Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/bio.c
15109 views
1
/*
2
* Copyright (C) 2001 Jens Axboe <[email protected]>
3
*
4
* This program is free software; you can redistribute it and/or modify
5
* it under the terms of the GNU General Public License version 2 as
6
* published by the Free Software Foundation.
7
*
8
* This program is distributed in the hope that it will be useful,
9
* but WITHOUT ANY WARRANTY; without even the implied warranty of
10
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11
* GNU General Public License for more details.
12
*
13
* You should have received a copy of the GNU General Public Licens
14
* along with this program; if not, write to the Free Software
15
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16
*
17
*/
18
#include <linux/mm.h>
19
#include <linux/swap.h>
20
#include <linux/bio.h>
21
#include <linux/blkdev.h>
22
#include <linux/slab.h>
23
#include <linux/init.h>
24
#include <linux/kernel.h>
25
#include <linux/module.h>
26
#include <linux/mempool.h>
27
#include <linux/workqueue.h>
28
#include <scsi/sg.h> /* for struct sg_iovec */
29
30
#include <trace/events/block.h>
31
32
/*
33
* Test patch to inline a certain number of bi_io_vec's inside the bio
34
* itself, to shrink a bio data allocation from two mempool calls to one
35
*/
36
#define BIO_INLINE_VECS 4
37
38
static mempool_t *bio_split_pool __read_mostly;
39
40
/*
41
* if you change this list, also change bvec_alloc or things will
42
* break badly! cannot be bigger than what you can fit into an
43
* unsigned short
44
*/
45
#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46
static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47
BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48
};
49
#undef BV
50
51
/*
52
* fs_bio_set is the bio_set containing bio and iovec memory pools used by
53
* IO code that does not need private memory pools.
54
*/
55
struct bio_set *fs_bio_set;
56
57
/*
58
* Our slab pool management
59
*/
60
struct bio_slab {
61
struct kmem_cache *slab;
62
unsigned int slab_ref;
63
unsigned int slab_size;
64
char name[8];
65
};
66
static DEFINE_MUTEX(bio_slab_lock);
67
static struct bio_slab *bio_slabs;
68
static unsigned int bio_slab_nr, bio_slab_max;
69
70
static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
71
{
72
unsigned int sz = sizeof(struct bio) + extra_size;
73
struct kmem_cache *slab = NULL;
74
struct bio_slab *bslab;
75
unsigned int i, entry = -1;
76
77
mutex_lock(&bio_slab_lock);
78
79
i = 0;
80
while (i < bio_slab_nr) {
81
bslab = &bio_slabs[i];
82
83
if (!bslab->slab && entry == -1)
84
entry = i;
85
else if (bslab->slab_size == sz) {
86
slab = bslab->slab;
87
bslab->slab_ref++;
88
break;
89
}
90
i++;
91
}
92
93
if (slab)
94
goto out_unlock;
95
96
if (bio_slab_nr == bio_slab_max && entry == -1) {
97
bio_slab_max <<= 1;
98
bio_slabs = krealloc(bio_slabs,
99
bio_slab_max * sizeof(struct bio_slab),
100
GFP_KERNEL);
101
if (!bio_slabs)
102
goto out_unlock;
103
}
104
if (entry == -1)
105
entry = bio_slab_nr++;
106
107
bslab = &bio_slabs[entry];
108
109
snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
110
slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
111
if (!slab)
112
goto out_unlock;
113
114
printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
115
bslab->slab = slab;
116
bslab->slab_ref = 1;
117
bslab->slab_size = sz;
118
out_unlock:
119
mutex_unlock(&bio_slab_lock);
120
return slab;
121
}
122
123
static void bio_put_slab(struct bio_set *bs)
124
{
125
struct bio_slab *bslab = NULL;
126
unsigned int i;
127
128
mutex_lock(&bio_slab_lock);
129
130
for (i = 0; i < bio_slab_nr; i++) {
131
if (bs->bio_slab == bio_slabs[i].slab) {
132
bslab = &bio_slabs[i];
133
break;
134
}
135
}
136
137
if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
138
goto out;
139
140
WARN_ON(!bslab->slab_ref);
141
142
if (--bslab->slab_ref)
143
goto out;
144
145
kmem_cache_destroy(bslab->slab);
146
bslab->slab = NULL;
147
148
out:
149
mutex_unlock(&bio_slab_lock);
150
}
151
152
unsigned int bvec_nr_vecs(unsigned short idx)
153
{
154
return bvec_slabs[idx].nr_vecs;
155
}
156
157
void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
158
{
159
BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
160
161
if (idx == BIOVEC_MAX_IDX)
162
mempool_free(bv, bs->bvec_pool);
163
else {
164
struct biovec_slab *bvs = bvec_slabs + idx;
165
166
kmem_cache_free(bvs->slab, bv);
167
}
168
}
169
170
struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
171
struct bio_set *bs)
172
{
173
struct bio_vec *bvl;
174
175
/*
176
* see comment near bvec_array define!
177
*/
178
switch (nr) {
179
case 1:
180
*idx = 0;
181
break;
182
case 2 ... 4:
183
*idx = 1;
184
break;
185
case 5 ... 16:
186
*idx = 2;
187
break;
188
case 17 ... 64:
189
*idx = 3;
190
break;
191
case 65 ... 128:
192
*idx = 4;
193
break;
194
case 129 ... BIO_MAX_PAGES:
195
*idx = 5;
196
break;
197
default:
198
return NULL;
199
}
200
201
/*
202
* idx now points to the pool we want to allocate from. only the
203
* 1-vec entry pool is mempool backed.
204
*/
205
if (*idx == BIOVEC_MAX_IDX) {
206
fallback:
207
bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
208
} else {
209
struct biovec_slab *bvs = bvec_slabs + *idx;
210
gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
211
212
/*
213
* Make this allocation restricted and don't dump info on
214
* allocation failures, since we'll fallback to the mempool
215
* in case of failure.
