Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/drivers/mmc/host/sh_mmcif.c
15111 views
1
/*
2
* MMCIF eMMC driver.
3
*
4
* Copyright (C) 2010 Renesas Solutions Corp.
5
* Yusuke Goda <[email protected]>
6
*
7
* This program is free software; you can redistribute it and/or modify
8
* it under the terms of the GNU General Public License as published by
9
* the Free Software Foundation; either version 2 of the License.
10
*
11
*
12
* TODO
13
* 1. DMA
14
* 2. Power management
15
* 3. Handle MMC errors better
16
*
17
*/
18
19
#include <linux/clk.h>
20
#include <linux/completion.h>
21
#include <linux/delay.h>
22
#include <linux/dma-mapping.h>
23
#include <linux/dmaengine.h>
24
#include <linux/mmc/card.h>
25
#include <linux/mmc/core.h>
26
#include <linux/mmc/host.h>
27
#include <linux/mmc/mmc.h>
28
#include <linux/mmc/sdio.h>
29
#include <linux/mmc/sh_mmcif.h>
30
#include <linux/pagemap.h>
31
#include <linux/platform_device.h>
32
#include <linux/pm_runtime.h>
33
#include <linux/spinlock.h>
34
35
#define DRIVER_NAME "sh_mmcif"
36
#define DRIVER_VERSION "2010-04-28"
37
38
/* CE_CMD_SET */
39
#define CMD_MASK 0x3f000000
40
#define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
41
#define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
42
#define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
43
#define CMD_SET_RBSY (1 << 21) /* R1b */
44
#define CMD_SET_CCSEN (1 << 20)
45
#define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
46
#define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
47
#define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
48
#define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
49
#define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
50
#define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
51
#define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
52
#define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
53
#define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
54
#define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
55
#define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
56
#define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
57
#define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
58
#define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
59
#define CMD_SET_CCSH (1 << 5)
60
#define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
61
#define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
62
#define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
63
64
/* CE_CMD_CTRL */
65
#define CMD_CTRL_BREAK (1 << 0)
66
67
/* CE_BLOCK_SET */
68
#define BLOCK_SIZE_MASK 0x0000ffff
69
70
/* CE_INT */
71
#define INT_CCSDE (1 << 29)
72
#define INT_CMD12DRE (1 << 26)
73
#define INT_CMD12RBE (1 << 25)
74
#define INT_CMD12CRE (1 << 24)
75
#define INT_DTRANE (1 << 23)
76
#define INT_BUFRE (1 << 22)
77
#define INT_BUFWEN (1 << 21)
78
#define INT_BUFREN (1 << 20)
79
#define INT_CCSRCV (1 << 19)
80
#define INT_RBSYE (1 << 17)
81
#define INT_CRSPE (1 << 16)
82
#define INT_CMDVIO (1 << 15)
83
#define INT_BUFVIO (1 << 14)
84
#define INT_WDATERR (1 << 11)
85
#define INT_RDATERR (1 << 10)
86
#define INT_RIDXERR (1 << 9)
87
#define INT_RSPERR (1 << 8)
88
#define INT_CCSTO (1 << 5)
89
#define INT_CRCSTO (1 << 4)
90
#define INT_WDATTO (1 << 3)
91
#define INT_RDATTO (1 << 2)
92
#define INT_RBSYTO (1 << 1)
93
#define INT_RSPTO (1 << 0)
94
#define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
95
INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
96
INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
97
INT_RDATTO | INT_RBSYTO | INT_RSPTO)
98
99
/* CE_INT_MASK */
100
#define MASK_ALL 0x00000000
101
#define MASK_MCCSDE (1 << 29)
102
#define MASK_MCMD12DRE (1 << 26)
103
#define MASK_MCMD12RBE (1 << 25)
104
#define MASK_MCMD12CRE (1 << 24)
105
#define MASK_MDTRANE (1 << 23)
106
#define MASK_MBUFRE (1 << 22)
107
#define MASK_MBUFWEN (1 << 21)
108
#define MASK_MBUFREN (1 << 20)
109
#define MASK_MCCSRCV (1 << 19)
110
#define MASK_MRBSYE (1 << 17)
111
#define MASK_MCRSPE (1 << 16)
112
#define MASK_MCMDVIO (1 << 15)
113
#define MASK_MBUFVIO (1 << 14)
114
#define MASK_MWDATERR (1 << 11)
115
#define MASK_MRDATERR (1 << 10)
116
#define MASK_MRIDXERR (1 << 9)
117
#define MASK_MRSPERR (1 << 8)
118
#define MASK_MCCSTO (1 << 5)
119
#define MASK_MCRCSTO (1 << 4)
120
#define MASK_MWDATTO (1 << 3)
121
#define MASK_MRDATTO (1 << 2)
122
