Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/btrfs/compression.c
15111 views
1
/*
2
* Copyright (C) 2008 Oracle. All rights reserved.
3
*
4
* This program is free software; you can redistribute it and/or
5
* modify it under the terms of the GNU General Public
6
* License v2 as published by the Free Software Foundation.
7
*
8
* This program is distributed in the hope that it will be useful,
9
* but WITHOUT ANY WARRANTY; without even the implied warranty of
10
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11
* General Public License for more details.
12
*
13
* You should have received a copy of the GNU General Public
14
* License along with this program; if not, write to the
15
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16
* Boston, MA 021110-1307, USA.
17
*/
18
19
#include <linux/kernel.h>
20
#include <linux/bio.h>
21
#include <linux/buffer_head.h>
22
#include <linux/file.h>
23
#include <linux/fs.h>
24
#include <linux/pagemap.h>
25
#include <linux/highmem.h>
26
#include <linux/time.h>
27
#include <linux/init.h>
28
#include <linux/string.h>
29
#include <linux/backing-dev.h>
30
#include <linux/mpage.h>
31
#include <linux/swap.h>
32
#include <linux/writeback.h>
33
#include <linux/bit_spinlock.h>
34
#include <linux/slab.h>
35
#include "compat.h"
36
#include "ctree.h"
37
#include "disk-io.h"
38
#include "transaction.h"
39
#include "btrfs_inode.h"
40
#include "volumes.h"
41
#include "ordered-data.h"
42
#include "compression.h"
43
#include "extent_io.h"
44
#include "extent_map.h"
45
46
struct compressed_bio {
47
/* number of bios pending for this compressed extent */
48
atomic_t pending_bios;
49
50
/* the pages with the compressed data on them */
51
struct page **compressed_pages;
52
53
/* inode that owns this data */
54
struct inode *inode;
55
56
/* starting offset in the inode for our pages */
57
u64 start;
58
59
/* number of bytes in the inode we're working on */
60
unsigned long len;
61
62
/* number of bytes on disk */
63
unsigned long compressed_len;
64
65
/* the compression algorithm for this bio */
66
int compress_type;
67
68
/* number of compressed pages in the array */
69
unsigned long nr_pages;
70
71
/* IO errors */
72
int errors;
73
int mirror_num;
74
75
/* for reads, this is the bio we are copying the data into */
76
struct bio *orig_bio;
77
78
/*
79
* the start of a variable length array of checksums only
80
* used by reads
81
*/
82
u32 sums;
83
};
84
85
static inline int compressed_bio_size(struct btrfs_root *root,
86
unsigned long disk_size)
87
{
88
u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
89
return sizeof(struct compressed_bio) +
90
((disk_size + root->sectorsize - 1) / root->sectorsize) *
91
csum_size;
92
}
93
94
static struct bio *compressed_bio_alloc(struct block_device *bdev,
95
u64 first_byte, gfp_t gfp_flags)
96
{
97
int nr_vecs;
98
99
nr_vecs = bio_get_nr_vecs(bdev);
100
return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
101
}
102
103
static int check_compressed_csum(struct inode *inode,
104
struct compressed_bio *cb,
105
u64 disk_start)
106
{
107
int ret;
108
struct btrfs_root *root = BTRFS_I(inode)->root;
109
struct page *page;
110
unsigned long i;
111
char *kaddr;
112
u32 csum;
113
u32 *cb_sum = &cb->sums;
114
115
if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
116
return 0;
117
118
for (i = 0; i < cb->nr_pages; i++) {
119
page = cb->compressed_pages[i];
120
csum = ~(u32)0;
121
122
kaddr = kmap_atomic(page, KM_USER0);
123
csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
124
btrfs_csum_final(csum, (char *)&csum);
125
kunmap_atomic(kaddr, KM_USER0);
126
127
if (csum != *cb_sum) {
128
printk(KERN_INFO "btrfs csum failed ino %llu "
129
"extent %llu csum %u "
130
"wanted %u mirror %d\n",
131
(unsigned long long)btrfs_ino(inode),
132
(unsigned long long)disk_start,
133
csum, *cb_sum, cb->mirror_num);
134
ret = -EIO;
135
goto fail;
136
}
137
cb_sum++;
138
139
}
140
ret = 0;
141
fail:
142
return ret;
143
}
144
145
/* when we finish reading compressed pages from the disk, we
146
* decompress them and then run the bio end_io routines on the
147
* decompressed pages (in the inode address space).