216
*/
217
__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
218
219
/*
220
* Try a slab allocation. If this fails and __GFP_WAIT
221
* is set, retry with the 1-entry mempool
222
*/
223
bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224
if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
225
*idx = BIOVEC_MAX_IDX;
226
goto fallback;
227
}
228
}
229
230
return bvl;
231
}
232
233
void bio_free(struct bio *bio, struct bio_set *bs)
234
{
235
void *p;
236
237
if (bio_has_allocated_vec(bio))
238
bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
239
240
if (bio_integrity(bio))
241
bio_integrity_free(bio, bs);
242
243
/*
244
* If we have front padding, adjust the bio pointer before freeing
245
*/
246
p = bio;
247
if (bs->front_pad)
248
p -= bs->front_pad;
249
250
mempool_free(p, bs->bio_pool);
251
}
252
EXPORT_SYMBOL(bio_free);
253
254
void bio_init(struct bio *bio)
255
{
256
memset(bio, 0, sizeof(*bio));
257
bio->bi_flags = 1 << BIO_UPTODATE;
258
bio->bi_comp_cpu = -1;
259
atomic_set(&bio->bi_cnt, 1);
260
}
261
EXPORT_SYMBOL(bio_init);
262
263
/**
264
* bio_alloc_bioset - allocate a bio for I/O
265
* @gfp_mask: the GFP_ mask given to the slab allocator
266
* @nr_iovecs: number of iovecs to pre-allocate
267
* @bs: the bio_set to allocate from.
268
*
269
* Description:
270
* bio_alloc_bioset will try its own mempool to satisfy the allocation.
271
* If %__GFP_WAIT is set then we will block on the internal pool waiting
272
* for a &struct bio to become free.
273
*
274
* Note that the caller must set ->bi_destructor on successful return
275
* of a bio, to do the appropriate freeing of the bio once the reference
276
* count drops to zero.
277
**/
278
struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
279
{
280
unsigned long idx = BIO_POOL_NONE;
281
struct bio_vec *bvl = NULL;
282
struct bio *bio;
283
void *p;
284
285
p = mempool_alloc(bs->bio_pool, gfp_mask);
286
if (unlikely(!p))
287
return NULL;
288
bio = p + bs->front_pad;
289
290
bio_init(bio);
291
292
if (unlikely(!nr_iovecs))
293
goto out_set;
294
295
if (nr_iovecs <= BIO_INLINE_VECS) {
296
bvl = bio->bi_inline_vecs;
297
nr_iovecs = BIO_INLINE_VECS;
298
} else {
299
bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
300
if (unlikely(!bvl))
301
goto err_free;
302
303
nr_iovecs = bvec_nr_vecs(idx);
304
}
305
out_set:
306
bio->bi_flags |= idx << BIO_POOL_OFFSET;
307
bio->bi_max_vecs = nr_iovecs;
308
bio->bi_io_vec = bvl;
309
return bio;
310
311
err_free:
312
mempool_free(p, bs->bio_pool);
313
return NULL;
314
}
315
EXPORT_SYMBOL(bio_alloc_bioset);
316
317
static void bio_fs_destructor(struct bio *bio)
318
{
319
bio_free(bio, fs_bio_set);
320
}
321
322
/**
323
* bio_alloc - allocate a new bio, memory pool backed
324
* @gfp_mask: allocation mask to use
325
* @nr_iovecs: number of iovecs
326
*
327
* bio_alloc will allocate a bio and associated bio_vec array that can hold
328
* at least @nr_iovecs entries. Allocations will be done from the
329
* fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
330
*
331
* If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
332
* a bio. This is due to the mempool guarantees. To make this work, callers
333
* must never allocate more than 1 bio at a time from this pool. Callers
334
* that need to allocate more than 1 bio must always submit the previously
335
* allocated bio for IO before attempting to allocate a new one. Failure to
336
* do so can cause livelocks under memory pressure.
337
*
338
* RETURNS:
339
* Pointer to new bio on success, NULL on failure.
340
*/
341
struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
342
{
343
struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
344
345
if (bio)
346
bio->bi_destructor = bio_fs_destructor;
347
348
return bio;
349
}
350
EXPORT_SYMBOL(bio_alloc);
351
352
static void bio_kmalloc_destructor(struct bio *bio)
353
{
354
if (bio_integrity(bio))
355
bio_integrity_free(bio, fs_bio_set);
356
kfree(bio);
357
}
358
359
/**
360
* bio_kmalloc - allocate a bio for I/O using kmalloc()
361
* @gfp_mask: the GFP_ mask given to the slab allocator
362
* @nr_iovecs: number of iovecs to pre-allocate
363
*
364
* Description:
365
* Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
366
* %__GFP_WAIT, the allocation is guaranteed to succeed.
367
*
368
**/
369
struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
370
{
371
struct bio *bio;
372
373
if (nr_iovecs > UIO_MAXIOV)
374
return NULL;
375
376
bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
377
gfp_mask);
378
if (unlikely(!bio))
379
return NULL;
380
381
bio_init(bio);
382
bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
383
bio->bi_max_vecs = nr_iovecs;
384
bio->bi_io_vec = bio->bi_inline_vecs;
385
bio->bi_destructor = bio_kmalloc_destructor;
386
387
return bio;
388
}
389
EXPORT_SYMBOL(bio_kmalloc);
390
391
void zero_fill_bio(struct bio *bio)
392
{
393
unsigned long flags;
394
struct bio_vec *bv;
395
int i;
396
397
bio_for_each_segment(bv, bio, i) {
398
char *data = bvec_kmap_irq(bv, &flags);
399
memset(data, 0, bv->bv_len);
400
flush_dcache_page(bv->bv_page);
401
bvec_kunmap_irq(data, &flags);
402
}
403
}
404
EXPORT_SYMBOL(zero_fill_bio);
405
406
/**
407
* bio_put - release a reference to a bio
408
* @bio: bio to release reference to
409
*
410
* Description:
411
* Put a reference to a &struct bio, either one you have gotten with
412
* bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
413
**/
414
void bio_put(struct bio *bio)
415
{
416
BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
417
418
/*
419
* last put frees it
420
*/
421
if (atomic_dec_and_test(&bio->bi_cnt)) {
422
bio->bi_next = NULL;
423
bio->bi_destructor(bio);
424
}
425
}
426
EXPORT_SYMBOL(bio_put);
427
428
inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
429
{
430
if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
431
blk_recount_segments(q, bio);
432
433
return bio->bi_phys_segments;
434
}
435
EXPORT_SYMBOL(bio_phys_segments);
436
437
/**
438
* __bio_clone - clone a bio
439
* @bio: destination bio
440
* @bio_src: bio to clone
441
*
442
* Clone a &bio. Caller will own the returned bio, but not
443
* the actual data it points to. Reference count of returned
444
* bio will be one.
