Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/afs/rxrpc.c
15112 views
1
/* Maintain an RxRPC server socket to do AFS communications through
2
*
3
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4
* Written by David Howells ([email protected])
5
*
6
* This program is free software; you can redistribute it and/or
7
* modify it under the terms of the GNU General Public License
8
* as published by the Free Software Foundation; either version
9
* 2 of the License, or (at your option) any later version.
10
*/
11
12
#include <linux/slab.h>
13
#include <net/sock.h>
14
#include <net/af_rxrpc.h>
15
#include <rxrpc/packet.h>
16
#include "internal.h"
17
#include "afs_cm.h"
18
19
static struct socket *afs_socket; /* my RxRPC socket */
20
static struct workqueue_struct *afs_async_calls;
21
static atomic_t afs_outstanding_calls;
22
static atomic_t afs_outstanding_skbs;
23
24
static void afs_wake_up_call_waiter(struct afs_call *);
25
static int afs_wait_for_call_to_complete(struct afs_call *);
26
static void afs_wake_up_async_call(struct afs_call *);
27
static int afs_dont_wait_for_call_to_complete(struct afs_call *);
28
static void afs_process_async_call(struct work_struct *);
29
static void afs_rx_interceptor(struct sock *, unsigned long, struct sk_buff *);
30
static int afs_deliver_cm_op_id(struct afs_call *, struct sk_buff *, bool);
31
32
/* synchronous call management */
33
const struct afs_wait_mode afs_sync_call = {
34
.rx_wakeup = afs_wake_up_call_waiter,
35
.wait = afs_wait_for_call_to_complete,
36
};
37
38
/* asynchronous call management */
39
const struct afs_wait_mode afs_async_call = {
40
.rx_wakeup = afs_wake_up_async_call,
41
.wait = afs_dont_wait_for_call_to_complete,
42
};
43
44
/* asynchronous incoming call management */
45
static const struct afs_wait_mode afs_async_incoming_call = {
46
.rx_wakeup = afs_wake_up_async_call,
47
};
48
49
/* asynchronous incoming call initial processing */
50
static const struct afs_call_type afs_RXCMxxxx = {
51
.name = "CB.xxxx",
52
.deliver = afs_deliver_cm_op_id,
53
.abort_to_error = afs_abort_to_error,
54
};
55
56
static void afs_collect_incoming_call(struct work_struct *);
57
58
static struct sk_buff_head afs_incoming_calls;
59
static DECLARE_WORK(afs_collect_incoming_call_work, afs_collect_incoming_call);
60
61
/*
62
* open an RxRPC socket and bind it to be a server for callback notifications
63
* - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
64
*/
65
int afs_open_socket(void)
66
{
67
struct sockaddr_rxrpc srx;
68
struct socket *socket;
69
int ret;
70
71
_enter("");
72
73
skb_queue_head_init(&afs_incoming_calls);
74
75
afs_async_calls = create_singlethread_workqueue("kafsd");
76
if (!afs_async_calls) {
77
_leave(" = -ENOMEM [wq]");
78
return -ENOMEM;
79
}
80
81
ret = sock_create_kern(AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
82
if (ret < 0) {
83
destroy_workqueue(afs_async_calls);
84
_leave(" = %d [socket]", ret);
85
return ret;
86
}
87
88
socket->sk->sk_allocation = GFP_NOFS;
89
90
/* bind the callback manager's address to make this a server socket */
91
srx.srx_family = AF_RXRPC;
92
srx.srx_service = CM_SERVICE;
93
srx.transport_type = SOCK_DGRAM;
94
srx.transport_len = sizeof(srx.transport.sin);
