Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/btrfs/disk-io.c
15109 views
1
/*
2
* Copyright (C) 2007 Oracle. All rights reserved.
3
*
4
* This program is free software; you can redistribute it and/or
5
* modify it under the terms of the GNU General Public
6
* License v2 as published by the Free Software Foundation.
7
*
8
* This program is distributed in the hope that it will be useful,
9
* but WITHOUT ANY WARRANTY; without even the implied warranty of
10
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11
* General Public License for more details.
12
*
13
* You should have received a copy of the GNU General Public
14
* License along with this program; if not, write to the
15
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16
* Boston, MA 021110-1307, USA.
17
*/
18
19
#include <linux/fs.h>
20
#include <linux/blkdev.h>
21
#include <linux/scatterlist.h>
22
#include <linux/swap.h>
23
#include <linux/radix-tree.h>
24
#include <linux/writeback.h>
25
#include <linux/buffer_head.h>
26
#include <linux/workqueue.h>
27
#include <linux/kthread.h>
28
#include <linux/freezer.h>
29
#include <linux/crc32c.h>
30
#include <linux/slab.h>
31
#include <linux/migrate.h>
32
#include <linux/ratelimit.h>
33
#include <asm/unaligned.h>
34
#include "compat.h"
35
#include "ctree.h"
36
#include "disk-io.h"
37
#include "transaction.h"
38
#include "btrfs_inode.h"
39
#include "volumes.h"
40
#include "print-tree.h"
41
#include "async-thread.h"
42
#include "locking.h"
43
#include "tree-log.h"
44
#include "free-space-cache.h"
45
#include "inode-map.h"
46
47
static struct extent_io_ops btree_extent_io_ops;
48
static void end_workqueue_fn(struct btrfs_work *work);
49
static void free_fs_root(struct btrfs_root *root);
50
static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
51
int read_only);
52
static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
53
static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
54
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55
struct btrfs_root *root);
56
static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
57
static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58
static int btrfs_destroy_marked_extents(struct btrfs_root *root,
59
struct extent_io_tree *dirty_pages,
60
int mark);
61
static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
62
struct extent_io_tree *pinned_extents);
63
static int btrfs_cleanup_transaction(struct btrfs_root *root);
64
65
/*
66
* end_io_wq structs are used to do processing in task context when an IO is
67
* complete. This is used during reads to verify checksums, and it is used
68
* by writes to insert metadata for new file extents after IO is complete.
69
*/
70
struct end_io_wq {
71
struct bio *bio;
72
bio_end_io_t *end_io;
73
void *private;
74
struct btrfs_fs_info *info;
75
int error;
76
int metadata;
77
struct list_head list;
78
struct btrfs_work work;
79
};
80
81
/*
82
* async submit bios are used to offload expensive checksumming
83
* onto the worker threads. They checksum file and metadata bios
84
* just before they are sent down the IO stack.
85
*/
86
struct async_submit_bio {
87
struct inode *inode;
88
struct bio *bio;
89
struct list_head list;
90
extent_submit_bio_hook_t *submit_bio_start;
91
extent_submit_bio_hook_t *submit_bio_done;
92
int rw;
93
int mirror_num;
94
unsigned long bio_flags;
95
/*
96
* bio_offset is optional, can be used if the pages in the bio
97
* can't tell us where in the file the bio should go
98
*/
99
u64 bio_offset;
100
struct btrfs_work work;
101
};
102
103
/* These are used to set the lockdep class on the extent buffer locks.
104
* The class is set by the readpage_end_io_hook after the buffer has
105
* passed csum validation but before the pages are unlocked.
106
*
107
* The lockdep class is also set by btrfs_init_new_buffer on freshly
108
* allocated blocks.
109
*
110
* The class is based on the level in the tree block, which allows lockdep
111
* to know that lower nodes nest inside the locks of higher nodes.
112
*
113
* We also add a check to make sure the highest level of the tree is
114
* the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
115
* code needs update as well.
116
*/
117
#ifdef CONFIG_DEBUG_LOCK_ALLOC
118
# if BTRFS_MAX_LEVEL != 8
119
# error
120
# endif
121
static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
122
static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
123
/* leaf */
124
"btrfs-extent-00",
125
"btrfs-extent-01",
126
"btrfs-extent-02",
127
"btrfs-extent-03",
128
"btrfs-extent-04",
129
"btrfs-extent-05",
130
"btrfs-extent-06",
131
"btrfs-extent-07",
132
/* highest possible level */
133
"btrfs-extent-08",
134
};
135
#endif
136
137
/*
138
* extents on the btree inode are pretty simple, there's one extent
139
* that covers the entire device
140
*/
141
static struct extent_map *btree_get_extent(struct inode *inode,
142
struct page *page, size_t pg_offset, u64 start, u64 len,
143
int create)
144
{
145
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
146
struct extent_map *em;
147
int ret;
148
149
read_lock(&em_tree->lock);
150
em = lookup_extent_mapping(em_tree, start, len);
151
if (em) {
152
em->bdev =
153
BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
154
read_unlock(&em_tree->lock);
155
goto out;
156
}
157
read_unlock(&em_tree->lock);
158
159
em = alloc_extent_map();
160
if (!em) {
161
em = ERR_PTR(-ENOMEM);
162
goto out;
163
}
164
em->start = 0;
165
em->len = (u64)-1;
166
em->block_len = (u64)-1;
167
em->block_start = 0;
168
em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
169
170
write_lock(&em_tree->lock);
171
ret = add_extent_mapping(em_tree, em);
172
if (ret == -EEXIST) {
173
u64 failed_start = em->start;
174
u64 failed_len = em->len;
175
176
free_extent_map(em);
177
em = lookup_extent_mapping(em_tree, start, len);
178
if (em) {
179
ret = 0;
180
} else {
181
em = lookup_extent_mapping(em_tree, failed_start,
182
failed_len);
183
ret = -EIO;
184
}
185
} else if (ret) {
186
free_extent_map(em);
187
em = NULL;
188
}
189
write_unlock(&em_tree->lock);
190
191
if (ret)
192
em = ERR_PTR(ret);
193
out:
194
return em;
195
}
196
197
u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
198
{
199
return crc32c(seed, data, len);
200
}
201
202
void btrfs_csum_final(u32 crc, char *result)
203
{
204
put_unaligned_le32(~crc, result);
205
}
206
207
/*
208
* compute the csum for a btree block, and either verify it or write it
209
* into the csum field of the block.
