Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/aio.c
15109 views
1
/*
2
* An async IO implementation for Linux
3
* Written by Benjamin LaHaise <[email protected]>
4
*
5
* Implements an efficient asynchronous io interface.
6
*
7
* Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8
*
9
* See ../COPYING for licensing terms.
10
*/
11
#include <linux/kernel.h>
12
#include <linux/init.h>
13
#include <linux/errno.h>
14
#include <linux/time.h>
15
#include <linux/aio_abi.h>
16
#include <linux/module.h>
17
#include <linux/syscalls.h>
18
#include <linux/backing-dev.h>
19
#include <linux/uio.h>
20
21
#define DEBUG 0
22
23
#include <linux/sched.h>
24
#include <linux/fs.h>
25
#include <linux/file.h>
26
#include <linux/mm.h>
27
#include <linux/mman.h>
28
#include <linux/mmu_context.h>
29
#include <linux/slab.h>
30
#include <linux/timer.h>
31
#include <linux/aio.h>
32
#include <linux/highmem.h>
33
#include <linux/workqueue.h>
34
#include <linux/security.h>
35
#include <linux/eventfd.h>
36
#include <linux/blkdev.h>
37
#include <linux/compat.h>
38
39
#include <asm/kmap_types.h>
40
#include <asm/uaccess.h>
41
42
#if DEBUG > 1
43
#define dprintk printk
44
#else
45
#define dprintk(x...) do { ; } while (0)
46
#endif
47
48
/*------ sysctl variables----*/
49
static DEFINE_SPINLOCK(aio_nr_lock);
50
unsigned long aio_nr; /* current system wide number of aio requests */
51
unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
52
/*----end sysctl variables---*/
53
54
static struct kmem_cache *kiocb_cachep;
55
static struct kmem_cache *kioctx_cachep;
56
57
static struct workqueue_struct *aio_wq;
58
59
/* Used for rare fput completion. */
60
static void aio_fput_routine(struct work_struct *);
61
static DECLARE_WORK(fput_work, aio_fput_routine);
62
63
static DEFINE_SPINLOCK(fput_lock);
64
static LIST_HEAD(fput_head);
65
66
static void aio_kick_handler(struct work_struct *);
67
static void aio_queue_work(struct kioctx *);
68
69
/* aio_setup
70
* Creates the slab caches used by the aio routines, panic on
71
* failure as this is done early during the boot sequence.
72
*/
73
static int __init aio_setup(void)
74
{
75
kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
76
kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
77
78
aio_wq = alloc_workqueue("aio", 0, 1); /* used to limit concurrency */
79
BUG_ON(!aio_wq);
80
81
pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
82
83
return 0;
84
}
85
__initcall(aio_setup);
86
87
static void aio_free_ring(struct kioctx *ctx)
88
{
89
struct aio_ring_info *info = &ctx->ring_info;
90
long i;
91
92
for (i=0; i<info->nr_pages; i++)
93
put_page(info->ring_pages[i]);
94
95
if (info->mmap_size) {
96
down_write(&ctx->mm->mmap_sem);
97
do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
98
up_write(&ctx->mm->mmap_sem);
99
}
100
101
if (info->ring_pages && info->ring_pages != info->internal_pages)
102
kfree(info->ring_pages);
103
info->ring_pages = NULL;
104
info->nr = 0;
105
}
106
107
static int aio_setup_ring(struct kioctx *ctx)
108
{
109
struct aio_ring *ring;
110
struct aio_ring_info *info = &ctx->ring_info;
111
unsigned nr_events = ctx->max_reqs;
112
unsigned long size;
113
int nr_pages;
114
115
/* Compensate for the ring buffer's head/tail overlap entry */
116
nr_events += 2; /* 1 is required, 2 for good luck */
117
118
size = sizeof(struct aio_ring);
119
size += sizeof(struct io_event) * nr_events;
120
nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
121
122
if (nr_pages < 0)
123
return -EINVAL;
124
125
nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
126
127
info->nr = 0;
128
info->ring_pages = info->internal_pages;
129
if (nr_pages > AIO_RING_PAGES) {
130
info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
131
if (!info->ring_pages)
132
return -ENOMEM;
133
}
134
135
info->mmap_size = nr_pages * PAGE_SIZE;
136
dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
137
down_write(&ctx->mm->mmap_sem);
138
info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
139
PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
140
0);
141
if (IS_ERR((void *)info->mmap_base)) {
142
up_write(&ctx->mm->mmap_sem);
143
info->mmap_size = 0;
144
aio_free_ring(ctx);
145
return -EAGAIN;
146
}
147
148
dprintk("mmap address: 0x%08lx\n", info->mmap_base);
149
info->nr_pages = get_user_pages(current, ctx->mm,
150
info->mmap_base, nr_pages,
151
1, 0, info->ring_pages, NULL);
152
up_write(&ctx->mm->mmap_sem);
153
154
if (unlikely(info->nr_pages != nr_pages)) {
155
aio_free_ring(ctx);
156
return -EAGAIN;
157
}
158
159
ctx->user_id = info->mmap_base;
160
161
info->nr = nr_events; /* trusted copy */
162
163
ring = kmap_atomic(info->ring_pages[0], KM_USER0);
164
ring->nr = nr_events; /* user copy */
165
ring->id = ctx->user_id;
166
ring->head = ring->tail = 0;
167
ring->magic = AIO_RING_MAGIC;
168
ring->compat_features = AIO_RING_COMPAT_FEATURES;
169
ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
170
ring->header_length = sizeof(struct aio_ring);
171
kunmap_atomic(ring, KM_USER0);
172
173
return 0;
174
}
175
176
177
/* aio_ring_event: returns a pointer to the event at the given index from
178
* kmap_atomic(, km). Release the pointer with put_aio_ring_event();
179
*/
180
#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
181
#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
182
#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
183
184
#define aio_ring_event(info, nr, km) ({ \
185
unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
186
struct io_event *__event; \
187
__event = kmap_atomic( \
188
(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
189
__event += pos % AIO_EVENTS_PER_PAGE; \
190
__event; \
191
})
192
193
#define put_aio_ring_event(event, km) do { \
194
struct io_event *__event = (event); \
195
(void)__event; \
196
kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
197
} while(0)
198
199
static void ctx_rcu_free(struct rcu_head *head)
200
{
201
struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
202
unsigned nr_events = ctx->max_reqs;
203
204
kmem_cache_free(kioctx_cachep, ctx);
205
206
if (nr_events) {
207
spin_lock(&aio_nr_lock);
208
BUG_ON(aio_nr - nr_events > aio_nr);
209
aio_nr -= nr_events;
210
spin_unlock(&aio_nr_lock);
211
}
212
}
213
214
/* __put_ioctx
215
* Called when the last user of an aio context has gone away,
216
* and the struct needs to be freed.