95
srx.transport.sin.sin_family = AF_INET;
96
srx.transport.sin.sin_port = htons(AFS_CM_PORT);
97
memset(&srx.transport.sin.sin_addr, 0,
98
sizeof(srx.transport.sin.sin_addr));
99
100
ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
101
if (ret < 0) {
102
sock_release(socket);
103
destroy_workqueue(afs_async_calls);
104
_leave(" = %d [bind]", ret);
105
return ret;
106
}
107
108
rxrpc_kernel_intercept_rx_messages(socket, afs_rx_interceptor);
109
110
afs_socket = socket;
111
_leave(" = 0");
112
return 0;
113
}
114
115
/*
116
* close the RxRPC socket AFS was using
117
*/
118
void afs_close_socket(void)
119
{
120
_enter("");
121
122
sock_release(afs_socket);
123
124
_debug("dework");
125
destroy_workqueue(afs_async_calls);
126
127
ASSERTCMP(atomic_read(&afs_outstanding_skbs), ==, 0);
128
ASSERTCMP(atomic_read(&afs_outstanding_calls), ==, 0);
129
_leave("");
130
}
131
132
/*
133
* note that the data in a socket buffer is now delivered and that the buffer
134
* should be freed
135
*/
136
static void afs_data_delivered(struct sk_buff *skb)
137
{
138
if (!skb) {
139
_debug("DLVR NULL [%d]", atomic_read(&afs_outstanding_skbs));
140
dump_stack();
141
} else {
142
_debug("DLVR %p{%u} [%d]",
143
skb, skb->mark, atomic_read(&afs_outstanding_skbs));
144
if (atomic_dec_return(&afs_outstanding_skbs) == -1)
145
BUG();
146
rxrpc_kernel_data_delivered(skb);
147
}
148
}
149
150
/*
151
* free a socket buffer
152
*/
153
static void afs_free_skb(struct sk_buff *skb)
154
{
155
if (!skb) {
156
_debug("FREE NULL [%d]", atomic_read(&afs_outstanding_skbs));
157
dump_stack();
158
} else {
159
_debug("FREE %p{%u} [%d]",
160
skb, skb->mark, atomic_read(&afs_outstanding_skbs));
161
if (atomic_dec_return(&afs_outstanding_skbs) == -1)
162
BUG();
163
rxrpc_kernel_free_skb(skb);
164
}
165
}
166
167
/*
168
* free a call
169
*/
170
static void afs_free_call(struct afs_call *call)
171
{
172
_debug("DONE %p{%s} [%d]",
173
call, call->type->name, atomic_read(&afs_outstanding_calls));
174
if (atomic_dec_return(&afs_outstanding_calls) == -1)
175
BUG();
176
177
ASSERTCMP(call->rxcall, ==, NULL);
178
ASSERT(!work_pending(&call->async_work));
179
ASSERT(skb_queue_empty(&call->rx_queue));
180
ASSERT(call->type->name != NULL);
181
182
kfree(call->request);
183
kfree(call);
184
}
185
186
/*
187
* allocate a call with flat request and reply buffers
188
*/
189
struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
190
size_t request_size, size_t reply_size)
191
{
192
struct afs_call *call;
193
194
call = kzalloc(sizeof(*call), GFP_NOFS);
195
if (!call)
196
goto nomem_call;
197
198
_debug("CALL %p{%s} [%d]",
199
call, type->name, atomic_read(&afs_outstanding_calls));
200
atomic_inc(&afs_outstanding_calls);
201
202
call->type = type;
203
call->request_size = request_size;
204
call->reply_max = reply_size;
205
206
if (request_size) {
207
call->request = kmalloc(request_size, GFP_NOFS);
208
if (!call->request)
209
goto nomem_free;
210
}
211
212
if (reply_size) {
213
call->buffer = kmalloc(reply_size, GFP_NOFS);
214
if (!call->buffer)
215
goto nomem_free;
216
}
217
218
init_waitqueue_head(&call->waitq);
219
skb_queue_head_init(&call->rx_queue);
220
return call;
221
222
nomem_free:
223
afs_free_call(call);
224
nomem_call:
225
return NULL;
226
}
227
228
/*
229
* clean up a call with flat buffer
230
*/
231
void afs_flat_call_destructor(struct afs_call *call)
232
{
233
_enter("");
234
235
kfree(call->request);
236
call->request = NULL;
237
kfree(call->buffer);
238
call->buffer = NULL;
239
}
240
241
/*
242
* attach the data from a bunch of pages on an inode to a call
243
*/
244
static int afs_send_pages(struct afs_call *call, struct msghdr *msg,
245
struct kvec *iov)
246
{
247
struct page *pages[8];
248
unsigned count, n, loop, offset, to;
249
pgoff_t first = call->first, last = call->last;
250
int ret;
251
252
_enter("");
253
254
offset = call->first_offset;
255
call->first_offset = 0;
256
257
do {
258
_debug("attach %lx-%lx", first, last);
259
260
count = last - first + 1;
261
if (count > ARRAY_SIZE(pages))
262
count = ARRAY_SIZE(pages);
263
n = find_get_pages_contig(call->mapping, first, count, pages);
264
ASSERTCMP(n, ==, count);
265
266
loop = 0;
267
do {
268
msg->msg_flags = 0;
269
to = PAGE_SIZE;
270
if (first + loop >= last)
271
to = call->last_to;
272
else
273
msg->msg_flags = MSG_MORE;
274
iov->iov_base = kmap(pages[loop]) + offset;
275
iov->iov_len = to - offset;
276
offset = 0;
277
278
_debug("- range %u-%u%s",
279
offset, to, msg->msg_flags ? " [more]" : "");
280
msg->msg_iov = (struct iovec *) iov;
281
msg->msg_iovlen = 1;
282
283
/* have to change the state *before* sending the last
284
* packet as RxRPC might give us the reply before it
285
* returns from sending the request */
286
if (first + loop >= last)
287
call->state = AFS_CALL_AWAIT_REPLY;
288
ret = rxrpc_kernel_send_data(call->rxcall, msg,
289
to - offset);
290
kunmap(pages[loop]);
291
if (ret < 0)
292
break;
293
} while (++loop < count);
294
first += count;
295
296
for (loop = 0; loop < count; loop++)
297
put_page(pages[loop]);
298
if (ret < 0)
299
break;
300
} while (first <= last);
301
302
_leave(" = %d", ret);
303
return ret;
304
}
305
306
/*
307
* initiate a call
308
*/
309
int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
310
const struct afs_wait_mode *wait_mode)
311
{
312
struct sockaddr_rxrpc srx;
313
struct rxrpc_call *rxcall;
314
struct msghdr msg;
315
struct kvec iov[1];
316
int ret;
317
318
_enter("%x,{%d},", addr->s_addr, ntohs(call->port));
319
320
ASSERT(call->type != NULL);
321
ASSERT(call->type->name != NULL);
322
323
_debug("____MAKE %p{%s,%x} [%d]____",
324
call, call->type->name, key_serial(call->key),
325
atomic_read(&afs_outstanding_calls));
326
327
call->wait_mode = wait_mode;
328
INIT_WORK(&call->async_work, afs_process_async_call);
329
330
memset(&srx, 0, sizeof(srx));
331
srx.srx_family = AF_RXRPC;
332
srx.srx_service = call->service_id;
333
srx.transport_type = SOCK_DGRAM;
334
srx.transport_len = sizeof(srx.transport.sin);
335
srx.transport.sin.sin_family = AF_INET;
336
srx.transport.sin.sin_port = call->port;
337
memcpy(&srx.transport.sin.sin_addr, addr, 4);
338
339
/* create a call */
340
rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
341
(unsigned long) call, gfp);
342
call->key = NULL;
343
if (IS_ERR(rxcall)) {
344
ret = PTR_ERR(rxcall);
345
goto error_kill_call;
346
}
347
348
call->rxcall = rxcall;
349
350
/* send the request */
351
iov[0].iov_base = call->request;