210
*/
211
static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
212
int verify)
213
{
214
u16 csum_size =
215
btrfs_super_csum_size(&root->fs_info->super_copy);
216
char *result = NULL;
217
unsigned long len;
218
unsigned long cur_len;
219
unsigned long offset = BTRFS_CSUM_SIZE;
220
char *map_token = NULL;
221
char *kaddr;
222
unsigned long map_start;
223
unsigned long map_len;
224
int err;
225
u32 crc = ~(u32)0;
226
unsigned long inline_result;
227
228
len = buf->len - offset;
229
while (len > 0) {
230
err = map_private_extent_buffer(buf, offset, 32,
231
&map_token, &kaddr,
232
&map_start, &map_len, KM_USER0);
233
if (err)
234
return 1;
235
cur_len = min(len, map_len - (offset - map_start));
236
crc = btrfs_csum_data(root, kaddr + offset - map_start,
237
crc, cur_len);
238
len -= cur_len;
239
offset += cur_len;
240
unmap_extent_buffer(buf, map_token, KM_USER0);
241
}
242
if (csum_size > sizeof(inline_result)) {
243
result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
244
if (!result)
245
return 1;
246
} else {
247
result = (char *)&inline_result;
248
}
249
250
btrfs_csum_final(crc, result);
251
252
if (verify) {
253
if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
254
u32 val;
255
u32 found = 0;
256
memcpy(&found, result, csum_size);
257
258
read_extent_buffer(buf, &val, 0, csum_size);
259
printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
260
"failed on %llu wanted %X found %X "
261
"level %d\n",
262
root->fs_info->sb->s_id,
263
(unsigned long long)buf->start, val, found,
264
btrfs_header_level(buf));
265
if (result != (char *)&inline_result)
266
kfree(result);
267
return 1;
268
}
269
} else {
270
write_extent_buffer(buf, result, 0, csum_size);
271
}
272
if (result != (char *)&inline_result)
273
kfree(result);
274
return 0;
275
}
276
277
/*
278
* we can't consider a given block up to date unless the transid of the
279
* block matches the transid in the parent node's pointer. This is how we
280
* detect blocks that either didn't get written at all or got written
281
* in the wrong place.
282
*/
283
static int verify_parent_transid(struct extent_io_tree *io_tree,
284
struct extent_buffer *eb, u64 parent_transid)
285
{
286
struct extent_state *cached_state = NULL;
287
int ret;
288
289
if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
290
return 0;
291
292
lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
293
0, &cached_state, GFP_NOFS);
294
if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
295
btrfs_header_generation(eb) == parent_transid) {
296
ret = 0;
297
goto out;
298
}
299
printk_ratelimited("parent transid verify failed on %llu wanted %llu "
300
"found %llu\n",
301
(unsigned long long)eb->start,
302
(unsigned long long)parent_transid,
303
(unsigned long long)btrfs_header_generation(eb));
304
ret = 1;
305
clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
306
out:
307
unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
308
&cached_state, GFP_NOFS);
309
return ret;
310
}
311
312
/*
313
* helper to read a given tree block, doing retries as required when
314
* the checksums don't match and we have alternate mirrors to try.
315
*/
316
static int btree_read_extent_buffer_pages(struct btrfs_root *root,
317
struct extent_buffer *eb,
318
u64 start, u64 parent_transid)
319
{
320
struct extent_io_tree *io_tree;
321
int ret;
322
int num_copies = 0;
323
int mirror_num = 0;
324
325
clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
326
io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
327
while (1) {
328
ret = read_extent_buffer_pages(io_tree, eb, start, 1,
329
btree_get_extent, mirror_num);
330
if (!ret &&
331
!verify_parent_transid(io_tree, eb, parent_transid))
332
return ret;
333
334
/*
335
* This buffer's crc is fine, but its contents are corrupted, so
336
* there is no reason to read the other copies, they won't be
337
* any less wrong.
