofault function regardless of whether we
510
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
511
* didn't, we'd never know that the other partition is down and would
512
* keep sending IRQs and amos to it until the heartbeat times out.
513
*/
514
(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
515
variable),
516
xp_nofault_PIOR_target));
517
518
local_irq_restore(irq_flags);
519
520
/*
521
* Send activate IRQ to get other side to see that we've cleared our
522
* bit in their engaged partitions amo.
523
*/
524
xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
525
cnodeid_to_nasid(0),
526
part_sn2->activate_IRQ_nasid,
527
part_sn2->activate_IRQ_phys_cpuid);
528
}
529
530
static void
531
xpc_assume_partition_disengaged_sn2(short partid)
532
{
533
struct amo *amo = xpc_vars_sn2->amos_page +
534
XPC_ENGAGED_PARTITIONS_AMO_SN2;
535
536
/* clear bit(s) based on partid mask in our partition's amo */
537
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
538
~BIT(partid));
539
}
540
541
static int
542
xpc_partition_engaged_sn2(short partid)
543
{
544
struct amo *amo = xpc_vars_sn2->amos_page +
545
XPC_ENGAGED_PARTITIONS_AMO_SN2;
546
547
/* our partition's amo variable ANDed with partid mask */
548
return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
549
BIT(partid)) != 0;
550
}
551
552
static int
553
xpc_any_partition_engaged_sn2(void)
554
{
555
struct amo *amo = xpc_vars_sn2->amos_page +
556
XPC_ENGAGED_PARTITIONS_AMO_SN2;
557
558
/* our partition's amo variable */
559
return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
560
}
561
562
/* original protection values for each node */
563
static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
564
565
/*
566
* Change protections to allow amo operations on non-Shub 1.1 systems.
567
*/
568
static enum xp_retval
569
xpc_allow_amo_ops_sn2(struct amo *amos_page)
570
{
571
enum xp_retval ret = xpSuccess;
572
573
/*
574
* On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
575
* collides with memory operations. On those systems we call
576
* xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
577
*/
578
if (!enable_shub_wars_1_1())
579
ret = xp_expand_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE);
580
581
return ret;
582
}
583
584
/*
585
* Change protections to allow amo operations on Shub 1.1 systems.
586
*/
587
static void
588
xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
589
{
590
int node;
591
int nasid;
592
593
if (!enable_shub_wars_1_1())
594
return;
595
596
for_each_online_node(node) {
597
nasid = cnodeid_to_nasid(node);
598
/* save current protection values */
599
xpc_prot_vec_sn2[node] =
600
(u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
601
SH1_MD_DQLP_MMR_DIR_PRIVEC0));
602
/* open up everything */
603
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
604
SH1_MD_DQLP_MMR_DIR_PRIVEC0),
605
-1UL);
606
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
607
SH1_MD_DQRP_MMR_DIR_PRIVEC0),
608
-1UL);
609
}
610
}
611
612
static enum xp_retval
613
xpc_get_partition_rsvd_page_pa_sn2(void *buf, u64 *cookie, unsigned long *rp_pa,
614
size_t *len)
615
{
616
s64 status;
617
enum xp_retval ret;
618
619
status = sn_partition_reserved_page_pa((u64)buf, cookie,
620
(u64 *)rp_pa, (u64 *)len);
621
if (status == SALRET_OK)
622
ret = xpSuccess;
623
else if (status == SALRET_MORE_PASSES)
624
ret = xpNeedMoreInfo;
625
else
626
ret = xpSalError;
627
628
return ret;
629
}
630
631
632
static int
633
xpc_setup_rsvd_page_sn2(struct xpc_rsvd_page *rp)
634
{
635
struct amo *amos_page;
636
int i;
637
int ret;
638
639
xpc_vars_sn2 = XPC_RP_VARS(rp);
640
641
rp->sn.sn2.vars_pa = xp_pa(xpc_vars_sn2);
642
643
/* vars_part array follows immediately after vars */
644
xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
645
XPC_RP_VARS_SIZE);
646
647
/*
648
* Before clearing xpc_vars_sn2, see if a page of amos had been
649
* previously allocated. If not we'll need to allocate one and set
650
* permissions so that cross-partition amos are allowed.
651
*
652
* The allocated amo page needs MCA reporting to remain disabled after
653
* XPC has unloaded. To make this work, we keep a copy of the pointer
654
* to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure,
655
* which is pointed to by the reserved page, and re-use that saved copy
656
* on subsequent loads of XPC. This amo page is never freed, and its
657
* memory protections are never restricted.
658
*/
659
amos_page = xpc_vars_sn2->amos_page;
660
if (amos_page == NULL) {
661
amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
662
if (amos_page == NULL) {
663
dev_err(xpc_part, "can't allocate page of amos\n");
664
return -ENOMEM;
665
}
666
667
/*
668
* Open up amo-R/W to cpu. This is done on Shub 1.1 systems
669
* when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
670
*/
671
ret = xpc_allow_amo_ops_sn2(amos_page);
672
if (ret != xpSuccess) {
673
dev_err(xpc_part, "can't allow amo operations\n");
674
uncached_free_page(__IA64_UNCACHED_OFFSET |
675
TO_PHYS((u64)amos_page), 1);
676
return -EPERM;
677
}
678
}
679
680
/* clear xpc_vars_sn2 */
681
memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2));
682
683
xpc_vars_sn2->version = XPC_V_VERSION;
684
xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0);
685
xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0);
686
xpc_vars_sn2->vars_part_pa = xp_pa(xpc_vars_part_sn2);
687
xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page);
688
xpc_vars_sn2->amos_page = amos_page; /* save for next load of XPC */
689
690
/* clear xpc_vars_part_sn2 */
691
memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) *
692
XP_MAX_NPARTITIONS_SN2);
693
694
/* initialize the activate IRQ related amo variables */
695
for (i = 0; i < xpc_nasid_mask_nlongs; i++)
696
(void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i);
697
698
/* initialize the engaged remote partitions related amo variables */
699
(void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2);
700
(void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2);
701
702
return 0;
703
}
704
705
static int
706
xpc_hb_allowed_sn2(short partid, void *heartbeating_to_mask)
707
{
708
return test_bit(partid, heartbeating_to_mask);
709
}
710
711
static void
712
xpc_allow_hb_sn2(short partid)
713
{
714
DBUG_ON(xpc_vars_sn2 == NULL);
715
set_bit(partid, xpc_vars_sn2->heartbeating_to_mask);
716
}
717
718
static void
719
xpc_disallow_hb_sn2(short partid)
720
{
721
DBUG_ON(xpc_vars_sn2 == NULL);
722
clear_bit(partid, xpc_vars_sn2->heartbeating_to_mask);
723
}
724
725
static void
726
xpc_disallow_all_hbs_sn2(void)
727
{
728
DBUG_ON(xpc_vars_sn2 == NULL);
729
bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, xp_max_npartitions);
730
}
731
732
static void
733
xpc_increment_heartbeat_sn2(void)
734
{
735
xpc_vars_sn2->heartbeat++;
736
}
737
738
static void
739
xpc_offline_heartbeat_sn2(void)
740
{
741
xpc_increment_heartbeat_sn2();
742
xpc_vars_sn2->heartbeat_offline = 1;
743
}
744
745
static void
746
xpc_online_heartbeat_sn2(void)
747
{
748
xpc_increment_heartbeat_sn2();
749
xpc_vars_sn2->heartbeat_offline = 0;
750
}
751
752
static void
753
xpc_heartbeat_init_sn2(void)
754
{
755
DBUG_ON(xpc_vars_sn2 == NULL);
756
757
bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
758
xpc_online_heartbeat_sn2();
759
}
760
761
static void
762
xpc_heartbeat_exit_sn2(void)
763
{
764
xpc_offline_heartbeat_sn2();
765
}
766
767
static enum xp_retval
768
xpc_get_remote_heartbeat_sn2(struct xpc_partition *part)
769
{
770
struct xpc_vars_sn2 *remote_vars;
771
enum xp_retval ret;
772
773
remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
774
775
/* pull the remote vars structure that contains the heartbeat */
776
ret = xp_remote_memcpy(xp_pa(remote_vars),
777
part->sn.sn2.remote_vars_pa,
778
XPC_RP_VARS_SIZE);
779
if (ret != xpSuccess)
780
return ret;
781
782
dev_dbg(xpc_part, "partid=%d, heartbeat=%lld, last_heartbeat=%lld, "
783
"heartbeat_offline=%lld, HB_mask[0]=0x%lx\n", XPC_PARTID(part),
784
remote_vars->heartbeat, part->last_heartbeat,
785
remote_vars->heartbeat_offline,
786
remote_vars->heartbeating_to_mask[0]);
787
788
if ((remote_vars->heartbeat == part->last_heartbeat &&
789
!remote_vars->heartbeat_offline) ||
790
!xpc_hb_allowed_sn2(sn_partition_id,
791
remote_vars->heartbeating_to_mask)) {
792
ret = xpNoHeartbeat;
793
} else {
794
part->last_heartbeat = remote_vars->heartbeat;
795
}
796
797
return ret;
798
}
799
800
/*
801
* Get a copy of the remote partition's XPC variables from the reserved page.