#define MASK_MRBSYTO (1 << 1)
123
#define MASK_MRSPTO (1 << 0)
124
125
/* CE_HOST_STS1 */
126
#define STS1_CMDSEQ (1 << 31)
127
128
/* CE_HOST_STS2 */
129
#define STS2_CRCSTE (1 << 31)
130
#define STS2_CRC16E (1 << 30)
131
#define STS2_AC12CRCE (1 << 29)
132
#define STS2_RSPCRC7E (1 << 28)
133
#define STS2_CRCSTEBE (1 << 27)
134
#define STS2_RDATEBE (1 << 26)
135
#define STS2_AC12REBE (1 << 25)
136
#define STS2_RSPEBE (1 << 24)
137
#define STS2_AC12IDXE (1 << 23)
138
#define STS2_RSPIDXE (1 << 22)
139
#define STS2_CCSTO (1 << 15)
140
#define STS2_RDATTO (1 << 14)
141
#define STS2_DATBSYTO (1 << 13)
142
#define STS2_CRCSTTO (1 << 12)
143
#define STS2_AC12BSYTO (1 << 11)
144
#define STS2_RSPBSYTO (1 << 10)
145
#define STS2_AC12RSPTO (1 << 9)
146
#define STS2_RSPTO (1 << 8)
147
#define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
148
STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
149
#define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
150
STS2_DATBSYTO | STS2_CRCSTTO | \
151
STS2_AC12BSYTO | STS2_RSPBSYTO | \
152
STS2_AC12RSPTO | STS2_RSPTO)
153
154
#define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
155
#define CLKDEV_MMC_DATA 20000000 /* 20MHz */
156
#define CLKDEV_INIT 400000 /* 400 KHz */
157
158
enum mmcif_state {
159
STATE_IDLE,
160
STATE_REQUEST,
161
STATE_IOS,
162
};
163
164
struct sh_mmcif_host {
165
struct mmc_host *mmc;
166
struct mmc_data *data;
167
struct platform_device *pd;
168
struct clk *hclk;
169
unsigned int clk;
170
int bus_width;
171
bool sd_error;
172
long timeout;
173
void __iomem *addr;
174
struct completion intr_wait;
175
enum mmcif_state state;
176
spinlock_t lock;
177
bool power;
178
179
/* DMA support */
180
struct dma_chan *chan_rx;
181
struct dma_chan *chan_tx;
182
struct completion dma_complete;
183
bool dma_active;
184
};
185
186
static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
187
unsigned int reg, u32 val)
188
{
189
writel(val | readl(host->addr + reg), host->addr + reg);
190
}
191
192
static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
193
unsigned int reg, u32 val)
194
{
195
writel(~val & readl(host->addr + reg), host->addr + reg);
196
}
197
198
static void mmcif_dma_complete(void *arg)
199
{
200
struct sh_mmcif_host *host = arg;
201
dev_dbg(&host->pd->dev, "Command completed\n");
202
203
if (WARN(!host->data, "%s: NULL data in DMA completion!\n",
204
dev_name(&host->pd->dev)))
205
return;
206
207
if (host->data->flags & MMC_DATA_READ)
208
dma_unmap_sg(host->chan_rx->device->dev,
209
host->data->sg, host->data->sg_len,
210
DMA_FROM_DEVICE);
211
else
212
dma_unmap_sg(host->chan_tx->device->dev,
213
host->data->sg, host->data->sg_len,
214
DMA_TO_DEVICE);
215
216
complete(&host->dma_complete);
217
}
218
219
static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
220
{
221
struct scatterlist *sg = host->data->sg;
222
struct dma_async_tx_descriptor *desc = NULL;
223
struct dma_chan *chan = host->chan_rx;
224
dma_cookie_t cookie = -EINVAL;
225
int ret;
226
227
ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
228
DMA_FROM_DEVICE);
229
if (ret > 0) {
230
host->dma_active = true;
231
desc = chan->device->device_prep_slave_sg(chan, sg, ret,
232
DMA_FROM_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
233
}
234
235
if (desc) {
236
desc->callback = mmcif_dma_complete;
237
desc->callback_param = host;
238
cookie = dmaengine_submit(desc);
239
sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
240
dma_async_issue_pending(chan);
241
}
242
dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
243
__func__, host->data->sg_len, ret, cookie);
244
245
if (!desc) {
246
/* DMA failed, fall back to PIO */
247
if (ret >= 0)
248
ret = -EIO;
249
host->chan_rx = NULL;
250
host->dma_active = false;
251
dma_release_channel(chan);
252
/* Free the Tx channel too */
253
chan = host->chan_tx;
254
if (chan) {
255
host->chan_tx = NULL;
256
dma_release_channel(chan);
257
}
258
dev_warn(&host->pd->dev,
259
"DMA failed: %d, falling back to PIO\n", ret);
260
sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
261
}
262
263
dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
264
desc, cookie, host->data->sg_len);
265
}
266
267
static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
268
{
269
struct scatterlist *sg = host->data->sg;
270
struct dma_async_tx_descriptor *desc = NULL;
271
struct dma_chan *chan = host->chan_tx;
272
dma_cookie_t cookie = -EINVAL;