338
*/
339
if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
340
return ret;
341
342
num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
343
eb->start, eb->len);
344
if (num_copies == 1)
345
return ret;
346
347
mirror_num++;
348
if (mirror_num > num_copies)
349
return ret;
350
}
351
return -EIO;
352
}
353
354
/*
355
* checksum a dirty tree block before IO. This has extra checks to make sure
356
* we only fill in the checksum field in the first page of a multi-page block
357
*/
358
359
static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
360
{
361
struct extent_io_tree *tree;
362
u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
363
u64 found_start;
364
unsigned long len;
365
struct extent_buffer *eb;
366
int ret;
367
368
tree = &BTRFS_I(page->mapping->host)->io_tree;
369
370
if (page->private == EXTENT_PAGE_PRIVATE) {
371
WARN_ON(1);
372
goto out;
373
}
374
if (!page->private) {
375
WARN_ON(1);
376
goto out;
377
}
378
len = page->private >> 2;
379
WARN_ON(len == 0);
380
381
eb = alloc_extent_buffer(tree, start, len, page);
382
if (eb == NULL) {
383
WARN_ON(1);
384
goto out;
385
}
386
ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
387
btrfs_header_generation(eb));
388
BUG_ON(ret);
389
WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
390
391
found_start = btrfs_header_bytenr(eb);
392
if (found_start != start) {
393
WARN_ON(1);
394
goto err;
395
}
396
if (eb->first_page != page) {
397
WARN_ON(1);
398
goto err;
399
}
400
if (!PageUptodate(page)) {
401
WARN_ON(1);
402
goto err;
403
}
404
csum_tree_block(root, eb, 0);
405
err:
406
free_extent_buffer(eb);
407
out:
408
return 0;
409
}
410
411
static int check_tree_block_fsid(struct btrfs_root *root,
412
struct extent_buffer *eb)
413
{
414
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
415
u8 fsid[BTRFS_UUID_SIZE];
416
int ret = 1;
417
418
read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
419
BTRFS_FSID_SIZE);
420
while (fs_devices) {
421
if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
422
ret = 0;
423
break;
424
}
425
fs_devices = fs_devices->seed;
426
}
427
return ret;
428
}
429
430
#define CORRUPT(reason, eb, root, slot) \
431
printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
432
"root=%llu, slot=%d\n", reason, \
433
(unsigned long long)btrfs_header_bytenr(eb), \
434
(unsigned long long)root->objectid, slot)
435
436
static noinline int check_leaf(struct btrfs_root *root,
437
struct extent_buffer *leaf)
438
{
439
struct btrfs_key key;
440
struct btrfs_key leaf_key;
441
u32 nritems = btrfs_header_nritems(leaf);
442
int slot;
443
444
if (nritems == 0)
445
return 0;
446
447
/* Check the 0 item */
448
if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
449
BTRFS_LEAF_DATA_SIZE(root)) {
450
CORRUPT("invalid item offset size pair", leaf, root, 0);
451
return -EIO;
452
}
453
454
/*
455
* Check to make sure each items keys are in the correct order and their
456
* offsets make sense. We only have to loop through nritems-1 because
457
* we check the current slot against the next slot, which verifies the
458
* next slot's offset+size makes sense and that the current's slot
459
* offset is correct.
460
*/
461
for (slot = 0; slot < nritems - 1; slot++) {
462
btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
463
btrfs_item_key_to_cpu(leaf, &key, slot + 1);
464
465
/* Make sure the keys are in the right order */
466
if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
467
CORRUPT("bad key order", leaf, root, slot);
468
return -EIO;
469
}
470
471
/*
472
* Make sure the offset and ends are right, remember that the
473
* item data starts at the end of the leaf and grows towards the
474
* front.
475
*/
476
if (btrfs_item_offset_nr(leaf, slot) !=
477
btrfs_item_end_nr(leaf, slot + 1)) {
478
CORRUPT("slot offset bad", leaf, root, slot);
479
return -EIO;
480
}
481
482
/*
483
* Check to make sure that we don't point outside of the leaf,
484
* just incase all the items are consistent to eachother, but
485
* all point outside of the leaf.
486
*/
487
if (btrfs_item_end_nr(leaf, slot) >
488
BTRFS_LEAF_DATA_SIZE(root)) {
489
CORRUPT("slot end outside of leaf", leaf, root, slot);
490
return -EIO;
491
}
492
}
493
494
return 0;
495
}
496
497
#ifdef CONFIG_DEBUG_LOCK_ALLOC
498
void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
499
{
500
lockdep_set_class_and_name(&eb->lock,
501
&btrfs_eb_class[level],
502
btrfs_eb_name[level]);
503
}
504
#endif
505
506
static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
507
struct extent_state *state)
508
{
509
struct extent_io_tree *tree;
510
u64 found_start;
511
int found_level;
512
unsigned long len;
513
struct extent_buffer *eb;
514
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
515
int ret = 0;
516
517
tree = &BTRFS_I(page->mapping->host)->io_tree;
518
if (page->private == EXTENT_PAGE_PRIVATE)
519
goto out;
520
if (!page->private)
521
goto out;
522
523
len = page->private >> 2;
524
WARN_ON(len == 0);
525
526
eb = alloc_extent_buffer(tree, start, len, page);
527
if (eb == NULL) {
528
ret = -EIO;
529
goto out;
530
}
531
532
found_start = btrfs_header_bytenr(eb);
533
if (found_start != start) {
534
printk_ratelimited(KERN_INFO "btrfs bad tree block start "
535
"%llu %llu\n",
536
(unsigned long long)found_start,
537
(unsigned long long)eb->start);
538
ret = -EIO;
539
goto err;
540
}
541
if (eb->first_page != page) {
542
printk(KERN_INFO "btrfs bad first page %lu %lu\n",
543
eb->first_page->index, page->index);
544
WARN_ON(1);
545
ret = -EIO;
546
goto err;
547
}
548
if (check_tree_block_fsid(root, eb)) {
549
printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
550
(unsigned long long)eb->start);
551
ret = -EIO;
552
goto err;
553
}
554
found_level = btrfs_header_level(eb);
555
556
btrfs_set_buffer_lockdep_class(eb, found_level);
557
558
ret = csum_tree_block(root, eb, 1);
559
if (ret) {
560
ret = -EIO;
561
goto err;
562
}
563
564
/*
565
* If this is a leaf block and it is corrupt, set the corrupt bit so
566
* that we don't try and read the other copies of this block, just
567
* return -EIO.