802
*
803
* remote_vars points to a buffer that is cacheline aligned for BTE copies and
804
* assumed to be of size XPC_RP_VARS_SIZE.
805
*/
806
static enum xp_retval
807
xpc_get_remote_vars_sn2(unsigned long remote_vars_pa,
808
struct xpc_vars_sn2 *remote_vars)
809
{
810
enum xp_retval ret;
811
812
if (remote_vars_pa == 0)
813
return xpVarsNotSet;
814
815
/* pull over the cross partition variables */
816
ret = xp_remote_memcpy(xp_pa(remote_vars), remote_vars_pa,
817
XPC_RP_VARS_SIZE);
818
if (ret != xpSuccess)
819
return ret;
820
821
if (XPC_VERSION_MAJOR(remote_vars->version) !=
822
XPC_VERSION_MAJOR(XPC_V_VERSION)) {
823
return xpBadVersion;
824
}
825
826
return xpSuccess;
827
}
828
829
static void
830
xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
831
unsigned long remote_rp_pa, int nasid)
832
{
833
xpc_send_local_activate_IRQ_sn2(nasid);
834
}
835
836
static void
837
xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
838
{
839
xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
840
}
841
842
static void
843
xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
844
{
845
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
846
unsigned long irq_flags;
847
struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
848
(XPC_DEACTIVATE_REQUEST_AMO_SN2 *
849
sizeof(struct amo)));
850
851
local_irq_save(irq_flags);
852
853
/* set bit corresponding to our partid in remote partition's amo */
854
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
855
BIT(sn_partition_id));
856
857
/*
858
* We must always use the nofault function regardless of whether we
859
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
860
* didn't, we'd never know that the other partition is down and would
861
* keep sending IRQs and amos to it until the heartbeat times out.
862
*/
863
(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
864
variable),
865
xp_nofault_PIOR_target));
866
867
local_irq_restore(irq_flags);
868
869
/*
870
* Send activate IRQ to get other side to see that we've set our
871
* bit in their deactivate request amo.
872
*/
873
xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
874
cnodeid_to_nasid(0),
875
part_sn2->activate_IRQ_nasid,
876
part_sn2->activate_IRQ_phys_cpuid);
877
}
878
879
static void
880
xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
881
{
882
unsigned long irq_flags;
883
struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
884
(XPC_DEACTIVATE_REQUEST_AMO_SN2 *
885
sizeof(struct amo)));
886
887
local_irq_save(irq_flags);
888
889
/* clear bit corresponding to our partid in remote partition's amo */
890
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
891
~BIT(sn_partition_id));
892
893
/*
894
* We must always use the nofault function regardless of whether we
895
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
896
* didn't, we'd never know that the other partition is down and would
897
* keep sending IRQs and amos to it until the heartbeat times out.
898
*/
899
(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
900
variable),
901
xp_nofault_PIOR_target));
902
903
local_irq_restore(irq_flags);
904
}
905
906
static int
907
xpc_partition_deactivation_requested_sn2(short partid)
908
{
909
struct amo *amo = xpc_vars_sn2->amos_page +
910
XPC_DEACTIVATE_REQUEST_AMO_SN2;
911
912
/* our partition's amo variable ANDed with partid mask */
913
return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
914
BIT(partid)) != 0;
915
}
916
917
/*
918
* Update the remote partition's info.
919
*/
920
static void
921
xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
922
unsigned long *remote_rp_ts_jiffies,
923
unsigned long remote_rp_pa,
924
unsigned long remote_vars_pa,
925
struct xpc_vars_sn2 *remote_vars)
926
{
927
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
928
929
part->remote_rp_version = remote_rp_version;
930
dev_dbg(xpc_part, " remote_rp_version = 0x%016x\n",
931
part->remote_rp_version);
932
933
part->remote_rp_ts_jiffies = *remote_rp_ts_jiffies;
934
dev_dbg(xpc_part, " remote_rp_ts_jiffies = 0x%016lx\n",
935
part->remote_rp_ts_jiffies);
936
937
part->remote_rp_pa = remote_rp_pa;
938
dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
939
940
part_sn2->remote_vars_pa = remote_vars_pa;
941
dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n",
942
part_sn2->remote_vars_pa);
943
944
part->last_heartbeat = remote_vars->heartbeat - 1;
945
dev_dbg(xpc_part, " last_heartbeat = 0x%016llx\n",
946
part->last_heartbeat);
947
948
part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
949
dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n",
950
part_sn2->remote_vars_part_pa);
951
952
part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
953
dev_dbg(xpc_part, " activate_IRQ_nasid = 0x%x\n",
954
part_sn2->activate_IRQ_nasid);
955
956
part_sn2->activate_IRQ_phys_cpuid =
957
remote_vars->activate_IRQ_phys_cpuid;
958
dev_dbg(xpc_part, " activate_IRQ_phys_cpuid = 0x%x\n",
959
part_sn2->activate_IRQ_phys_cpuid);
960
961
part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
962
dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n",
963
part_sn2->remote_amos_page_pa);
964
965
part_sn2->remote_vars_version = remote_vars->version;
966
dev_dbg(xpc_part, " remote_vars_version = 0x%x\n",
967
part_sn2->remote_vars_version);
968
}
969
970
/*
971
* Prior code has determined the nasid which generated a activate IRQ.
972
* Inspect that nasid to determine if its partition needs to be activated
973
* or deactivated.
974
*
975
* A partition is considered "awaiting activation" if our partition
976
* flags indicate it is not active and it has a heartbeat. A
977
* partition is considered "awaiting deactivation" if our partition
978
* flags indicate it is active but it has no heartbeat or it is not
979
* sending its heartbeat to us.
980
*
981
* To determine the heartbeat, the remote nasid must have a properly
982
* initialized reserved page.
