Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/befs/btree.c
15109 views
1
/*
2
* linux/fs/befs/btree.c
3
*
4
* Copyright (C) 2001-2002 Will Dyson <[email protected]>
5
*
6
* Licensed under the GNU GPL. See the file COPYING for details.
7
*
8
* 2002-02-05: Sergey S. Kostyliov added binary search within
9
* btree nodes.
10
*
11
* Many thanks to:
12
*
13
* Dominic Giampaolo, author of "Practical File System
14
* Design with the Be File System", for such a helpful book.
15
*
16
* Marcus J. Ranum, author of the b+tree package in
17
* comp.sources.misc volume 10. This code is not copied from that
18
* work, but it is partially based on it.
19
*
20
* Makoto Kato, author of the original BeFS for linux filesystem
21
* driver.
22
*/
23
24
#include <linux/kernel.h>
25
#include <linux/string.h>
26
#include <linux/slab.h>
27
#include <linux/mm.h>
28
#include <linux/buffer_head.h>
29
30
#include "befs.h"
31
#include "btree.h"
32
#include "datastream.h"
33
34
/*
35
* The btree functions in this file are built on top of the
36
* datastream.c interface, which is in turn built on top of the
37
* io.c interface.
38
*/
39
40
/* Befs B+tree structure:
41
*
42
* The first thing in the tree is the tree superblock. It tells you
43
* all kinds of useful things about the tree, like where the rootnode
44
* is located, and the size of the nodes (always 1024 with current version
45
* of BeOS).
46
*
47
* The rest of the tree consists of a series of nodes. Nodes contain a header
48
* (struct befs_btree_nodehead), the packed key data, an array of shorts
49
* containing the ending offsets for each of the keys, and an array of
50
* befs_off_t values. In interior nodes, the keys are the ending keys for
51
* the childnode they point to, and the values are offsets into the
52
* datastream containing the tree.
53
*/
54
55
/* Note:
56
*
57
* The book states 2 confusing things about befs b+trees. First,
58
* it states that the overflow field of node headers is used by internal nodes
59
* to point to another node that "effectively continues this one". Here is what
60
* I believe that means. Each key in internal nodes points to another node that
61
* contains key values less than itself. Inspection reveals that the last key
62
* in the internal node is not the last key in the index. Keys that are
63
* greater than the last key in the internal node go into the overflow node.
64
* I imagine there is a performance reason for this.
65
*
66
* Second, it states that the header of a btree node is sufficient to
67
* distinguish internal nodes from leaf nodes. Without saying exactly how.
68
* After figuring out the first, it becomes obvious that internal nodes have
69
* overflow nodes and leafnodes do not.
70
*/
71
72
/*
73
* Currently, this code is only good for directory B+trees.
74
* In order to be used for other BFS indexes, it needs to be extended to handle
75
* duplicate keys and non-string keytypes (int32, int64, float, double).
76
*/
77
78
/*
79
* In memory structure of each btree node
80
*/
81
typedef struct {
82
befs_host_btree_nodehead head; /* head of node converted to cpu byteorder */
83
struct buffer_head *bh;
84
befs_btree_nodehead *od_node; /* on disk node */
85
} befs_btree_node;
86
87
/* local constants */
88
static const befs_off_t befs_bt_inval = 0xffffffffffffffffULL;
89
90
/* local functions */
91
static int befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
92
befs_btree_super * bt_super,
93
befs_btree_node * this_node,
94
befs_off_t * node_off);
95
96
static int befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
97
befs_btree_super * sup);
98
99
static int befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
100
befs_btree_node * node, befs_off_t node_off);
101
102
static int befs_leafnode(befs_btree_node * node);
103
104
static fs16 *befs_bt_keylen_index(befs_btree_node * node);
105
106
static fs64 *befs_bt_valarray(befs_btree_node * node);
107
108
static char *befs_bt_keydata(befs_btree_node * node);
109
110
static int befs_find_key(struct super_block *sb, befs_btree_node * node,
111
const char *findkey, befs_off_t * value);
112
113
static char *befs_bt_get_key(struct super_block *sb, befs_btree_node * node,
114
int index, u16 * keylen);
115
116
static int befs_compare_strings(const void *key1, int keylen1,
117
const void *key2, int keylen2);
118
119
/**
120
* befs_bt_read_super - read in btree superblock convert to cpu byteorder
121
* @sb: Filesystem superblock
122
* @ds: Datastream to read from
123
* @sup: Buffer in which to place the btree superblock
124
*
125
* Calls befs_read_datastream to read in the btree superblock and
126
* makes sure it is in cpu byteorder, byteswapping if necessary.