273
int ret;
274
275
ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
276
DMA_TO_DEVICE);
277
if (ret > 0) {
278
host->dma_active = true;
279
desc = chan->device->device_prep_slave_sg(chan, sg, ret,
280
DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
281
}
282
283
if (desc) {
284
desc->callback = mmcif_dma_complete;
285
desc->callback_param = host;
286
cookie = dmaengine_submit(desc);
287
sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
288
dma_async_issue_pending(chan);
289
}
290
dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
291
__func__, host->data->sg_len, ret, cookie);
292
293
if (!desc) {
294
/* DMA failed, fall back to PIO */
295
if (ret >= 0)
296
ret = -EIO;
297
host->chan_tx = NULL;
298
host->dma_active = false;
299
dma_release_channel(chan);
300
/* Free the Rx channel too */
301
chan = host->chan_rx;
302
if (chan) {
303
host->chan_rx = NULL;
304
dma_release_channel(chan);
305
}
306
dev_warn(&host->pd->dev,
307
"DMA failed: %d, falling back to PIO\n", ret);
308
sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
309
}
310
311
dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
312
desc, cookie);
313
}
314
315
static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
316
{
317
dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
318
chan->private = arg;
319
return true;
320
}
321
322
static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
323
struct sh_mmcif_plat_data *pdata)
324
{
325
host->dma_active = false;
326
327
/* We can only either use DMA for both Tx and Rx or not use it at all */
328
if (pdata->dma) {
329
dma_cap_mask_t mask;
330
331
dma_cap_zero(mask);
332
dma_cap_set(DMA_SLAVE, mask);
333
334
host->chan_tx = dma_request_channel(mask, sh_mmcif_filter,
335
&pdata->dma->chan_priv_tx);
336
dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
337
host->chan_tx);
338
339
if (!host->chan_tx)
340
return;
341
342
host->chan_rx = dma_request_channel(mask, sh_mmcif_filter,
343
&pdata->dma->chan_priv_rx);
344
dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
345
host->chan_rx);
346
347
if (!host->chan_rx) {
348
dma_release_channel(host->chan_tx);
349
host->chan_tx = NULL;
350
return;
351
}
352
353
init_completion(&host->dma_complete);
354
}
355
}
356
357
static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
358
{
359
sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
360
/* Descriptors are freed automatically */
361
if (host->chan_tx) {
362
struct dma_chan *chan = host->chan_tx;
363
host->chan_tx = NULL;
364
dma_release_channel(chan);
365
}
366
if (host->chan_rx) {
367
struct dma_chan *chan = host->chan_rx;
368
host->chan_rx = NULL;
369
dma_release_channel(chan);
370
}
371
372
host->dma_active = false;
373
}
374
375
static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
376
{
377
struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
378
379
sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
380
sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
381
382
if (!clk)
383
return;
384
if (p->sup_pclk && clk == host->clk)
385
sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
386
else
387
sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
388
(ilog2(__rounddown_pow_of_two(host->clk / clk)) << 16));
389
390
sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
391
}
392
393
static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
394
{
395
u32 tmp;
396
397
tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
398
399
sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
400
sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
401
sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
402
SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
403
/* byte swap on */
404
sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
405
}
406
407
static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
408
{
409
u32 state1, state2;
410
int ret, timeout = 10000000;
411
412
host->sd_error = false;
413
414
state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
415
state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
416
dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
417
dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
418
419
if (state1 & STS1_CMDSEQ) {
420
sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
421
sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
422
while (1) {
423
timeout--;
424
if (timeout < 0) {
425