983
*/
984
static void
985
xpc_identify_activate_IRQ_req_sn2(int nasid)
986
{
987
struct xpc_rsvd_page *remote_rp;
988
struct xpc_vars_sn2 *remote_vars;
989
unsigned long remote_rp_pa;
990
unsigned long remote_vars_pa;
991
int remote_rp_version;
992
int reactivate = 0;
993
unsigned long remote_rp_ts_jiffies = 0;
994
short partid;
995
struct xpc_partition *part;
996
struct xpc_partition_sn2 *part_sn2;
997
enum xp_retval ret;
998
999
/* pull over the reserved page structure */
1000
1001
remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2;
1002
1003
ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
1004
if (ret != xpSuccess) {
1005
dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
1006
"which sent interrupt, reason=%d\n", nasid, ret);
1007
return;
1008
}
1009
1010
remote_vars_pa = remote_rp->sn.sn2.vars_pa;
1011
remote_rp_version = remote_rp->version;
1012
remote_rp_ts_jiffies = remote_rp->ts_jiffies;
1013
1014
partid = remote_rp->SAL_partid;
1015
part = &xpc_partitions[partid];
1016
part_sn2 = &part->sn.sn2;
1017
1018
/* pull over the cross partition variables */
1019
1020
remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
1021
1022
ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
1023
if (ret != xpSuccess) {
1024
dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
1025
"which sent interrupt, reason=%d\n", nasid, ret);
1026
1027
XPC_DEACTIVATE_PARTITION(part, ret);
1028
return;
1029
}
1030
1031
part->activate_IRQ_rcvd++;
1032
1033
dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
1034
"%lld:0x%lx\n", (int)nasid, (int)partid,
1035
part->activate_IRQ_rcvd,
1036
remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
1037
1038
if (xpc_partition_disengaged(part) &&
1039
part->act_state == XPC_P_AS_INACTIVE) {
1040
1041
xpc_update_partition_info_sn2(part, remote_rp_version,
1042
&remote_rp_ts_jiffies,
1043
remote_rp_pa, remote_vars_pa,
1044
remote_vars);
1045
1046
if (xpc_partition_deactivation_requested_sn2(partid)) {
1047
/*
1048
* Other side is waiting on us to deactivate even though
1049
* we already have.
1050
*/
1051
return;
1052
}
1053
1054
xpc_activate_partition(part);
1055
return;
1056
}
1057
1058
DBUG_ON(part->remote_rp_version == 0);
1059
DBUG_ON(part_sn2->remote_vars_version == 0);
1060
1061
if (remote_rp_ts_jiffies != part->remote_rp_ts_jiffies) {
1062
1063
/* the other side rebooted */
1064
1065
DBUG_ON(xpc_partition_engaged_sn2(partid));
1066
DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
1067
1068
xpc_update_partition_info_sn2(part, remote_rp_version,
1069
&remote_rp_ts_jiffies,
1070
remote_rp_pa, remote_vars_pa,
1071
remote_vars);
1072
reactivate = 1;
1073
}
1074
1075
if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
1076
/* still waiting on other side to disengage from us */
1077
return;
1078
}
1079
1080
if (reactivate)
1081
XPC_DEACTIVATE_PARTITION(part, xpReactivating);
1082
else if (xpc_partition_deactivation_requested_sn2(partid))
1083
XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
1084
}
1085
1086
/*
1087
* Loop through the activation amo variables and process any bits
1088
* which are set. Each bit indicates a nasid sending a partition
1089
* activation or deactivation request.
1090
*
1091
* Return #of IRQs detected.
1092
*/
1093
int
1094
xpc_identify_activate_IRQ_sender_sn2(void)
1095
{
1096
int l;
1097
int b;
1098
unsigned long nasid_mask_long;
1099
u64 nasid; /* remote nasid */
1100
int n_IRQs_detected = 0;
1101
struct amo *act_amos;
1102
1103
act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2;
1104
1105
/* scan through activate amo variables looking for non-zero entries */
1106
for (l = 0; l < xpc_nasid_mask_nlongs; l++) {
1107
1108
if (xpc_exiting)
1109
break;
1110
1111
nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]);
1112
1113
b = find_first_bit(&nasid_mask_long, BITS_PER_LONG);
1114
if (b >= BITS_PER_LONG) {
1115
/* no IRQs from nasids in this amo variable */
1116
continue;
1117
}
1118
1119
dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l,
1120
nasid_mask_long);
1121
1122
/*
1123
* If this nasid has been added to the machine since
1124
* our partition was reset, this will retain the
1125
* remote nasid in our reserved pages machine mask.
1126
* This is used in the event of module reload.
1127
*/
1128
xpc_mach_nasids[l] |= nasid_mask_long;
1129
1130
/* locate the nasid(s) which sent interrupts */
1131
1132
do {
1133
n_IRQs_detected++;
1134
nasid = (l * BITS_PER_LONG + b) * 2;
1135
dev_dbg(xpc_part, "interrupt from nasid %lld\n", nasid);
1136
xpc_identify_activate_IRQ_req_sn2(nasid);
1137
1138
b = find_next_bit(&nasid_mask_long, BITS_PER_LONG,
1139
b + 1);
1140
} while (b < BITS_PER_LONG);
1141
}
1142
return n_IRQs_detected;
1143
}
1144
1145
static void
1146
xpc_process_activate_IRQ_rcvd_sn2(void)
1147
{
1148
unsigned long irq_flags;
1149
int n_IRQs_expected;
1150
int n_IRQs_detected;
1151
1152
spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1153
n_IRQs_expected = xpc_activate_IRQ_rcvd;
1154
xpc_activate_IRQ_rcvd = 0;
1155
spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1156
1157
n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1158
if (n_IRQs_detected < n_IRQs_expected) {
1159
/* retry once to help avoid missing amo */
1160
(void)xpc_identify_activate_IRQ_sender_sn2();
1161
}
1162
}
1163
1164
/*
1165
* Setup the channel structures that are sn2 specific.
1166
*/
1167
static enum xp_retval
1168
xpc_setup_ch_structures_sn2(struct xpc_partition *part)
1169
{
1170
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1171
struct xpc_channel_sn2 *ch_sn2;
1172
enum xp_retval retval;
1173
int ret;
1174
int cpuid;
1175
int ch_number;
1176
struct timer_list *timer;
1177
short partid = XPC_PARTID(part);
1178
1179
/* allocate all the required GET/PUT values */
1180
1181
part_sn2->local_GPs =
1182
xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1183
&part_sn2->local_GPs_base);
1184
if (part_sn2->local_GPs == NULL) {
1185
dev_err(xpc_chan, "can't get memory for local get/put "
1186
"values\n");
1187
return xpNoMemory;
1188
}
1189
1190
part_sn2->remote_GPs =
1191
xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1192
&part_sn2->remote_GPs_base);
1193
if (part_sn2->remote_GPs == NULL) {
1194
dev_err(xpc_chan, "can't get memory for remote get/put "
1195
"values\n");
1196
retval = xpNoMemory;
1197
goto out_1;
1198
}
1199
1200
part_sn2->remote_GPs_pa = 0;
1201
1202
/* allocate all the required open and close args */
1203
1204
part_sn2->local_openclose_args =
1205
xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
1206
GFP_KERNEL, &part_sn2->
1207
local_openclose_args_base);
1208
if (part_sn2->local_openclose_args == NULL) {
1209
dev_err(xpc_chan, "can't get memory for local connect args\n");
1210
retval = xpNoMemory;
1211
goto out_2;
1212
}
1213
1214
part_sn2->remote_openclose_args_pa = 0;
1215
1216
part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1217
1218
part_sn2->notify_IRQ_nasid = 0;
1219
part_sn2->notify_IRQ_phys_cpuid = 0;
1220
part_sn2->remote_chctl_amo_va = NULL;
1221
1222
sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1223
ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1224
IRQF_SHARED, part_sn2->notify_IRQ_owner,
1225
(void *)(u64)partid);
1226
if (ret != 0) {
1227
dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1228
"errno=%d\n", -ret);
1229
retval = xpLackOfResources;
1230
goto out_3;
1231
}
1232
1233
/* Setup a timer to check for dropped notify IRQs */
1234
timer = &part_sn2->dropped_notify_IRQ_timer;
1235
init_timer(timer);
1236
timer->function =
1237
(void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2;
1238
timer->data = (unsigned long)part;
1239
timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1240
add_timer(timer);
1241
1242
for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1243
ch_sn2 = &part->channels[ch_number].sn.sn2;
1244
1245
ch_sn2->local_GP = &part_sn2->local_GPs[ch_number];
1246
ch_sn2->local_openclose_args =
1247
&part_sn2->local_openclose_args[ch_number];
1248
1249
mutex_init(&ch_sn2->msg_to_pull_mutex);
1250
}
1251
1252
/*
1253
* Setup the per partition specific variables required by the
1254
* remote partition to establish channel connections with us.
1255
*
1256
* The setting of the magic # indicates that these per partition
1257
* specific variables are ready to be used.