568
*/
569
if (found_level == 0 && check_leaf(root, eb)) {
570
set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
571
ret = -EIO;
572
}
573
574
end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
575
end = eb->start + end - 1;
576
err:
577
free_extent_buffer(eb);
578
out:
579
return ret;
580
}
581
582
static void end_workqueue_bio(struct bio *bio, int err)
583
{
584
struct end_io_wq *end_io_wq = bio->bi_private;
585
struct btrfs_fs_info *fs_info;
586
587
fs_info = end_io_wq->info;
588
end_io_wq->error = err;
589
end_io_wq->work.func = end_workqueue_fn;
590
end_io_wq->work.flags = 0;
591
592
if (bio->bi_rw & REQ_WRITE) {
593
if (end_io_wq->metadata == 1)
594
btrfs_queue_worker(&fs_info->endio_meta_write_workers,
595
&end_io_wq->work);
596
else if (end_io_wq->metadata == 2)
597
btrfs_queue_worker(&fs_info->endio_freespace_worker,
598
&end_io_wq->work);
599
else
600
btrfs_queue_worker(&fs_info->endio_write_workers,
601
&end_io_wq->work);
602
} else {
603
if (end_io_wq->metadata)
604
btrfs_queue_worker(&fs_info->endio_meta_workers,
605
&end_io_wq->work);
606
else
607
btrfs_queue_worker(&fs_info->endio_workers,
608
&end_io_wq->work);
609
}
610
}
611
612
/*
613
* For the metadata arg you want
614
*
615
* 0 - if data
616
* 1 - if normal metadta
617
* 2 - if writing to the free space cache area
618
*/
619
int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
620
int metadata)
621
{
622
struct end_io_wq *end_io_wq;
623
end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
624
if (!end_io_wq)
625
return -ENOMEM;
626
627
end_io_wq->private = bio->bi_private;
628
end_io_wq->end_io = bio->bi_end_io;
629
end_io_wq->info = info;
630
end_io_wq->error = 0;
631
end_io_wq->bio = bio;
632
end_io_wq->metadata = metadata;
633
634
bio->bi_private = end_io_wq;
635
bio->bi_end_io = end_workqueue_bio;
636
return 0;
637
}
638
639
unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
640
{
641
unsigned long limit = min_t(unsigned long,
642
info->workers.max_workers,
643
info->fs_devices->open_devices);
644
return 256 * limit;
645
}
646
647
static void run_one_async_start(struct btrfs_work *work)
648
{
649
struct async_submit_bio *async;
650
651
async = container_of(work, struct async_submit_bio, work);
652
async->submit_bio_start(async->inode, async->rw, async->bio,
653
async->mirror_num, async->bio_flags,
654
async->bio_offset);
655
}
656
657
static void run_one_async_done(struct btrfs_work *work)
658
{
659
struct btrfs_fs_info *fs_info;
660
struct async_submit_bio *async;
661
int limit;
662
663
async = container_of(work, struct async_submit_bio, work);
664
fs_info = BTRFS_I(async->inode)->root->fs_info;
665
666
limit = btrfs_async_submit_limit(fs_info);
667
limit = limit * 2 / 3;
668
669
atomic_dec(&fs_info->nr_async_submits);
670
671
if (atomic_read(&fs_info->nr_async_submits) < limit &&
672
waitqueue_active(&fs_info->async_submit_wait))
673
wake_up(&fs_info->async_submit_wait);
674
675
async->submit_bio_done(async->inode, async->rw, async->bio,
676
async->mirror_num, async->bio_flags,
677
async->bio_offset);
678
}
679
680
static void run_one_async_free(struct btrfs_work *work)
681
{
682
struct async_submit_bio *async;
683
684
async = container_of(work, struct async_submit_bio, work);
685
kfree(async);
686
}
687
688
int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
689
int rw, struct bio *bio, int mirror_num,
690
unsigned long bio_flags,
691
u64 bio_offset,
692
extent_submit_bio_hook_t *submit_bio_start,
693
extent_submit_bio_hook_t *submit_bio_done)
694
{
695
struct async_submit_bio *async;
696
697
async = kmalloc(sizeof(*async), GFP_NOFS);
698
if (!async)
699
return -ENOMEM;
700
701
async->inode = inode;
702
async->rw = rw;
703
async->bio = bio;
704
async->mirror_num = mirror_num;
705
async->submit_bio_start = submit_bio_start;
706
async->submit_bio_done = submit_bio_done;
707
708
async->work.func = run_one_async_start;
709
async->work.ordered_func = run_one_async_done;
710
async->work.ordered_free = run_one_async_free;
711
712
async->work.flags = 0;
713
async->bio_flags = bio_flags;
714
async->bio_offset = bio_offset;
715
716
atomic_inc(&fs_info->nr_async_submits);
717
718
if (rw & REQ_SYNC)
719
btrfs_set_work_high_prio(&async->work);
720
721
