Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/bio-integrity.c
15109 views
1
/*
2
* bio-integrity.c - bio data integrity extensions
3
*
4
* Copyright (C) 2007, 2008, 2009 Oracle Corporation
5
* Written by: Martin K. Petersen <[email protected]>
6
*
7
* This program is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU General Public License version
9
* 2 as published by the Free Software Foundation.
10
*
11
* This program is distributed in the hope that it will be useful, but
12
* WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14
* General Public License for more details.
15
*
16
* You should have received a copy of the GNU General Public License
17
* along with this program; see the file COPYING. If not, write to
18
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
19
* USA.
20
*
21
*/
22
23
#include <linux/blkdev.h>
24
#include <linux/mempool.h>
25
#include <linux/bio.h>
26
#include <linux/workqueue.h>
27
#include <linux/slab.h>
28
29
struct integrity_slab {
30
struct kmem_cache *slab;
31
unsigned short nr_vecs;
32
char name[8];
33
};
34
35
#define IS(x) { .nr_vecs = x, .name = "bip-"__stringify(x) }
36
struct integrity_slab bip_slab[BIOVEC_NR_POOLS] __read_mostly = {
37
IS(1), IS(4), IS(16), IS(64), IS(128), IS(BIO_MAX_PAGES),
38
};
39
#undef IS
40
41
static struct workqueue_struct *kintegrityd_wq;
42
43
static inline unsigned int vecs_to_idx(unsigned int nr)
44
{
45
switch (nr) {
46
case 1:
47
return 0;
48
case 2 ... 4:
49
return 1;
50
case 5 ... 16:
51
return 2;
52
case 17 ... 64:
53
return 3;
54
case 65 ... 128:
55
return 4;
56
case 129 ... BIO_MAX_PAGES:
57
return 5;
58
default:
59
BUG();
60
}
61
}
62
63
static inline int use_bip_pool(unsigned int idx)
64
{
65
if (idx == BIOVEC_MAX_IDX)
66
return 1;
67
68
return 0;
69
}
70
71
/**
72
* bio_integrity_alloc_bioset - Allocate integrity payload and attach it to bio
73
* @bio: bio to attach integrity metadata to
74
* @gfp_mask: Memory allocation mask
75
* @nr_vecs: Number of integrity metadata scatter-gather elements
76
* @bs: bio_set to allocate from
77
*
78
* Description: This function prepares a bio for attaching integrity
79
* metadata. nr_vecs specifies the maximum number of pages containing
80
* integrity metadata that can be attached.
81
*/
82
struct bio_integrity_payload *bio_integrity_alloc_bioset(struct bio *bio,
83
gfp_t gfp_mask,
84
unsigned int nr_vecs,
85
struct bio_set *bs)
86
{
87
struct bio_integrity_payload *bip;
88
unsigned int idx = vecs_to_idx(nr_vecs);
89
90
BUG_ON(bio == NULL);
91
bip = NULL;
92
93
/* Lower order allocations come straight from slab */
94
if (!use_bip_pool(idx))
95
bip = kmem_cache_alloc(bip_slab[idx].slab, gfp_mask);
96
97
/* Use mempool if lower order alloc failed or max vecs were requested */
98
if (bip == NULL) {
99
idx = BIOVEC_MAX_IDX; /* so we free the payload properly later */
100
bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask);
101
102
if (unlikely(bip == NULL)) {
103
printk(KERN_ERR "%s: could not alloc bip\n", __func__);
104
return NULL;
105
}
106
}
107
108
memset(bip, 0, sizeof(*bip));
109
110
bip->bip_slab = idx;
111
bip->bip_bio = bio;
112
bio->bi_integrity = bip;
113
114
return bip;
115
}
116
EXPORT_SYMBOL(bio_integrity_alloc_bioset);
117
118
/**
119
* bio_integrity_alloc - Allocate integrity payload and attach it to bio
120
* @bio: bio to attach integrity metadata to
121
* @gfp_mask: Memory allocation mask
122
* @nr_vecs: Number of integrity metadata scatter-gather elements
123
*
124
* Description: This function prepares a bio for attaching integrity
125
* metadata. nr_vecs specifies the maximum number of pages containing
126
* integrity metadata that can be attached.