dev_err(&host->pd->dev,
426
"Forceed end of command sequence timeout err\n");
427
return -EIO;
428
}
429
if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
430
& STS1_CMDSEQ))
431
break;
432
mdelay(1);
433
}
434
sh_mmcif_sync_reset(host);
435
dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
436
return -EIO;
437
}
438
439
if (state2 & STS2_CRC_ERR) {
440
dev_dbg(&host->pd->dev, ": Happened CRC error\n");
441
ret = -EIO;
442
} else if (state2 & STS2_TIMEOUT_ERR) {
443
dev_dbg(&host->pd->dev, ": Happened Timeout error\n");
444
ret = -ETIMEDOUT;
445
} else {
446
dev_dbg(&host->pd->dev, ": Happened End/Index error\n");
447
ret = -EIO;
448
}
449
return ret;
450
}
451
452
static int sh_mmcif_single_read(struct sh_mmcif_host *host,
453
struct mmc_request *mrq)
454
{
455
struct mmc_data *data = mrq->data;
456
long time;
457
u32 blocksize, i, *p = sg_virt(data->sg);
458
459
/* buf read enable */
460
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
461
time = wait_for_completion_interruptible_timeout(&host->intr_wait,
462
host->timeout);
463
if (time <= 0 || host->sd_error)
464
return sh_mmcif_error_manage(host);
465
466
blocksize = (BLOCK_SIZE_MASK &
467
sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
468
for (i = 0; i < blocksize / 4; i++)
469
*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
470
471
/* buffer read end */
472
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
473
time = wait_for_completion_interruptible_timeout(&host->intr_wait,
474
host->timeout);
475
if (time <= 0 || host->sd_error)
476
return sh_mmcif_error_manage(host);
477
478
return 0;
479
}
480
481
static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
482
struct mmc_request *mrq)
483
{
484
struct mmc_data *data = mrq->data;
485
long time;
486
u32 blocksize, i, j, sec, *p;
487
488
blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
489
MMCIF_CE_BLOCK_SET);
490
for (j = 0; j < data->sg_len; j++) {
491
p = sg_virt(data->sg);
492
for (sec = 0; sec < data->sg->length / blocksize; sec++) {
493
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
494
/* buf read enable */
495
time = wait_for_completion_interruptible_timeout(&host->intr_wait,
496
host->timeout);
497
498
if (time <= 0 || host->sd_error)
499
return sh_mmcif_error_manage(host);
500
501
for (i = 0; i < blocksize / 4; i++)
502
*p++ = sh_mmcif_readl(host->addr,
503
MMCIF_CE_DATA);
504
}
505
if (j < data->sg_len - 1)
506
data->sg++;
507
}
508
return 0;
509
}
510
511
static int sh_mmcif_single_write(struct sh_mmcif_host *host,
512
struct mmc_request *mrq)
513
{
514
struct mmc_data *data = mrq->data;
515
long time;
516
u32 blocksize, i, *p = sg_virt(data->sg);
517
518
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
519
520
/* buf write enable */
521
time = wait_for_completion_interruptible_timeout(&host->intr_wait,
522
host->timeout);
523
if (time <= 0 || host->sd_error)
524
return sh_mmcif_error_manage(host);
525
526
blocksize = (BLOCK_SIZE_MASK &
527
sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
528
for (i = 0; i < blocksize / 4; i++)
529
sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
530
531
/* buffer write end */
532
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
533
534
time = wait_for_completion_interruptible_timeout(&host->intr_wait,
535
host->timeout);
536
if (time <= 0 || host->sd_error)
537
return sh_mmcif_error_manage(host);
538
539
return 0;
540
}
541
542
static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
543
struct mmc_request *mrq)
544
{
545
struct mmc_data *data = mrq->data;
546
long time;
547
u32 i, sec, j, blocksize, *p;
548
549
blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
550
MMCIF_CE_BLOCK_SET);
551
552
for (j = 0; j < data->sg_len; j++) {
553
p = sg_virt(data->sg);
554
for (sec = 0; sec < data->sg->length / blocksize; sec++) {
555
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
556
/* buf write enable*/
557
time = wait_for_completion_interruptible_timeout(&host->intr_wait,
558
host->timeout);
559
560
if (time <= 0 || host->sd_error)
561
return sh_mmcif_error_manage(host);
562
563
for (i = 0; i < blocksize / 4; i++)
564
sh_mmcif_writel(host->addr,
565
MMCIF_CE_DATA, *p++);
566
}
567
if (j < data->sg_len - 1)
568
data->sg++;
569
}
570
return 0;
571
}
572
573
static void sh_mmcif_get_response(struct sh_mmcif_host *host,
574
struct mmc_command *cmd)
575
{
576
if (cmd->flags & MMC_RSP_136) {
577
cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
578
cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
579
cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
580
cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
581
} else
582
cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
583
}
584
585
static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
586
struct mmc_command *cmd)
587
{
588
cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
589
}
590
591
static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
592
struct mmc_request *mrq, struct mmc_command *cmd, u32 opc)
593
{
594
u32 tmp = 0;
595
596
/* Response Type check */
597
switch (mmc_resp_type(cmd)) {
598
case MMC_RSP_NONE:
599
tmp |= CMD_SET_RTYP_NO;
600
break;
601
case MMC_RSP_R1:
602
case MMC_RSP_R1B:
603
case MMC_RSP_R3:
604
tmp |= CMD_SET_RTYP_6B;
605
break;
606
case MMC_RSP_R2:
607
tmp |= CMD_SET_RTYP_17B;
608
break;
609
default:
610
dev_err(&host->pd->dev, "Unsupported response type.\n");
611
break;
612
}
613
switch (opc) {
614
/* RBSY */
615
case MMC_SWITCH:
616
case MMC_STOP_TRANSMISSION:
617
case MMC_SET_WRITE_PROT:
618
case MMC_CLR_WRITE_PROT:
619
case MMC_ERASE:
620
case MMC_GEN_CMD:
621
tmp |= CMD_SET_RBSY;
622
break;
623
}
624
/* WDAT / DATW */
625
if (host->data) {
626
tmp |= CMD_SET_WDAT;
627
switch (host->bus_width) {
628
case MMC_BUS_WIDTH_1:
629
tmp |= CMD_SET_DATW_1;
630
break;
631
case MMC_BUS_WIDTH_4:
632
tmp |= CMD_SET_DATW_4;
633
break;
634
case MMC_BUS_WIDTH_8:
635
tmp |= CMD_SET_DATW_8;
636
break;
637
default:
638
dev_err(&host->pd->dev, "Unsupported bus width.\n");
639
break;
640
}
641
}
642
/* DWEN */
643
if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
644
tmp |= CMD_SET_DWEN;
645
/* CMLTE/CMD12EN */
646
if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
647
tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
648
sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
649
mrq->data->blocks << 16);
650
}
651
/* RIDXC[1:0] check bits */
652
if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
653
opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
654
tmp |= CMD_SET_RIDXC_BITS;
655
/* RCRC7C[1:0] check bits */
656
if (opc == MMC_SEND_OP_COND)
657
tmp |= CMD_SET_CRC7C_BITS;
658
/* RCRC7C[1:0] internal CRC7 */
659
if (opc == MMC_ALL_SEND_CID ||
660
opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
661
tmp |= CMD_SET_CRC7C_INTERNAL;
662
663
return opc = ((opc << 24) | tmp);
664
}
665
666
static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
667
struct mmc_request *mrq, u32 opc)
668
{
669
int ret;
670
671
switch (opc) {
672
case MMC_READ_MULTIPLE_BLOCK:
673
ret = sh_mmcif_multi_read(host, mrq);
674
break;
675
case MMC_WRITE_MULTIPLE_BLOCK:
676
ret = sh_mmcif_multi_write(host, mrq);
677
break;
678
case MMC_WRITE_BLOCK:
679
ret = sh_mmcif_single_write(host, mrq);
680
break;
681
case MMC_READ_SINGLE_BLOCK:
682
case MMC_SEND_EXT_CSD:
683
ret = sh_mmcif_single_read(host, mrq);
684
break;
685
default:
686
dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
687
ret = -EINVAL;
688
break;
689
}
690
return ret;
691
}
692
693
static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
694
struct mmc_request *mrq, struct mmc_command *cmd)
695
{
696
long time;
697
int ret = 0, mask = 0;
698
u32 opc = cmd->opcode;
699
700
switch (opc) {
701
/* respons busy check */
702
case MMC_SWITCH:
703
case MMC_STOP_TRANSMISSION:
704
case MMC_SET_WRITE_PROT:
705
case MMC_CLR_WRITE_PROT:
706
case MMC_ERASE:
707
case MMC_GEN_CMD:
708
mask = MASK_MRBSYE;
709
break;
710
default:
711
mask = MASK_MCRSPE;
712
break;
713
}
714
mask |= MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
715
MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
716
MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
717
MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
718
719
if (host->data) {
720
sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
721
sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
722
mrq->data->blksz);
723
}
724
opc = sh_mmcif_set_cmd(host, mrq, cmd, opc);
725
726
sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
727
sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
728
/* set arg */
729
sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
730
/* set cmd */
731
sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
732
733
time = wait_for_completion_interruptible_timeout(&host->intr_wait,
734