btrfs_queue_worker(&fs_info->workers, &async->work);
722
723
while (atomic_read(&fs_info->async_submit_draining) &&
724
atomic_read(&fs_info->nr_async_submits)) {
725
wait_event(fs_info->async_submit_wait,
726
(atomic_read(&fs_info->nr_async_submits) == 0));
727
}
728
729
return 0;
730
}
731
732
static int btree_csum_one_bio(struct bio *bio)
733
{
734
struct bio_vec *bvec = bio->bi_io_vec;
735
int bio_index = 0;
736
struct btrfs_root *root;
737
738
WARN_ON(bio->bi_vcnt <= 0);
739
while (bio_index < bio->bi_vcnt) {
740
root = BTRFS_I(bvec->bv_page->mapping->host)->root;
741
csum_dirty_buffer(root, bvec->bv_page);
742
bio_index++;
743
bvec++;
744
}
745
return 0;
746
}
747
748
static int __btree_submit_bio_start(struct inode *inode, int rw,
749
struct bio *bio, int mirror_num,
750
unsigned long bio_flags,
751
u64 bio_offset)
752
{
753
/*
754
* when we're called for a write, we're already in the async
755
* submission context. Just jump into btrfs_map_bio
756
*/
757
btree_csum_one_bio(bio);
758
return 0;
759
}
760
761
static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
762
int mirror_num, unsigned long bio_flags,
763
u64 bio_offset)
764
{
765
/*
766
* when we're called for a write, we're already in the async
767
* submission context. Just jump into btrfs_map_bio
768
*/
769
return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
770
}
771
772
static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
773
int mirror_num, unsigned long bio_flags,
774
u64 bio_offset)
775
{
776
int ret;
777
778
ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
779
bio, 1);
780
BUG_ON(ret);
781
782
if (!(rw & REQ_WRITE)) {
783
/*
784
* called for a read, do the setup so that checksum validation
785
* can happen in the async kernel threads
786
*/
787
return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
788
mirror_num, 0);
789
}
790
791
/*
792
* kthread helpers are used to submit writes so that checksumming
793
* can happen in parallel across all CPUs
794
*/
795
return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
796
inode, rw, bio, mirror_num, 0,
797
bio_offset,
798
__btree_submit_bio_start,
799
__btree_submit_bio_done);
800
}
801
802
#ifdef CONFIG_MIGRATION
803
static int btree_migratepage(struct address_space *mapping,
804
struct page *newpage, struct page *page)
805
{
806
/*
807
* we can't safely write a btree page from here,
808
* we haven't done the locking hook
809
*/
810
if (PageDirty(page))
811
return -EAGAIN;
812
/*
813
* Buffers may be managed in a filesystem specific way.
814
* We must have no buffers or drop them.
815
*/
816
if (page_has_private(page) &&
817
!try_to_release_page(page, GFP_KERNEL))
818
return -EAGAIN;
819
return migrate_page(mapping, newpage, page);
820
}
821
#endif
822
823
static int btree_writepage(struct page *page, struct writeback_control *wbc)
824
{
825
struct extent_io_tree *tree;
826
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
827
struct extent_buffer *eb;
828
int was_dirty;
829
830
tree = &BTRFS_I(page->mapping->host)->io_tree;
831
if (!(current->flags & PF_MEMALLOC)) {
832
return extent_write_full_page(tree, page,
833
btree_get_extent, wbc);
834
}
835
836
redirty_page_for_writepage(wbc, page);
837
eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
838
WARN_ON(!eb);
839
840
was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
841
if (!was_dirty) {
842
spin_lock(&root->fs_info->delalloc_lock);
843
root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
844
spin_unlock(&root->fs_info->delalloc_lock);
845
}
846
free_extent_buffer(eb);
847
848
unlock_page(page);
849
return 0;
850
}
851
852
static int btree_writepages(struct address_space *mapping,
853
struct writeback_control *wbc)
854
{
855
struct extent_io_tree *tree;
856
tree = &BTRFS_I(mapping->host)->io_tree;
857
if (wbc->sync_mode == WB_SYNC_NONE) {
858
struct btrfs_root *root = BTRFS_I(mapping->host)->root;
859
u64 num_dirty;
860
unsigned long thresh = 32 * 1024 * 1024;
861
862
if (wbc->for_kupdate)
863
return 0;
864
865
/* this is a bit racy, but that's ok */
866
num_dirty = root->fs_info->dirty_metadata_bytes;
867
if (num_dirty < thresh)
868
return 0;
869
}
870
return extent_writepages(tree, mapping, btree_get_extent, wbc);
871
}
872
873