127
*/
128
struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
129
gfp_t gfp_mask,
130
unsigned int nr_vecs)
131
{
132
return bio_integrity_alloc_bioset(bio, gfp_mask, nr_vecs, fs_bio_set);
133
}
134
EXPORT_SYMBOL(bio_integrity_alloc);
135
136
/**
137
* bio_integrity_free - Free bio integrity payload
138
* @bio: bio containing bip to be freed
139
* @bs: bio_set this bio was allocated from
140
*
141
* Description: Used to free the integrity portion of a bio. Usually
142
* called from bio_free().
143
*/
144
void bio_integrity_free(struct bio *bio, struct bio_set *bs)
145
{
146
struct bio_integrity_payload *bip = bio->bi_integrity;
147
148
BUG_ON(bip == NULL);
149
150
/* A cloned bio doesn't own the integrity metadata */
151
if (!bio_flagged(bio, BIO_CLONED) && !bio_flagged(bio, BIO_FS_INTEGRITY)
152
&& bip->bip_buf != NULL)
153
kfree(bip->bip_buf);
154
155
if (use_bip_pool(bip->bip_slab))
156
mempool_free(bip, bs->bio_integrity_pool);
157
else
158
kmem_cache_free(bip_slab[bip->bip_slab].slab, bip);
159
160
bio->bi_integrity = NULL;
161
}
162
EXPORT_SYMBOL(bio_integrity_free);
163
164
/**
165
* bio_integrity_add_page - Attach integrity metadata
166
* @bio: bio to update
167
* @page: page containing integrity metadata
168
* @len: number of bytes of integrity metadata in page
169
* @offset: start offset within page
170
*
171
* Description: Attach a page containing integrity metadata to bio.
172
*/
173
int bio_integrity_add_page(struct bio *bio, struct page *page,
174
unsigned int len, unsigned int offset)
175
{
176
struct bio_integrity_payload *bip = bio->bi_integrity;
177
struct bio_vec *iv;
178
179
if (bip->bip_vcnt >= bvec_nr_vecs(bip->bip_slab)) {
180
printk(KERN_ERR "%s: bip_vec full\n", __func__);
181
return 0;
182
}
183
184
iv = bip_vec_idx(bip, bip->bip_vcnt);
185
BUG_ON(iv == NULL);
186
187
iv->bv_page = page;
188
iv->bv_len = len;
189
iv->bv_offset = offset;
190
bip->bip_vcnt++;
191
192
return len;
193
}
194
EXPORT_SYMBOL(bio_integrity_add_page);
195
196
static int bdev_integrity_enabled(struct block_device *bdev, int rw)
197
{
198
struct blk_integrity *bi = bdev_get_integrity(bdev);
199
200
if (bi == NULL)
201
return 0;
202
203
if (rw == READ && bi->verify_fn != NULL &&
204
(bi->flags & INTEGRITY_FLAG_READ))
205
return 1;
206
207
if (rw == WRITE && bi->generate_fn != NULL &&
208
(bi->flags & INTEGRITY_FLAG_WRITE))
209
return 1;
210
211
return 0;
212
}
213
214
/**
215
* bio_integrity_enabled - Check whether integrity can be passed
216
* @bio: bio to check
217
*
218
* Description: Determines whether bio_integrity_prep() can be called
219
* on this bio or not. bio data direction and target device must be
220
* set prior to calling. The functions honors the write_generate and
221
* read_verify flags in sysfs.
222
*/
223
int bio_integrity_enabled(struct bio *bio)
224
{
225
/* Already protected? */
226
if (bio_integrity(bio))
227
return 0;
228
229
return bdev_integrity_enabled(bio->bi_bdev, bio_data_dir(bio));
230
}
231
EXPORT_SYMBOL(bio_integrity_enabled);
232
233
/**
234
* bio_integrity_hw_sectors - Convert 512b sectors to hardware ditto
235
* @bi: blk_integrity profile for device
236
* @sectors: Number of 512 sectors to convert
237
*
238
* Description: The block layer calculates everything in 512 byte
239
* sectors but integrity metadata is done in terms of the hardware
240
* sector size of the storage device. Convert the block layer sectors
241
* to physical sectors.