445
*/
446
void __bio_clone(struct bio *bio, struct bio *bio_src)
447
{
448
memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
449
bio_src->bi_max_vecs * sizeof(struct bio_vec));
450
451
/*
452
* most users will be overriding ->bi_bdev with a new target,
453
* so we don't set nor calculate new physical/hw segment counts here
454
*/
455
bio->bi_sector = bio_src->bi_sector;
456
bio->bi_bdev = bio_src->bi_bdev;
457
bio->bi_flags |= 1 << BIO_CLONED;
458
bio->bi_rw = bio_src->bi_rw;
459
bio->bi_vcnt = bio_src->bi_vcnt;
460
bio->bi_size = bio_src->bi_size;
461
bio->bi_idx = bio_src->bi_idx;
462
}
463
EXPORT_SYMBOL(__bio_clone);
464
465
/**
466
* bio_clone - clone a bio
467
* @bio: bio to clone
468
* @gfp_mask: allocation priority
469
*
470
* Like __bio_clone, only also allocates the returned bio
471
*/
472
struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
473
{
474
struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
475
476
if (!b)
477
return NULL;
478
479
b->bi_destructor = bio_fs_destructor;
480
__bio_clone(b, bio);
481
482
if (bio_integrity(bio)) {
483
int ret;
484
485
ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
486
487
if (ret < 0) {
488
bio_put(b);
489
return NULL;
490
}
491
}
492
493
return b;
494
}
495
EXPORT_SYMBOL(bio_clone);
496
497
/**
498
* bio_get_nr_vecs - return approx number of vecs
499
* @bdev: I/O target
500
*
501
* Return the approximate number of pages we can send to this target.
502
* There's no guarantee that you will be able to fit this number of pages
503
* into a bio, it does not account for dynamic restrictions that vary
504
* on offset.
505
*/
506
int bio_get_nr_vecs(struct block_device *bdev)
507
{
508
struct request_queue *q = bdev_get_queue(bdev);
509
int nr_pages;
510
511
nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
512
if (nr_pages > queue_max_segments(q))
513
nr_pages = queue_max_segments(q);
514
515
return nr_pages;
516
}
517
EXPORT_SYMBOL(bio_get_nr_vecs);
518
519
static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
520
*page, unsigned int len, unsigned int offset,
521
unsigned short max_sectors)
522
{
523
int retried_segments = 0;
524
struct bio_vec *bvec;
525
526
/*
527
* cloned bio must not modify vec list
528
*/
529
if (unlikely(bio_flagged(bio, BIO_CLONED)))
530
return 0;
531
532
if (((bio->bi_size + len) >> 9) > max_sectors)
533
return 0;
534
535
/*
536
* For filesystems with a blocksize smaller than the pagesize
537
* we will often be called with the same page as last time and
538
* a consecutive offset. Optimize this special case.
539
*/
540
if (bio->bi_vcnt > 0) {
541
struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
542
543
if (page == prev->bv_page &&
544
offset == prev->bv_offset + prev->bv_len) {
545
unsigned int prev_bv_len = prev->bv_len;
546
prev->bv_len += len;
547
548
if (q->merge_bvec_fn) {
549
struct bvec_merge_data bvm = {
550
/* prev_bvec is already charged in
551
bi_size, discharge it in order to
552
simulate merging updated prev_bvec
553
as new bvec. */
554
.bi_bdev = bio->bi_bdev,
555
.bi_sector = bio->bi_sector,
556
.bi_size = bio->bi_size - prev_bv_len,
557
.bi_rw = bio->bi_rw,
558
};
559
560
if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
561
prev->bv_len -= len;
562
return 0;
563
}
564
}
565
566
goto done;
567
}
568
}
569
570
if (bio->bi_vcnt >= bio->bi_max_vecs)
571
return 0;
572
573
/*
574
* we might lose a segment or two here, but rather that than
575
* make this too complex.
576
*/
577
578
while (bio->bi_phys_segments >= queue_max_segments(q)) {
579
580
if (retried_segments)
581
return 0;
582
583
retried_segments = 1;
584
blk_recount_segments(q, bio);
585
}
586
587
/*
588
* setup the new entry, we might clear it again later if we
589
* cannot add the page
590
*/
591
bvec = &bio->bi_io_vec[bio->bi_vcnt];
592
bvec->bv_page = page;
593
bvec->bv_len = len;
594
bvec->bv_offset = offset;
595
596
/*
597
* if queue has other restrictions (eg varying max sector size
598
* depending on offset), it can specify a merge_bvec_fn in the
599
* queue to get further control
600
*/
601
if (q->merge_bvec_fn) {
602
struct bvec_merge_data bvm = {
603
.bi_bdev = bio->bi_bdev,
604
.bi_sector = bio->bi_sector,
605
.bi_size = bio->bi_size,
606
.bi_rw = bio->bi_rw,
607
};
608
609
/*
610
* merge_bvec_fn() returns number of bytes it can accept
611
* at this offset
612
*/
613
if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
614
bvec->bv_page = NULL;
615
bvec->bv_len = 0;
616
bvec->bv_offset = 0;
617
return 0;
618
}
619
}
620
621
/* If we may be able to merge these biovecs, force a recount */
622
if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
623
bio->bi_flags &= ~(1 << BIO_SEG_VALID);
624
625
bio->bi_vcnt++;
626
bio->bi_phys_segments++;
627
done:
628
bio->bi_size += len;
629
return len;
630
}
631
632
/**
633
* bio_add_pc_page - attempt to add page to bio
634
* @q: the target queue
635
* @bio: destination bio
636
* @page: page to add
637
* @len: vec entry length
638
* @offset: vec entry offset
639
*
640
* Attempt to add a page to the bio_vec maplist. This can fail for a
641
* number of reasons, such as the bio being full or target block device
642
* limitations. The target block device must allow bio's up to PAGE_SIZE,
643
* so it is always possible to add a single page to an empty bio.
644
*
645
* This should only be used by REQ_PC bios.