static int btree_readpage(struct file *file, struct page *page)
874
{
875
struct extent_io_tree *tree;
876
tree = &BTRFS_I(page->mapping->host)->io_tree;
877
return extent_read_full_page(tree, page, btree_get_extent);
878
}
879
880
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
881
{
882
struct extent_io_tree *tree;
883
struct extent_map_tree *map;
884
int ret;
885
886
if (PageWriteback(page) || PageDirty(page))
887
return 0;
888
889
tree = &BTRFS_I(page->mapping->host)->io_tree;
890
map = &BTRFS_I(page->mapping->host)->extent_tree;
891
892
ret = try_release_extent_state(map, tree, page, gfp_flags);
893
if (!ret)
894
return 0;
895
896
ret = try_release_extent_buffer(tree, page);
897
if (ret == 1) {
898
ClearPagePrivate(page);
899
set_page_private(page, 0);
900
page_cache_release(page);
901
}
902
903
return ret;
904
}
905
906
static void btree_invalidatepage(struct page *page, unsigned long offset)
907
{
908
struct extent_io_tree *tree;
909
tree = &BTRFS_I(page->mapping->host)->io_tree;
910
extent_invalidatepage(tree, page, offset);
911
btree_releasepage(page, GFP_NOFS);
912
if (PagePrivate(page)) {
913
printk(KERN_WARNING "btrfs warning page private not zero "
914
"on page %llu\n", (unsigned long long)page_offset(page));
915
ClearPagePrivate(page);
916
set_page_private(page, 0);
917
page_cache_release(page);
918
}
919
}
920
921
static const struct address_space_operations btree_aops = {
922
.readpage = btree_readpage,
923
.writepage = btree_writepage,
924
.writepages = btree_writepages,
925
.releasepage = btree_releasepage,
926
.invalidatepage = btree_invalidatepage,
927
#ifdef CONFIG_MIGRATION
928
.migratepage = btree_migratepage,
929
#endif
930
};
931
932
int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
933
u64 parent_transid)
934
{
935
struct extent_buffer *buf = NULL;
936
struct inode *btree_inode = root->fs_info->btree_inode;
937
int ret = 0;
938
939
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
940
if (!buf)
941
return 0;
942
read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
943
buf, 0, 0, btree_get_extent, 0);
944
free_extent_buffer(buf);
945
return ret;
946
}
947
948
struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
949
u64 bytenr, u32 blocksize)
950
{
951
struct inode *btree_inode = root->fs_info->btree_inode;
952
struct extent_buffer *eb;
953
eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
954
bytenr, blocksize);
955
return eb;
956
}
957
958
struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
959
u64 bytenr, u32 blocksize)
960
{
961
struct inode *btree_inode = root->fs_info->btree_inode;
962
struct extent_buffer *eb;
963
964
eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
965
bytenr, blocksize, NULL);
966
return eb;
967
}
968
969
970
int btrfs_write_tree_block(struct extent_buffer *buf)
971
{
972
return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
973
buf->start + buf->len - 1);
974
}
975
976
int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
977
{
978
return filemap_fdatawait_range(buf->first_page->mapping,
979
buf->start, buf->start + buf->len - 1);
980
}
981
982
struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
983
u32 blocksize, u64 parent_transid)
984
{
985
struct extent_buffer *buf = NULL;
986
int ret;
987
988
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
989
if (!buf)
990
return NULL;
991
992
ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
993
994
if (ret == 0)
995
set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
996
return buf;
997
998
}
999
1000
int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1001
struct extent_buffer *buf)
1002
{
1003
struct inode *btree_inode = root->fs_info->btree_inode;
1004
if (btrfs_header_generation(buf) ==
1005
root->fs_info->running_transaction->transid) {
1006
btrfs_assert_tree_locked(buf);
1007
1008
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1009
spin_lock(&root->fs_info->delalloc_lock);
1010
if (root->fs_info->dirty_metadata_bytes >= buf->len)
1011
root->fs_info->dirty_metadata_bytes -= buf->len;
1012
else
1013
WARN_ON(1);
1014
spin_unlock(&root->fs_info->delalloc_lock);
1015
}
1016
1017
/* ugh, clear_extent_buffer_dirty needs to lock the page */
1018
btrfs_set_lock_blocking(buf);
1019
clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1020
buf);
1021
}
1022
return 0;
1023
}
1024
1025
static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1026
u32 stripesize, struct btrfs_root *root,
1027
struct btrfs_fs_info *fs_info,
1028
u64 objectid)
1029
{
1030
root->node = NULL;
1031
root->commit_root = NULL;
1032
root->sectorsize = sectorsize;
1033
root->nodesize = nodesize;
1034
root->leafsize = leafsize;
1035
root->stripesize = stripesize;
1036
root->ref_cows = 0;
1037
root->track_dirty = 0;
1038
root->in_radix = 0;
1039
root->orphan_item_inserted = 0;
1040
root->orphan_cleanup_state = 0;
1041
1042
root->fs_info = fs_info;
1043
root->objectid = objectid;
1044
root->last_trans = 0;
1045
root->highest_objectid = 0;
1046
root->name = NULL;
1047
root->inode_tree = RB_ROOT;
1048
INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1049
root->block_rsv = NULL;
1050
root->orphan_block_rsv = NULL;
1051
1052
INIT_LIST_HEAD(&root->dirty_list);
1053
INIT_LIST_HEAD(&root->orphan_list);
1054
INIT_LIST_HEAD(&root->root_list);
1055
spin_lock_init(&root->orphan_lock);
1056
spin_lock_init(&root->inode_lock);
1057
spin_lock_init(&root->accounting_lock);
1058
mutex_init(&root->objectid_mutex);
1059
mutex_init(&root->log_mutex);
1060
init_waitqueue_head(&root->log_writer_wait);
1061
init_waitqueue_head(&root->log_commit_wait[0]);
1062
init_waitqueue_head(&root->log_commit_wait[1]);
1063
atomic_set(&root->log_commit[0], 0);
1064
atomic_set(&root->log_commit[1], 0);
1065
atomic_set(&root->log_writers, 0);
1066
root->log_batch = 0;
1067
root->log_transid = 0;
1068
root->last_log_commit = 0;
1069
extent_io_tree_init(&root->dirty_log_pages,
1070
fs_info->btree_inode->i_mapping);
1071
1072
memset(&root->root_key, 0, sizeof(root->root_key));
1073
memset(&root->root_item, 0, sizeof(root->root_item));
1074
memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1075
memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1076
root->defrag_trans_start = fs_info->generation;
1077
init_completion(&root->kobj_unregister);
1078
root->defrag_running = 0;
1079
root->root_key.objectid = objectid;
1080
root->anon_super.s_root = NULL;
1081
root->anon_super.s_dev = 0;
1082
INIT_LIST_HEAD(&root->anon_super.s_list);
1083
INIT_LIST_HEAD(&root->anon_super.s_instances);
1084
init_rwsem(&root->anon_super.s_umount);
1085
1086
return 0;
1087
}
1088
1089
static int find_and_setup_root(struct btrfs_root *tree_root,
1090
struct btrfs_fs_info *fs_info,
1091
u64 objectid,
1092
struct btrfs_root *root)
1093
{
1094
int ret;
1095
u32 blocksize;
1096
u64 generation;
1097
1098
__setup_root(tree_root->nodesize, tree_root->leafsize,
1099
tree_root->sectorsize, tree_root->stripesize,
1100
root, fs_info, objectid);
1101
ret = btrfs_find_last_root(tree_root, objectid,
1102
&root->root_item, &root->root_key);
1103
if (ret > 0)
1104
return -ENOENT;
1105
BUG_ON(ret);
1106
1107
generation = btrfs_root_generation(&root->root_item);
1108
blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1109
root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1110
blocksize, generation);
1111
if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1112
free_extent_buffer(root->node);
1113
return -EIO;
1114
}
1115
root->commit_root = btrfs_root_node(root);
1116
return 0;
1117
}
1118
1119
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1120
struct btrfs_fs_info *fs_info)
1121
{
1122
struct btrfs_root *root;
1123
struct btrfs_root *tree_root = fs_info->tree_root;
1124
struct extent_buffer *leaf;
1125
1126
root = kzalloc(sizeof(*root), GFP_NOFS);
1127
if (!root)
1128
return ERR_PTR(-ENOMEM);
1129
1130
__setup_root(tree_root->nodesize, tree_root->leafsize,
1131
tree_root->sectorsize, tree_root->stripesize,
1132
root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1133
1134
root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1135
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1136
root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1137
/*
1138
* log trees do not get reference counted because they go away
1139
* before a real commit is actually done. They do store pointers
1140
* to file data extents, and those reference counts still get
1141
* updated (along with back refs to the log tree).