148
*
149
* This allows the checksumming and other IO error handling routines
150
* to work normally
151
*
152
* The compressed pages are freed here, and it must be run
153
* in process context
154
*/
155
static void end_compressed_bio_read(struct bio *bio, int err)
156
{
157
struct compressed_bio *cb = bio->bi_private;
158
struct inode *inode;
159
struct page *page;
160
unsigned long index;
161
int ret;
162
163
if (err)
164
cb->errors = 1;
165
166
/* if there are more bios still pending for this compressed
167
* extent, just exit
168
*/
169
if (!atomic_dec_and_test(&cb->pending_bios))
170
goto out;
171
172
inode = cb->inode;
173
ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
174
if (ret)
175
goto csum_failed;
176
177
/* ok, we're the last bio for this extent, lets start
178
* the decompression.
179
*/
180
ret = btrfs_decompress_biovec(cb->compress_type,
181
cb->compressed_pages,
182
cb->start,
183
cb->orig_bio->bi_io_vec,
184
cb->orig_bio->bi_vcnt,
185
cb->compressed_len);
186
csum_failed:
187
if (ret)
188
cb->errors = 1;
189
190
/* release the compressed pages */
191
index = 0;
192
for (index = 0; index < cb->nr_pages; index++) {
193
page = cb->compressed_pages[index];
194
page->mapping = NULL;
195
page_cache_release(page);
196
}
197
198
/* do io completion on the original bio */
199
if (cb->errors) {
200
bio_io_error(cb->orig_bio);
201
} else {
202
int bio_index = 0;
203
struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
204
205
/*
206
* we have verified the checksum already, set page
207
* checked so the end_io handlers know about it
208
*/
209
while (bio_index < cb->orig_bio->bi_vcnt) {
210
SetPageChecked(bvec->bv_page);
211
bvec++;
212
bio_index++;
213
}
214
bio_endio(cb->orig_bio, 0);
215
}
216
217
/* finally free the cb struct */
218
kfree(cb->compressed_pages);
219
kfree(cb);
220
out:
221
bio_put(bio);
222
}
223
224
/*
225
* Clear the writeback bits on all of the file
226
* pages for a compressed write
227
*/
228
static noinline int end_compressed_writeback(struct inode *inode, u64 start,
229
unsigned long ram_size)
230
{
231
unsigned long index = start >> PAGE_CACHE_SHIFT;
232
unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
233
struct page *pages[16];
234
unsigned long nr_pages = end_index - index + 1;
235
int i;
236
int ret;
237
238
while (nr_pages > 0) {
239
ret = find_get_pages_contig(inode->i_mapping, index,
240
min_t(unsigned long,
241
nr_pages, ARRAY_SIZE(pages)), pages);
242
if (ret == 0) {
243
nr_pages -= 1;
244
index += 1;
245
continue;
246
}
247
for (i = 0; i < ret; i++) {
248
end_page_writeback(pages[i]);
249
page_cache_release(pages[i]);
250
}
251
nr_pages -= ret;
252
index += ret;
253
}
254
/* the inode may be gone now */
255
return 0;
256
}
257
258
/*
259
* do the cleanup once all the compressed pages hit the disk.
260
* This will clear writeback on the file pages and free the compressed
261
* pages.
262
*
263
* This also calls the writeback end hooks for the file pages so that
264
* metadata and checksums can be updated in the file.
265
*/
266
static void end_compressed_bio_write(struct bio *bio, int err)
267
{
268
struct extent_io_tree *tree;
269
struct compressed_bio *cb = bio->bi_private;
270
struct inode *inode;
271
struct page *page;
272
unsigned long index;
273
274
if (err)
275
cb->errors = 1;
276
277
/* if there are more bios still pending for this compressed
278
* extent, just exit
279
*/
280
if (!atomic_dec_and_test(&cb->pending_bios))
281
goto out;
282
283
/* ok, we're the last bio for this extent, step one is to
284
* call back into the FS and do all the end_io operations
285
*/
286
inode = cb->inode;
287
tree = &BTRFS_I(inode)->io_tree;
288
cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289
tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290
cb->start,
291
cb->start + cb->len - 1,
292
NULL, 1);
293
cb->compressed_pages[0]->mapping = NULL;
294
295
end_compressed_writeback(inode, cb->start, cb->len);
296
/* note, our inode could be gone now */
297
298
/*
299
* release the compressed pages, these came from alloc_page and
300
* are not attached to the inode at all
301
*/
302
index = 0;
303
for (index = 0; index < cb->nr_pages; index++) {
304
page = cb->compressed_pages[index];
305
page->mapping = NULL;
306
page_cache_release(page);
307
}
308
309
/* finally free the cb struct */
310
kfree(cb->compressed_pages);
311
kfree(cb);
312
out:
313
bio_put(bio);
314
}
315
316
/*
317
* worker function to build and submit bios for previously compressed pages.