352
iov[0].iov_len = call->request_size;
353
354
msg.msg_name = NULL;
355
msg.msg_namelen = 0;
356
msg.msg_iov = (struct iovec *) iov;
357
msg.msg_iovlen = 1;
358
msg.msg_control = NULL;
359
msg.msg_controllen = 0;
360
msg.msg_flags = (call->send_pages ? MSG_MORE : 0);
361
362
/* have to change the state *before* sending the last packet as RxRPC
363
* might give us the reply before it returns from sending the
364
* request */
365
if (!call->send_pages)
366
call->state = AFS_CALL_AWAIT_REPLY;
367
ret = rxrpc_kernel_send_data(rxcall, &msg, call->request_size);
368
if (ret < 0)
369
goto error_do_abort;
370
371
if (call->send_pages) {
372
ret = afs_send_pages(call, &msg, iov);
373
if (ret < 0)
374
goto error_do_abort;
375
}
376
377
/* at this point, an async call may no longer exist as it may have
378
* already completed */
379
return wait_mode->wait(call);
380
381
error_do_abort:
382
rxrpc_kernel_abort_call(rxcall, RX_USER_ABORT);
383
rxrpc_kernel_end_call(rxcall);
384
call->rxcall = NULL;
385
error_kill_call:
386
call->type->destructor(call);
387
afs_free_call(call);
388
_leave(" = %d", ret);
389
return ret;
390
}
391
392
/*
393
* handles intercepted messages that were arriving in the socket's Rx queue
394
* - called with the socket receive queue lock held to ensure message ordering
395
* - called with softirqs disabled
396
*/
397
static void afs_rx_interceptor(struct sock *sk, unsigned long user_call_ID,
398
struct sk_buff *skb)
399
{
400
struct afs_call *call = (struct afs_call *) user_call_ID;
401
402
_enter("%p,,%u", call, skb->mark);
403
404
_debug("ICPT %p{%u} [%d]",
405
skb, skb->mark, atomic_read(&afs_outstanding_skbs));
406
407
ASSERTCMP(sk, ==, afs_socket->sk);
408
atomic_inc(&afs_outstanding_skbs);
409
410
if (!call) {
411
/* its an incoming call for our callback service */
412
skb_queue_tail(&afs_incoming_calls, skb);
413
queue_work(afs_wq, &afs_collect_incoming_call_work);
414
} else {
415
/* route the messages directly to the appropriate call */
416
skb_queue_tail(&call->rx_queue, skb);
417
call->wait_mode->rx_wakeup(call);
418
}
419
420
_leave("");
421
}
422
423
/*
424
* deliver messages to a call
425
*/
426
static void afs_deliver_to_call(struct afs_call *call)
427
{
428
struct sk_buff *skb;
429
bool last;
430
u32 abort_code;
431
int ret;
432
433
_enter("");
434
435
while ((call->state == AFS_CALL_AWAIT_REPLY ||
436
call->state == AFS_CALL_AWAIT_OP_ID ||
437
call->state == AFS_CALL_AWAIT_REQUEST ||
438
call->state == AFS_CALL_AWAIT_ACK) &&
439
(skb = skb_dequeue(&call->rx_queue))) {
440
switch (skb->mark) {
441
case RXRPC_SKB_MARK_DATA:
442
_debug("Rcv DATA");
443
last = rxrpc_kernel_is_data_last(skb);
444
ret = call->type->deliver(call, skb, last);
445
switch (ret) {
446
case 0:
447
if (last &&
448
call->state == AFS_CALL_AWAIT_REPLY)
449
call->state = AFS_CALL_COMPLETE;
450
break;
451
case -ENOTCONN:
452
abort_code = RX_CALL_DEAD;
453
goto do_abort;
454
case -ENOTSUPP:
455
abort_code = RX_INVALID_OPERATION;
456
goto do_abort;
457
default:
458
abort_code = RXGEN_CC_UNMARSHAL;
459
if (call->state != AFS_CALL_AWAIT_REPLY)
460
abort_code = RXGEN_SS_UNMARSHAL;
461
do_abort:
462
rxrpc_kernel_abort_call(call->rxcall,
463
abort_code);
464
call->error = ret;
465