217
*/
218
static void __put_ioctx(struct kioctx *ctx)
219
{
220
BUG_ON(ctx->reqs_active);
221
222
cancel_delayed_work(&ctx->wq);
223
cancel_work_sync(&ctx->wq.work);
224
aio_free_ring(ctx);
225
mmdrop(ctx->mm);
226
ctx->mm = NULL;
227
pr_debug("__put_ioctx: freeing %p\n", ctx);
228
call_rcu(&ctx->rcu_head, ctx_rcu_free);
229
}
230
231
static inline void get_ioctx(struct kioctx *kioctx)
232
{
233
BUG_ON(atomic_read(&kioctx->users) <= 0);
234
atomic_inc(&kioctx->users);
235
}
236
237
static inline int try_get_ioctx(struct kioctx *kioctx)
238
{
239
return atomic_inc_not_zero(&kioctx->users);
240
}
241
242
static inline void put_ioctx(struct kioctx *kioctx)
243
{
244
BUG_ON(atomic_read(&kioctx->users) <= 0);
245
if (unlikely(atomic_dec_and_test(&kioctx->users)))
246
__put_ioctx(kioctx);
247
}
248
249
/* ioctx_alloc
250
* Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
251
*/
252
static struct kioctx *ioctx_alloc(unsigned nr_events)
253
{
254
struct mm_struct *mm;
255
struct kioctx *ctx;
256
int did_sync = 0;
257
258
/* Prevent overflows */
259
if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
260
(nr_events > (0x10000000U / sizeof(struct kiocb)))) {
261
pr_debug("ENOMEM: nr_events too high\n");
262
return ERR_PTR(-EINVAL);
263
}
264
265
if ((unsigned long)nr_events > aio_max_nr)
266
return ERR_PTR(-EAGAIN);
267
268
ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
269
if (!ctx)
270
return ERR_PTR(-ENOMEM);
271
272
ctx->max_reqs = nr_events;
273
mm = ctx->mm = current->mm;
274
atomic_inc(&mm->mm_count);
275
276
atomic_set(&ctx->users, 1);
277
spin_lock_init(&ctx->ctx_lock);
278
spin_lock_init(&ctx->ring_info.ring_lock);
279
init_waitqueue_head(&ctx->wait);
280
281
INIT_LIST_HEAD(&ctx->active_reqs);
282
INIT_LIST_HEAD(&ctx->run_list);
283
INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
284
285
if (aio_setup_ring(ctx) < 0)
286
goto out_freectx;
287
288
/* limit the number of system wide aios */
289
do {
290
spin_lock_bh(&aio_nr_lock);
291
if (aio_nr + nr_events > aio_max_nr ||
292
aio_nr + nr_events < aio_nr)
293
ctx->max_reqs = 0;
294
else
295
aio_nr += ctx->max_reqs;
296
spin_unlock_bh(&aio_nr_lock);
297
if (ctx->max_reqs || did_sync)
298
break;
299
300
/* wait for rcu callbacks to have completed before giving up */
301
synchronize_rcu();
302
did_sync = 1;
303
ctx->max_reqs = nr_events;
304
} while (1);
305
306
if (ctx->max_reqs == 0)
307
goto out_cleanup;
308
309
/* now link into global list. */
310
spin_lock(&mm->ioctx_lock);
311
hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
312
spin_unlock(&mm->ioctx_lock);
313
314
dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
315
ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
316
return ctx;
317
318
out_cleanup:
319
__put_ioctx(ctx);
320
return ERR_PTR(-EAGAIN);
321
322
out_freectx:
323
mmdrop(mm);
324
kmem_cache_free(kioctx_cachep, ctx);
325
ctx = ERR_PTR(-ENOMEM);
326
327
dprintk("aio: error allocating ioctx %p\n", ctx);
328
return ctx;
329
}
330
331
/* aio_cancel_all
332
* Cancels all outstanding aio requests on an aio context. Used
333
* when the processes owning a context have all exited to encourage
334
* the rapid destruction of the kioctx.
335
*/
336
static void aio_cancel_all(struct kioctx *ctx)
337
{
338
int (*cancel)(struct kiocb *, struct io_event *);
339
struct io_event res;
340
spin_lock_irq(&ctx->ctx_lock);
341
ctx->dead = 1;
342
while (!list_empty(&ctx->active_reqs)) {
343
struct list_head *pos = ctx->active_reqs.next;
344
struct kiocb *iocb = list_kiocb(pos);
345
list_del_init(&iocb->ki_list);
346
cancel = iocb->ki_cancel;
347
kiocbSetCancelled(iocb);
348
if (cancel) {
349
iocb->ki_users++;
350
spin_unlock_irq(&ctx->ctx_lock);
351
cancel(iocb, &res);
352
spin_lock_irq(&ctx->ctx_lock);
353
}
354
}
355
spin_unlock_irq(&ctx->ctx_lock);
356
}
357
358
static void wait_for_all_aios(struct kioctx *ctx)
359
{
360
struct task_struct *tsk = current;
361
DECLARE_WAITQUEUE(wait, tsk);
362
363
spin_lock_irq(&ctx->ctx_lock);
364
if (!ctx->reqs_active)
365
goto out;
366
367
add_wait_queue(&ctx->wait, &wait);
368
set_task_state(tsk, TASK_UNINTERRUPTIBLE);
369
while (ctx->reqs_active) {
370
spin_unlock_irq(&ctx->ctx_lock);
371
io_schedule();
372
set_task_state(tsk, TASK_UNINTERRUPTIBLE);
373
spin_lock_irq(&ctx->ctx_lock);
374
}
375
__set_task_state(tsk, TASK_RUNNING);
376
remove_wait_queue(&ctx->wait, &wait);
377
378
out:
379
spin_unlock_irq(&ctx->ctx_lock);
380
}
381
382
/* wait_on_sync_kiocb:
383
* Waits on the given sync kiocb to complete.
384
*/
385
ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
386
{
387
while (iocb->ki_users) {
388
set_current_state(TASK_UNINTERRUPTIBLE);
389
if (!iocb->ki_users)
390
break;
391
io_schedule();
392
}
393
__set_current_state(TASK_RUNNING);
394
return iocb->ki_user_data;
395
}
396
EXPORT_SYMBOL(wait_on_sync_kiocb);
397
398
/* exit_aio: called when the last user of mm goes away. At this point,
399
* there is no way for any new requests to be submited or any of the
400
* io_* syscalls to be called on the context. However, there may be
401
* outstanding requests which hold references to the context; as they
402
* go away, they will call put_ioctx and release any pinned memory
403
* associated with the request (held via struct page * references).
404
*/
405
void exit_aio(struct mm_struct *mm)
406
{
407
struct kioctx *ctx;
408
409
while (!hlist_empty(&mm->ioctx_list)) {
410
ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
411
hlist_del_rcu(&ctx->list);
412
413
aio_cancel_all(ctx);
414
415
wait_for_all_aios(ctx);
416
/*
417
* Ensure we don't leave the ctx on the aio_wq
418
*/
419
cancel_work_sync(&ctx->wq.work);
420
421
if (1 != atomic_read(&ctx->users))
422
printk(KERN_DEBUG
423
"exit_aio:ioctx still alive: %d %d %d\n",
424
atomic_read(&ctx->users), ctx->dead,
425
ctx->reqs_active);
426
put_ioctx(ctx);
427
}
428
}
429
430
/* aio_get_req
431
* Allocate a slot for an aio request. Increments the users count
432
* of the kioctx so that the kioctx stays around until all requests are
433
* complete. Returns NULL if no requests are free.
434
*
435
* Returns with kiocb->users set to 2. The io submit code path holds
436
* an extra reference while submitting the i/o.
437
* This prevents races between the aio code path referencing the
438
* req (after submitting it) and aio_complete() freeing the req.