318
* The corresponding pages in the inode should be marked for writeback
319
* and the compressed pages should have a reference on them for dropping
320
* when the IO is complete.
321
*
322
* This also checksums the file bytes and gets things ready for
323
* the end io hooks.
324
*/
325
int btrfs_submit_compressed_write(struct inode *inode, u64 start,
326
unsigned long len, u64 disk_start,
327
unsigned long compressed_len,
328
struct page **compressed_pages,
329
unsigned long nr_pages)
330
{
331
struct bio *bio = NULL;
332
struct btrfs_root *root = BTRFS_I(inode)->root;
333
struct compressed_bio *cb;
334
unsigned long bytes_left;
335
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
336
int pg_index = 0;
337
struct page *page;
338
u64 first_byte = disk_start;
339
struct block_device *bdev;
340
int ret;
341
342
WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
343
cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
344
if (!cb)
345
return -ENOMEM;
346
atomic_set(&cb->pending_bios, 0);
347
cb->errors = 0;
348
cb->inode = inode;
349
cb->start = start;
350
cb->len = len;
351
cb->mirror_num = 0;
352
cb->compressed_pages = compressed_pages;
353
cb->compressed_len = compressed_len;
354
cb->orig_bio = NULL;
355
cb->nr_pages = nr_pages;
356
357
bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
358
359
bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
360
if(!bio) {
361
kfree(cb);
362
return -ENOMEM;
363
}
364
bio->bi_private = cb;
365
bio->bi_end_io = end_compressed_bio_write;
366
atomic_inc(&cb->pending_bios);
367
368
/* create and submit bios for the compressed pages */
369
bytes_left = compressed_len;
370
for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
371
page = compressed_pages[pg_index];
372
page->mapping = inode->i_mapping;
373
if (bio->bi_size)
374
ret = io_tree->ops->merge_bio_hook(page, 0,
375
PAGE_CACHE_SIZE,
376
bio, 0);
377
else
378
ret = 0;
379
380
page->mapping = NULL;
381
if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
382
PAGE_CACHE_SIZE) {
383
bio_get(bio);
384
385
/*
386
* inc the count before we submit the bio so
387
* we know the end IO handler won't happen before
388
* we inc the count. Otherwise, the cb might get
389
* freed before we're done setting it up
390
*/
391
atomic_inc(&cb->pending_bios);
392
ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
393
BUG_ON(ret);
394
395
ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
396
BUG_ON(ret);
397
398
ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
399
BUG_ON(ret);
400
401
bio_put(bio);
402
403
bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
404
bio->bi_private = cb;
405
bio->bi_end_io = end_compressed_bio_write;
406
bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
407
}
408
if (bytes_left < PAGE_CACHE_SIZE) {
409
printk("bytes left %lu compress len %lu nr %lu\n",
410
bytes_left, cb->compressed_len, cb->nr_pages);
411
}
412
bytes_left -= PAGE_CACHE_SIZE;
413
first_byte += PAGE_CACHE_SIZE;
414
cond_resched();
415
}
416
bio_get(bio);
417
418
ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
419
BUG_ON(ret);
420
421
ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
422
BUG_ON(ret);
423
424
ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
425
BUG_ON(ret);
426
427
bio_put(bio);
428
return 0;
429
}
430
431
static noinline int add_ra_bio_pages(struct inode *inode,
432
u64 compressed_end,
433
struct compressed_bio *cb)
434
{
435
unsigned long end_index;
436
unsigned long pg_index;
437
u64 last_offset;
438
u64 isize = i_size_read(inode);
439
int ret;
440
struct page *page;
441
unsigned long nr_pages = 0;
442
struct extent_map *em;
443
struct address_space *mapping = inode->i_mapping;
444
struct extent_map_tree *em_tree;
445
struct extent_io_tree *tree;
446
u64 end;
447
int misses = 0;
448
449
page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
450
last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
451
em_tree = &BTRFS_I(inode)->extent_tree;
452
tree = &BTRFS_I(inode)->io_tree;
453
454
if (isize == 0)
455
return 0;
456
457
end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
458
459
while (last_offset < compressed_end) {
460
pg_index = last_offset >> PAGE_CACHE_SHIFT;
461
462
if (pg_index > end_index)
463
break;
464
465
rcu_read_lock();
466
page = radix_tree_lookup(&mapping->page_tree, pg_index);
467
rcu_read_unlock();
468
if (page) {
469
misses++;
470
if (misses > 4)
471
break;
472
goto next;
473
}
474
475
page = __page_cache_alloc(mapping_gfp_mask(mapping) &
476
~__GFP_FS);
477
if (!page)
478
break;
479
480
if (add_to_page_cache_lru(page, mapping, pg_index,
481
GFP_NOFS)) {
482
page_cache_release(page);
483
goto next;
484
}
485
486
end = last_offset + PAGE_CACHE_SIZE - 1;
487
/*
488
* at this point, we have a locked page in the page cache
489
* for these bytes in the file. But, we have to make
490
* sure they map to this compressed extent on disk.