127
*
128
* On success, returns BEFS_OK and *@sup contains the btree superblock,
129
* in cpu byte order.
130
*
131
* On failure, BEFS_ERR is returned.
132
*/
133
static int
134
befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
135
befs_btree_super * sup)
136
{
137
struct buffer_head *bh = NULL;
138
befs_disk_btree_super *od_sup = NULL;
139
140
befs_debug(sb, "---> befs_btree_read_super()");
141
142
bh = befs_read_datastream(sb, ds, 0, NULL);
143
144
if (!bh) {
145
befs_error(sb, "Couldn't read index header.");
146
goto error;
147
}
148
od_sup = (befs_disk_btree_super *) bh->b_data;
149
befs_dump_index_entry(sb, od_sup);
150
151
sup->magic = fs32_to_cpu(sb, od_sup->magic);
152
sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
153
sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
154
sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
155
sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
156
sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr);
157
sup->max_size = fs64_to_cpu(sb, od_sup->max_size);
158
159
brelse(bh);
160
if (sup->magic != BEFS_BTREE_MAGIC) {
161
befs_error(sb, "Index header has bad magic.");
162
goto error;
163
}
164
165
befs_debug(sb, "<--- befs_btree_read_super()");
166
return BEFS_OK;
167
168
error:
169
befs_debug(sb, "<--- befs_btree_read_super() ERROR");
170
return BEFS_ERR;
171
}
172
173
/**
174
* befs_bt_read_node - read in btree node and convert to cpu byteorder
175
* @sb: Filesystem superblock
176
* @ds: Datastream to read from
177
* @node: Buffer in which to place the btree node
178
* @node_off: Starting offset (in bytes) of the node in @ds
179
*
180
* Calls befs_read_datastream to read in the indicated btree node and
181
* makes sure its header fields are in cpu byteorder, byteswapping if
182
* necessary.
183
* Note: node->bh must be NULL when this function called first
184
* time. Don't forget brelse(node->bh) after last call.
185
*
186
* On success, returns BEFS_OK and *@node contains the btree node that
187
* starts at @node_off, with the node->head fields in cpu byte order.
188
*
189
* On failure, BEFS_ERR is returned.
190
*/
191
192
static int
193
befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
194
befs_btree_node * node, befs_off_t node_off)
195
{
196
uint off = 0;
197
198
befs_debug(sb, "---> befs_bt_read_node()");
199
200
if (node->bh)
201
brelse(node->bh);
202
203
node->bh = befs_read_datastream(sb, ds, node_off, &off);
204
if (!node->bh) {
205
befs_error(sb, "befs_bt_read_node() failed to read "
206
"node at %Lu", node_off);
207
befs_debug(sb, "<--- befs_bt_read_node() ERROR");
208
209
return BEFS_ERR;
210
}
211
node->od_node =
212
(befs_btree_nodehead *) ((void *) node->bh->b_data + off);
213
214
befs_dump_index_node(sb, node->od_node);
215
216
node->head.left = fs64_to_cpu(sb, node->od_node->left);
217
node->head.right = fs64_to_cpu(sb, node->od_node->right);
218
node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
219
node->head.all_key_count =
220
fs16_to_cpu(sb, node->od_node->all_key_count);
221
node->head.all_key_length =
222
fs16_to_cpu(sb, node->od_node->all_key_length);
223
224
befs_debug(sb, "<--- befs_btree_read_node()");
225
return BEFS_OK;
226
}
227
228
/**
229
* befs_btree_find - Find a key in a befs B+tree
230
* @sb: Filesystem superblock
231
* @ds: Datastream containing btree
232
* @key: Key string to lookup in btree
233
* @value: Value stored with @key
234
*
235
* On success, returns BEFS_OK and sets *@value to the value stored
236
* with @key (usually the disk block number of an inode).
237
*
238
* On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
239
*
240
* Algorithm:
241
* Read the superblock and rootnode of the b+tree.