1258
*/
1259
xpc_vars_part_sn2[partid].GPs_pa = xp_pa(part_sn2->local_GPs);
1260
xpc_vars_part_sn2[partid].openclose_args_pa =
1261
xp_pa(part_sn2->local_openclose_args);
1262
xpc_vars_part_sn2[partid].chctl_amo_pa =
1263
xp_pa(part_sn2->local_chctl_amo_va);
1264
cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
1265
xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1266
xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid =
1267
cpu_physical_id(cpuid);
1268
xpc_vars_part_sn2[partid].nchannels = part->nchannels;
1269
xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1_SN2;
1270
1271
return xpSuccess;
1272
1273
/* setup of ch structures failed */
1274
out_3:
1275
kfree(part_sn2->local_openclose_args_base);
1276
part_sn2->local_openclose_args = NULL;
1277
out_2:
1278
kfree(part_sn2->remote_GPs_base);
1279
part_sn2->remote_GPs = NULL;
1280
out_1:
1281
kfree(part_sn2->local_GPs_base);
1282
part_sn2->local_GPs = NULL;
1283
return retval;
1284
}
1285
1286
/*
1287
* Teardown the channel structures that are sn2 specific.
1288
*/
1289
static void
1290
xpc_teardown_ch_structures_sn2(struct xpc_partition *part)
1291
{
1292
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1293
short partid = XPC_PARTID(part);
1294
1295
/*
1296
* Indicate that the variables specific to the remote partition are no
1297
* longer available for its use.
1298
*/
1299
xpc_vars_part_sn2[partid].magic = 0;
1300
1301
/* in case we've still got outstanding timers registered... */
1302
del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1303
free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1304
1305
kfree(part_sn2->local_openclose_args_base);
1306
part_sn2->local_openclose_args = NULL;
1307
kfree(part_sn2->remote_GPs_base);
1308
part_sn2->remote_GPs = NULL;
1309
kfree(part_sn2->local_GPs_base);
1310
part_sn2->local_GPs = NULL;
1311
part_sn2->local_chctl_amo_va = NULL;
1312
}
1313
1314
/*
1315
* Create a wrapper that hides the underlying mechanism for pulling a cacheline
1316
* (or multiple cachelines) from a remote partition.
1317
*
1318
* src_pa must be a cacheline aligned physical address on the remote partition.
1319
* dst must be a cacheline aligned virtual address on this partition.
1320
* cnt must be cacheline sized
1321
*/
1322
/* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1323
static enum xp_retval
1324
xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1325
const unsigned long src_pa, size_t cnt)
1326
{
1327
enum xp_retval ret;
1328
1329
DBUG_ON(src_pa != L1_CACHE_ALIGN(src_pa));
1330
DBUG_ON((unsigned long)dst != L1_CACHE_ALIGN((unsigned long)dst));
1331
DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1332
1333
if (part->act_state == XPC_P_AS_DEACTIVATING)
1334
return part->reason;
1335
1336
ret = xp_remote_memcpy(xp_pa(dst), src_pa, cnt);
1337
if (ret != xpSuccess) {
1338
dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1339
" ret=%d\n", XPC_PARTID(part), ret);
1340
}
1341
return ret;
1342
}
1343
1344
/*
1345
* Pull the remote per partition specific variables from the specified
1346
* partition.
1347
*/
1348
static enum xp_retval
1349
xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1350
{
1351
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1352
u8 buffer[L1_CACHE_BYTES * 2];
1353
struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1354
(struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1355
struct xpc_vars_part_sn2 *pulled_entry;
1356
unsigned long remote_entry_cacheline_pa;
1357
unsigned long remote_entry_pa;
1358
short partid = XPC_PARTID(part);
1359
enum xp_retval ret;
1360
1361
/* pull the cacheline that contains the variables we're interested in */
1362
1363
DBUG_ON(part_sn2->remote_vars_part_pa !=
1364
L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1365
DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1366
1367
remote_entry_pa = part_sn2->remote_vars_part_pa +
1368
sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1369
1370
remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1371
1372
pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1373
+ (remote_entry_pa &
1374
(L1_CACHE_BYTES - 1)));
1375
1376
ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1377
remote_entry_cacheline_pa,
1378
L1_CACHE_BYTES);
1379
if (ret != xpSuccess) {
1380
dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1381
"partition %d, ret=%d\n", partid, ret);
1382
return ret;
1383
}
1384
1385
/* see if they've been set up yet */
1386
1387
if (pulled_entry->magic != XPC_VP_MAGIC1_SN2 &&
1388
pulled_entry->magic != XPC_VP_MAGIC2_SN2) {
1389
1390
if (pulled_entry->magic != 0) {
1391
dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1392
"partition %d has bad magic value (=0x%llx)\n",
1393
partid, sn_partition_id, pulled_entry->magic);
1394
return xpBadMagic;
1395
}
1396
1397
/* they've not been initialized yet */
1398
return xpRetry;
1399
}
1400
1401
if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1_SN2) {
1402
1403
/* validate the variables */
1404
1405
if (pulled_entry->GPs_pa == 0 ||
1406
pulled_entry->openclose_args_pa == 0 ||
1407
pulled_entry->chctl_amo_pa == 0) {
1408
1409
dev_err(xpc_chan, "partition %d's XPC vars_part for "
1410
"partition %d are not valid\n", partid,
1411
sn_partition_id);
1412
return xpInvalidAddress;
1413
}
1414
1415
/* the variables we imported look to be valid */
1416
1417
part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1418
part_sn2->remote_openclose_args_pa =
1419
pulled_entry->openclose_args_pa;
1420
part_sn2->remote_chctl_amo_va =
1421
(struct amo *)__va(pulled_entry->chctl_amo_pa);
1422
part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1423
part_sn2->notify_IRQ_phys_cpuid =
1424
pulled_entry->notify_IRQ_phys_cpuid;
1425
1426
if (part->nchannels > pulled_entry->nchannels)
1427
part->nchannels = pulled_entry->nchannels;
1428
1429
/* let the other side know that we've pulled their variables */
1430
1431
xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2_SN2;
1432
}
1433
1434
if (pulled_entry->magic == XPC_VP_MAGIC1_SN2)
1435
return xpRetry;
1436
1437
return xpSuccess;
1438
}
1439
1440
/*
1441
* Establish first contact with the remote partititon. This involves pulling
1442
* the XPC per partition variables from the remote partition and waiting for
1443
* the remote partition to pull ours.
1444
*/
1445
static enum xp_retval
1446
xpc_make_first_contact_sn2(struct xpc_partition *part)
1447
{
1448
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1449
enum xp_retval ret;
1450
1451
/*
1452
* Register the remote partition's amos with SAL so it can handle
1453
* and cleanup errors within that address range should the remote
1454
* partition go down. We don't unregister this range because it is
1455
* difficult to tell when outstanding writes to the remote partition
1456
* are finished and thus when it is safe to unregister. This should
1457
* not result in wasted space in the SAL xp_addr_region table because
1458
* we should get the same page for remote_amos_page_pa after module
1459
* reloads and system reboots.
1460
*/
1461
if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1462
PAGE_SIZE, 1) < 0) {
1463
dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1464
"xp_addr region\n", XPC_PARTID(part));
1465
1466
ret = xpPhysAddrRegFailed;
1467
XPC_DEACTIVATE_PARTITION(part, ret);
1468
return ret;
1469
}
1470
1471
/*
1472
* Send activate IRQ to get other side to activate if they've not
1473
* already begun to do so.