242
*/
243
static inline unsigned int bio_integrity_hw_sectors(struct blk_integrity *bi,
244
unsigned int sectors)
245
{
246
/* At this point there are only 512b or 4096b DIF/EPP devices */
247
if (bi->sector_size == 4096)
248
return sectors >>= 3;
249
250
return sectors;
251
}
252
253
/**
254
* bio_integrity_tag_size - Retrieve integrity tag space
255
* @bio: bio to inspect
256
*
257
* Description: Returns the maximum number of tag bytes that can be
258
* attached to this bio. Filesystems can use this to determine how
259
* much metadata to attach to an I/O.
260
*/
261
unsigned int bio_integrity_tag_size(struct bio *bio)
262
{
263
struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
264
265
BUG_ON(bio->bi_size == 0);
266
267
return bi->tag_size * (bio->bi_size / bi->sector_size);
268
}
269
EXPORT_SYMBOL(bio_integrity_tag_size);
270
271
int bio_integrity_tag(struct bio *bio, void *tag_buf, unsigned int len, int set)
272
{
273
struct bio_integrity_payload *bip = bio->bi_integrity;
274
struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
275
unsigned int nr_sectors;
276
277
BUG_ON(bip->bip_buf == NULL);
278
279
if (bi->tag_size == 0)
280
return -1;
281
282
nr_sectors = bio_integrity_hw_sectors(bi,
283
DIV_ROUND_UP(len, bi->tag_size));
284
285
if (nr_sectors * bi->tuple_size > bip->bip_size) {
286
printk(KERN_ERR "%s: tag too big for bio: %u > %u\n",
287
__func__, nr_sectors * bi->tuple_size, bip->bip_size);
288
return -1;
289
}
290
291
if (set)
292
bi->set_tag_fn(bip->bip_buf, tag_buf, nr_sectors);
293
else
294
bi->get_tag_fn(bip->bip_buf, tag_buf, nr_sectors);
295
296
return 0;
297
}
298
299
/**
300
* bio_integrity_set_tag - Attach a tag buffer to a bio
301
* @bio: bio to attach buffer to
302
* @tag_buf: Pointer to a buffer containing tag data
303
* @len: Length of the included buffer
304
*
305
* Description: Use this function to tag a bio by leveraging the extra
306
* space provided by devices formatted with integrity protection. The
307
* size of the integrity buffer must be <= to the size reported by
308
* bio_integrity_tag_size().
309
*/
310
int bio_integrity_set_tag(struct bio *bio, void *tag_buf, unsigned int len)
311
{
312
BUG_ON(bio_data_dir(bio) != WRITE);
313
314
return bio_integrity_tag(bio, tag_buf, len, 1);
315
}
316
EXPORT_SYMBOL(bio_integrity_set_tag);
317
318
/**
319
* bio_integrity_get_tag - Retrieve a tag buffer from a bio
320
* @bio: bio to retrieve buffer from
321
* @tag_buf: Pointer to a buffer for the tag data
322
* @len: Length of the target buffer
323
*
324
* Description: Use this function to retrieve the tag buffer from a
325
* completed I/O. The size of the integrity buffer must be <= to the
326
* size reported by bio_integrity_tag_size().
327
*/
328
int bio_integrity_get_tag(struct bio *bio, void *tag_buf, unsigned int len)
329
{
330
BUG_ON(bio_data_dir(bio) != READ);
331
332
return bio_integrity_tag(bio, tag_buf, len, 0);
333
}
334
EXPORT_SYMBOL(bio_integrity_get_tag);
335
336
/**
337
* bio_integrity_generate - Generate integrity metadata for a bio
338
* @bio: bio to generate integrity metadata for
339
*
340
* Description: Generates integrity metadata for a bio by calling the
341
* block device's generation callback function. The bio must have a
342
* bip attached with enough room to accommodate the generated
343
* integrity metadata.