646
*/
647
int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
648
unsigned int len, unsigned int offset)
649
{
650
return __bio_add_page(q, bio, page, len, offset,
651
queue_max_hw_sectors(q));
652
}
653
EXPORT_SYMBOL(bio_add_pc_page);
654
655
/**
656
* bio_add_page - attempt to add page to bio
657
* @bio: destination bio
658
* @page: page to add
659
* @len: vec entry length
660
* @offset: vec entry offset
661
*
662
* Attempt to add a page to the bio_vec maplist. This can fail for a
663
* number of reasons, such as the bio being full or target block device
664
* limitations. The target block device must allow bio's up to PAGE_SIZE,
665
* so it is always possible to add a single page to an empty bio.
666
*/
667
int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
668
unsigned int offset)
669
{
670
struct request_queue *q = bdev_get_queue(bio->bi_bdev);
671
return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
672
}
673
EXPORT_SYMBOL(bio_add_page);
674
675
struct bio_map_data {
676
struct bio_vec *iovecs;
677
struct sg_iovec *sgvecs;
678
int nr_sgvecs;
679
int is_our_pages;
680
};
681
682
static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
683
struct sg_iovec *iov, int iov_count,
684
int is_our_pages)
685
{
686
memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
687
memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
688
bmd->nr_sgvecs = iov_count;
689
bmd->is_our_pages = is_our_pages;
690
bio->bi_private = bmd;
691
}
692
693
static void bio_free_map_data(struct bio_map_data *bmd)
694
{
695
kfree(bmd->iovecs);
696
kfree(bmd->sgvecs);
697
kfree(bmd);
698
}
699
700
static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
701
gfp_t gfp_mask)
702
{
703
struct bio_map_data *bmd;
704
705
if (iov_count > UIO_MAXIOV)
706
return NULL;
707
708
bmd = kmalloc(sizeof(*bmd), gfp_mask);
709
if (!bmd)
710
return NULL;
711
712
bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
713
if (!bmd->iovecs) {
714
kfree(bmd);
715
return NULL;
716
}
717
718
bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
719
if (bmd->sgvecs)
720
return bmd;
721
722
kfree(bmd->iovecs);
723
kfree(bmd);
724
return NULL;
725
}
726
727
static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
728
struct sg_iovec *iov, int iov_count,
729
int to_user, int from_user, int do_free_page)
730
{
731
int ret = 0, i;
732
struct bio_vec *bvec;
733
int iov_idx = 0;
734
unsigned int iov_off = 0;
735
736
__bio_for_each_segment(bvec, bio, i, 0) {
737
char *bv_addr = page_address(bvec->bv_page);
738
unsigned int bv_len = iovecs[i].bv_len;
739
740
while (bv_len && iov_idx < iov_count) {
741
unsigned int bytes;
742
char __user *iov_addr;
743
744
bytes = min_t(unsigned int,
745
iov[iov_idx].iov_len - iov_off, bv_len);
746
iov_addr = iov[iov_idx].iov_base + iov_off;
747
748
if (!ret) {
749
if (to_user)
750
ret = copy_to_user(iov_addr, bv_addr,
751
bytes);
752
753
if (from_user)
754
ret = copy_from_user(bv_addr, iov_addr,
755
bytes);
756
757
if (ret)
758
ret = -EFAULT;
759
}
760
761
bv_len -= bytes;
762
bv_addr += bytes;
763
iov_addr += bytes;
764
iov_off += bytes;
765
766
if (iov[iov_idx].iov_len == iov_off) {
767
iov_idx++;
768
iov_off = 0;
769
}
770
}
771
772
if (do_free_page)
773
__free_page(bvec->bv_page);
774
}
775
776
return ret;
777
}
778
779
/**
780
* bio_uncopy_user - finish previously mapped bio
781
* @bio: bio being terminated
782
*
783
* Free pages allocated from bio_copy_user() and write back data
784
* to user space in case of a read.
785
*/
786
int bio_uncopy_user(struct bio *bio)
787
{
788
struct bio_map_data *bmd = bio->bi_private;
789
int ret = 0;
790
791
if (!bio_flagged(bio, BIO_NULL_MAPPED))
792
ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
793
bmd->nr_sgvecs, bio_data_dir(bio) == READ,
794
0, bmd->is_our_pages);
795
bio_free_map_data(bmd);
796
bio_put(bio);
797
return ret;
798
}
799
EXPORT_SYMBOL(bio_uncopy_user);
800
801
/**
802
* bio_copy_user_iov - copy user data to bio
803
* @q: destination block queue
804
* @map_data: pointer to the rq_map_data holding pages (if necessary)
805
* @iov: the iovec.
806
* @iov_count: number of elements in the iovec
807
* @write_to_vm: bool indicating writing to pages or not
808
* @gfp_mask: memory allocation flags
809
*
810
* Prepares and returns a bio for indirect user io, bouncing data
811
* to/from kernel pages as necessary. Must be paired with
812
* call bio_uncopy_user() on io completion.