439
*/
440
static struct kiocb *__aio_get_req(struct kioctx *ctx)
441
{
442
struct kiocb *req = NULL;
443
struct aio_ring *ring;
444
int okay = 0;
445
446
req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
447
if (unlikely(!req))
448
return NULL;
449
450
req->ki_flags = 0;
451
req->ki_users = 2;
452
req->ki_key = 0;
453
req->ki_ctx = ctx;
454
req->ki_cancel = NULL;
455
req->ki_retry = NULL;
456
req->ki_dtor = NULL;
457
req->private = NULL;
458
req->ki_iovec = NULL;
459
INIT_LIST_HEAD(&req->ki_run_list);
460
req->ki_eventfd = NULL;
461
462
/* Check if the completion queue has enough free space to
463
* accept an event from this io.
464
*/
465
spin_lock_irq(&ctx->ctx_lock);
466
ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
467
if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
468
list_add(&req->ki_list, &ctx->active_reqs);
469
ctx->reqs_active++;
470
okay = 1;
471
}
472
kunmap_atomic(ring, KM_USER0);
473
spin_unlock_irq(&ctx->ctx_lock);
474
475
if (!okay) {
476
kmem_cache_free(kiocb_cachep, req);
477
req = NULL;
478
}
479
480
return req;
481
}
482
483
static inline struct kiocb *aio_get_req(struct kioctx *ctx)
484
{
485
struct kiocb *req;
486
/* Handle a potential starvation case -- should be exceedingly rare as
487
* requests will be stuck on fput_head only if the aio_fput_routine is
488
* delayed and the requests were the last user of the struct file.
489
*/
490
req = __aio_get_req(ctx);
491
if (unlikely(NULL == req)) {
492
aio_fput_routine(NULL);
493
req = __aio_get_req(ctx);
494
}
495
return req;
496
}
497
498
static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
499
{
500
assert_spin_locked(&ctx->ctx_lock);
501
502
if (req->ki_eventfd != NULL)
503
eventfd_ctx_put(req->ki_eventfd);
504
if (req->ki_dtor)
505
req->ki_dtor(req);
506
if (req->ki_iovec != &req->ki_inline_vec)
507
kfree(req->ki_iovec);
508
kmem_cache_free(kiocb_cachep, req);
509
ctx->reqs_active--;
510
511
if (unlikely(!ctx->reqs_active && ctx->dead))
512
wake_up_all(&ctx->wait);
513
}
514
515
static void aio_fput_routine(struct work_struct *data)
516
{
517
spin_lock_irq(&fput_lock);
518
while (likely(!list_empty(&fput_head))) {
519
struct kiocb *req = list_kiocb(fput_head.next);
520
struct kioctx *ctx = req->ki_ctx;
521
522
list_del(&req->ki_list);
523
spin_unlock_irq(&fput_lock);
524
525
/* Complete the fput(s) */
526
if (req->ki_filp != NULL)
527
fput(req->ki_filp);
528
529
/* Link the iocb into the context's free list */
530
spin_lock_irq(&ctx->ctx_lock);
531
really_put_req(ctx, req);
532
spin_unlock_irq(&ctx->ctx_lock);
533
534
put_ioctx(ctx);
535
spin_lock_irq(&fput_lock);
536
}
537
spin_unlock_irq(&fput_lock);
538
}
539
540
/* __aio_put_req
541
* Returns true if this put was the last user of the request.
542
*/
543
static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
544
{
545
dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
546
req, atomic_long_read(&req->ki_filp->f_count));
547
548
assert_spin_locked(&ctx->ctx_lock);
549
550
req->ki_users--;
551
BUG_ON(req->ki_users < 0);
552
if (likely(req->ki_users))
553
return 0;
554
list_del(&req->ki_list); /* remove from active_reqs */
555
req->ki_cancel = NULL;
556
req->ki_retry = NULL;
557
558
/*
559
* Try to optimize the aio and eventfd file* puts, by avoiding to
560
* schedule work in case it is not final fput() time. In normal cases,
561
* we would not be holding the last reference to the file*, so
562
* this function will be executed w/out any aio kthread wakeup.
563
*/
564
if (unlikely(!fput_atomic(req->ki_filp))) {
565
get_ioctx(ctx);
566
spin_lock(&fput_lock);
567
list_add(&req->ki_list, &fput_head);
568
spin_unlock(&fput_lock);
569
schedule_work(&fput_work);
570
} else {
571
req->ki_filp = NULL;
572
really_put_req(ctx, req);
573
}
574
return 1;
575
}
576
577
/* aio_put_req
578
* Returns true if this put was the last user of the kiocb,
579
* false if the request is still in use.
580
*/
581
int aio_put_req(struct kiocb *req)
582
{
583
struct kioctx *ctx = req->ki_ctx;
584
int ret;
585
spin_lock_irq(&ctx->ctx_lock);
586
ret = __aio_put_req(ctx, req);
587
spin_unlock_irq(&ctx->ctx_lock);
588
return ret;
589
}
590
EXPORT_SYMBOL(aio_put_req);
591
592
static struct kioctx *lookup_ioctx(unsigned long ctx_id)
593
{
594
struct mm_struct *mm = current->mm;
595
struct kioctx *ctx, *ret = NULL;
596
struct hlist_node *n;
597
598
rcu_read_lock();
599
600
hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
601
/*
602
* RCU protects us against accessing freed memory but
603
* we have to be careful not to get a reference when the
604
* reference count already dropped to 0 (ctx->dead test
605
* is unreliable because of races).
606
*/
607
if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
608
ret = ctx;
609
break;
610
}
611
}
612
613
rcu_read_unlock();
614
return ret;
615
}
616
617
/*
618
* Queue up a kiocb to be retried. Assumes that the kiocb
619
* has already been marked as kicked, and places it on
620
* the retry run list for the corresponding ioctx, if it
621
* isn't already queued. Returns 1 if it actually queued
622
* the kiocb (to tell the caller to activate the work
623
* queue to process it), or 0, if it found that it was
624
* already queued.
625
*/
626
static inline int __queue_kicked_iocb(struct kiocb *iocb)
627
{
628
struct kioctx *ctx = iocb->ki_ctx;
629
630
assert_spin_locked(&ctx->ctx_lock);
631
632
if (list_empty(&iocb->ki_run_list)) {
633
list_add_tail(&iocb->ki_run_list,
634
&ctx->run_list);
635
return 1;
636
}
637
return 0;
638
}
639
640
/* aio_run_iocb
641
* This is the core aio execution routine. It is
642
* invoked both for initial i/o submission and
643
* subsequent retries via the aio_kick_handler.
644
* Expects to be invoked with iocb->ki_ctx->lock
645
* already held. The lock is released and reacquired
646
* as needed during processing.
647
*
648
* Calls the iocb retry method (already setup for the
649
* iocb on initial submission) for operation specific
650
* handling, but takes care of most of common retry
651
* execution details for a given iocb. The retry method
652
* needs to be non-blocking as far as possible, to avoid
653
* holding up other iocbs waiting to be serviced by the
654
* retry kernel thread.
655
*
656
* The trickier parts in this code have to do with
657
* ensuring that only one retry instance is in progress
658
* for a given iocb at any time. Providing that guarantee
659
* simplifies the coding of individual aio operations as
660
* it avoids various potential races.