344
*/
345
static void bio_integrity_generate(struct bio *bio)
346
{
347
struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
348
struct blk_integrity_exchg bix;
349
struct bio_vec *bv;
350
sector_t sector = bio->bi_sector;
351
unsigned int i, sectors, total;
352
void *prot_buf = bio->bi_integrity->bip_buf;
353
354
total = 0;
355
bix.disk_name = bio->bi_bdev->bd_disk->disk_name;
356
bix.sector_size = bi->sector_size;
357
358
bio_for_each_segment(bv, bio, i) {
359
void *kaddr = kmap_atomic(bv->bv_page, KM_USER0);
360
bix.data_buf = kaddr + bv->bv_offset;
361
bix.data_size = bv->bv_len;
362
bix.prot_buf = prot_buf;
363
bix.sector = sector;
364
365
bi->generate_fn(&bix);
366
367
sectors = bv->bv_len / bi->sector_size;
368
sector += sectors;
369
prot_buf += sectors * bi->tuple_size;
370
total += sectors * bi->tuple_size;
371
BUG_ON(total > bio->bi_integrity->bip_size);
372
373
kunmap_atomic(kaddr, KM_USER0);
374
}
375
}
376
377
static inline unsigned short blk_integrity_tuple_size(struct blk_integrity *bi)
378
{
379
if (bi)
380
return bi->tuple_size;
381
382
return 0;
383
}
384
385
/**
386
* bio_integrity_prep - Prepare bio for integrity I/O
387
* @bio: bio to prepare
388
*
389
* Description: Allocates a buffer for integrity metadata, maps the
390
* pages and attaches them to a bio. The bio must have data
391
* direction, target device and start sector set priot to calling. In
392
* the WRITE case, integrity metadata will be generated using the
393
* block device's integrity function. In the READ case, the buffer
394
* will be prepared for DMA and a suitable end_io handler set up.
395
*/
396
int bio_integrity_prep(struct bio *bio)
397
{
398
struct bio_integrity_payload *bip;
399
struct blk_integrity *bi;
400
struct request_queue *q;
401
void *buf;
402
unsigned long start, end;
403
unsigned int len, nr_pages;
404
unsigned int bytes, offset, i;
405
unsigned int sectors;
406
407
bi = bdev_get_integrity(bio->bi_bdev);
408
q = bdev_get_queue(bio->bi_bdev);
409
BUG_ON(bi == NULL);
410
BUG_ON(bio_integrity(bio));
411
412
sectors = bio_integrity_hw_sectors(bi, bio_sectors(bio));
413
414
/* Allocate kernel buffer for protection data */
415
len = sectors * blk_integrity_tuple_size(bi);
416
buf = kmalloc(len, GFP_NOIO | q->bounce_gfp);
417
if (unlikely(buf == NULL)) {
418
printk(KERN_ERR "could not allocate integrity buffer\n");
419
return -ENOMEM;
420
}
421
422
end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
423
start = ((unsigned long) buf) >> PAGE_SHIFT;
424
nr_pages = end - start;
425
426
/* Allocate bio integrity payload and integrity vectors */
427
bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
428
if (unlikely(bip == NULL)) {
429
printk(KERN_ERR "could not allocate data integrity bioset\n");
430
kfree(buf);
431
return -EIO;
432
}
433
434
bip->bip_buf = buf;
435
bip->bip_size = len;
436
bip->bip_sector = bio->bi_sector;
437
438
/* Map it */
439
offset = offset_in_page(buf);
440
for (i = 0 ; i < nr_pages ; i++) {
441
int ret;
442
bytes = PAGE_SIZE - offset;
443
444
if (len <= 0)
445
break;
446
447
if (bytes > len)
448
bytes = len;
449
450
ret = bio_integrity_add_page(bio, virt_to_page(buf),
451
bytes, offset);
452
453
if (ret == 0)
454
return 0;
455
456
if (ret < bytes)
457
break;
458
459
buf += bytes;
460
len -= bytes;
461
offset = 0;
462
}
463
464
/* Install custom I/O completion handler if read verify is enabled */
465
if (bio_data_dir(bio) == READ) {
466
bip->bip_end_io = bio->bi_end_io;
467
bio->bi_end_io = bio_integrity_endio;
468
}
469
470
/* Auto-generate integrity metadata if this is a write */
471
if (bio_data_dir(bio) == WRITE)
472
bio_integrity_generate(bio);
473
474
return 0;
475
}
476
EXPORT_SYMBOL(bio_integrity_prep);
477
478
/**
479
* bio_integrity_verify - Verify integrity metadata for a bio
480
* @bio: bio to verify
481
*
482
* Description: This function is called to verify the integrity of a
483
* bio. The data in the bio io_vec is compared to the integrity
484
* metadata returned by the HBA.