813
*/
814
struct bio *bio_copy_user_iov(struct request_queue *q,
815
struct rq_map_data *map_data,
816
struct sg_iovec *iov, int iov_count,
817
int write_to_vm, gfp_t gfp_mask)
818
{
819
struct bio_map_data *bmd;
820
struct bio_vec *bvec;
821
struct page *page;
822
struct bio *bio;
823
int i, ret;
824
int nr_pages = 0;
825
unsigned int len = 0;
826
unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
827
828
for (i = 0; i < iov_count; i++) {
829
unsigned long uaddr;
830
unsigned long end;
831
unsigned long start;
832
833
uaddr = (unsigned long)iov[i].iov_base;
834
end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
835
start = uaddr >> PAGE_SHIFT;
836
837
/*
838
* Overflow, abort
839
*/
840
if (end < start)
841
return ERR_PTR(-EINVAL);
842
843
nr_pages += end - start;
844
len += iov[i].iov_len;
845
}
846
847
if (offset)
848
nr_pages++;
849
850
bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
851
if (!bmd)
852
return ERR_PTR(-ENOMEM);
853
854
ret = -ENOMEM;
855
bio = bio_kmalloc(gfp_mask, nr_pages);
856
if (!bio)
857
goto out_bmd;
858
859
if (!write_to_vm)
860
bio->bi_rw |= REQ_WRITE;
861
862
ret = 0;
863
864
if (map_data) {
865
nr_pages = 1 << map_data->page_order;
866
i = map_data->offset / PAGE_SIZE;
867
}
868
while (len) {
869
unsigned int bytes = PAGE_SIZE;
870
871
bytes -= offset;
872
873
if (bytes > len)
874
bytes = len;
875
876
if (map_data) {
877
if (i == map_data->nr_entries * nr_pages) {
878
ret = -ENOMEM;
879
break;
880
}
881
882
page = map_data->pages[i / nr_pages];
883
page += (i % nr_pages);
884
885
i++;
886
} else {
887
page = alloc_page(q->bounce_gfp | gfp_mask);
888
if (!page) {
889
ret = -ENOMEM;
890
break;
891
}
892
}
893
894
if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
895
break;
896
897
len -= bytes;
898
offset = 0;
899
}
900
901
if (ret)
902
goto cleanup;
903
904
/*
905
* success
906
*/
907
if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
908
(map_data && map_data->from_user)) {
909
ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
910
if (ret)
911
goto cleanup;
912
}
913
914
bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
915
return bio;
916
cleanup:
917
if (!map_data)
918
bio_for_each_segment(bvec, bio, i)
919
__free_page(bvec->bv_page);
920
921
bio_put(bio);
922
out_bmd:
923
bio_free_map_data(bmd);
924
return ERR_PTR(ret);
925
}
926
927
/**
928
* bio_copy_user - copy user data to bio
929
* @q: destination block queue
930
* @map_data: pointer to the rq_map_data holding pages (if necessary)
931
* @uaddr: start of user address
932
* @len: length in bytes
933
* @write_to_vm: bool indicating writing to pages or not
934
* @gfp_mask: memory allocation flags
935
*
936
* Prepares and returns a bio for indirect user io, bouncing data
937
* to/from kernel pages as necessary. Must be paired with
938
* call bio_uncopy_user() on io completion.
939
*/
940
struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
941
unsigned long uaddr, unsigned int len,
942
int write_to_vm, gfp_t gfp_mask)
943
{
944
struct sg_iovec iov;
945
946
iov.iov_base = (void __user *)uaddr;
947
iov.iov_len = len;
948
949
return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
950
}
951
EXPORT_SYMBOL(bio_copy_user);
952
953
static struct bio *__bio_map_user_iov(struct request_queue *q,
954
struct block_device *bdev,
955
struct sg_iovec *iov, int iov_count,
956
int write_to_vm, gfp_t gfp_mask)
957
{
958
int i, j;
959
int nr_pages = 0;
960
struct page **pages;
961
struct bio *bio;
962
int cur_page = 0;
963
int ret, offset;
964
965
for (i = 0; i < iov_count; i++) {
966
unsigned long uaddr = (unsigned long)iov[i].iov_base;
967
unsigned long len = iov[i].iov_len;
968
unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
969
unsigned long start = uaddr >> PAGE_SHIFT;
970
971
/*
972
* Overflow, abort
973
*/
974
if (end < start)
975
return ERR_PTR(-EINVAL);
976
977
nr_pages += end - start;
978
/*
979
* buffer must be aligned to at least hardsector size for now
980
*/
981
if (uaddr & queue_dma_alignment(q))
982
return ERR_PTR(-EINVAL);
983
}
984
985
if (!nr_pages)
986
return ERR_PTR(-EINVAL);
987
988
bio = bio_kmalloc(gfp_mask, nr_pages);
989
if (!bio)
990
return ERR_PTR(-ENOMEM);
991
992
ret = -ENOMEM;
993
pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
994
if (!pages)
995
goto out;
996
997
for (i = 0; i < iov_count; i++) {
998
unsigned long uaddr = (unsigned long)iov[i].iov_base;
999
unsigned long len = iov[i].iov_len;
1000
unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1001
unsigned long start = uaddr >> PAGE_SHIFT;
1002
const int local_nr_pages = end - start;
1003
const int page_limit = cur_page + local_nr_pages;
1004
1005
ret = get_user_pages_fast(uaddr, local_nr_pages,
1006
write_to_vm, &pages[cur_page]);
1007
if (ret < local_nr_pages) {
1008
ret = -EFAULT;
1009
goto out_unmap;
1010
}
1011
1012
offset = uaddr & ~PAGE_MASK;
1013
for (j = cur_page; j < page_limit; j++) {
1014
unsigned int bytes = PAGE_SIZE - offset;
1015
1016
if (len <= 0)
1017
break;
1018
1019
if (bytes > len)
1020
bytes = len;
1021
1022
/*
1023
* sorry...
1024
*/
1025
if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1026
bytes)
1027
break;
1028
1029
len -= bytes;
1030
offset = 0;
1031
}
1032
1033
cur_page = j;
1034
/*
1035
* release the pages we didn't map into the bio, if any
1036
*/
1037
while (j < page_limit)
1038
page_cache_release(pages[j++]);
1039
}
1040
1041
kfree(pages);
1042
1043
/*
1044
* set data direction, and check if mapped pages need bouncing
1045
*/
1046
if (!write_to_vm)
1047
bio->bi_rw |= REQ_WRITE;
1048
1049
bio->bi_bdev = bdev;
1050
bio->bi_flags |= (1 << BIO_USER_MAPPED);
1051
return bio;
1052
1053
out_unmap:
1054
for (i = 0; i < nr_pages; i++) {
1055
if(!pages[i])
1056
break;
1057
page_cache_release(pages[i]);
1058
}
1059
out:
1060
kfree(pages);
1061
bio_put(bio);
1062
return ERR_PTR(ret);
1063
}
1064
1065
/**
1066
* bio_map_user - map user address into bio
1067
* @q: the struct request_queue for the bio
1068
* @bdev: destination block device
1069
* @uaddr: start of user address
1070
* @len: length in bytes
1071
* @write_to_vm: bool indicating writing to pages or not
1072
* @gfp_mask: memory allocation flags
1073
*
1074
* Map the user space address into a bio suitable for io to a block
1075
* device. Returns an error pointer in case of error.
1076
*/
1077
struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1078
unsigned long uaddr, unsigned int len, int write_to_vm,
1079
gfp_t gfp_mask)
1080
{
1081
struct sg_iovec iov;
1082
1083
iov.iov_base = (void __user *)uaddr;
1084
iov.iov_len = len;
1085
1086
return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1087
}
1088
EXPORT_SYMBOL(bio_map_user);
1089
1090
/**
1091
* bio_map_user_iov - map user sg_iovec table into bio
1092
* @q: the struct request_queue for the bio
1093
* @bdev: destination block device
1094
* @iov: the iovec.