host->timeout);
735
if (time <= 0) {
736
cmd->error = sh_mmcif_error_manage(host);
737
return;
738
}
739
if (host->sd_error) {
740
switch (cmd->opcode) {
741
case MMC_ALL_SEND_CID:
742
case MMC_SELECT_CARD:
743
case MMC_APP_CMD:
744
cmd->error = -ETIMEDOUT;
745
break;
746
default:
747
dev_dbg(&host->pd->dev, "Cmd(d'%d) err\n",
748
cmd->opcode);
749
cmd->error = sh_mmcif_error_manage(host);
750
break;
751
}
752
host->sd_error = false;
753
return;
754
}
755
if (!(cmd->flags & MMC_RSP_PRESENT)) {
756
cmd->error = 0;
757
return;
758
}
759
sh_mmcif_get_response(host, cmd);
760
if (host->data) {
761
if (!host->dma_active) {
762
ret = sh_mmcif_data_trans(host, mrq, cmd->opcode);
763
} else {
764
long time =
765
wait_for_completion_interruptible_timeout(&host->dma_complete,
766
host->timeout);
767
if (!time)
768
ret = -ETIMEDOUT;
769
else if (time < 0)
770
ret = time;
771
sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
772
BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
773
host->dma_active = false;
774
}
775
if (ret < 0)
776
mrq->data->bytes_xfered = 0;
777
else
778
mrq->data->bytes_xfered =
779
mrq->data->blocks * mrq->data->blksz;
780
}
781
cmd->error = ret;
782
}
783
784
static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
785
struct mmc_request *mrq, struct mmc_command *cmd)
786
{
787
long time;
788
789
if (mrq->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
790
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
791
else if (mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
792
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
793
else {
794
dev_err(&host->pd->dev, "unsupported stop cmd\n");
795
cmd->error = sh_mmcif_error_manage(host);
796
return;
797
}
798
799
time = wait_for_completion_interruptible_timeout(&host->intr_wait,
800
host->timeout);
801
if (time <= 0 || host->sd_error) {
802
cmd->error = sh_mmcif_error_manage(host);
803
return;
804
}
805
sh_mmcif_get_cmd12response(host, cmd);
806
cmd->error = 0;
807
}
808
809
static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
810
{
811
struct sh_mmcif_host *host = mmc_priv(mmc);
812
unsigned long flags;
813
814
spin_lock_irqsave(&host->lock, flags);
815
if (host->state != STATE_IDLE) {
816
spin_unlock_irqrestore(&host->lock, flags);
817
mrq->cmd->error = -EAGAIN;
818
mmc_request_done(mmc, mrq);
819
return;
820
}
821
822
host->state = STATE_REQUEST;
823
spin_unlock_irqrestore(&host->lock, flags);
824
825
switch (mrq->cmd->opcode) {
826
/* MMCIF does not support SD/SDIO command */
827
case SD_IO_SEND_OP_COND:
828
case MMC_APP_CMD:
829
host->state = STATE_IDLE;
830
mrq->cmd->error = -ETIMEDOUT;
831
mmc_request_done(mmc, mrq);
832
return;
833
case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
834
if (!mrq->data) {
835
/* send_if_cond cmd (not support) */
836
host->state = STATE_IDLE;
837
mrq->cmd->error = -ETIMEDOUT;
838
mmc_request_done(mmc, mrq);
839
return;
840
}
841
break;
842
default:
843
break;
844
}
845
host->data = mrq->data;
846
if (mrq->data) {
847
if (mrq->data->flags & MMC_DATA_READ) {
848
if (host->chan_rx)
849
sh_mmcif_start_dma_rx(host);
850
} else {
851
if (host->chan_tx)
852
sh_mmcif_start_dma_tx(host);
853
}
854
}
855
sh_mmcif_start_cmd(host, mrq, mrq->cmd);
856
host->data = NULL;
857
858
if (!mrq->cmd->error && mrq->stop)
859
sh_mmcif_stop_cmd(host, mrq, mrq->stop);
860
host->state = STATE_IDLE;
861
mmc_request_done(mmc, mrq);
862
}
863
864
static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
865
{
866
struct sh_mmcif_host *host = mmc_priv(mmc);
867
struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
868
unsigned long flags;
869
870
spin_lock_irqsave(&host->lock, flags);
871
if (host->state != STATE_IDLE) {
872
spin_unlock_irqrestore(&host->lock, flags);
873
return;
874
}
875
876
host->state = STATE_IOS;
877
spin_unlock_irqrestore(&host->lock, flags);
878
879
if (ios->power_mode == MMC_POWER_UP) {
880
if (p->set_pwr)
881
p->set_pwr(host->pd, ios->power_mode);
882
if (!host->power) {
883
/* See if we also get DMA */
884
sh_mmcif_request_dma(host, host->pd->dev.platform_data);
885
pm_runtime_get_sync(&host->pd->dev);
886
host->power = true;
887
}
888
} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
889
/* clock stop */
890
sh_mmcif_clock_control(host, 0);
891
if (ios->power_mode == MMC_POWER_OFF) {
892
if (host->power) {
893
pm_runtime_put(&host->pd->dev);
894
sh_mmcif_release_dma(host);
895
host->power = false;