485
*/
486
static int bio_integrity_verify(struct bio *bio)
487
{
488
struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
489
struct blk_integrity_exchg bix;
490
struct bio_vec *bv;
491
sector_t sector = bio->bi_integrity->bip_sector;
492
unsigned int i, sectors, total, ret;
493
void *prot_buf = bio->bi_integrity->bip_buf;
494
495
ret = total = 0;
496
bix.disk_name = bio->bi_bdev->bd_disk->disk_name;
497
bix.sector_size = bi->sector_size;
498
499
bio_for_each_segment(bv, bio, i) {
500
void *kaddr = kmap_atomic(bv->bv_page, KM_USER0);
501
bix.data_buf = kaddr + bv->bv_offset;
502
bix.data_size = bv->bv_len;
503
bix.prot_buf = prot_buf;
504
bix.sector = sector;
505
506
ret = bi->verify_fn(&bix);
507
508
if (ret) {
509
kunmap_atomic(kaddr, KM_USER0);
510
return ret;
511
}
512
513
sectors = bv->bv_len / bi->sector_size;
514
sector += sectors;
515
prot_buf += sectors * bi->tuple_size;
516
total += sectors * bi->tuple_size;
517
BUG_ON(total > bio->bi_integrity->bip_size);
518
519
kunmap_atomic(kaddr, KM_USER0);
520
}
521
522
return ret;
523
}
524
525
/**
526
* bio_integrity_verify_fn - Integrity I/O completion worker
527
* @work: Work struct stored in bio to be verified
528
*
529
* Description: This workqueue function is called to complete a READ
530
* request. The function verifies the transferred integrity metadata
531
* and then calls the original bio end_io function.
532
*/
533
static void bio_integrity_verify_fn(struct work_struct *work)
534
{
535
struct bio_integrity_payload *bip =
536
container_of(work, struct bio_integrity_payload, bip_work);
537
struct bio *bio = bip->bip_bio;
538
int error;
539
540
error = bio_integrity_verify(bio);
541
542
/* Restore original bio completion handler */
543
bio->bi_end_io = bip->bip_end_io;
544
bio_endio(bio, error);
545
}
546
547
/**
548
* bio_integrity_endio - Integrity I/O completion function
549
* @bio: Protected bio
550
* @error: Pointer to errno
551
*
552
* Description: Completion for integrity I/O
553
*
554
* Normally I/O completion is done in interrupt context. However,
555
* verifying I/O integrity is a time-consuming task which must be run
556
* in process context. This function postpones completion
557
* accordingly.
558
*/
559
void bio_integrity_endio(struct bio *bio, int error)
560
{
561
struct bio_integrity_payload *bip = bio->bi_integrity;
562
563
BUG_ON(bip->bip_bio != bio);
564
565
/* In case of an I/O error there is no point in verifying the
566
* integrity metadata. Restore original bio end_io handler
567
* and run it.