call->state = AFS_CALL_ERROR;
466
break;
467
}
468
afs_data_delivered(skb);
469
skb = NULL;
470
continue;
471
case RXRPC_SKB_MARK_FINAL_ACK:
472
_debug("Rcv ACK");
473
call->state = AFS_CALL_COMPLETE;
474
break;
475
case RXRPC_SKB_MARK_BUSY:
476
_debug("Rcv BUSY");
477
call->error = -EBUSY;
478
call->state = AFS_CALL_BUSY;
479
break;
480
case RXRPC_SKB_MARK_REMOTE_ABORT:
481
abort_code = rxrpc_kernel_get_abort_code(skb);
482
call->error = call->type->abort_to_error(abort_code);
483
call->state = AFS_CALL_ABORTED;
484
_debug("Rcv ABORT %u -> %d", abort_code, call->error);
485
break;
486
case RXRPC_SKB_MARK_NET_ERROR:
487
call->error = -rxrpc_kernel_get_error_number(skb);
488
call->state = AFS_CALL_ERROR;
489
_debug("Rcv NET ERROR %d", call->error);
490
break;
491
case RXRPC_SKB_MARK_LOCAL_ERROR:
492
call->error = -rxrpc_kernel_get_error_number(skb);
493
call->state = AFS_CALL_ERROR;
494
_debug("Rcv LOCAL ERROR %d", call->error);
495
break;
496
default:
497
BUG();
498
break;
499
}
500
501
afs_free_skb(skb);
502
}
503
504
/* make sure the queue is empty if the call is done with (we might have
505
* aborted the call early because of an unmarshalling error) */
506
if (call->state >= AFS_CALL_COMPLETE) {
507
while ((skb = skb_dequeue(&call->rx_queue)))
508
afs_free_skb(skb);
509
if (call->incoming) {
510
rxrpc_kernel_end_call(call->rxcall);
511
call->rxcall = NULL;
512
call->type->destructor(call);
513
afs_free_call(call);
514
}
515
}
516
517
_leave("");
518
}
519
520
/*
521
* wait synchronously for a call to complete
522
*/
523
static int afs_wait_for_call_to_complete(struct afs_call *call)
524
{
525
struct sk_buff *skb;
526
int ret;
527
528
DECLARE_WAITQUEUE(myself, current);
529
530
_enter("");
531
532
add_wait_queue(&call->waitq, &myself);
533
for (;;) {
534
set_current_state(TASK_INTERRUPTIBLE);
535
536
/* deliver any messages that are in the queue */
537
if (!skb_queue_empty(&call->rx_queue)) {
538
__set_current_state(TASK_RUNNING);
539
afs_deliver_to_call(call);
540
continue;
541
}
542
543
ret = call->error;
544
if (call->state >= AFS_CALL_COMPLETE)
545
break;
546
ret = -EINTR;
547
if (signal_pending(current))
548
break;
549
schedule();
550
}
551
552
remove_wait_queue(&call->waitq, &myself);
553
__set_current_state(TASK_RUNNING);
554
555
/* kill the call */
556
if (call->state < AFS_CALL_COMPLETE) {
557
_debug("call incomplete");
558
rxrpc_kernel_abort_call(call->rxcall, RX_CALL_DEAD);
559
while ((skb = skb_dequeue(&call->rx_queue)))
560
afs_free_skb(skb);
561
}
562
563
_debug("call complete");
564
rxrpc_kernel_end_call(call->rxcall);
565
call->rxcall = NULL;
566
call->type->destructor(call);
567
afs_free_call(call);
568
_leave(" = %d", ret);
569
return ret;
570
}
571
572
/*
573
* wake up a waiting call
574
*/
575
static void afs_wake_up_call_waiter(struct afs_call *call)
576
{
577
wake_up(&call->waitq);
578
}
579
580
/*
581
* wake up an asynchronous call
582
*/
583
static void afs_wake_up_async_call(struct afs_call *call)
584
{
585
_enter("");
586
queue_work(afs_async_calls, &call->async_work);
587
}
588
589
/*
590
* put a call into asynchronous mode
591
* - mustn't touch the call descriptor as the call my have completed by the
592
* time we get here
593
*/
594