661
*/
662
static ssize_t aio_run_iocb(struct kiocb *iocb)
663
{
664
struct kioctx *ctx = iocb->ki_ctx;
665
ssize_t (*retry)(struct kiocb *);
666
ssize_t ret;
667
668
if (!(retry = iocb->ki_retry)) {
669
printk("aio_run_iocb: iocb->ki_retry = NULL\n");
670
return 0;
671
}
672
673
/*
674
* We don't want the next retry iteration for this
675
* operation to start until this one has returned and
676
* updated the iocb state. However, wait_queue functions
677
* can trigger a kick_iocb from interrupt context in the
678
* meantime, indicating that data is available for the next
679
* iteration. We want to remember that and enable the
680
* next retry iteration _after_ we are through with
681
* this one.
682
*
683
* So, in order to be able to register a "kick", but
684
* prevent it from being queued now, we clear the kick
685
* flag, but make the kick code *think* that the iocb is
686
* still on the run list until we are actually done.
687
* When we are done with this iteration, we check if
688
* the iocb was kicked in the meantime and if so, queue
689
* it up afresh.
690
*/
691
692
kiocbClearKicked(iocb);
693
694
/*
695
* This is so that aio_complete knows it doesn't need to
696
* pull the iocb off the run list (We can't just call
697
* INIT_LIST_HEAD because we don't want a kick_iocb to
698
* queue this on the run list yet)
699
*/
700
iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
701
spin_unlock_irq(&ctx->ctx_lock);
702
703
/* Quit retrying if the i/o has been cancelled */
704
if (kiocbIsCancelled(iocb)) {
705
ret = -EINTR;
706
aio_complete(iocb, ret, 0);
707
/* must not access the iocb after this */
708
goto out;
709
}
710
711
/*
712
* Now we are all set to call the retry method in async
713
* context.
714
*/
715
ret = retry(iocb);
716
717
if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
718
/*
719
* There's no easy way to restart the syscall since other AIO's
720
* may be already running. Just fail this IO with EINTR.
721
*/
722
if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
723
ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
724
ret = -EINTR;
725
aio_complete(iocb, ret, 0);
726
}
727
out:
728
spin_lock_irq(&ctx->ctx_lock);
729
730
if (-EIOCBRETRY == ret) {
731
/*
732
* OK, now that we are done with this iteration
733
* and know that there is more left to go,
734
* this is where we let go so that a subsequent
735
* "kick" can start the next iteration
736
*/
737
738
/* will make __queue_kicked_iocb succeed from here on */
739
INIT_LIST_HEAD(&iocb->ki_run_list);
740
/* we must queue the next iteration ourselves, if it
741
* has already been kicked */
742
if (kiocbIsKicked(iocb)) {
743
__queue_kicked_iocb(iocb);
744
745
/*
746
* __queue_kicked_iocb will always return 1 here, because
747
* iocb->ki_run_list is empty at this point so it should
748
* be safe to unconditionally queue the context into the
749
* work queue.
750
*/
751
aio_queue_work(ctx);
752
}
753
}
754
return ret;
755
}
756
757
/*
758
* __aio_run_iocbs:
759
* Process all pending retries queued on the ioctx
760
* run list.
761
* Assumes it is operating within the aio issuer's mm
762
* context.
763
*/
764
static int __aio_run_iocbs(struct kioctx *ctx)
765
{
766
struct kiocb *iocb;
767
struct list_head run_list;
768
769
assert_spin_locked(&ctx->ctx_lock);
770
771
list_replace_init(&ctx->run_list, &run_list);
772
while (!list_empty(&run_list)) {
773
iocb = list_entry(run_list.next, struct kiocb,
774
ki_run_list);
775
list_del(&iocb->ki_run_list);
776
/*
777
* Hold an extra reference while retrying i/o.
778
*/
779
iocb->ki_users++; /* grab extra reference */
780
aio_run_iocb(iocb);
781
__aio_put_req(ctx, iocb);
782
}
783
if (!list_empty(&ctx->run_list))
784
return 1;
785
return 0;
786
}
787
788
static void aio_queue_work(struct kioctx * ctx)
789
{
790
unsigned long timeout;
791
/*
792
* if someone is waiting, get the work started right
793
* away, otherwise, use a longer delay
794
*/
795
smp_mb();
796
if (waitqueue_active(&ctx->wait))
797
timeout = 1;
798
else
799
timeout = HZ/10;
800
queue_delayed_work(aio_wq, &ctx->wq, timeout);
801
}
802
803
/*
804
* aio_run_all_iocbs:
805
* Process all pending retries queued on the ioctx
806
* run list, and keep running them until the list
807
* stays empty.
808
* Assumes it is operating within the aio issuer's mm context.
809
*/
810
static inline void aio_run_all_iocbs(struct kioctx *ctx)
811
{
812
spin_lock_irq(&ctx->ctx_lock);
813
while (__aio_run_iocbs(ctx))
814
;
815
spin_unlock_irq(&ctx->ctx_lock);
816
}
817
818
/*
819
* aio_kick_handler:
820
* Work queue handler triggered to process pending
821
* retries on an ioctx. Takes on the aio issuer's
822
* mm context before running the iocbs, so that
823
* copy_xxx_user operates on the issuer's address
824
* space.
825
* Run on aiod's context.
826
*/
827
static void aio_kick_handler(struct work_struct *work)
828
{
829
struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
830
mm_segment_t oldfs = get_fs();
831
struct mm_struct *mm;
832
int requeue;
833
834
set_fs(USER_DS);
835
use_mm(ctx->mm);
836
spin_lock_irq(&ctx->ctx_lock);
837
requeue =__aio_run_iocbs(ctx);
838
mm = ctx->mm;
839
spin_unlock_irq(&ctx->ctx_lock);
840
unuse_mm(mm);
841
set_fs(oldfs);
842
/*
843
* we're in a worker thread already, don't use queue_delayed_work,
844
*/
845
if (requeue)
846
queue_delayed_work(aio_wq, &ctx->wq, 0);
847
}
848
849
850
/*
851
* Called by kick_iocb to queue the kiocb for retry
852
* and if required activate the aio work queue to process
853
* it
854
*/
855
static void try_queue_kicked_iocb(struct kiocb *iocb)
856
{
857
struct kioctx *ctx = iocb->ki_ctx;
858
unsigned long flags;
859
int run = 0;
860
861
spin_lock_irqsave(&ctx->ctx_lock, flags);
862
/* set this inside the lock so that we can't race with aio_run_iocb()
863
* testing it and putting the iocb on the run list under the lock */
864
if (!kiocbTryKick(iocb))
865
run = __queue_kicked_iocb(iocb);
866
spin_unlock_irqrestore(&ctx->ctx_lock, flags);
867
if (run)
868
aio_queue_work(ctx);
869
}
870
871
/*
872
* kick_iocb:
873
* Called typically from a wait queue callback context
874
* to trigger a retry of the iocb.
875
* The retry is usually executed by aio workqueue
876
* threads (See aio_kick_handler).
877
*/
878
void kick_iocb(struct kiocb *iocb)
879
{
880
/* sync iocbs are easy: they can only ever be executing from a
881
* single context. */
882
if (is_sync_kiocb(iocb)) {
883
kiocbSetKicked(iocb);
884
wake_up_process(iocb->ki_obj.tsk);
885
return;
886
}
887
888
try_queue_kicked_iocb(iocb);
889
}
890
EXPORT_SYMBOL(kick_iocb);
891
892
/* aio_complete
893
* Called when the io request on the given iocb is complete.
894
* Returns true if this is the last user of the request. The
895
* only other user of the request can be the cancellation code.