242
* Drill down through the interior nodes using befs_find_key().
243
* Once at the correct leaf node, use befs_find_key() again to get the
244
* actuall value stored with the key.
245
*/
246
int
247
befs_btree_find(struct super_block *sb, befs_data_stream * ds,
248
const char *key, befs_off_t * value)
249
{
250
befs_btree_node *this_node = NULL;
251
befs_btree_super bt_super;
252
befs_off_t node_off;
253
int res;
254
255
befs_debug(sb, "---> befs_btree_find() Key: %s", key);
256
257
if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
258
befs_error(sb,
259
"befs_btree_find() failed to read index superblock");
260
goto error;
261
}
262
263
this_node = kmalloc(sizeof (befs_btree_node),
264
GFP_NOFS);
265
if (!this_node) {
266
befs_error(sb, "befs_btree_find() failed to allocate %u "
267
"bytes of memory", sizeof (befs_btree_node));
268
goto error;
269
}
270
271
this_node->bh = NULL;
272
273
/* read in root node */
274
node_off = bt_super.root_node_ptr;
275
if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
276
befs_error(sb, "befs_btree_find() failed to read "
277
"node at %Lu", node_off);
278
goto error_alloc;
279
}
280
281
while (!befs_leafnode(this_node)) {
282
res = befs_find_key(sb, this_node, key, &node_off);
283
if (res == BEFS_BT_NOT_FOUND)
284
node_off = this_node->head.overflow;
285
/* if no match, go to overflow node */
286
if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
287
befs_error(sb, "befs_btree_find() failed to read "
288
"node at %Lu", node_off);
289
goto error_alloc;
290
}
291
}
292
293
/* at the correct leaf node now */
294
295
res = befs_find_key(sb, this_node, key, value);
296
297
brelse(this_node->bh);
298
kfree(this_node);
299
300
if (res != BEFS_BT_MATCH) {
301
befs_debug(sb, "<--- befs_btree_find() Key %s not found", key);
302
*value = 0;
303
return BEFS_BT_NOT_FOUND;
304
}
305
befs_debug(sb, "<--- befs_btree_find() Found key %s, value %Lu",
306
key, *value);
307
return BEFS_OK;
308
309
error_alloc:
310
kfree(this_node);
311
error:
312
*value = 0;
313
befs_debug(sb, "<--- befs_btree_find() ERROR");
314
return BEFS_ERR;
315
}
316
317
/**
318
* befs_find_key - Search for a key within a node
319
* @sb: Filesystem superblock
320
* @node: Node to find the key within
321
* @key: Keystring to search for
322
* @value: If key is found, the value stored with the key is put here
323
*
324
* finds exact match if one exists, and returns BEFS_BT_MATCH
325
* If no exact match, finds first key in node that is greater
326
* (alphabetically) than the search key and returns BEFS_BT_PARMATCH
327
* (for partial match, I guess). Can you think of something better to
328
* call it?
329
*
330
* If no key was a match or greater than the search key, return
331
* BEFS_BT_NOT_FOUND.
332
*
333
* Use binary search instead of a linear.