static int afs_dont_wait_for_call_to_complete(struct afs_call *call)
595
{
596
_enter("");
597
return -EINPROGRESS;
598
}
599
600
/*
601
* delete an asynchronous call
602
*/
603
static void afs_delete_async_call(struct work_struct *work)
604
{
605
struct afs_call *call =
606
container_of(work, struct afs_call, async_work);
607
608
_enter("");
609
610
afs_free_call(call);
611
612
_leave("");
613
}
614
615
/*
616
* perform processing on an asynchronous call
617
* - on a multiple-thread workqueue this work item may try to run on several
618
* CPUs at the same time
619
*/
620
static void afs_process_async_call(struct work_struct *work)
621
{
622
struct afs_call *call =
623
container_of(work, struct afs_call, async_work);
624
625
_enter("");
626
627
if (!skb_queue_empty(&call->rx_queue))
628
afs_deliver_to_call(call);
629
630
if (call->state >= AFS_CALL_COMPLETE && call->wait_mode) {
631
if (call->wait_mode->async_complete)
632
call->wait_mode->async_complete(call->reply,
633
call->error);
634
call->reply = NULL;
635
636
/* kill the call */
637
rxrpc_kernel_end_call(call->rxcall);
638
call->rxcall = NULL;
639
if (call->type->destructor)
640
call->type->destructor(call);
641
642
/* we can't just delete the call because the work item may be
643
* queued */
644
PREPARE_WORK(&call->async_work, afs_delete_async_call);
645
queue_work(afs_async_calls, &call->async_work);
646
}
647
648
_leave("");
649
}
650
651
/*
652
* empty a socket buffer into a flat reply buffer
653
*/
654
void afs_transfer_reply(struct afs_call *call, struct sk_buff *skb)
655
{
656
size_t len = skb->len;
657
658
if (skb_copy_bits(skb, 0, call->buffer + call->reply_size, len) < 0)
659
BUG();
660
call->reply_size += len;
661
}
662
663
/*
664
* accept the backlog of incoming calls
665
*/
666
static void afs_collect_incoming_call(struct work_struct *work)
667
{
668
struct rxrpc_call *rxcall;
669
struct afs_call *call = NULL;
670
struct sk_buff *skb;
671
672
while ((skb = skb_dequeue(&afs_incoming_calls))) {
673
_debug("new call");
674
675
/* don't need the notification */
676
afs_free_skb(skb);
677
678
if (!call) {
679
call = kzalloc(sizeof(struct afs_call), GFP_KERNEL);
680
if (!call) {
681
rxrpc_kernel_reject_call(afs_socket);
682
return;
683
}
684
685
INIT_WORK(&call->async_work, afs_process_async_call);
686
call->wait_mode = &afs_async_incoming_call;
687
call->type = &afs_RXCMxxxx;
688
init_waitqueue_head(&call->waitq);
689
skb_queue_head_init(&call->rx_queue);
690
call->state = AFS_CALL_AWAIT_OP_ID;
691
692
_debug("CALL %p{%s} [%d]",
693
call, call->type->name,
694
atomic_read(&afs_outstanding_calls));
695
atomic_inc(&afs_outstanding_calls);
696
}
697
698
rxcall = rxrpc_kernel_accept_call(afs_socket,
699
(unsigned long) call);
700
if (!IS_ERR(rxcall)) {
701
call->rxcall = rxcall;
702
call = NULL;
703
}
704
}
705
706
if (call)
707
afs_free_call(call);
708
}
709
710
/*
711
* grab the operation ID from an incoming cache manager call
712
*/
713
static int afs_deliver_cm_op_id(struct afs_call *call, struct sk_buff *skb,
714
bool last)
715
{
716
size_t len = skb->len;
717
void *oibuf = (void *) &call->operation_ID;
718
719
_enter("{%u},{%zu},%d", call->offset, len, last);
720
721
ASSERTCMP(call->offset, <, 4);
722
723