896
*/
897
int aio_complete(struct kiocb *iocb, long res, long res2)
898
{
899
struct kioctx *ctx = iocb->ki_ctx;
900
struct aio_ring_info *info;
901
struct aio_ring *ring;
902
struct io_event *event;
903
unsigned long flags;
904
unsigned long tail;
905
int ret;
906
907
/*
908
* Special case handling for sync iocbs:
909
* - events go directly into the iocb for fast handling
910
* - the sync task with the iocb in its stack holds the single iocb
911
* ref, no other paths have a way to get another ref
912
* - the sync task helpfully left a reference to itself in the iocb
913
*/
914
if (is_sync_kiocb(iocb)) {
915
BUG_ON(iocb->ki_users != 1);
916
iocb->ki_user_data = res;
917
iocb->ki_users = 0;
918
wake_up_process(iocb->ki_obj.tsk);
919
return 1;
920
}
921
922
info = &ctx->ring_info;
923
924
/* add a completion event to the ring buffer.
925
* must be done holding ctx->ctx_lock to prevent
926
* other code from messing with the tail
927
* pointer since we might be called from irq
928
* context.
929
*/
930
spin_lock_irqsave(&ctx->ctx_lock, flags);
931
932
if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
933
list_del_init(&iocb->ki_run_list);
934
935
/*
936
* cancelled requests don't get events, userland was given one
937
* when the event got cancelled.
938
*/
939
if (kiocbIsCancelled(iocb))
940
goto put_rq;
941
942
ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
943
944
tail = info->tail;
945
event = aio_ring_event(info, tail, KM_IRQ0);
946
if (++tail >= info->nr)
947
tail = 0;
948
949
event->obj = (u64)(unsigned long)iocb->ki_obj.user;
950
event->data = iocb->ki_user_data;
951
event->res = res;
952
event->res2 = res2;
953
954
dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
955
ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
956
res, res2);
957
958
/* after flagging the request as done, we
959
* must never even look at it again
960
*/
961
smp_wmb(); /* make event visible before updating tail */
962
963
info->tail = tail;
964
ring->tail = tail;
965
966
put_aio_ring_event(event, KM_IRQ0);
967
kunmap_atomic(ring, KM_IRQ1);
968
969
pr_debug("added to ring %p at [%lu]\n", iocb, tail);
970
971
/*
972
* Check if the user asked us to deliver the result through an
973
* eventfd. The eventfd_signal() function is safe to be called
974
* from IRQ context.
975
*/
976
if (iocb->ki_eventfd != NULL)
977
eventfd_signal(iocb->ki_eventfd, 1);
978
979
put_rq:
980
/* everything turned out well, dispose of the aiocb. */
981
ret = __aio_put_req(ctx, iocb);
982
983
/*
984
* We have to order our ring_info tail store above and test
985
* of the wait list below outside the wait lock. This is
986
* like in wake_up_bit() where clearing a bit has to be
987
* ordered with the unlocked test.
988
*/
989
smp_mb();
990
991
if (waitqueue_active(&ctx->wait))
992
wake_up(&ctx->wait);
993
994
spin_unlock_irqrestore(&ctx->ctx_lock, flags);
995
return ret;
996
}
997
EXPORT_SYMBOL(aio_complete);
998
999
/* aio_read_evt
1000
* Pull an event off of the ioctx's event ring. Returns the number of
1001
* events fetched (0 or 1 ;-)
1002
* FIXME: make this use cmpxchg.
1003
* TODO: make the ringbuffer user mmap()able (requires FIXME).
1004
*/
1005
static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1006
{
1007
struct aio_ring_info *info = &ioctx->ring_info;
1008
struct aio_ring *ring;
1009
unsigned long head;
1010
int ret = 0;
1011
1012
ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1013
dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1014
(unsigned long)ring->head, (unsigned long)ring->tail,
1015
(unsigned long)ring->nr);
1016
1017
if (ring->head == ring->tail)
1018
goto out;
1019
1020
spin_lock(&info->ring_lock);
1021
1022
head = ring->head % info->nr;
1023
if (head != ring->tail) {
1024
struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1025
*ent = *evp;
1026
head = (head + 1) % info->nr;
1027
smp_mb(); /* finish reading the event before updatng the head */
1028
ring->head = head;
1029
ret = 1;
1030
put_aio_ring_event(evp, KM_USER1);
1031
}
1032
spin_unlock(&info->ring_lock);
1033
1034
out:
1035
kunmap_atomic(ring, KM_USER0);
1036
dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1037
(unsigned long)ring->head, (unsigned long)ring->tail);
1038
return ret;
1039
}
1040
1041
struct aio_timeout {
1042
struct timer_list timer;
1043
int timed_out;
1044
struct task_struct *p;
1045
};
1046
1047
static void timeout_func(unsigned long data)
1048
{
1049
struct aio_timeout *to = (struct aio_timeout *)data;
1050
1051
to->timed_out = 1;
1052
wake_up_process(to->p);
1053
}
1054
1055
static inline void init_timeout(struct aio_timeout *to)
1056
{
1057
setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1058
to->timed_out = 0;
1059
to->p = current;
1060
}
1061
1062
static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1063
const struct timespec *ts)
1064
{
1065
to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1066
if (time_after(to->timer.expires, jiffies))
1067
add_timer(&to->timer);
1068
else
1069
to->timed_out = 1;
1070
}
1071
1072
static inline void clear_timeout(struct aio_timeout *to)
1073
{
1074
del_singleshot_timer_sync(&to->timer);
1075
}
1076
1077
static int read_events(struct kioctx *ctx,
1078
long min_nr, long nr,
1079
struct io_event __user *event,
1080
struct timespec __user *timeout)
1081
{
1082
long start_jiffies = jiffies;
1083
struct task_struct *tsk = current;
1084
DECLARE_WAITQUEUE(wait, tsk);
1085
int ret;
1086
int i = 0;
1087
struct io_event ent;
1088
struct aio_timeout to;
1089
int retry = 0;
1090
1091
/* needed to zero any padding within an entry (there shouldn't be
1092
* any, but C is fun!