1474
*/
1475
xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1476
cnodeid_to_nasid(0),
1477
part_sn2->activate_IRQ_nasid,
1478
part_sn2->activate_IRQ_phys_cpuid);
1479
1480
while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1481
if (ret != xpRetry) {
1482
XPC_DEACTIVATE_PARTITION(part, ret);
1483
return ret;
1484
}
1485
1486
dev_dbg(xpc_part, "waiting to make first contact with "
1487
"partition %d\n", XPC_PARTID(part));
1488
1489
/* wait a 1/4 of a second or so */
1490
(void)msleep_interruptible(250);
1491
1492
if (part->act_state == XPC_P_AS_DEACTIVATING)
1493
return part->reason;
1494
}
1495
1496
return xpSuccess;
1497
}
1498
1499
/*
1500
* Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1501
*/
1502
static u64
1503
xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1504
{
1505
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1506
unsigned long irq_flags;
1507
union xpc_channel_ctl_flags chctl;
1508
enum xp_retval ret;
1509
1510
/*
1511
* See if there are any chctl flags to be handled.
1512
*/
1513
1514
spin_lock_irqsave(&part->chctl_lock, irq_flags);
1515
chctl = part->chctl;
1516
if (chctl.all_flags != 0)
1517
part->chctl.all_flags = 0;
1518
1519
spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1520
1521
if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1522
ret = xpc_pull_remote_cachelines_sn2(part, part->
1523
remote_openclose_args,
1524
part_sn2->
1525
remote_openclose_args_pa,
1526
XPC_OPENCLOSE_ARGS_SIZE);
1527
if (ret != xpSuccess) {
1528
XPC_DEACTIVATE_PARTITION(part, ret);
1529
1530
dev_dbg(xpc_chan, "failed to pull openclose args from "
1531
"partition %d, ret=%d\n", XPC_PARTID(part),
1532
ret);
1533
1534
/* don't bother processing chctl flags anymore */
1535
chctl.all_flags = 0;
1536
}
1537
}
1538
1539
if (xpc_any_msg_chctl_flags_set(&chctl)) {
1540
ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1541
part_sn2->remote_GPs_pa,
1542
XPC_GP_SIZE);
1543
if (ret != xpSuccess) {
1544
XPC_DEACTIVATE_PARTITION(part, ret);
1545
1546
dev_dbg(xpc_chan, "failed to pull GPs from partition "
1547
"%d, ret=%d\n", XPC_PARTID(part), ret);
1548
1549
/* don't bother processing chctl flags anymore */
1550
chctl.all_flags = 0;
1551
}
1552
}
1553
1554
return chctl.all_flags;
1555
}
1556
1557
/*
1558
* Allocate the local message queue and the notify queue.
1559
*/
1560
static enum xp_retval
1561
xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1562
{
1563
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1564
unsigned long irq_flags;
1565
int nentries;
1566
size_t nbytes;
1567
1568
for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1569
1570
nbytes = nentries * ch->entry_size;
1571
ch_sn2->local_msgqueue =
1572
xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL,
1573
&ch_sn2->local_msgqueue_base);
1574
if (ch_sn2->local_msgqueue == NULL)
1575
continue;
1576
1577
nbytes = nentries * sizeof(struct xpc_notify_sn2);
1578
ch_sn2->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1579
if (ch_sn2->notify_queue == NULL) {
1580
kfree(ch_sn2->local_msgqueue_base);
1581
ch_sn2->local_msgqueue = NULL;
1582
continue;
1583
}
1584
1585
spin_lock_irqsave(&ch->lock, irq_flags);
1586
if (nentries < ch->local_nentries) {
1587
dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1588
"partid=%d, channel=%d\n", nentries,
1589
ch->local_nentries, ch->partid, ch->number);
1590
1591
ch->local_nentries = nentries;
1592
}
1593
spin_unlock_irqrestore(&ch->lock, irq_flags);
1594
return xpSuccess;
1595
}
1596
1597
dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1598
"queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1599
return xpNoMemory;
1600
}
1601
1602
/*
1603
* Allocate the cached remote message queue.
1604
*/
1605
static enum xp_retval
1606
xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1607
{
1608
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1609
unsigned long irq_flags;
1610
int nentries;
1611
size_t nbytes;
1612
1613
DBUG_ON(ch->remote_nentries <= 0);
1614
1615
for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1616
1617
nbytes = nentries * ch->entry_size;
1618
ch_sn2->remote_msgqueue =
1619
xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL, &ch_sn2->
1620
remote_msgqueue_base);
1621
if (ch_sn2->remote_msgqueue == NULL)
1622
continue;
1623
1624
spin_lock_irqsave(&ch->lock, irq_flags);
1625
if (nentries < ch->remote_nentries) {
1626
dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1627
"partid=%d, channel=%d\n", nentries,
1628
ch->remote_nentries, ch->partid, ch->number);
1629
1630
ch->remote_nentries = nentries;
1631
}
1632
spin_unlock_irqrestore(&ch->lock, irq_flags);
1633
return xpSuccess;
1634
}
1635
1636
dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1637
"partid=%d, channel=%d\n", ch->partid, ch->number);
1638
return xpNoMemory;
1639
}
1640
1641
/*
1642
* Allocate message queues and other stuff associated with a channel.
1643
*
1644
* Note: Assumes all of the channel sizes are filled in.
1645
*/
1646
static enum xp_retval
1647
xpc_setup_msg_structures_sn2(struct xpc_channel *ch)
1648
{
1649
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1650
enum xp_retval ret;
1651
1652
DBUG_ON(ch->flags & XPC_C_SETUP);
1653
1654
ret = xpc_allocate_local_msgqueue_sn2(ch);
1655
if (ret == xpSuccess) {
1656
1657
ret = xpc_allocate_remote_msgqueue_sn2(ch);
1658
if (ret != xpSuccess) {
1659
kfree(ch_sn2->local_msgqueue_base);
1660
ch_sn2->local_msgqueue = NULL;
1661
kfree(ch_sn2->notify_queue);
1662
ch_sn2->notify_queue = NULL;
1663
}
1664
}
1665
return ret;
1666
}
1667
1668
/*
1669
* Free up message queues and other stuff that were allocated for the specified
1670
* channel.
1671
*/
1672
static void
1673
xpc_teardown_msg_structures_sn2(struct xpc_channel *ch)
1674
{
1675
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1676
1677
DBUG_ON(!spin_is_locked(&ch->lock));
1678
1679
ch_sn2->remote_msgqueue_pa = 0;
1680
1681
ch_sn2->local_GP->get = 0;
1682
ch_sn2->local_GP->put = 0;
1683
ch_sn2->remote_GP.get = 0;
1684
ch_sn2->remote_GP.put = 0;
1685
ch_sn2->w_local_GP.get = 0;
1686
ch_sn2->w_local_GP.put = 0;
1687
ch_sn2->w_remote_GP.get = 0;
1688
ch_sn2->w_remote_GP.put = 0;
1689
ch_sn2->next_msg_to_pull = 0;
1690
1691
if (ch->flags & XPC_C_SETUP) {
1692
dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1693
ch->flags, ch->partid, ch->number);
1694
1695
kfree(ch_sn2->local_msgqueue_base);
1696
ch_sn2->local_msgqueue = NULL;
1697
kfree(ch_sn2->remote_msgqueue_base);
1698
ch_sn2->remote_msgqueue = NULL;
1699
kfree(ch_sn2->notify_queue);
1700
ch_sn2->notify_queue = NULL;
1701
}
1702
}
1703
1704
/*
1705
* Notify those who wanted to be notified upon delivery of their message.
1706
*/
1707
static void
1708
xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1709
{
1710
struct xpc_notify_sn2 *notify;
1711
u8 notify_type;
1712
s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1713
1714
while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1715
1716
notify = &ch->sn.sn2.notify_queue[get % ch->local_nentries];
1717
1718
/*
1719
* See if the notify entry indicates it was associated with
1720
* a message who's sender wants to be notified. It is possible
1721
* that it is, but someone else is doing or has done the
1722
* notification.