896
}
897
if (p->down_pwr)
898
p->down_pwr(host->pd);
899
}
900
host->state = STATE_IDLE;
901
return;
902
}
903
904
if (ios->clock)
905
sh_mmcif_clock_control(host, ios->clock);
906
907
host->bus_width = ios->bus_width;
908
host->state = STATE_IDLE;
909
}
910
911
static int sh_mmcif_get_cd(struct mmc_host *mmc)
912
{
913
struct sh_mmcif_host *host = mmc_priv(mmc);
914
struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
915
916
if (!p->get_cd)
917
return -ENOSYS;
918
else
919
return p->get_cd(host->pd);
920
}
921
922
static struct mmc_host_ops sh_mmcif_ops = {
923
.request = sh_mmcif_request,
924
.set_ios = sh_mmcif_set_ios,
925
.get_cd = sh_mmcif_get_cd,
926
};
927
928
static void sh_mmcif_detect(struct mmc_host *mmc)
929
{
930
mmc_detect_change(mmc, 0);
931
}
932
933
static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
934
{
935
struct sh_mmcif_host *host = dev_id;
936
u32 state;
937
int err = 0;
938
939
state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
940
941
if (state & INT_RBSYE) {
942
sh_mmcif_writel(host->addr, MMCIF_CE_INT,
943
~(INT_RBSYE | INT_CRSPE));
944
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
945
} else if (state & INT_CRSPE) {
946
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
947
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
948
} else if (state & INT_BUFREN) {
949
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
950
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
951
} else if (state & INT_BUFWEN) {
952
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
953
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
954
} else if (state & INT_CMD12DRE) {
955
sh_mmcif_writel(host->addr, MMCIF_CE_INT,
956
~(INT_CMD12DRE | INT_CMD12RBE |
957
INT_CMD12CRE | INT_BUFRE));
958
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
959
} else if (state & INT_BUFRE) {
960
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
961
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
962
} else if (state & INT_DTRANE) {
963
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
964
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
965
} else if (state & INT_CMD12RBE) {
966
sh_mmcif_writel(host->addr, MMCIF_CE_INT,
967
~(INT_CMD12RBE | INT_CMD12CRE));
968
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
969
} else if (state & INT_ERR_STS) {
970
/* err interrupts */
971
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
972
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
973
err = 1;
974
} else {
975
dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
976
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
977
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
978
err = 1;
979
}
980
if (err) {
981
host->sd_error = true;
982
dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
983
}
984
if (state & ~(INT_CMD12RBE | INT_CMD12CRE))
985
complete(&host->intr_wait);
986
else
987
dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
988
989
return IRQ_HANDLED;
990
}
991
992
static int __devinit sh_mmcif_probe(struct platform_device *pdev)
993
{
994
int ret = 0, irq[2];
995
struct mmc_host *mmc;
996
struct sh_mmcif_host *host;
997
struct sh_mmcif_plat_data *pd;
998
struct resource *res;
999
void __iomem *reg;
1000
char clk_name[8];
1001
1002
irq[0] = platform_get_irq(pdev, 0);
1003
irq[1] = platform_get_irq(pdev, 1);
1004
if (irq[0] < 0 || irq[1] < 0) {
1005
dev_err(&pdev->dev, "Get irq error\n");
1006
return -ENXIO;
1007
}
1008
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1009
if (!res) {
1010
dev_err(&pdev->dev, "platform_get_resource error.\n");
1011
return -ENXIO;
1012
}
1013
reg = ioremap(res->start, resource_size(res));
1014
if (!reg) {
1015
dev_err(&pdev->dev, "ioremap error.\n");
1016
return -ENOMEM;
1017
}
1018
pd = pdev->dev.platform_data;
1019
if (!pd) {
1020
dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1021
ret = -ENXIO;
1022
goto clean_up;
1023
}
1024
mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1025
if (!mmc) {
1026
ret = -ENOMEM;
1027
goto clean_up;
1028
}
1029
host = mmc_priv(mmc);
1030
host->mmc = mmc;
1031
host->addr = reg;
1032
host->timeout = 1000;
1033
1034
snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1035
host->hclk = clk_get(&pdev->dev, clk_name);
1036
if (IS_ERR(host->hclk)) {
1037
dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1038
ret = PTR_ERR(host->hclk);
1039
goto clean_up1;