1093
*/
1094
memset(&ent, 0, sizeof(ent));
1095
retry:
1096
ret = 0;
1097
while (likely(i < nr)) {
1098
ret = aio_read_evt(ctx, &ent);
1099
if (unlikely(ret <= 0))
1100
break;
1101
1102
dprintk("read event: %Lx %Lx %Lx %Lx\n",
1103
ent.data, ent.obj, ent.res, ent.res2);
1104
1105
/* Could we split the check in two? */
1106
ret = -EFAULT;
1107
if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1108
dprintk("aio: lost an event due to EFAULT.\n");
1109
break;
1110
}
1111
ret = 0;
1112
1113
/* Good, event copied to userland, update counts. */
1114
event ++;
1115
i ++;
1116
}
1117
1118
if (min_nr <= i)
1119
return i;
1120
if (ret)
1121
return ret;
1122
1123
/* End fast path */
1124
1125
/* racey check, but it gets redone */
1126
if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1127
retry = 1;
1128
aio_run_all_iocbs(ctx);
1129
goto retry;
1130
}
1131
1132
init_timeout(&to);
1133
if (timeout) {
1134
struct timespec ts;
1135
ret = -EFAULT;
1136
if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1137
goto out;
1138
1139
set_timeout(start_jiffies, &to, &ts);
1140
}
1141
1142
while (likely(i < nr)) {
1143
add_wait_queue_exclusive(&ctx->wait, &wait);
1144
do {
1145
set_task_state(tsk, TASK_INTERRUPTIBLE);
1146
ret = aio_read_evt(ctx, &ent);
1147
if (ret)
1148
break;
1149
if (min_nr <= i)
1150
break;
1151
if (unlikely(ctx->dead)) {
1152
ret = -EINVAL;
1153
break;
1154
}
1155
if (to.timed_out) /* Only check after read evt */
1156
break;
1157
/* Try to only show up in io wait if there are ops
1158
* in flight */
1159
if (ctx->reqs_active)
1160
io_schedule();
1161
else
1162
schedule();
1163
if (signal_pending(tsk)) {
1164
ret = -EINTR;
1165
break;
1166
}
1167
/*ret = aio_read_evt(ctx, &ent);*/
1168
} while (1) ;
1169
1170
set_task_state(tsk, TASK_RUNNING);
1171
remove_wait_queue(&ctx->wait, &wait);
1172
1173
if (unlikely(ret <= 0))
1174
break;
1175
1176
ret = -EFAULT;
1177
if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1178
dprintk("aio: lost an event due to EFAULT.\n");
1179
break;
1180
}
1181
1182
/* Good, event copied to userland, update counts. */
1183
event ++;
1184
i ++;
1185
}
1186
1187
if (timeout)
1188
clear_timeout(&to);
1189
out:
1190
destroy_timer_on_stack(&to.timer);
1191
return i ? i : ret;
1192
}
1193
1194
/* Take an ioctx and remove it from the list of ioctx's. Protects
1195
* against races with itself via ->dead.
1196
*/
1197
static void io_destroy(struct kioctx *ioctx)
1198
{
1199
struct mm_struct *mm = current->mm;
1200
int was_dead;
1201
1202
/* delete the entry from the list is someone else hasn't already */
1203
spin_lock(&mm->ioctx_lock);
1204
was_dead = ioctx->dead;
1205
ioctx->dead = 1;
1206
hlist_del_rcu(&ioctx->list);
1207
spin_unlock(&mm->ioctx_lock);
1208
1209
dprintk("aio_release(%p)\n", ioctx);
1210
if (likely(!was_dead))
1211
put_ioctx(ioctx); /* twice for the list */
1212
1213
aio_cancel_all(ioctx);
1214
wait_for_all_aios(ioctx);
1215
1216
/*
1217
* Wake up any waiters. The setting of ctx->dead must be seen
1218
* by other CPUs at this point. Right now, we rely on the
1219
* locking done by the above calls to ensure this consistency.
1220
*/
1221
wake_up_all(&ioctx->wait);
1222
put_ioctx(ioctx); /* once for the lookup */
1223
}
1224
1225
/* sys_io_setup:
1226
* Create an aio_context capable of receiving at least nr_events.
1227
* ctxp must not point to an aio_context that already exists, and
1228
* must be initialized to 0 prior to the call. On successful
1229
* creation of the aio_context, *ctxp is filled in with the resulting
1230
* handle. May fail with -EINVAL if *ctxp is not initialized,
1231
* if the specified nr_events exceeds internal limits. May fail
1232
* with -EAGAIN if the specified nr_events exceeds the user's limit
1233
* of available events. May fail with -ENOMEM if insufficient kernel
1234
* resources are available. May fail with -EFAULT if an invalid
1235
* pointer is passed for ctxp. Will fail with -ENOSYS if not
1236
* implemented.
1237
*/
1238
SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1239
{
1240
struct kioctx *ioctx = NULL;
1241
unsigned long ctx;
1242
long ret;
1243
1244
ret = get_user(ctx, ctxp);
1245
if (unlikely(ret))
1246
goto out;
1247
1248
ret = -EINVAL;
1249
if (unlikely(ctx || nr_events == 0)) {
1250
pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1251
ctx, nr_events);
1252
goto out;
1253
}
1254
1255
ioctx = ioctx_alloc(nr_events);
1256
ret = PTR_ERR(ioctx);
1257
if (!IS_ERR(ioctx)) {
1258
ret = put_user(ioctx->user_id, ctxp);
1259
if (!ret)
1260
return 0;
1261
1262
get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1263
io_destroy(ioctx);
1264
}
1265
1266
out:
1267
return ret;
1268
}
1269
1270
/* sys_io_destroy:
1271
* Destroy the aio_context specified. May cancel any outstanding
1272
* AIOs and block on completion. Will fail with -ENOSYS if not
1273
* implemented. May fail with -EINVAL if the context pointed to
1274
* is invalid.
1275
*/
1276
SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1277
{
1278
struct kioctx *ioctx = lookup_ioctx(ctx);
1279
if (likely(NULL != ioctx)) {
1280
io_destroy(ioctx);
1281
return 0;
1282
}
1283
pr_debug("EINVAL: io_destroy: invalid context id\n");
1284
return -EINVAL;
1285
}
1286
1287
static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1288
{
1289
struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1290
1291
BUG_ON(ret <= 0);
1292
1293
while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1294
ssize_t this = min((ssize_t)iov->iov_len, ret);
1295
iov->iov_base += this;
1296
iov->iov_len -= this;
1297
iocb->ki_left -= this;
1298
ret -= this;
1299
if (iov->iov_len == 0) {
1300
iocb->ki_cur_seg++;
1301
iov++;
1302
}
1303
}
1304
1305
/* the caller should not have done more io than what fit in
1306
* the remaining iovecs */
1307
BUG_ON(ret > 0 && iocb->ki_left == 0);
1308
}
1309
1310
static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1311
{
1312
struct file *file = iocb->ki_filp;
1313
struct address_space *mapping = file->f_mapping;
1314
struct inode *inode = mapping->host;
1315
ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1316
unsigned long, loff_t);
1317
ssize_t ret = 0;
1318
unsigned short opcode;
1319
1320
if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1321
(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1322
rw_op = file->f_op->aio_read;
1323
opcode = IOCB_CMD_PREADV;
1324
} else {
1325
rw_op = file->f_op->aio_write;
1326
opcode = IOCB_CMD_PWRITEV;
1327
}
1328
1329
/* This matches the pread()/pwrite() logic */
1330
if (iocb->ki_pos < 0)
1331
return -EINVAL;
1332
1333
do {
1334
ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1335
iocb->ki_nr_segs - iocb->ki_cur_seg,
1336
iocb->ki_pos);
1337
if (ret > 0)
1338
aio_advance_iovec(iocb, ret);
1339
1340
/* retry all partial writes. retry partial reads as long as its a
1341
* regular file. */
1342
} while (ret > 0 && iocb->ki_left > 0 &&
1343
(opcode == IOCB_CMD_PWRITEV ||
1344
(!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1345
1346
/* This means we must have transferred all that we could */
1347
/* No need to retry anymore */
1348
if ((ret == 0) || (iocb->ki_left == 0))
1349
ret = iocb->ki_nbytes - iocb->ki_left;
1350
1351
/* If we managed to write some out we return that, rather than
1352
* the eventual error. */
1353
if (opcode == IOCB_CMD_PWRITEV
1354
&& ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1355
&& iocb->ki_nbytes - iocb->ki_left)
1356
ret = iocb->ki_nbytes - iocb->ki_left;
1357
1358
return ret;
1359
}
1360
1361
static ssize_t aio_fdsync(struct kiocb *iocb)
1362
{
1363
struct file *file = iocb->ki_filp;
1364
ssize_t ret = -EINVAL;
1365
1366
if (file->f_op->aio_fsync)
1367
ret = file->f_op->aio_fsync(iocb, 1);
1368
return ret;
1369
}
1370
1371
static ssize_t aio_fsync(struct kiocb *iocb)
1372
{
1373
struct file *file = iocb->ki_filp;
1374
ssize_t ret = -EINVAL;
1375
1376
if (file->f_op->aio_fsync)
1377
ret = file->f_op->aio_fsync(iocb, 0);
1378
return ret;
1379
}
1380
1381
static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1382
{
1383
ssize_t ret;
1384
1385
#ifdef CONFIG_COMPAT
1386
if (compat)
1387
ret = compat_rw_copy_check_uvector(type,
1388
(struct compat_iovec __user *)kiocb->ki_buf,
1389
kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1390
&kiocb->ki_iovec);
1391
else
1392
#endif
1393
ret = rw_copy_check_uvector(type,
1394
(struct iovec __user *)kiocb->ki_buf,
1395
kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1396
&kiocb->ki_iovec);
1397
if (ret < 0)
1398
goto out;
1399
1400
kiocb->ki_nr_segs = kiocb->ki_nbytes;
1401
kiocb->ki_cur_seg = 0;
1402
/* ki_nbytes/left now reflect bytes instead of segs */
1403
kiocb->ki_nbytes = ret;
1404
kiocb->ki_left = ret;
1405
1406
ret = 0;
1407
out:
1408
return ret;
1409
}
1410
1411
static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1412
{
1413
kiocb->ki_iovec = &kiocb->ki_inline_vec;
1414
kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1415
kiocb->ki_iovec->iov_len = kiocb->ki_left;
1416
kiocb->ki_nr_segs = 1;
1417
kiocb->ki_cur_seg = 0;
1418
return 0;
1419
}
1420
1421
/*
1422
* aio_setup_iocb:
1423
* Performs the initial checks and aio retry method
1424
* setup for the kiocb at the time of io submission.