1723
*/
1724
notify_type = notify->type;
1725
if (notify_type == 0 ||
1726
cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1727
continue;
1728
}
1729
1730
DBUG_ON(notify_type != XPC_N_CALL);
1731
1732
atomic_dec(&ch->n_to_notify);
1733
1734
if (notify->func != NULL) {
1735
dev_dbg(xpc_chan, "notify->func() called, notify=0x%p "
1736
"msg_number=%lld partid=%d channel=%d\n",
1737
(void *)notify, get, ch->partid, ch->number);
1738
1739
notify->func(reason, ch->partid, ch->number,
1740
notify->key);
1741
1742
dev_dbg(xpc_chan, "notify->func() returned, notify=0x%p"
1743
" msg_number=%lld partid=%d channel=%d\n",
1744
(void *)notify, get, ch->partid, ch->number);
1745
}
1746
}
1747
}
1748
1749
static void
1750
xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1751
{
1752
xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1753
}
1754
1755
/*
1756
* Clear some of the msg flags in the local message queue.
1757
*/
1758
static inline void
1759
xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1760
{
1761
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1762
struct xpc_msg_sn2 *msg;
1763
s64 get;
1764
1765
get = ch_sn2->w_remote_GP.get;
1766
do {
1767
msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
1768
(get % ch->local_nentries) *
1769
ch->entry_size);
1770
DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1771
msg->flags = 0;
1772
} while (++get < ch_sn2->remote_GP.get);
1773
}
1774
1775
/*
1776
* Clear some of the msg flags in the remote message queue.
1777
*/
1778
static inline void
1779
xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1780
{
1781
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1782
struct xpc_msg_sn2 *msg;
1783
s64 put, remote_nentries = ch->remote_nentries;
1784
1785
/* flags are zeroed when the buffer is allocated */
1786
if (ch_sn2->remote_GP.put < remote_nentries)
1787
return;
1788
1789
put = max(ch_sn2->w_remote_GP.put, remote_nentries);
1790
do {
1791
msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1792
(put % remote_nentries) *
1793
ch->entry_size);
1794
DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1795
DBUG_ON(!(msg->flags & XPC_M_SN2_DONE));
1796
DBUG_ON(msg->number != put - remote_nentries);
1797
msg->flags = 0;
1798
} while (++put < ch_sn2->remote_GP.put);
1799
}
1800
1801
static int
1802
xpc_n_of_deliverable_payloads_sn2(struct xpc_channel *ch)
1803
{
1804
return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
1805
}
1806
1807
static void
1808
xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1809
{
1810
struct xpc_channel *ch = &part->channels[ch_number];
1811
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1812
int npayloads_sent;
1813
1814
ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1815
1816
/* See what, if anything, has changed for each connected channel */
1817
1818
xpc_msgqueue_ref(ch);
1819
1820
if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1821
ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1822
/* nothing changed since GPs were last pulled */
1823
xpc_msgqueue_deref(ch);
1824
return;
1825
}
1826
1827
if (!(ch->flags & XPC_C_CONNECTED)) {
1828
xpc_msgqueue_deref(ch);
1829
return;
1830
}
1831
1832
/*
1833
* First check to see if messages recently sent by us have been
1834
* received by the other side. (The remote GET value will have
1835
* changed since we last looked at it.)
1836
*/
1837
1838
if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1839
1840
/*
1841
* We need to notify any senders that want to be notified
1842
* that their sent messages have been received by their
1843
* intended recipients. We need to do this before updating
1844
* w_remote_GP.get so that we don't allocate the same message
1845
* queue entries prematurely (see xpc_allocate_msg()).
1846
*/
1847
if (atomic_read(&ch->n_to_notify) > 0) {
1848
/*
1849
* Notify senders that messages sent have been
1850
* received and delivered by the other side.
1851
*/
1852
xpc_notify_senders_sn2(ch, xpMsgDelivered,
1853
ch_sn2->remote_GP.get);
1854
}
1855
1856
/*
1857
* Clear msg->flags in previously sent messages, so that
1858
* they're ready for xpc_allocate_msg().
1859
*/
1860
xpc_clear_local_msgqueue_flags_sn2(ch);
1861
1862
ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1863
1864
dev_dbg(xpc_chan, "w_remote_GP.get changed to %lld, partid=%d, "
1865
"channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1866
ch->number);
1867
1868
/*
1869
* If anyone was waiting for message queue entries to become
1870
* available, wake them up.
1871
*/
1872
if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1873
wake_up(&ch->msg_allocate_wq);
1874
}
1875
1876
/*
1877
* Now check for newly sent messages by the other side. (The remote
1878
* PUT value will have changed since we last looked at it.)
1879
*/
1880
1881
if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1882
/*
1883
* Clear msg->flags in previously received messages, so that
1884
* they're ready for xpc_get_deliverable_payload_sn2().
1885
*/
1886
xpc_clear_remote_msgqueue_flags_sn2(ch);
1887
1888
smp_wmb(); /* ensure flags have been cleared before bte_copy */
1889
ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1890
1891
dev_dbg(xpc_chan, "w_remote_GP.put changed to %lld, partid=%d, "
1892
"channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1893
ch->number);
1894
1895
npayloads_sent = xpc_n_of_deliverable_payloads_sn2(ch);
1896
if (npayloads_sent > 0) {
1897
dev_dbg(xpc_chan, "msgs waiting to be copied and "
1898
"delivered=%d, partid=%d, channel=%d\n",
1899
npayloads_sent, ch->partid, ch->number);
1900
1901
if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1902
xpc_activate_kthreads(ch, npayloads_sent);
1903
}
1904
}
1905
1906
xpc_msgqueue_deref(ch);
1907
}
1908
1909
static struct xpc_msg_sn2 *
1910
xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1911
{
1912
struct xpc_partition *part = &xpc_partitions[ch->partid];
1913
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1914
unsigned long remote_msg_pa;
1915
struct xpc_msg_sn2 *msg;
1916
u32 msg_index;
1917
u32 nmsgs;
1918
u64 msg_offset;
1919
enum xp_retval ret;
1920
1921
if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1922
/* we were interrupted by a signal */
1923
return NULL;
1924
}
1925
1926
while (get >= ch_sn2->next_msg_to_pull) {
1927
1928
/* pull as many messages as are ready and able to be pulled */
1929
1930
msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1931
1932
DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1933
nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1934
if (msg_index + nmsgs > ch->remote_nentries) {
1935
/* ignore the ones that wrap the msg queue for now */
1936
nmsgs = ch->remote_nentries - msg_index;
1937
}
1938
1939
msg_offset = msg_index * ch->entry_size;
1940
msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1941
msg_offset);
1942
remote_msg_pa = ch_sn2->remote_msgqueue_pa + msg_offset;
1943
1944
ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg_pa,
1945
nmsgs * ch->entry_size);
1946
if (ret != xpSuccess) {
1947
1948
dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
1949
" msg %lld from partition %d, channel=%d, "
1950
"ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
1951
ch->partid, ch->number, ret);
1952
1953
XPC_DEACTIVATE_PARTITION(part, ret);
1954
1955
mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1956
return NULL;
1957
}
1958
1959
ch_sn2->next_msg_to_pull += nmsgs;
1960
}
1961
1962
mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1963
1964
/* return the message we were looking for */
1965
msg_offset = (get % ch->remote_nentries) * ch->entry_size;
1966
msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue + msg_offset);
1967
1968
return msg;
1969
}
1970
1971
/*
1972
* Get the next deliverable message's payload.
1973
*/
1974
static void *
1975
xpc_get_deliverable_payload_sn2(struct xpc_channel *ch)
1976
{
1977
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1978
struct xpc_msg_sn2 *msg;
1979
void *payload = NULL;
1980
s64 get;
1981
1982
do {
1983
if (ch->flags & XPC_C_DISCONNECTING)
1984
break;
1985
1986
get = ch_sn2->w_local_GP.get;
1987
smp_rmb(); /* guarantee that .get loads before .put */
1988
if (get == ch_sn2->w_remote_GP.put)
1989
break;
1990
1991
/* There are messages waiting to be pulled and delivered.
1992
* We need to try to secure one for ourselves. We'll do this
1993
* by trying to increment w_local_GP.get and hope that no one
1994
* else beats us to it. If they do, we'll we'll simply have
1995
* to try again for the next one.