1040
}
1041
clk_enable(host->hclk);
1042
host->clk = clk_get_rate(host->hclk);
1043
host->pd = pdev;
1044
1045
init_completion(&host->intr_wait);
1046
spin_lock_init(&host->lock);
1047
1048
mmc->ops = &sh_mmcif_ops;
1049
mmc->f_max = host->clk;
1050
/* close to 400KHz */
1051
if (mmc->f_max < 51200000)
1052
mmc->f_min = mmc->f_max / 128;
1053
else if (mmc->f_max < 102400000)
1054
mmc->f_min = mmc->f_max / 256;
1055
else
1056
mmc->f_min = mmc->f_max / 512;
1057
if (pd->ocr)
1058
mmc->ocr_avail = pd->ocr;
1059
mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1060
if (pd->caps)
1061
mmc->caps |= pd->caps;
1062
mmc->max_segs = 32;
1063
mmc->max_blk_size = 512;
1064
mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1065
mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1066
mmc->max_seg_size = mmc->max_req_size;
1067
1068
sh_mmcif_sync_reset(host);
1069
platform_set_drvdata(pdev, host);
1070
1071
pm_runtime_enable(&pdev->dev);
1072
host->power = false;
1073
1074
ret = pm_runtime_resume(&pdev->dev);
1075
if (ret < 0)
1076
goto clean_up2;
1077
1078
mmc_add_host(mmc);
1079
1080
sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1081
1082
ret = request_irq(irq[0], sh_mmcif_intr, 0, "sh_mmc:error", host);
1083
if (ret) {
1084
dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1085
goto clean_up3;
1086
}
1087
ret = request_irq(irq[1], sh_mmcif_intr, 0, "sh_mmc:int", host);
1088
if (ret) {
1089
free_irq(irq[0], host);
1090
dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1091
goto clean_up3;
1092
}
1093
1094
sh_mmcif_detect(host->mmc);
1095
1096
dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1097
dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1098
sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1099
return ret;
1100
1101
clean_up3:
1102
mmc_remove_host(mmc);
1103
pm_runtime_suspend(&pdev->dev);
1104
clean_up2:
1105
pm_runtime_disable(&pdev->dev);
1106
clk_disable(host->hclk);
1107
clean_up1:
1108
mmc_free_host(mmc);
1109
clean_up:
1110
if (reg)
1111
iounmap(reg);
1112
return ret;
1113
}
1114
1115
static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1116
{
1117
struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1118
int irq[2];
1119
1120
pm_runtime_get_sync(&pdev->dev);
1121
1122
mmc_remove_host(host->mmc);
1123
sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1124
1125
if (host->addr)
1126
iounmap(host->addr);
1127
1128
irq[0] = platform_get_irq(pdev, 0);
1129
irq[1] = platform_get_irq(pdev, 1);
1130
1131
free_irq(irq[0], host);
1132
free_irq(irq[1], host);
1133
1134
platform_set_drvdata(pdev, NULL);
1135
1136
clk_disable(host->hclk);
1137
mmc_free_host(host->mmc);
1138
pm_runtime_put_sync(&pdev->dev);
1139
pm_runtime_disable(&pdev->dev);
1140
1141
return 0;
1142
}
1143
1144
#ifdef CONFIG_PM
1145
static int sh_mmcif_suspend(struct device *dev)
1146
{
1147
struct platform_device *pdev = to_platform_device(dev);
1148
struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1149
int ret = mmc_suspend_host(host->mmc);
1150
1151
if (!ret) {
1152
sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1153
clk_disable(host->hclk);
1154
}
1155
1156
return ret;
1157
}
1158
1159
static int sh_mmcif_resume(struct device *dev)
1160
{
1161
struct platform_device *pdev = to_platform_device(dev);
1162
struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1163
1164
clk_enable(host->hclk);
1165
1166
return mmc_resume_host(host->mmc);
1167
}
1168
#else
1169
#define sh_mmcif_suspend NULL
1170
#define sh_mmcif_resume NULL
1171
#endif /* CONFIG_PM */
1172
1173
static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1174
.suspend = sh_mmcif_suspend,
1175
.resume = sh_mmcif_resume,
1176
};
1177
1178
static struct platform_driver sh_mmcif_driver = {
1179
.probe = sh_mmcif_probe,
1180
.remove = sh_mmcif_remove,
1181
.driver = {
1182
.name = DRIVER_NAME,
1183
.pm = &sh_mmcif_dev_pm_ops,
1184
},
1185
};
1186
1187
static int __init sh_mmcif_init(void)
1188
{
1189
return platform_driver_register(&sh_mmcif_driver);
1190
}
1191
1192
static void __exit sh_mmcif_exit(void)
1193
{
1194
platform_driver_unregister(&sh_mmcif_driver);
1195
}
1196
1197
module_init(sh_mmcif_init);
1198
module_exit(sh_mmcif_exit);
1199
1200
1201
MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1202
MODULE_LICENSE("GPL");
1203
MODULE_ALIAS("platform:" DRIVER_NAME);
1204
MODULE_AUTHOR("Yusuke Goda <[email protected]>");
1205
1206