1095
* @iov_count: number of elements in the iovec
1096
* @write_to_vm: bool indicating writing to pages or not
1097
* @gfp_mask: memory allocation flags
1098
*
1099
* Map the user space address into a bio suitable for io to a block
1100
* device. Returns an error pointer in case of error.
1101
*/
1102
struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1103
struct sg_iovec *iov, int iov_count,
1104
int write_to_vm, gfp_t gfp_mask)
1105
{
1106
struct bio *bio;
1107
1108
bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1109
gfp_mask);
1110
if (IS_ERR(bio))
1111
return bio;
1112
1113
/*
1114
* subtle -- if __bio_map_user() ended up bouncing a bio,
1115
* it would normally disappear when its bi_end_io is run.
1116
* however, we need it for the unmap, so grab an extra
1117
* reference to it
1118
*/
1119
bio_get(bio);
1120
1121
return bio;
1122
}
1123
1124
static void __bio_unmap_user(struct bio *bio)
1125
{
1126
struct bio_vec *bvec;
1127
int i;
1128
1129
/*
1130
* make sure we dirty pages we wrote to
1131
*/
1132
__bio_for_each_segment(bvec, bio, i, 0) {
1133
if (bio_data_dir(bio) == READ)
1134
set_page_dirty_lock(bvec->bv_page);
1135
1136
page_cache_release(bvec->bv_page);
1137
}
1138
1139
bio_put(bio);
1140
}
1141
1142
/**
1143
* bio_unmap_user - unmap a bio
1144
* @bio: the bio being unmapped
1145
*
1146
* Unmap a bio previously mapped by bio_map_user(). Must be called with
1147
* a process context.
1148
*
1149
* bio_unmap_user() may sleep.
1150
*/
1151
void bio_unmap_user(struct bio *bio)
1152
{
1153
__bio_unmap_user(bio);
1154
bio_put(bio);
1155
}
1156
EXPORT_SYMBOL(bio_unmap_user);
1157
1158
static void bio_map_kern_endio(struct bio *bio, int err)
1159
{
1160
bio_put(bio);
1161
}
1162
1163
static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1164
unsigned int len, gfp_t gfp_mask)
1165
{
1166
unsigned long kaddr = (unsigned long)data;
1167
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1168
unsigned long start = kaddr >> PAGE_SHIFT;
1169
const int nr_pages = end - start;
1170
int offset, i;
1171
struct bio *bio;
1172
1173
bio = bio_kmalloc(gfp_mask, nr_pages);
1174
if (!bio)
1175
return ERR_PTR(-ENOMEM);
1176
1177
offset = offset_in_page(kaddr);
1178
for (i = 0; i < nr_pages; i++) {
1179
unsigned int bytes = PAGE_SIZE - offset;
1180
1181
if (len <= 0)
1182
break;
1183
1184
if (bytes > len)
1185
bytes = len;
1186
1187
if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1188
offset) < bytes)
1189
break;
1190
1191
data += bytes;
1192
len -= bytes;
1193
offset = 0;
1194
}
1195
1196
bio->bi_end_io = bio_map_kern_endio;
1197
return bio;
1198
}
1199
1200
/**
1201
* bio_map_kern - map kernel address into bio
1202
* @q: the struct request_queue for the bio
1203
* @data: pointer to buffer to map
1204
* @len: length in bytes
1205
* @gfp_mask: allocation flags for bio allocation
1206
*
1207
* Map the kernel address into a bio suitable for io to a block
1208
* device. Returns an error pointer in case of error.
1209
*/
1210
struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1211
gfp_t gfp_mask)
1212
{
1213
struct bio *bio;
1214
1215
bio = __bio_map_kern(q, data, len, gfp_mask);
1216
if (IS_ERR(bio))
1217
return bio;
1218
1219
if (bio->bi_size == len)
1220
return bio;
1221
1222
/*
1223
* Don't support partial mappings.
1224
*/
1225
bio_put(bio);
1226
return ERR_PTR(-EINVAL);
1227
}
1228
EXPORT_SYMBOL(bio_map_kern);
1229
1230
static void bio_copy_kern_endio(struct bio *bio, int err)
1231
{
1232
struct bio_vec *bvec;
1233
const int read = bio_data_dir(bio) == READ;
1234
struct bio_map_data *bmd = bio->bi_private;
1235
int i;
1236
char *p = bmd->sgvecs[0].iov_base;
1237
1238
__bio_for_each_segment(bvec, bio, i, 0) {
1239
char *addr = page_address(bvec->bv_page);
1240
int len = bmd->iovecs[i].bv_len;
1241
1242
if (read)
1243
memcpy(p, addr, len);
1244
1245
__free_page(bvec->bv_page);
1246
p += len;
1247
}
1248
1249
bio_free_map_data(bmd);
1250
bio_put(bio);
1251
}
1252
1253
/**
1254
* bio_copy_kern - copy kernel address into bio
1255
* @q: the struct request_queue for the bio
1256
* @data: pointer to buffer to copy
1257
* @len: length in bytes
1258
* @gfp_mask: allocation flags for bio and page allocation
1259
* @reading: data direction is READ
1260
*
1261
* copy the kernel address into a bio suitable for io to a block
1262
* device. Returns an error pointer in case of error.
1263
*/
1264
struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1265
gfp_t gfp_mask, int reading)
1266
{
1267
struct bio *bio;
1268
struct bio_vec *bvec;
1269
int i;
1270
1271
bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1272
if (IS_ERR(bio))
1273
return bio;
1274
1275
if (!reading) {
1276
void *p = data;
1277
1278
bio_for_each_segment(bvec, bio, i) {
1279
char *addr = page_address(bvec->bv_page);
1280
1281
memcpy(addr, p, bvec->bv_len);
1282
p += bvec->bv_len;
1283
}
1284
}
1285
1286
bio->bi_end_io = bio_copy_kern_endio;
1287
1288
return bio;
1289
}
1290
EXPORT_SYMBOL(bio_copy_kern);
1291
1292
/*
1293
* bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1294
* for performing direct-IO in BIOs.