1996
*/
1997
1998
if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
1999
/* we got the entry referenced by get */
2000
2001
dev_dbg(xpc_chan, "w_local_GP.get changed to %lld, "
2002
"partid=%d, channel=%d\n", get + 1,
2003
ch->partid, ch->number);
2004
2005
/* pull the message from the remote partition */
2006
2007
msg = xpc_pull_remote_msg_sn2(ch, get);
2008
2009
if (msg != NULL) {
2010
DBUG_ON(msg->number != get);
2011
DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2012
DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2013
2014
payload = &msg->payload;
2015
}
2016
break;
2017
}
2018
2019
} while (1);
2020
2021
return payload;
2022
}
2023
2024
/*
2025
* Now we actually send the messages that are ready to be sent by advancing
2026
* the local message queue's Put value and then send a chctl msgrequest to the
2027
* recipient partition.
2028
*/
2029
static void
2030
xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
2031
{
2032
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2033
struct xpc_msg_sn2 *msg;
2034
s64 put = initial_put + 1;
2035
int send_msgrequest = 0;
2036
2037
while (1) {
2038
2039
while (1) {
2040
if (put == ch_sn2->w_local_GP.put)
2041
break;
2042
2043
msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2044
local_msgqueue + (put %
2045
ch->local_nentries) *
2046
ch->entry_size);
2047
2048
if (!(msg->flags & XPC_M_SN2_READY))
2049
break;
2050
2051
put++;
2052
}
2053
2054
if (put == initial_put) {
2055
/* nothing's changed */
2056
break;
2057
}
2058
2059
if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2060
initial_put) {
2061
/* someone else beat us to it */
2062
DBUG_ON(ch_sn2->local_GP->put < initial_put);
2063
break;
2064
}
2065
2066
/* we just set the new value of local_GP->put */
2067
2068
dev_dbg(xpc_chan, "local_GP->put changed to %lld, partid=%d, "
2069
"channel=%d\n", put, ch->partid, ch->number);
2070
2071
send_msgrequest = 1;
2072
2073
/*
2074
* We need to ensure that the message referenced by
2075
* local_GP->put is not XPC_M_SN2_READY or that local_GP->put
2076
* equals w_local_GP.put, so we'll go have a look.
2077
*/
2078
initial_put = put;
2079
}
2080
2081
if (send_msgrequest)
2082
xpc_send_chctl_msgrequest_sn2(ch);
2083
}
2084
2085
/*
2086
* Allocate an entry for a message from the message queue associated with the
2087
* specified channel.
2088
*/
2089
static enum xp_retval
2090
xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2091
struct xpc_msg_sn2 **address_of_msg)
2092
{
2093
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2094
struct xpc_msg_sn2 *msg;
2095
enum xp_retval ret;
2096
s64 put;
2097
2098
/*
2099
* Get the next available message entry from the local message queue.
2100
* If none are available, we'll make sure that we grab the latest
2101
* GP values.
2102
*/
2103
ret = xpTimeout;
2104
2105
while (1) {
2106
2107
put = ch_sn2->w_local_GP.put;
2108
smp_rmb(); /* guarantee that .put loads before .get */
2109
if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2110
2111
/* There are available message entries. We need to try
2112
* to secure one for ourselves. We'll do this by trying
2113
* to increment w_local_GP.put as long as someone else
2114
* doesn't beat us to it. If they do, we'll have to
2115
* try again.
2116
*/
2117
if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2118
put) {
2119
/* we got the entry referenced by put */
2120
break;
2121
}
2122
continue; /* try again */
2123
}
2124
2125
/*
2126
* There aren't any available msg entries at this time.
2127
*
2128
* In waiting for a message entry to become available,
2129
* we set a timeout in case the other side is not sending
2130
* completion interrupts. This lets us fake a notify IRQ
2131
* that will cause the notify IRQ handler to fetch the latest
2132
* GP values as if an interrupt was sent by the other side.
2133
*/
2134
if (ret == xpTimeout)
2135
xpc_send_chctl_local_msgrequest_sn2(ch);
2136
2137
if (flags & XPC_NOWAIT)
2138
return xpNoWait;
2139
2140
ret = xpc_allocate_msg_wait(ch);
2141
if (ret != xpInterrupted && ret != xpTimeout)
2142
return ret;
2143
}
2144
2145
/* get the message's address and initialize it */
2146
msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
2147
(put % ch->local_nentries) *
2148
ch->entry_size);
2149
2150
DBUG_ON(msg->flags != 0);
2151
msg->number = put;
2152
2153
dev_dbg(xpc_chan, "w_local_GP.put changed to %lld; msg=0x%p, "
2154
"msg_number=%lld, partid=%d, channel=%d\n", put + 1,
2155
(void *)msg, msg->number, ch->partid, ch->number);
2156
2157
*address_of_msg = msg;
2158
return xpSuccess;
2159
}
2160
2161
/*
2162
* Common code that does the actual sending of the message by advancing the
2163
* local message queue's Put value and sends a chctl msgrequest to the
2164
* partition the message is being sent to.
2165
*/
2166
static enum xp_retval
2167
xpc_send_payload_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2168
u16 payload_size, u8 notify_type, xpc_notify_func func,
2169
void *key)
2170
{
2171
enum xp_retval ret = xpSuccess;
2172
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2173
struct xpc_msg_sn2 *msg = msg;
2174
struct xpc_notify_sn2 *notify = notify;
2175
s64 msg_number;
2176
s64 put;
2177
2178
DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2179
2180
if (XPC_MSG_SIZE(payload_size) > ch->entry_size)
2181
return xpPayloadTooBig;
2182
2183
xpc_msgqueue_ref(ch);
2184
2185
if (ch->flags & XPC_C_DISCONNECTING) {
2186
ret = ch->reason;
2187
goto out_1;
2188
}
2189
if (!(ch->flags & XPC_C_CONNECTED)) {
2190
ret = xpNotConnected;
2191
goto out_1;
2192
}
2193
2194
ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2195
if (ret != xpSuccess)
2196
goto out_1;
2197
2198
msg_number = msg->number;
2199
2200
if (notify_type != 0) {
2201
/*
2202
* Tell the remote side to send an ACK interrupt when the
2203
* message has been delivered.
2204
*/
2205
msg->flags |= XPC_M_SN2_INTERRUPT;
2206
2207
atomic_inc(&ch->n_to_notify);
2208
2209
notify = &ch_sn2->notify_queue[msg_number % ch->local_nentries];
2210
notify->func = func;
2211
notify->key = key;
2212
notify->type = notify_type;
2213
2214
/* ??? Is a mb() needed here? */
2215
2216
if (ch->flags & XPC_C_DISCONNECTING) {
2217
/*
2218
* An error occurred between our last error check and
2219
* this one. We will try to clear the type field from
2220
* the notify entry. If we succeed then
2221
* xpc_disconnect_channel() didn't already process
2222
* the notify entry.
2223
*/
2224
if (cmpxchg(&notify->type, notify_type, 0) ==
2225
notify_type) {
2226
atomic_dec(&ch->n_to_notify);
2227
ret = ch->reason;
2228
}
2229
goto out_1;
2230
}
2231
}
2232
2233
memcpy(&msg->payload, payload, payload_size);
2234
2235
msg->flags |= XPC_M_SN2_READY;
2236
2237
/*
2238
* The preceding store of msg->flags must occur before the following
2239
* load of local_GP->put.
2240
*/
2241
smp_mb();
2242
2243
/* see if the message is next in line to be sent, if so send it */
2244
2245
put = ch_sn2->local_GP->put;
2246
if (put == msg_number)
2247
xpc_send_msgs_sn2(ch, put);
2248
2249
out_1:
2250
xpc_msgqueue_deref(ch);
2251
return ret;
2252
}
2253
2254
/*
2255
* Now we actually acknowledge the messages that have been delivered and ack'd
2256
* by advancing the cached remote message queue's Get value and if requested
2257
* send a chctl msgrequest to the message sender's partition.
2258
*
2259
* If a message has XPC_M_SN2_INTERRUPT set, send an interrupt to the partition
2260
* that sent the message.