/* the operation ID forms the first four bytes of the request data */
724
len = min_t(size_t, len, 4 - call->offset);
725
if (skb_copy_bits(skb, 0, oibuf + call->offset, len) < 0)
726
BUG();
727
if (!pskb_pull(skb, len))
728
BUG();
729
call->offset += len;
730
731
if (call->offset < 4) {
732
if (last) {
733
_leave(" = -EBADMSG [op ID short]");
734
return -EBADMSG;
735
}
736
_leave(" = 0 [incomplete]");
737
return 0;
738
}
739
740
call->state = AFS_CALL_AWAIT_REQUEST;
741
742
/* ask the cache manager to route the call (it'll change the call type
743
* if successful) */
744
if (!afs_cm_incoming_call(call))
745
return -ENOTSUPP;
746
747
/* pass responsibility for the remainer of this message off to the
748
* cache manager op */
749
return call->type->deliver(call, skb, last);
750
}
751
752
/*
753
* send an empty reply
754
*/
755
void afs_send_empty_reply(struct afs_call *call)
756
{
757
struct msghdr msg;
758
struct iovec iov[1];
759
760
_enter("");
761
762
iov[0].iov_base = NULL;
763
iov[0].iov_len = 0;
764
msg.msg_name = NULL;
765
msg.msg_namelen = 0;
766
msg.msg_iov = iov;
767
msg.msg_iovlen = 0;
768
msg.msg_control = NULL;
769
msg.msg_controllen = 0;
770
msg.msg_flags = 0;
771
772
call->state = AFS_CALL_AWAIT_ACK;
773
switch (rxrpc_kernel_send_data(call->rxcall, &msg, 0)) {
774
case 0:
775
_leave(" [replied]");
776
return;
777
778
case -ENOMEM:
779
_debug("oom");
780
rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT);
781
default:
782
rxrpc_kernel_end_call(call->rxcall);
783
call->rxcall = NULL;
784
call->type->destructor(call);
785
afs_free_call(call);
786
_leave(" [error]");
787
return;
788
}
789
}
790
791
/*
792
* send a simple reply
793
*/
794
void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
795
{
796
struct msghdr msg;
797
struct iovec iov[1];
798
int n;
799
800
_enter("");
801
802
iov[0].iov_base = (void *) buf;
803
iov[0].iov_len = len;
804
msg.msg_name = NULL;
805
msg.msg_namelen = 0;
806
msg.msg_iov = iov;
807
msg.msg_iovlen = 1;
808
msg.msg_control = NULL;
809
msg.msg_controllen = 0;
810
msg.msg_flags = 0;
811
812
call->state = AFS_CALL_AWAIT_ACK;
813
n = rxrpc_kernel_send_data(call->rxcall, &msg, len);
814
if (n >= 0) {
815
_leave(" [replied]");
816
return;
817
}
818
if (n == -ENOMEM) {
819
_debug("oom");
820
rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT);
821
}
822
rxrpc_kernel_end_call(call->rxcall);
823
call->rxcall = NULL;
824
call->type->destructor(call);
825
afs_free_call(call);
826
_leave(" [error]");
827
}
828
829
/*
830
* extract a piece of data from the received data socket buffers
831
*/
832
int afs_extract_data(struct afs_call *call, struct sk_buff *skb,
833
bool last, void *buf, size_t count)
834
{
835
size_t len = skb->len;
836
837
_enter("{%u},{%zu},%d,,%zu", call->offset, len, last, count);
838
839
ASSERTCMP(call->offset, <, count);
840
841
len = min_t(size_t, len, count - call->offset);
842
if (skb_copy_bits(skb, 0, buf + call->offset, len) < 0 ||
843
!pskb_pull(skb, len))
844
BUG();
845
call->offset += len;
846
847
if (call->offset < count) {
848
if (last) {
849
_leave(" = -EBADMSG [%d < %zu]", call->offset, count);
850
return -EBADMSG;
851
}
852
_leave(" = -EAGAIN");
853
return -EAGAIN;
854
}
855
return 0;
856
}
857
858