568
*/
569
if (error) {
570
bio->bi_end_io = bip->bip_end_io;
571
bio_endio(bio, error);
572
573
return;
574
}
575
576
INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
577
queue_work(kintegrityd_wq, &bip->bip_work);
578
}
579
EXPORT_SYMBOL(bio_integrity_endio);
580
581
/**
582
* bio_integrity_mark_head - Advance bip_vec skip bytes
583
* @bip: Integrity vector to advance
584
* @skip: Number of bytes to advance it
585
*/
586
void bio_integrity_mark_head(struct bio_integrity_payload *bip,
587
unsigned int skip)
588
{
589
struct bio_vec *iv;
590
unsigned int i;
591
592
bip_for_each_vec(iv, bip, i) {
593
if (skip == 0) {
594
bip->bip_idx = i;
595
return;
596
} else if (skip >= iv->bv_len) {
597
skip -= iv->bv_len;
598
} else { /* skip < iv->bv_len) */
599
iv->bv_offset += skip;
600
iv->bv_len -= skip;
601
bip->bip_idx = i;
602
return;
603
}
604
}
605
}
606
607
/**
608
* bio_integrity_mark_tail - Truncate bip_vec to be len bytes long
609
* @bip: Integrity vector to truncate
610
* @len: New length of integrity vector
611
*/
612
void bio_integrity_mark_tail(struct bio_integrity_payload *bip,
613
unsigned int len)
614
{
615
struct bio_vec *iv;
616
unsigned int i;
617
618
bip_for_each_vec(iv, bip, i) {
619
if (len == 0) {
620
bip->bip_vcnt = i;
621
return;
622
} else if (len >= iv->bv_len) {
623
len -= iv->bv_len;
624
} else { /* len < iv->bv_len) */
625
iv->bv_len = len;
626
len = 0;
627
}
628
}
629
}
630
631
/**
632
* bio_integrity_advance - Advance integrity vector
633
* @bio: bio whose integrity vector to update
634
* @bytes_done: number of data bytes that have been completed
635
*
636
* Description: This function calculates how many integrity bytes the
637
* number of completed data bytes correspond to and advances the
638
* integrity vector accordingly.
639
*/
640
void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
641
{
642
struct bio_integrity_payload *bip = bio->bi_integrity;
643
struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
644
unsigned int nr_sectors;
645
646
BUG_ON(bip == NULL);
647
BUG_ON(bi == NULL);
648
649
nr_sectors = bio_integrity_hw_sectors(bi, bytes_done >> 9);
650
bio_integrity_mark_head(bip, nr_sectors * bi->tuple_size);
651
}
652
EXPORT_SYMBOL(bio_integrity_advance);
653
654
/**
655
* bio_integrity_trim - Trim integrity vector
656
* @bio: bio whose integrity vector to update
657
* @offset: offset to first data sector
658
* @sectors: number of data sectors
659
*
660
* Description: Used to trim the integrity vector in a cloned bio.
661
* The ivec will be advanced corresponding to 'offset' data sectors
662
* and the length will be truncated corresponding to 'len' data
663
* sectors.
664
*/
665
void bio_integrity_trim(struct bio *bio, unsigned int offset,
666
unsigned int sectors)
667
{
668
struct bio_integrity_payload *bip = bio->bi_integrity;
669
struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
670
unsigned int nr_sectors;
671
672
BUG_ON(bip == NULL);
673
BUG_ON(bi == NULL);
674
BUG_ON(!bio_flagged(bio, BIO_CLONED));
675
676
nr_sectors = bio_integrity_hw_sectors(bi, sectors);
677
bip->bip_sector = bip->bip_sector + offset;
678
bio_integrity_mark_head(bip, offset * bi->tuple_size);
679
bio_integrity_mark_tail(bip, sectors * bi->tuple_size);
680
}
681
EXPORT_SYMBOL(bio_integrity_trim);
682
683
/**
684
* bio_integrity_split - Split integrity metadata
685
* @bio: Protected bio
686
* @bp: Resulting bio_pair
687
* @sectors: Offset
688
*
689
* Description: Splits an integrity page into a bio_pair.