2261
*/
2262
static void
2263
xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2264
{
2265
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2266
struct xpc_msg_sn2 *msg;
2267
s64 get = initial_get + 1;
2268
int send_msgrequest = 0;
2269
2270
while (1) {
2271
2272
while (1) {
2273
if (get == ch_sn2->w_local_GP.get)
2274
break;
2275
2276
msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2277
remote_msgqueue + (get %
2278
ch->remote_nentries) *
2279
ch->entry_size);
2280
2281
if (!(msg->flags & XPC_M_SN2_DONE))
2282
break;
2283
2284
msg_flags |= msg->flags;
2285
get++;
2286
}
2287
2288
if (get == initial_get) {
2289
/* nothing's changed */
2290
break;
2291
}
2292
2293
if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2294
initial_get) {
2295
/* someone else beat us to it */
2296
DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2297
break;
2298
}
2299
2300
/* we just set the new value of local_GP->get */
2301
2302
dev_dbg(xpc_chan, "local_GP->get changed to %lld, partid=%d, "
2303
"channel=%d\n", get, ch->partid, ch->number);
2304
2305
send_msgrequest = (msg_flags & XPC_M_SN2_INTERRUPT);
2306
2307
/*
2308
* We need to ensure that the message referenced by
2309
* local_GP->get is not XPC_M_SN2_DONE or that local_GP->get
2310
* equals w_local_GP.get, so we'll go have a look.
2311
*/
2312
initial_get = get;
2313
}
2314
2315
if (send_msgrequest)
2316
xpc_send_chctl_msgrequest_sn2(ch);
2317
}
2318
2319
static void
2320
xpc_received_payload_sn2(struct xpc_channel *ch, void *payload)
2321
{
2322
struct xpc_msg_sn2 *msg;
2323
s64 msg_number;
2324
s64 get;
2325
2326
msg = container_of(payload, struct xpc_msg_sn2, payload);
2327
msg_number = msg->number;
2328
2329
dev_dbg(xpc_chan, "msg=0x%p, msg_number=%lld, partid=%d, channel=%d\n",
2330
(void *)msg, msg_number, ch->partid, ch->number);
2331
2332
DBUG_ON((((u64)msg - (u64)ch->sn.sn2.remote_msgqueue) / ch->entry_size) !=
2333
msg_number % ch->remote_nentries);
2334
DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2335
DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2336
2337
msg->flags |= XPC_M_SN2_DONE;
2338
2339
/*
2340
* The preceding store of msg->flags must occur before the following
2341
* load of local_GP->get.
2342
*/
2343
smp_mb();
2344
2345
/*
2346
* See if this message is next in line to be acknowledged as having
2347
* been delivered.
2348
*/
2349
get = ch->sn.sn2.local_GP->get;
2350
if (get == msg_number)
2351
xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2352
}
2353
2354
static struct xpc_arch_operations xpc_arch_ops_sn2 = {
2355
.setup_partitions = xpc_setup_partitions_sn2,
2356
.teardown_partitions = xpc_teardown_partitions_sn2,
2357
.process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2,
2358
.get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_sn2,
2359
.setup_rsvd_page = xpc_setup_rsvd_page_sn2,
2360
2361
.allow_hb = xpc_allow_hb_sn2,
2362
.disallow_hb = xpc_disallow_hb_sn2,
2363
.disallow_all_hbs = xpc_disallow_all_hbs_sn2,
2364
.increment_heartbeat = xpc_increment_heartbeat_sn2,
2365
.offline_heartbeat = xpc_offline_heartbeat_sn2,
2366
.online_heartbeat = xpc_online_heartbeat_sn2,
2367
.heartbeat_init = xpc_heartbeat_init_sn2,
2368
.heartbeat_exit = xpc_heartbeat_exit_sn2,
2369
.get_remote_heartbeat = xpc_get_remote_heartbeat_sn2,
2370
2371
.request_partition_activation =
2372
xpc_request_partition_activation_sn2,
2373
.request_partition_reactivation =
2374
xpc_request_partition_reactivation_sn2,
2375
.request_partition_deactivation =
2376
xpc_request_partition_deactivation_sn2,
2377
.cancel_partition_deactivation_request =
2378
xpc_cancel_partition_deactivation_request_sn2,
2379
2380
.setup_ch_structures = xpc_setup_ch_structures_sn2,
2381
.teardown_ch_structures = xpc_teardown_ch_structures_sn2,
2382
2383
.make_first_contact = xpc_make_first_contact_sn2,
2384
2385
.get_chctl_all_flags = xpc_get_chctl_all_flags_sn2,
2386
.send_chctl_closerequest = xpc_send_chctl_closerequest_sn2,
2387
.send_chctl_closereply = xpc_send_chctl_closereply_sn2,
2388
.send_chctl_openrequest = xpc_send_chctl_openrequest_sn2,
2389
.send_chctl_openreply = xpc_send_chctl_openreply_sn2,
2390
.send_chctl_opencomplete = xpc_send_chctl_opencomplete_sn2,
2391
.process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2,
2392
2393
.save_remote_msgqueue_pa = xpc_save_remote_msgqueue_pa_sn2,
2394
2395
.setup_msg_structures = xpc_setup_msg_structures_sn2,
2396
.teardown_msg_structures = xpc_teardown_msg_structures_sn2,
2397
2398
.indicate_partition_engaged = xpc_indicate_partition_engaged_sn2,
2399
.indicate_partition_disengaged = xpc_indicate_partition_disengaged_sn2,
2400
.partition_engaged = xpc_partition_engaged_sn2,
2401
.any_partition_engaged = xpc_any_partition_engaged_sn2,
2402
.assume_partition_disengaged = xpc_assume_partition_disengaged_sn2,
2403
2404
.n_of_deliverable_payloads = xpc_n_of_deliverable_payloads_sn2,
2405
.send_payload = xpc_send_payload_sn2,
2406
.get_deliverable_payload = xpc_get_deliverable_payload_sn2,
2407
.received_payload = xpc_received_payload_sn2,
2408
.notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2,
2409
};
2410
2411
int
2412
xpc_init_sn2(void)
2413
{
2414
int ret;
2415
size_t buf_size;
2416
2417
xpc_arch_ops = xpc_arch_ops_sn2;
2418
2419
if (offsetof(struct xpc_msg_sn2, payload) > XPC_MSG_HDR_MAX_SIZE) {
2420
dev_err(xpc_part, "header portion of struct xpc_msg_sn2 is "
2421
"larger than %d\n", XPC_MSG_HDR_MAX_SIZE);
2422
return -E2BIG;
2423
}
2424
2425
buf_size = max(XPC_RP_VARS_SIZE,
2426
XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2);
2427
xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size,
2428
GFP_KERNEL,
2429
&xpc_remote_copy_buffer_base_sn2);
2430
if (xpc_remote_copy_buffer_sn2 == NULL) {
2431
dev_err(xpc_part, "can't get memory for remote copy buffer\n");
2432
return -ENOMEM;
2433
}
2434
2435
/* open up protections for IPI and [potentially] amo operations */
2436
xpc_allow_IPI_ops_sn2();
2437
xpc_allow_amo_ops_shub_wars_1_1_sn2();
2438
2439
/*
2440
* This is safe to do before the xpc_hb_checker thread has started
2441
* because the handler releases a wait queue. If an interrupt is
2442
* received before the thread is waiting, it will not go to sleep,
2443
* but rather immediately process the interrupt.
2444
*/
2445
ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2446
"xpc hb", NULL);
2447
if (ret != 0) {
2448
dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2449
"errno=%d\n", -ret);
2450
xpc_disallow_IPI_ops_sn2();
2451
kfree(xpc_remote_copy_buffer_base_sn2);
2452
}
2453
return ret;
2454
}
2455
2456
void
2457
xpc_exit_sn2(void)
2458
{
2459
free_irq(SGI_XPC_ACTIVATE, NULL);
2460
xpc_disallow_IPI_ops_sn2();
2461
kfree(xpc_remote_copy_buffer_base_sn2);
2462
}
2463
2464