334
*/
335
static int
336
befs_find_key(struct super_block *sb, befs_btree_node * node,
337
const char *findkey, befs_off_t * value)
338
{
339
int first, last, mid;
340
int eq;
341
u16 keylen;
342
int findkey_len;
343
char *thiskey;
344
fs64 *valarray;
345
346
befs_debug(sb, "---> befs_find_key() %s", findkey);
347
348
*value = 0;
349
350
findkey_len = strlen(findkey);
351
352
/* if node can not contain key, just skeep this node */
353
last = node->head.all_key_count - 1;
354
thiskey = befs_bt_get_key(sb, node, last, &keylen);
355
356
eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
357
if (eq < 0) {
358
befs_debug(sb, "<--- befs_find_key() %s not found", findkey);
359
return BEFS_BT_NOT_FOUND;
360
}
361
362
valarray = befs_bt_valarray(node);
363
364
/* simple binary search */
365
first = 0;
366
mid = 0;
367
while (last >= first) {
368
mid = (last + first) / 2;
369
befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
370
mid);
371
thiskey = befs_bt_get_key(sb, node, mid, &keylen);
372
eq = befs_compare_strings(thiskey, keylen, findkey,
373
findkey_len);
374
375
if (eq == 0) {
376
befs_debug(sb, "<--- befs_find_key() found %s at %d",
377
thiskey, mid);
378
379
*value = fs64_to_cpu(sb, valarray[mid]);
380
return BEFS_BT_MATCH;
381
}
382
if (eq > 0)
383
last = mid - 1;
384
else
385
first = mid + 1;
386
}
387
if (eq < 0)
388
*value = fs64_to_cpu(sb, valarray[mid + 1]);
389
else
390
*value = fs64_to_cpu(sb, valarray[mid]);
391
befs_debug(sb, "<--- befs_find_key() found %s at %d", thiskey, mid);
392
return BEFS_BT_PARMATCH;
393
}
394
395
/**
396
* befs_btree_read - Traverse leafnodes of a btree
397
* @sb: Filesystem superblock
398
* @ds: Datastream containing btree
399
* @key_no: Key number (alphabetical order) of key to read
400
* @bufsize: Size of the buffer to return key in
401
* @keybuf: Pointer to a buffer to put the key in
402
* @keysize: Length of the returned key
403
* @value: Value stored with the returned key
404
*
405
* Heres how it works: Key_no is the index of the key/value pair to
406
* return in keybuf/value.
407
* Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is
408
* the number of charecters in the key (just a convenience).
409
*
410
* Algorithm:
411
* Get the first leafnode of the tree. See if the requested key is in that
412
* node. If not, follow the node->right link to the next leafnode. Repeat
413
* until the (key_no)th key is found or the tree is out of keys.
414
*/
415
int
416
befs_btree_read(struct super_block *sb, befs_data_stream * ds,
417
loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
418
befs_off_t * value)
419
{
420
befs_btree_node *this_node;
421
befs_btree_super bt_super;
422
befs_off_t node_off = 0;
423
int cur_key;
424
fs64 *valarray;
425
char *keystart;
426
u16 keylen;
427
int res;
428
429
uint key_sum = 0;
430
431
befs_debug(sb, "---> befs_btree_read()");
432
433
if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
434
befs_error(sb,
435
"befs_btree_read() failed to read index superblock");
436
goto error;
437
}
438
439
if ((this_node = (befs_btree_node *)
440
kmalloc(sizeof (befs_btree_node), GFP_NOFS)) == NULL) {
441
befs_error(sb, "befs_btree_read() failed to allocate %u "
442
"bytes of memory", sizeof (befs_btree_node));
443
goto error;
444
}
445
446
node_off = bt_super.root_node_ptr;
447
this_node->bh = NULL;
448
449
/* seeks down to first leafnode, reads it into this_node */
450
res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
451
if (res == BEFS_BT_EMPTY) {
452
brelse(this_node->bh);
453
kfree(this_node);
454
*value = 0;
455
*keysize = 0;
456
befs_debug(sb, "<--- befs_btree_read() Tree is EMPTY");
457
return BEFS_BT_EMPTY;
458
} else if (res == BEFS_ERR) {
459
goto error_alloc;
460
}
461
462
/* find the leaf node containing the key_no key */
463
464
while (key_sum + this_node->head.all_key_count <= key_no) {
465
466
/* no more nodes to look in: key_no is too large */
467
if (this_node->head.right == befs_bt_inval) {
468
*keysize = 0;
469
*value = 0;
470
befs_debug(sb,
471
"<--- befs_btree_read() END of keys at %Lu",
472
key_sum + this_node->head.all_key_count);
473
brelse(this_node->bh);
474
kfree(this_node);
475
return BEFS_BT_END;
476
}
477
478
key_sum += this_node->head.all_key_count;
479
node_off = this_node->head.right;
480
481
if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
482
befs_error(sb, "befs_btree_read() failed to read "
483
"node at %Lu", node_off);
484
goto error_alloc;
485
}
486
}
487
488
/* how many keys into this_node is key_no */
489
cur_key = key_no - key_sum;
490
491
/* get pointers to datastructures within the node body */
492
valarray = befs_bt_valarray(this_node);
493
494
keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
495
496
befs_debug(sb, "Read [%Lu,%d]: keysize %d", node_off, cur_key, keylen);
497
498
if (bufsize < keylen + 1) {
499
befs_error(sb, "befs_btree_read() keybuf too small (%u) "
500
"for key of size %d", bufsize, keylen);
501
brelse(this_node->bh);
502
goto error_alloc;
503
};
504
505
strncpy(keybuf, keystart, keylen);
506
*value = fs64_to_cpu(sb, valarray[cur_key]);
507
*keysize = keylen;
508
keybuf[keylen] = '\0';
509
510
befs_debug(sb, "Read [%Lu,%d]: Key \"%.*s\", Value %Lu", node_off,
511
cur_key, keylen, keybuf, *value);
512
513
brelse(this_node->bh);
514
kfree(this_node);
515
516
befs_debug(sb, "<--- befs_btree_read()");
517
518
return BEFS_OK;
519
520
error_alloc:
521
kfree(this_node);
522
523
error:
524
*keysize = 0;
525
*value = 0;
526
befs_debug(sb, "<--- befs_btree_read() ERROR");
527
return BEFS_ERR;
528
}
529
530
/**
531
* befs_btree_seekleaf - Find the first leafnode in the btree
532
* @sb: Filesystem superblock
533
* @ds: Datastream containing btree
534
* @bt_super: Pointer to the superblock of the btree
535
* @this_node: Buffer to return the leafnode in
536
* @node_off: Pointer to offset of current node within datastream. Modified
537
* by the function.