690
*/
691
void bio_integrity_split(struct bio *bio, struct bio_pair *bp, int sectors)
692
{
693
struct blk_integrity *bi;
694
struct bio_integrity_payload *bip = bio->bi_integrity;
695
unsigned int nr_sectors;
696
697
if (bio_integrity(bio) == 0)
698
return;
699
700
bi = bdev_get_integrity(bio->bi_bdev);
701
BUG_ON(bi == NULL);
702
BUG_ON(bip->bip_vcnt != 1);
703
704
nr_sectors = bio_integrity_hw_sectors(bi, sectors);
705
706
bp->bio1.bi_integrity = &bp->bip1;
707
bp->bio2.bi_integrity = &bp->bip2;
708
709
bp->iv1 = bip->bip_vec[0];
710
bp->iv2 = bip->bip_vec[0];
711
712
bp->bip1.bip_vec[0] = bp->iv1;
713
bp->bip2.bip_vec[0] = bp->iv2;
714
715
bp->iv1.bv_len = sectors * bi->tuple_size;
716
bp->iv2.bv_offset += sectors * bi->tuple_size;
717
bp->iv2.bv_len -= sectors * bi->tuple_size;
718
719
bp->bip1.bip_sector = bio->bi_integrity->bip_sector;
720
bp->bip2.bip_sector = bio->bi_integrity->bip_sector + nr_sectors;
721
722
bp->bip1.bip_vcnt = bp->bip2.bip_vcnt = 1;
723
bp->bip1.bip_idx = bp->bip2.bip_idx = 0;
724
}
725
EXPORT_SYMBOL(bio_integrity_split);
726
727
/**
728
* bio_integrity_clone - Callback for cloning bios with integrity metadata
729
* @bio: New bio
730
* @bio_src: Original bio
731
* @gfp_mask: Memory allocation mask
732
* @bs: bio_set to allocate bip from
733
*
734
* Description: Called to allocate a bip when cloning a bio
735
*/
736
int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
737
gfp_t gfp_mask, struct bio_set *bs)
738
{
739
struct bio_integrity_payload *bip_src = bio_src->bi_integrity;
740
struct bio_integrity_payload *bip;
741
742
BUG_ON(bip_src == NULL);
743
744
bip = bio_integrity_alloc_bioset(bio, gfp_mask, bip_src->bip_vcnt, bs);
745
746
if (bip == NULL)
747
return -EIO;
748
749
memcpy(bip->bip_vec, bip_src->bip_vec,
750
bip_src->bip_vcnt * sizeof(struct bio_vec));
751
752
bip->bip_sector = bip_src->bip_sector;
753
bip->bip_vcnt = bip_src->bip_vcnt;
754
bip->bip_idx = bip_src->bip_idx;
755
756
return 0;
757
}
758
EXPORT_SYMBOL(bio_integrity_clone);
759
760
int bioset_integrity_create(struct bio_set *bs, int pool_size)
761
{
762
unsigned int max_slab = vecs_to_idx(BIO_MAX_PAGES);
763
764
if (bs->bio_integrity_pool)
765
return 0;
766
767
bs->bio_integrity_pool =
768
mempool_create_slab_pool(pool_size, bip_slab[max_slab].slab);
769
770
if (!bs->bio_integrity_pool)
771
return -1;
772
773
return 0;
774
}
775
EXPORT_SYMBOL(bioset_integrity_create);
776
777
void bioset_integrity_free(struct bio_set *bs)
778
{
779
if (bs->bio_integrity_pool)
780
mempool_destroy(bs->bio_integrity_pool);
781
}
782
EXPORT_SYMBOL(bioset_integrity_free);
783
784
void __init bio_integrity_init(void)
785
{
786
unsigned int i;
787
788
/*
789
* kintegrityd won't block much but may burn a lot of CPU cycles.
790
* Make it highpri CPU intensive wq with max concurrency of 1.
791
*/
792
kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
793
WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
794
if (!kintegrityd_wq)
795
panic("Failed to create kintegrityd\n");
796
797
for (i = 0 ; i < BIOVEC_NR_POOLS ; i++) {
798
unsigned int size;
799
800
size = sizeof(struct bio_integrity_payload)
801
+ bip_slab[i].nr_vecs * sizeof(struct bio_vec);
802
803
bip_slab[i].slab =
804
kmem_cache_create(bip_slab[i].name, size, 0,
805
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
806
}
807
}
808
809