491
*/
492
set_page_extent_mapped(page);
493
lock_extent(tree, last_offset, end, GFP_NOFS);
494
read_lock(&em_tree->lock);
495
em = lookup_extent_mapping(em_tree, last_offset,
496
PAGE_CACHE_SIZE);
497
read_unlock(&em_tree->lock);
498
499
if (!em || last_offset < em->start ||
500
(last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
501
(em->block_start >> 9) != cb->orig_bio->bi_sector) {
502
free_extent_map(em);
503
unlock_extent(tree, last_offset, end, GFP_NOFS);
504
unlock_page(page);
505
page_cache_release(page);
506
break;
507
}
508
free_extent_map(em);
509
510
if (page->index == end_index) {
511
char *userpage;
512
size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
513
514
if (zero_offset) {
515
int zeros;
516
zeros = PAGE_CACHE_SIZE - zero_offset;
517
userpage = kmap_atomic(page, KM_USER0);
518
memset(userpage + zero_offset, 0, zeros);
519
flush_dcache_page(page);
520
kunmap_atomic(userpage, KM_USER0);
521
}
522
}
523
524
ret = bio_add_page(cb->orig_bio, page,
525
PAGE_CACHE_SIZE, 0);
526
527
if (ret == PAGE_CACHE_SIZE) {
528
nr_pages++;
529
page_cache_release(page);
530
} else {
531
unlock_extent(tree, last_offset, end, GFP_NOFS);
532
unlock_page(page);
533
page_cache_release(page);
534
break;
535
}
536
next:
537
last_offset += PAGE_CACHE_SIZE;
538
}
539
return 0;
540
}
541
542
/*
543
* for a compressed read, the bio we get passed has all the inode pages
544
* in it. We don't actually do IO on those pages but allocate new ones
545
* to hold the compressed pages on disk.
546
*
547
* bio->bi_sector points to the compressed extent on disk
548
* bio->bi_io_vec points to all of the inode pages
549
* bio->bi_vcnt is a count of pages
550
*
551
* After the compressed pages are read, we copy the bytes into the
552
* bio we were passed and then call the bio end_io calls
553
*/
554
int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
555
int mirror_num, unsigned long bio_flags)
556
{
557
struct extent_io_tree *tree;
558
struct extent_map_tree *em_tree;
559
struct compressed_bio *cb;
560
struct btrfs_root *root = BTRFS_I(inode)->root;
561
unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
562
unsigned long compressed_len;
563
unsigned long nr_pages;
564
unsigned long pg_index;
565
struct page *page;
566
struct block_device *bdev;
567
struct bio *comp_bio;
568
u64 cur_disk_byte = (u64)bio->bi_sector << 9;
569
u64 em_len;
570
u64 em_start;
571
struct extent_map *em;
572
int ret = -ENOMEM;
573
u32 *sums;
574
575
tree = &BTRFS_I(inode)->io_tree;
576
em_tree = &BTRFS_I(inode)->extent_tree;
577
578
/* we need the actual starting offset of this extent in the file */
579
read_lock(&em_tree->lock);
580
em = lookup_extent_mapping(em_tree,
581
page_offset(bio->bi_io_vec->bv_page),
582
PAGE_CACHE_SIZE);
583
read_unlock(&em_tree->lock);
584
585
compressed_len = em->block_len;
586
cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
587
if (!cb)
588
goto out;
589
590
atomic_set(&cb->pending_bios, 0);
591
cb->errors = 0;
592
cb->inode = inode;
593
cb->mirror_num = mirror_num;
594
sums = &cb->sums;
595
596
cb->start = em->orig_start;
597
em_len = em->len;
598
em_start = em->start;
599
600
free_extent_map(em);
601
em = NULL;
602
603
cb->len = uncompressed_len;
604
cb->compressed_len = compressed_len;
605
cb->compress_type = extent_compress_type(bio_flags);
606
cb->orig_bio = bio;
607
608
nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
609
PAGE_CACHE_SIZE;
610
cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
611
GFP_NOFS);
612
if (!cb->compressed_pages)
613
goto fail1;
614
615
bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