538
*
539
*
540
* Helper function for btree traverse. Moves the current position to the
541
* start of the first leaf node.
542
*
543
* Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
544
*/
545
static int
546
befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
547
befs_btree_super * bt_super, befs_btree_node * this_node,
548
befs_off_t * node_off)
549
{
550
551
befs_debug(sb, "---> befs_btree_seekleaf()");
552
553
if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
554
befs_error(sb, "befs_btree_seekleaf() failed to read "
555
"node at %Lu", *node_off);
556
goto error;
557
}
558
befs_debug(sb, "Seekleaf to root node %Lu", *node_off);
559
560
if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
561
befs_debug(sb, "<--- befs_btree_seekleaf() Tree is EMPTY");
562
return BEFS_BT_EMPTY;
563
}
564
565
while (!befs_leafnode(this_node)) {
566
567
if (this_node->head.all_key_count == 0) {
568
befs_debug(sb, "befs_btree_seekleaf() encountered "
569
"an empty interior node: %Lu. Using Overflow "
570
"node: %Lu", *node_off,
571
this_node->head.overflow);
572
*node_off = this_node->head.overflow;
573
} else {
574
fs64 *valarray = befs_bt_valarray(this_node);
575
*node_off = fs64_to_cpu(sb, valarray[0]);
576
}
577
if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
578
befs_error(sb, "befs_btree_seekleaf() failed to read "
579
"node at %Lu", *node_off);
580
goto error;
581
}
582
583
befs_debug(sb, "Seekleaf to child node %Lu", *node_off);
584
}
585
befs_debug(sb, "Node %Lu is a leaf node", *node_off);
586
587
return BEFS_OK;
588
589
error:
590
befs_debug(sb, "<--- befs_btree_seekleaf() ERROR");
591
return BEFS_ERR;
592
}
593
594
/**
595
* befs_leafnode - Determine if the btree node is a leaf node or an
596
* interior node
597
* @node: Pointer to node structure to test
598
*
599
* Return 1 if leaf, 0 if interior
600
*/
601
static int
602
befs_leafnode(befs_btree_node * node)
603
{
604
/* all interior nodes (and only interior nodes) have an overflow node */
605
if (node->head.overflow == befs_bt_inval)
606
return 1;
607
else
608
return 0;
609
}
610
611
/**
612
* befs_bt_keylen_index - Finds start of keylen index in a node
613
* @node: Pointer to the node structure to find the keylen index within
614
*
615
* Returns a pointer to the start of the key length index array
616
* of the B+tree node *@node
617
*
618
* "The length of all the keys in the node is added to the size of the
619
* header and then rounded up to a multiple of four to get the beginning
620
* of the key length index" (p.88, practical filesystem design).
621
*
622
* Except that rounding up to 8 works, and rounding up to 4 doesn't.