1425
*/
1426
static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1427
{
1428
struct file *file = kiocb->ki_filp;
1429
ssize_t ret = 0;
1430
1431
switch (kiocb->ki_opcode) {
1432
case IOCB_CMD_PREAD:
1433
ret = -EBADF;
1434
if (unlikely(!(file->f_mode & FMODE_READ)))
1435
break;
1436
ret = -EFAULT;
1437
if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1438
kiocb->ki_left)))
1439
break;
1440
ret = security_file_permission(file, MAY_READ);
1441
if (unlikely(ret))
1442
break;
1443
ret = aio_setup_single_vector(kiocb);
1444
if (ret)
1445
break;
1446
ret = -EINVAL;
1447
if (file->f_op->aio_read)
1448
kiocb->ki_retry = aio_rw_vect_retry;
1449
break;
1450
case IOCB_CMD_PWRITE:
1451
ret = -EBADF;
1452
if (unlikely(!(file->f_mode & FMODE_WRITE)))
1453
break;
1454
ret = -EFAULT;
1455
if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1456
kiocb->ki_left)))
1457
break;
1458
ret = security_file_permission(file, MAY_WRITE);
1459
if (unlikely(ret))
1460
break;
1461
ret = aio_setup_single_vector(kiocb);
1462
if (ret)
1463
break;
1464
ret = -EINVAL;
1465
if (file->f_op->aio_write)
1466
kiocb->ki_retry = aio_rw_vect_retry;
1467
break;
1468
case IOCB_CMD_PREADV:
1469
ret = -EBADF;
1470
if (unlikely(!(file->f_mode & FMODE_READ)))
1471
break;
1472
ret = security_file_permission(file, MAY_READ);
1473
if (unlikely(ret))
1474
break;
1475
ret = aio_setup_vectored_rw(READ, kiocb, compat);
1476
if (ret)
1477
break;
1478
ret = -EINVAL;
1479
if (file->f_op->aio_read)
1480
kiocb->ki_retry = aio_rw_vect_retry;
1481
break;
1482
case IOCB_CMD_PWRITEV:
1483
ret = -EBADF;
1484
if (unlikely(!(file->f_mode & FMODE_WRITE)))
1485
break;
1486
ret = security_file_permission(file, MAY_WRITE);
1487
if (unlikely(ret))
1488
break;
1489
ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1490
if (ret)
1491
break;
1492
ret = -EINVAL;
1493
if (file->f_op->aio_write)
1494
kiocb->ki_retry = aio_rw_vect_retry;
1495
break;
1496
case IOCB_CMD_FDSYNC:
1497
ret = -EINVAL;
1498
if (file->f_op->aio_fsync)
1499
kiocb->ki_retry = aio_fdsync;
1500
break;
1501
case IOCB_CMD_FSYNC:
1502
ret = -EINVAL;
1503
if (file->f_op->aio_fsync)
1504
kiocb->ki_retry = aio_fsync;
1505
break;
1506
default:
1507
dprintk("EINVAL: io_submit: no operation provided\n");
1508
ret = -EINVAL;
1509
}
1510
1511
if (!kiocb->ki_retry)
1512
return ret;
1513
1514
return 0;
1515
}
1516
1517
static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1518
struct iocb *iocb, bool compat)
1519
{
1520
struct kiocb *req;
1521
struct file *file;
1522
ssize_t ret;
1523
1524
/* enforce forwards compatibility on users */
1525
if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1526
pr_debug("EINVAL: io_submit: reserve field set\n");
1527
return -EINVAL;
1528
}
1529
1530
/* prevent overflows */
1531
if (unlikely(
1532
(iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1533
(iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1534
((ssize_t)iocb->aio_nbytes < 0)
1535
)) {
1536
pr_debug("EINVAL: io_submit: overflow check\n");
1537
return -EINVAL;
1538
}
1539
1540
file = fget(iocb->aio_fildes);
1541
if (unlikely(!file))
1542
return -EBADF;
1543
1544
req = aio_get_req(ctx); /* returns with 2 references to req */
1545
if (unlikely(!req)) {
1546
fput(file);
1547
return -EAGAIN;
1548
}
1549
req->ki_filp = file;
1550
if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1551
/*
1552
* If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1553
* instance of the file* now. The file descriptor must be
1554
* an eventfd() fd, and will be signaled for each completed
1555
* event using the eventfd_signal() function.
1556
*/
1557
req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1558
if (IS_ERR(req->ki_eventfd)) {
1559
ret = PTR_ERR(req->ki_eventfd);
1560
req->ki_eventfd = NULL;
1561
goto out_put_req;
1562
}
1563
}
1564
1565
ret = put_user(req->ki_key, &user_iocb->aio_key);
1566
if (unlikely(ret)) {
1567
dprintk("EFAULT: aio_key\n");
1568
goto out_put_req;
1569
}
1570
1571
req->ki_obj.user = user_iocb;
1572
req->ki_user_data = iocb->aio_data;
1573
req->ki_pos = iocb->aio_offset;
1574
1575
req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1576
req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1577
req->ki_opcode = iocb->aio_lio_opcode;
1578
1579
ret = aio_setup_iocb(req, compat);
1580
1581
if (ret)
1582
goto out_put_req;
1583
1584
spin_lock_irq(&ctx->ctx_lock);
1585
/*
1586
* We could have raced with io_destroy() and are currently holding a
1587
* reference to ctx which should be destroyed. We cannot submit IO
1588
* since ctx gets freed as soon as io_submit() puts its reference. The
1589
* check here is reliable: io_destroy() sets ctx->dead before waiting
1590
* for outstanding IO and the barrier between these two is realized by
1591
* unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we
1592
* increment ctx->reqs_active before checking for ctx->dead and the
1593
* barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1594
* don't see ctx->dead set here, io_destroy() waits for our IO to
1595
* finish.