616
617
for (pg_index = 0; pg_index < nr_pages; pg_index++) {
618
cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
619
__GFP_HIGHMEM);
620
if (!cb->compressed_pages[pg_index])
621
goto fail2;
622
}
623
cb->nr_pages = nr_pages;
624
625
add_ra_bio_pages(inode, em_start + em_len, cb);
626
627
/* include any pages we added in add_ra-bio_pages */
628
uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
629
cb->len = uncompressed_len;
630
631
comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
632
if (!comp_bio)
633
goto fail2;
634
comp_bio->bi_private = cb;
635
comp_bio->bi_end_io = end_compressed_bio_read;
636
atomic_inc(&cb->pending_bios);
637
638
for (pg_index = 0; pg_index < nr_pages; pg_index++) {
639
page = cb->compressed_pages[pg_index];
640
page->mapping = inode->i_mapping;
641
page->index = em_start >> PAGE_CACHE_SHIFT;
642
643
if (comp_bio->bi_size)
644
ret = tree->ops->merge_bio_hook(page, 0,
645
PAGE_CACHE_SIZE,
646
comp_bio, 0);
647
else
648
ret = 0;
649
650
page->mapping = NULL;
651
if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
652
PAGE_CACHE_SIZE) {
653
bio_get(comp_bio);
654
655
ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
656
BUG_ON(ret);
657
658
/*
659
* inc the count before we submit the bio so
660
* we know the end IO handler won't happen before
661
* we inc the count. Otherwise, the cb might get
662
* freed before we're done setting it up
663
*/
664
atomic_inc(&cb->pending_bios);
665
666
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
667
ret = btrfs_lookup_bio_sums(root, inode,
668
comp_bio, sums);
669
BUG_ON(ret);
670
}
671
sums += (comp_bio->bi_size + root->sectorsize - 1) /
672
root->sectorsize;
673
674
ret = btrfs_map_bio(root, READ, comp_bio,
675
mirror_num, 0);
676
BUG_ON(ret);
677
678
bio_put(comp_bio);
679
680
comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
681
GFP_NOFS);
682
comp_bio->bi_private = cb;
683
comp_bio->bi_end_io = end_compressed_bio_read;
684
685
bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
686
}
687
cur_disk_byte += PAGE_CACHE_SIZE;
688
}
689
bio_get(comp_bio);
690
691
ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
692
BUG_ON(ret);
693
694
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
695
ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
696
BUG_ON(ret);
697
}
698
699
ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
700
BUG_ON(ret);
701
702
bio_put(comp_bio);
703
return 0;
704
705
fail2:
706
for (pg_index = 0; pg_index < nr_pages; pg_index++)
707
free_page((unsigned long)cb->compressed_pages[pg_index]);
708
709
kfree(cb->compressed_pages);
710
fail1:
711
kfree(cb);
712
out:
713
free_extent_map(em);
714
return ret;
715
}
716
717
static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
718
static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
719
static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
720
static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
721
static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
722
723
struct btrfs_compress_op *btrfs_compress_op[] = {
724
&btrfs_zlib_compress,
725
&btrfs_lzo_compress,
726
};
727
728
int __init btrfs_init_compress(void)
729
{
730
int i;
731
732
for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
733
INIT_LIST_HEAD(&comp_idle_workspace[i]);
734
spin_lock_init(&comp_workspace_lock[i]);
735
atomic_set(&comp_alloc_workspace[i], 0);
736
init_waitqueue_head(&comp_workspace_wait[i]);
737
}
738
return 0;
739
}
740
741
/*
742
* this finds an available workspace or allocates a new one
743
* ERR_PTR is returned if things go bad.