623
*/
624
static fs16 *
625
befs_bt_keylen_index(befs_btree_node * node)
626
{
627
const int keylen_align = 8;
628
unsigned long int off =
629
(sizeof (befs_btree_nodehead) + node->head.all_key_length);
630
ulong tmp = off % keylen_align;
631
632
if (tmp)
633
off += keylen_align - tmp;
634
635
return (fs16 *) ((void *) node->od_node + off);
636
}
637
638
/**
639
* befs_bt_valarray - Finds the start of value array in a node
640
* @node: Pointer to the node structure to find the value array within
641
*
642
* Returns a pointer to the start of the value array
643
* of the node pointed to by the node header
644
*/
645
static fs64 *
646
befs_bt_valarray(befs_btree_node * node)
647
{
648
void *keylen_index_start = (void *) befs_bt_keylen_index(node);
649
size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
650
651
return (fs64 *) (keylen_index_start + keylen_index_size);
652
}
653
654
/**
655
* befs_bt_keydata - Finds start of keydata array in a node
656
* @node: Pointer to the node structure to find the keydata array within
657
*
658
* Returns a pointer to the start of the keydata array
659
* of the node pointed to by the node header
660
*/
661
static char *
662
befs_bt_keydata(befs_btree_node * node)
663
{
664
return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
665
}
666
667
/**
668
* befs_bt_get_key - returns a pointer to the start of a key
669
* @sb: filesystem superblock
670
* @node: node in which to look for the key
671
* @index: the index of the key to get
672
* @keylen: modified to be the length of the key at @index
673
*
674
* Returns a valid pointer into @node on success.
675
* Returns NULL on failure (bad input) and sets *@keylen = 0
676
*/
677
static char *
678
befs_bt_get_key(struct super_block *sb, befs_btree_node * node,
679
int index, u16 * keylen)
680
{
681
int prev_key_end;
682
char *keystart;
683
fs16 *keylen_index;
684
685
if (index < 0 || index > node->head.all_key_count) {
686
*keylen = 0;
687
return NULL;
688
}
689
690
keystart = befs_bt_keydata(node);
691
keylen_index = befs_bt_keylen_index(node);
692
693
if (index == 0)
694
prev_key_end = 0;
695
else
696
prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
697
698
*keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
699
700
return keystart + prev_key_end;
701
}
702
703
/**
704
* befs_compare_strings - compare two strings
705
* @key1: pointer to the first key to be compared
706
* @keylen1: length in bytes of key1
707
* @key2: pointer to the second key to be compared
708
* @kelen2: length in bytes of key2
709
*
710
* Returns 0 if @key1 and @key2 are equal.
711
* Returns >0 if @key1 is greater.
712
* Returns <0 if @key2 is greater..
713
*/
714
static int
715
befs_compare_strings(const void *key1, int keylen1,
716
const void *key2, int keylen2)
717
{
718
int len = min_t(int, keylen1, keylen2);
719
int result = strncmp(key1, key2, len);
720
if (result == 0)
721
result = keylen1 - keylen2;
722
return result;
723
}
724
725
/* These will be used for non-string keyed btrees */
726
#if 0
727
static int
728
btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
729
{
730
return *(int32_t *) key1 - *(int32_t *) key2;
731
}
732
733
static int
734
btree_compare_uint32(cont void *key1, int keylen1,
735
const void *key2, int keylen2)
736
{
737
if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
738
return 0;
739
else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
740
return 1;
741
742
return -1;
743
}
744
static int
745
btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
746
{
747
if (*(int64_t *) key1 == *(int64_t *) key2)
748
return 0;
749
else if (*(int64_t *) key1 > *(int64_t *) key2)
750
return 1;
751
752
return -1;
753
}
754
755
static int
756
btree_compare_uint64(cont void *key1, int keylen1,
757
const void *key2, int keylen2)
758
{
759
if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
760
return 0;
761
else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
762
return 1;
763
764
return -1;
765
}
766
767
static int
768
btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
769
{
770
float result = *(float *) key1 - *(float *) key2;
771
if (result == 0.0f)
772
return 0;
773
774
return (result < 0.0f) ? -1 : 1;
775
}
776
777
static int
778
btree_compare_double(cont void *key1, int keylen1,
779
const void *key2, int keylen2)
780
{
781
double result = *(double *) key1 - *(double *) key2;
782
if (result == 0.0)
783
return 0;
784
785
return (result < 0.0) ? -1 : 1;
786
}
787
#endif //0
788
789