1596
*/
1597
if (ctx->dead) {
1598
spin_unlock_irq(&ctx->ctx_lock);
1599
ret = -EINVAL;
1600
goto out_put_req;
1601
}
1602
aio_run_iocb(req);
1603
if (!list_empty(&ctx->run_list)) {
1604
/* drain the run list */
1605
while (__aio_run_iocbs(ctx))
1606
;
1607
}
1608
spin_unlock_irq(&ctx->ctx_lock);
1609
1610
aio_put_req(req); /* drop extra ref to req */
1611
return 0;
1612
1613
out_put_req:
1614
aio_put_req(req); /* drop extra ref to req */
1615
aio_put_req(req); /* drop i/o ref to req */
1616
return ret;
1617
}
1618
1619
long do_io_submit(aio_context_t ctx_id, long nr,
1620
struct iocb __user *__user *iocbpp, bool compat)
1621
{
1622
struct kioctx *ctx;
1623
long ret = 0;
1624
int i;
1625
struct blk_plug plug;
1626
1627
if (unlikely(nr < 0))
1628
return -EINVAL;
1629
1630
if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1631
nr = LONG_MAX/sizeof(*iocbpp);
1632
1633
if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1634
return -EFAULT;
1635
1636
ctx = lookup_ioctx(ctx_id);
1637
if (unlikely(!ctx)) {
1638
pr_debug("EINVAL: io_submit: invalid context id\n");
1639
return -EINVAL;
1640
}
1641
1642
blk_start_plug(&plug);
1643
1644
/*
1645
* AKPM: should this return a partial result if some of the IOs were
1646
* successfully submitted?
1647
*/
1648
for (i=0; i<nr; i++) {
1649
struct iocb __user *user_iocb;
1650
struct iocb tmp;
1651
1652
if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1653
ret = -EFAULT;
1654
break;
1655
}
1656
1657
if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1658
ret = -EFAULT;
1659
break;
1660
}
1661
1662
ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1663
if (ret)
1664
break;
1665
}
1666
blk_finish_plug(&plug);
1667
1668
put_ioctx(ctx);
1669
return i ? i : ret;
1670
}
1671
1672
/* sys_io_submit:
1673
* Queue the nr iocbs pointed to by iocbpp for processing. Returns
1674
* the number of iocbs queued. May return -EINVAL if the aio_context
1675
* specified by ctx_id is invalid, if nr is < 0, if the iocb at
1676
* *iocbpp[0] is not properly initialized, if the operation specified
1677
* is invalid for the file descriptor in the iocb. May fail with
1678
* -EFAULT if any of the data structures point to invalid data. May
1679
* fail with -EBADF if the file descriptor specified in the first
1680
* iocb is invalid. May fail with -EAGAIN if insufficient resources
1681
* are available to queue any iocbs. Will return 0 if nr is 0. Will
1682
* fail with -ENOSYS if not implemented.
1683
*/
1684
SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1685
struct iocb __user * __user *, iocbpp)
1686
{
1687
return do_io_submit(ctx_id, nr, iocbpp, 0);
1688
}
1689
1690
/* lookup_kiocb
1691
* Finds a given iocb for cancellation.
1692
*/
1693
static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1694
u32 key)
1695
{
1696
struct list_head *pos;
1697
1698
assert_spin_locked(&ctx->ctx_lock);
1699
1700
/* TODO: use a hash or array, this sucks. */
1701
list_for_each(pos, &ctx->active_reqs) {
1702
struct kiocb *kiocb = list_kiocb(pos);
1703
if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1704
return kiocb;
1705
}
1706
return NULL;
1707
}
1708
1709
/* sys_io_cancel:
1710
* Attempts to cancel an iocb previously passed to io_submit. If
1711
* the operation is successfully cancelled, the resulting event is
1712
* copied into the memory pointed to by result without being placed
1713
* into the completion queue and 0 is returned. May fail with
1714
* -EFAULT if any of the data structures pointed to are invalid.
1715
* May fail with -EINVAL if aio_context specified by ctx_id is
1716
* invalid. May fail with -EAGAIN if the iocb specified was not
1717
* cancelled. Will fail with -ENOSYS if not implemented.
1718
*/
1719
SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1720
struct io_event __user *, result)
1721
{
1722
int (*cancel)(struct kiocb *iocb, struct io_event *res);
1723
struct kioctx *ctx;
1724
struct kiocb *kiocb;
1725
u32 key;
1726
int ret;
1727
1728
ret = get_user(key, &iocb->aio_key);
1729
if (unlikely(ret))
1730
return -EFAULT;
1731
1732
ctx = lookup_ioctx(ctx_id);
1733
if (unlikely(!ctx))
1734
return -EINVAL;
1735
1736
spin_lock_irq(&ctx->ctx_lock);
1737
ret = -EAGAIN;
1738
kiocb = lookup_kiocb(ctx, iocb, key);
1739
if (kiocb && kiocb->ki_cancel) {
1740
cancel = kiocb->ki_cancel;
1741
kiocb->ki_users ++;
1742
kiocbSetCancelled(kiocb);
1743
} else
1744
cancel = NULL;
1745
spin_unlock_irq(&ctx->ctx_lock);
1746
1747
if (NULL != cancel) {
1748
struct io_event tmp;
1749
pr_debug("calling cancel\n");
1750
memset(&tmp, 0, sizeof(tmp));
1751
tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1752
tmp.data = kiocb->ki_user_data;
1753
ret = cancel(kiocb, &tmp);
1754
if (!ret) {
1755
/* Cancellation succeeded -- copy the result
1756
* into the user's buffer.
1757
*/
1758
if (copy_to_user(result, &tmp, sizeof(tmp)))
1759
ret = -EFAULT;
1760
}
1761
} else
1762
ret = -EINVAL;
1763
1764
put_ioctx(ctx);
1765
1766
return ret;
1767
}
1768
1769
/* io_getevents:
1770
* Attempts to read at least min_nr events and up to nr events from
1771
* the completion queue for the aio_context specified by ctx_id. If
1772
* it succeeds, the number of read events is returned. May fail with
1773
* -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1774
* out of range, if timeout is out of range. May fail with -EFAULT
1775
* if any of the memory specified is invalid. May return 0 or
1776
* < min_nr if the timeout specified by timeout has elapsed
1777
* before sufficient events are available, where timeout == NULL
1778
* specifies an infinite timeout. Note that the timeout pointed to by
1779
* timeout is relative and will be updated if not NULL and the
1780
* operation blocks. Will fail with -ENOSYS if not implemented.
1781
*/
1782
SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1783
long, min_nr,
1784
long, nr,
1785
struct io_event __user *, events,
1786
struct timespec __user *, timeout)
1787
{
1788
struct kioctx *ioctx = lookup_ioctx(ctx_id);
1789
long ret = -EINVAL;
1790
1791
if (likely(ioctx)) {
1792
if (likely(min_nr <= nr && min_nr >= 0))
1793
ret = read_events(ioctx, min_nr, nr, events, timeout);
1794
put_ioctx(ioctx);
1795
}
1796
1797
asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1798
return ret;
1799
}
1800
1801