744
*/
745
static struct list_head *find_workspace(int type)
746
{
747
struct list_head *workspace;
748
int cpus = num_online_cpus();
749
int idx = type - 1;
750
751
struct list_head *idle_workspace = &comp_idle_workspace[idx];
752
spinlock_t *workspace_lock = &comp_workspace_lock[idx];
753
atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
754
wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
755
int *num_workspace = &comp_num_workspace[idx];
756
again:
757
spin_lock(workspace_lock);
758
if (!list_empty(idle_workspace)) {
759
workspace = idle_workspace->next;
760
list_del(workspace);
761
(*num_workspace)--;
762
spin_unlock(workspace_lock);
763
return workspace;
764
765
}
766
if (atomic_read(alloc_workspace) > cpus) {
767
DEFINE_WAIT(wait);
768
769
spin_unlock(workspace_lock);
770
prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
771
if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
772
schedule();
773
finish_wait(workspace_wait, &wait);
774
goto again;
775
}
776
atomic_inc(alloc_workspace);
777
spin_unlock(workspace_lock);
778
779
workspace = btrfs_compress_op[idx]->alloc_workspace();
780
if (IS_ERR(workspace)) {
781
atomic_dec(alloc_workspace);
782
wake_up(workspace_wait);
783
}
784
return workspace;
785
}
786
787
/*
788
* put a workspace struct back on the list or free it if we have enough
789
* idle ones sitting around
790
*/
791
static void free_workspace(int type, struct list_head *workspace)
792
{
793
int idx = type - 1;
794
struct list_head *idle_workspace = &comp_idle_workspace[idx];
795
spinlock_t *workspace_lock = &comp_workspace_lock[idx];
796
atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
797
wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
798
int *num_workspace = &comp_num_workspace[idx];
799
800
spin_lock(workspace_lock);
801
if (*num_workspace < num_online_cpus()) {
802
list_add_tail(workspace, idle_workspace);
803
(*num_workspace)++;
804
spin_unlock(workspace_lock);
805
goto wake;
806
}
807
spin_unlock(workspace_lock);
808
809
btrfs_compress_op[idx]->free_workspace(workspace);
810
atomic_dec(alloc_workspace);
811
wake:
812
if (waitqueue_active(workspace_wait))
813
wake_up(workspace_wait);
814
}
815
816
/*
817
* cleanup function for module exit
818
*/
819
static void free_workspaces(void)
820
{
821
struct list_head *workspace;
822
int i;
823
824
for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
825
while (!list_empty(&comp_idle_workspace[i])) {
826
workspace = comp_idle_workspace[i].next;
827
list_del(workspace);
828
btrfs_compress_op[i]->free_workspace(workspace);
829
atomic_dec(&comp_alloc_workspace[i]);
830
}
831
}
832
}
833
834
/*
835
* given an address space and start/len, compress the bytes.
836
*
837
* pages are allocated to hold the compressed result and stored
838
* in 'pages'
839
*
840
* out_pages is used to return the number of pages allocated. There
841
* may be pages allocated even if we return an error
842
*
843
* total_in is used to return the number of bytes actually read. It
844
* may be smaller then len if we had to exit early because we
845
* ran out of room in the pages array or because we cross the
846
* max_out threshold.
847
*
848
* total_out is used to return the total number of compressed bytes
849
*
850
* max_out tells us the max number of bytes that we're allowed to
851
* stuff into pages
852
*/
853
int btrfs_compress_pages(int type, struct address_space *mapping,
854
u64 start, unsigned long len,
855
struct page **pages,
856
unsigned long nr_dest_pages,
857
unsigned long *out_pages,
858
unsigned long *total_in,
859
unsigned long *total_out,
860
unsigned long max_out)
861
{
862
struct list_head *workspace;
863
int ret;
864
865
workspace = find_workspace(type);
866
if (IS_ERR(workspace))
867
return -1;
868
869
ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
870
start, len, pages,
871
nr_dest_pages, out_pages,
872
total_in, total_out,
873
max_out);
874
free_workspace(type, workspace);
875
return ret;
876
}
877
878
/*
879
* pages_in is an array of pages with compressed data.
880
*
881
* disk_start is the starting logical offset of this array in the file
882
*
883
* bvec is a bio_vec of pages from the file that we want to decompress into
884
*
885
* vcnt is the count of pages in the biovec
886
*
887
* srclen is the number of bytes in pages_in
888
*
889
* The basic idea is that we have a bio that was created by readpages.