1295
*
1296
* The problem is that we cannot run set_page_dirty() from interrupt context
1297
* because the required locks are not interrupt-safe. So what we can do is to
1298
* mark the pages dirty _before_ performing IO. And in interrupt context,
1299
* check that the pages are still dirty. If so, fine. If not, redirty them
1300
* in process context.
1301
*
1302
* We special-case compound pages here: normally this means reads into hugetlb
1303
* pages. The logic in here doesn't really work right for compound pages
1304
* because the VM does not uniformly chase down the head page in all cases.
1305
* But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1306
* handle them at all. So we skip compound pages here at an early stage.
1307
*
1308
* Note that this code is very hard to test under normal circumstances because
1309
* direct-io pins the pages with get_user_pages(). This makes
1310
* is_page_cache_freeable return false, and the VM will not clean the pages.
1311
* But other code (eg, pdflush) could clean the pages if they are mapped
1312
* pagecache.
1313
*
1314
* Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1315
* deferred bio dirtying paths.
1316
*/
1317
1318
/*
1319
* bio_set_pages_dirty() will mark all the bio's pages as dirty.
1320
*/
1321
void bio_set_pages_dirty(struct bio *bio)
1322
{
1323
struct bio_vec *bvec = bio->bi_io_vec;
1324
int i;
1325
1326
for (i = 0; i < bio->bi_vcnt; i++) {
1327
struct page *page = bvec[i].bv_page;
1328
1329
if (page && !PageCompound(page))
1330
set_page_dirty_lock(page);
1331
}
1332
}
1333
1334
static void bio_release_pages(struct bio *bio)
1335
{
1336
struct bio_vec *bvec = bio->bi_io_vec;
1337
int i;
1338
1339
for (i = 0; i < bio->bi_vcnt; i++) {
1340
struct page *page = bvec[i].bv_page;
1341
1342
if (page)
1343
put_page(page);
1344
}
1345
}
1346
1347
/*
1348
* bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1349
* If they are, then fine. If, however, some pages are clean then they must
1350
* have been written out during the direct-IO read. So we take another ref on
1351
* the BIO and the offending pages and re-dirty the pages in process context.
1352
*
1353
* It is expected that bio_check_pages_dirty() will wholly own the BIO from
1354
* here on. It will run one page_cache_release() against each page and will
1355
* run one bio_put() against the BIO.
1356
*/
1357
1358
static void bio_dirty_fn(struct work_struct *work);
1359
1360
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1361
static DEFINE_SPINLOCK(bio_dirty_lock);
1362
static struct bio *bio_dirty_list;
1363
1364
/*
1365
* This runs in process context
1366
*/
1367
static void bio_dirty_fn(struct work_struct *work)
1368
{
1369
unsigned long flags;
1370
struct bio *bio;
1371
1372
spin_lock_irqsave(&bio_dirty_lock, flags);
1373
bio = bio_dirty_list;
1374
bio_dirty_list = NULL;
1375
spin_unlock_irqrestore(&bio_dirty_lock, flags);
1376
1377
while (bio) {
1378
struct bio *next = bio->bi_private;
1379
1380
bio_set_pages_dirty(bio);
1381
bio_release_pages(bio);
1382
bio_put(bio);
1383
bio = next;
1384
}
1385
}
1386
1387
void bio_check_pages_dirty(struct bio *bio)
1388
{
1389
struct bio_vec *bvec = bio->bi_io_vec;
1390
int nr_clean_pages = 0;
1391
int i;
1392
1393
for (i = 0; i < bio->bi_vcnt; i++) {
1394
struct page *page = bvec[i].bv_page;
1395
1396
if (PageDirty(page) || PageCompound(page)) {
1397
page_cache_release(page);
1398
bvec[i].bv_page = NULL;
1399
} else {
1400
nr_clean_pages++;
1401
}
1402
}
1403
1404
if (nr_clean_pages) {
1405
unsigned long flags;
1406
1407
spin_lock_irqsave(&bio_dirty_lock, flags);
1408
bio->bi_private = bio_dirty_list;
1409
bio_dirty_list = bio;
1410
spin_unlock_irqrestore(&bio_dirty_lock, flags);
1411
schedule_work(&bio_dirty_work);
1412
} else {
1413
bio_put(bio);
1414
}
1415
}
1416
1417
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1418
void bio_flush_dcache_pages(struct bio *bi)
1419
{
1420
int i;
1421
struct bio_vec *bvec;
1422
1423
bio_for_each_segment(bvec, bi, i)
1424
flush_dcache_page(bvec->bv_page);
1425
}
1426
EXPORT_SYMBOL(bio_flush_dcache_pages);
1427
#endif
1428
1429
/**
1430
* bio_endio - end I/O on a bio
1431
* @bio: bio
1432
* @error: error, if any
1433
*
1434
* Description:
1435
* bio_endio() will end I/O on the whole bio. bio_endio() is the
1436
* preferred way to end I/O on a bio, it takes care of clearing
1437
* BIO_UPTODATE on error. @error is 0 on success, and and one of the
1438
* established -Exxxx (-EIO, for instance) error values in case
1439
* something went wrong. No one should call bi_end_io() directly on a
1440
* bio unless they own it and thus know that it has an end_io
1441
* function.
1442
**/
1443
void bio_endio(struct bio *bio, int error)
1444
{
1445
if (error)
1446
clear_bit(BIO_UPTODATE, &bio->bi_flags);
1447
else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1448
error = -EIO;
1449
1450
if (bio->bi_end_io)
1451
bio->bi_end_io(bio, error);
1452
}
1453
EXPORT_SYMBOL(bio_endio);
1454
1455
void bio_pair_release(struct bio_pair *bp)
1456
{
1457
if (atomic_dec_and_test(&bp->cnt)) {
1458
struct bio *master = bp->bio1.bi_private;
1459
1460
bio_endio(master, bp->error);
1461
mempool_free(bp, bp->bio2.bi_private);
1462
}
1463
}
1464
EXPORT_SYMBOL(bio_pair_release);
1465
1466
static void bio_pair_end_1(struct bio *bi, int err)
1467
{
1468
struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1469
1470
if (err)
1471
bp->error = err;
1472
1473
bio_pair_release(bp);
1474
}
1475
1476
static void bio_pair_end_2(struct bio *bi, int err)
1477
{
1478
struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1479
1480
if (err)
1481
bp->error = err;
1482
1483
bio_pair_release(bp);
1484
}
1485
1486
/*
1487
* split a bio - only worry about a bio with a single page in its iovec
1488
*/
1489
struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1490
{
1491
struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1492
1493
if (!bp)
1494
return bp;
1495
1496
trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1497
bi->bi_sector + first_sectors);
1498
1499
BUG_ON(bi->bi_vcnt != 1);
1500
BUG_ON(bi->bi_idx != 0);
1501
atomic_set(&bp->cnt, 3);
1502
bp->error = 0;
1503
bp->bio1 = *bi;
1504
bp->bio2 = *bi;
1505
bp->bio2.bi_sector += first_sectors;
1506
bp->bio2.bi_size -= first_sectors << 9;
1507
bp->bio1.bi_size = first_sectors << 9;
1508
1509
bp->bv1 = bi->bi_io_vec[0];
1510
bp->bv2 = bi->bi_io_vec[0];
1511
bp->bv2.bv_offset += first_sectors << 9;
1512
bp->bv2.bv_len -= first_sectors << 9;
1513
bp->bv1.bv_len = first_sectors << 9;
1514
1515
bp->bio1.bi_io_vec = &bp->bv1;
1516
bp->bio2.bi_io_vec = &bp->bv2;
1517
1518
bp->bio1.bi_max_vecs = 1;
1519
bp->bio2.bi_max_vecs = 1;
1520
1521
bp->bio1.bi_end_io = bio_pair_end_1;
1522
bp->bio2.bi_end_io = bio_pair_end_2;
1523
1524
bp->bio1.bi_private = bi;
1525
bp->bio2.bi_private = bio_split_pool;
1526
1527
if (bio_integrity(bi))
1528
bio_integrity_split(bi, bp, first_sectors);
1529
1530
return bp;
1531
}
1532
EXPORT_SYMBOL(bio_split);
1533
1534
/**
1535
* bio_sector_offset - Find hardware sector offset in bio
1536
* @bio: bio to inspect
1537
* @index: bio_vec index
1538
* @offset: offset in bv_page
1539
*
1540
* Return the number of hardware sectors between beginning of bio
1541
* and an end point indicated by a bio_vec index and an offset
1542
* within that vector's page.
1543
*/
1544
sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1545
unsigned int offset)
1546
{
1547
unsigned int sector_sz;
1548
struct bio_vec *bv;
1549
sector_t sectors;
1550
int i;
1551
1552
sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1553
sectors = 0;
1554
1555
if (index >= bio->bi_idx)
1556
index = bio->bi_vcnt - 1;
1557
1558
__bio_for_each_segment(bv, bio, i, 0) {
1559
if (i == index) {
1560
if (offset > bv->bv_offset)
1561
sectors += (offset - bv->bv_offset) / sector_sz;
1562
break;
1563
}
1564
1565
sectors += bv->bv_len / sector_sz;
1566
}
1567
1568
return sectors;
1569
}
1570
EXPORT_SYMBOL(bio_sector_offset);
1571
1572
/*
1573
* create memory pools for biovec's in a bio_set.
1574
* use the global biovec slabs created for general use.
1575
*/
1576
static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1577
{
1578
struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1579
1580
bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1581
if (!bs->bvec_pool)
1582
return -ENOMEM;
1583
1584
return 0;
1585
}
1586
1587
static void biovec_free_pools(struct bio_set *bs)
1588
{
1589
mempool_destroy(bs->bvec_pool);
1590
}
1591
1592
void bioset_free(struct bio_set *bs)
1593
{
1594
if (bs->bio_pool)
1595
mempool_destroy(bs->bio_pool);
1596
1597
bioset_integrity_free(bs);
1598
biovec_free_pools(bs);
1599
bio_put_slab(bs);
1600
1601
kfree(bs);
1602
}
1603
EXPORT_SYMBOL(bioset_free);
1604
1605
/**
1606
* bioset_create - Create a bio_set
1607
* @pool_size: Number of bio and bio_vecs to cache in the mempool
1608
* @front_pad: Number of bytes to allocate in front of the returned bio
1609
*
1610
* Description:
1611
* Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1612
* to ask for a number of bytes to be allocated in front of the bio.
1613
* Front pad allocation is useful for embedding the bio inside
1614
* another structure, to avoid allocating extra data to go with the bio.
1615
* Note that the bio must be embedded at the END of that structure always,
1616
* or things will break badly.
1617
*/
1618
struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1619
{
1620
unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1621
struct bio_set *bs;
1622
1623
bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1624
if (!bs)
1625
return NULL;
1626
1627
bs->front_pad = front_pad;
1628
1629
bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1630
if (!bs->bio_slab) {
1631
kfree(bs);
1632
return NULL;
1633
}
1634
1635
bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1636
if (!bs->bio_pool)
1637
goto bad;
1638
1639
if (!biovec_create_pools(bs, pool_size))
1640
return bs;
1641
1642
bad:
1643
bioset_free(bs);
1644
return NULL;
1645
}
1646
EXPORT_SYMBOL(bioset_create);
1647
1648
static void __init biovec_init_slabs(void)
1649
{
1650
int i;
1651
1652
for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1653
int size;
1654
struct biovec_slab *bvs = bvec_slabs + i;
1655
1656
if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1657
bvs->slab = NULL;
1658
continue;
1659
}
1660
1661
size = bvs->nr_vecs * sizeof(struct bio_vec);
1662
bvs->slab = kmem_cache_create(bvs->name, size, 0,
1663
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1664
}
1665
}
1666
1667
static int __init init_bio(void)
1668
{
1669
bio_slab_max = 2;
1670
bio_slab_nr = 0;
1671
bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1672
if (!bio_slabs)
1673
panic("bio: can't allocate bios\n");
1674
1675
bio_integrity_init();
1676
biovec_init_slabs();
1677
1678
fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1679
if (!fs_bio_set)
1680
panic("bio: can't allocate bios\n");
1681
1682
if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1683
panic("bio: can't create integrity pool\n");
1684
1685
bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1686
sizeof(struct bio_pair));
1687
if (!bio_split_pool)
1688
panic("bio: can't create split pool\n");
1689
1690
return 0;
1691
}
1692
subsys_initcall(init_bio);
1693
1694