890
* The pages in the bio are for the uncompressed data, and they may not
891
* be contiguous. They all correspond to the range of bytes covered by
892
* the compressed extent.
893
*/
894
int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
895
struct bio_vec *bvec, int vcnt, size_t srclen)
896
{
897
struct list_head *workspace;
898
int ret;
899
900
workspace = find_workspace(type);
901
if (IS_ERR(workspace))
902
return -ENOMEM;
903
904
ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
905
disk_start,
906
bvec, vcnt, srclen);
907
free_workspace(type, workspace);
908
return ret;
909
}
910
911
/*
912
* a less complex decompression routine. Our compressed data fits in a
913
* single page, and we want to read a single page out of it.
914
* start_byte tells us the offset into the compressed data we're interested in
915
*/
916
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
917
unsigned long start_byte, size_t srclen, size_t destlen)
918
{
919
struct list_head *workspace;
920
int ret;
921
922
workspace = find_workspace(type);
923
if (IS_ERR(workspace))
924
return -ENOMEM;
925
926
ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
927
dest_page, start_byte,
928
srclen, destlen);
929
930
free_workspace(type, workspace);
931
return ret;
932
}
933
934
void btrfs_exit_compress(void)
935
{
936
free_workspaces();
937
}
938
939
/*
940
* Copy uncompressed data from working buffer to pages.
941
*
942
* buf_start is the byte offset we're of the start of our workspace buffer.
943
*
944
* total_out is the last byte of the buffer
945
*/
946
int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
947
unsigned long total_out, u64 disk_start,
948
struct bio_vec *bvec, int vcnt,
949
unsigned long *pg_index,
950
unsigned long *pg_offset)
951
{
952
unsigned long buf_offset;
953
unsigned long current_buf_start;
954
unsigned long start_byte;
955
unsigned long working_bytes = total_out - buf_start;
956
unsigned long bytes;
957
char *kaddr;
958
struct page *page_out = bvec[*pg_index].bv_page;
959
960
/*
961
* start byte is the first byte of the page we're currently
962
* copying into relative to the start of the compressed data.
963
*/
964
start_byte = page_offset(page_out) - disk_start;
965
966
/* we haven't yet hit data corresponding to this page */
967
if (total_out <= start_byte)
968
return 1;
969
970
/*
971
* the start of the data we care about is offset into
972
* the middle of our working buffer
973
*/
974
if (total_out > start_byte && buf_start < start_byte) {
975
buf_offset = start_byte - buf_start;
976
working_bytes -= buf_offset;
977
} else {
978
buf_offset = 0;
979
}
980
current_buf_start = buf_start;
981
982
/* copy bytes from the working buffer into the pages */
983
while (working_bytes > 0) {
984
bytes = min(PAGE_CACHE_SIZE - *pg_offset,
985
PAGE_CACHE_SIZE - buf_offset);
986
bytes = min(bytes, working_bytes);
987
kaddr = kmap_atomic(page_out, KM_USER0);
988
memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
989
kunmap_atomic(kaddr, KM_USER0);
990
flush_dcache_page(page_out);
991
992
*pg_offset += bytes;
993
buf_offset += bytes;
994
working_bytes -= bytes;
995
current_buf_start += bytes;
996
997
/* check if we need to pick another page */
998
if (*pg_offset == PAGE_CACHE_SIZE) {
999
(*pg_index)++;
1000
if (*pg_index >= vcnt)
1001
return 0;
1002
1003
page_out = bvec[*pg_index].bv_page;
1004
*pg_offset = 0;
1005
start_byte = page_offset(page_out) - disk_start;
1006
1007
/*
1008
* make sure our new page is covered by this
1009
* working buffer
1010
*/
1011
if (total_out <= start_byte)
1012
return 1;
1013
1014
/*
1015
* the next page in the biovec might not be adjacent
1016
* to the last page, but it might still be found
1017
* inside this working buffer. bump our offset pointer
1018
*/
1019
if (total_out > start_byte &&
1020
current_buf_start < start_byte) {
1021
buf_offset = start_byte - buf_start;
1022
working_bytes = total_out - start_byte;
1023
current_buf_start = buf_start + buf_offset;
1024
}
1025
}
1026
}
1027
1028
return 1;
1029
}
1030
1031