1142
*/
1143
root->ref_cows = 0;
1144
1145
leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1146
BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1147
if (IS_ERR(leaf)) {
1148
kfree(root);
1149
return ERR_CAST(leaf);
1150
}
1151
1152
memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1153
btrfs_set_header_bytenr(leaf, leaf->start);
1154
btrfs_set_header_generation(leaf, trans->transid);
1155
btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1156
btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1157
root->node = leaf;
1158
1159
write_extent_buffer(root->node, root->fs_info->fsid,
1160
(unsigned long)btrfs_header_fsid(root->node),
1161
BTRFS_FSID_SIZE);
1162
btrfs_mark_buffer_dirty(root->node);
1163
btrfs_tree_unlock(root->node);
1164
return root;
1165
}
1166
1167
int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1168
struct btrfs_fs_info *fs_info)
1169
{
1170
struct btrfs_root *log_root;
1171
1172
log_root = alloc_log_tree(trans, fs_info);
1173
if (IS_ERR(log_root))
1174
return PTR_ERR(log_root);
1175
WARN_ON(fs_info->log_root_tree);
1176
fs_info->log_root_tree = log_root;
1177
return 0;
1178
}
1179
1180
int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1181
struct btrfs_root *root)
1182
{
1183
struct btrfs_root *log_root;
1184
struct btrfs_inode_item *inode_item;
1185
1186
log_root = alloc_log_tree(trans, root->fs_info);
1187
if (IS_ERR(log_root))
1188
return PTR_ERR(log_root);
1189
1190
log_root->last_trans = trans->transid;
1191
log_root->root_key.offset = root->root_key.objectid;
1192
1193
inode_item = &log_root->root_item.inode;
1194
inode_item->generation = cpu_to_le64(1);
1195
inode_item->size = cpu_to_le64(3);
1196
inode_item->nlink = cpu_to_le32(1);
1197
inode_item->nbytes = cpu_to_le64(root->leafsize);
1198
inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1199
1200
btrfs_set_root_node(&log_root->root_item, log_root->node);
1201
1202
WARN_ON(root->log_root);
1203
root->log_root = log_root;
1204
root->log_transid = 0;
1205
root->last_log_commit = 0;
1206
return 0;
1207
}
1208
1209
struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1210
struct btrfs_key *location)
1211
{
1212
struct btrfs_root *root;
1213
struct btrfs_fs_info *fs_info = tree_root->fs_info;
1214
struct btrfs_path *path;
1215
struct extent_buffer *l;
1216
u64 generation;
1217
u32 blocksize;
1218
int ret = 0;
1219
1220
root = kzalloc(sizeof(*root), GFP_NOFS);
1221
if (!root)
1222
return ERR_PTR(-ENOMEM);
1223
if (location->offset == (u64)-1) {
1224
ret = find_and_setup_root(tree_root, fs_info,
1225
location->objectid, root);
1226
if (ret) {
1227
kfree(root);
1228
return ERR_PTR(ret);
1229
}
1230
goto out;
1231
}
1232
1233
__setup_root(tree_root->nodesize, tree_root->leafsize,
1234
tree_root->sectorsize, tree_root->stripesize,
1235
root, fs_info, location->objectid);
1236
1237
path = btrfs_alloc_path();
1238
if (!path) {
1239
kfree(root);
1240
return ERR_PTR(-ENOMEM);
1241
}
1242
ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1243
if (ret == 0) {
1244
l = path->nodes[0];
1245
read_extent_buffer(l, &root->root_item,
1246
btrfs_item_ptr_offset(l, path->slots[0]),
1247
sizeof(root->root_item));
1248
memcpy(&root->root_key, location, sizeof(*location));
1249
}
1250
btrfs_free_path(path);
1251
if (ret) {
1252
kfree(root);
1253
if (ret > 0)
1254
ret = -ENOENT;
1255
return ERR_PTR(ret);
1256
}
1257
1258
generation = btrfs_root_generation(&root->root_item);
1259
blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1260
root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1261
blocksize, generation);
1262
root->commit_root = btrfs_root_node(root);
1263
BUG_ON(!root->node);
1264
out:
1265
if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1266
root->ref_cows = 1;
1267
btrfs_check_and_init_root_item(&root->root_item);
1268
}
1269
1270
return root;
1271
}
1272
1273
struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1274
struct btrfs_key *location)
1275
{
1276
struct btrfs_root *root;
1277
int ret;
1278
1279
if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1280
return fs_info->tree_root;
1281
if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1282
return fs_info->extent_root;
1283
if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1284
return fs_info->chunk_root;
1285
if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1286
return fs_info->dev_root;
1287
if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1288
return fs_info->csum_root;
1289
again:
1290
spin_lock(&fs_info->fs_roots_radix_lock);
1291
root = radix_tree_lookup(&fs_info->fs_roots_radix,
1292
(unsigned long)location->objectid);
1293
spin_unlock(&fs_info->fs_roots_radix_lock);
1294
if (root)
1295
return root;
1296
1297
root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1298
if (IS_ERR(root))
1299
return root;
1300
1301
root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1302
root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1303
GFP_NOFS);
1304
if (!root->free_ino_pinned || !root->free_ino_ctl) {
1305
ret = -ENOMEM;
1306
goto fail;
1307
}
1308
1309
btrfs_init_free_ino_ctl(root);
1310
mutex_init(&root->fs_commit_mutex);
1311
spin_lock_init(&root->cache_lock);
1312
init_waitqueue_head(&root->cache_wait);
1313
1314
ret = set_anon_super(&root->anon_super, NULL);
1315
if (ret)
1316
goto fail;
1317
1318
if (btrfs_root_refs(&root->root_item) == 0) {
1319
ret = -ENOENT;
1320
goto fail;
1321
}
1322
1323
ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1324
if (ret < 0)
1325
goto fail;
1326
if (ret == 0)
1327
root->orphan_item_inserted = 1;
1328
1329
ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1330
if (ret)
1331
goto fail;
1332
1333
spin_lock(&fs_info->fs_roots_radix_lock);
1334
ret = radix_tree_insert(&fs_info->fs_roots_radix,
1335
(unsigned long)root->root_key.objectid,
1336
root);
1337
if (ret == 0)
1338
root->in_radix = 1;
1339
1340
spin_unlock(&fs_info->fs_roots_radix_lock);
1341
radix_tree_preload_end();
1342
if (ret) {
1343
if (ret == -EEXIST) {
1344
free_fs_root(root);
1345
goto again;
1346
}
1347
goto fail;
1348
}
1349
1350
ret = btrfs_find_dead_roots(fs_info->tree_root,
1351
root->root_key.objectid);
1352
WARN_ON(ret);
1353
return root;
1354
fail:
1355
free_fs_root(root);
1356
return ERR_PTR(ret);
1357
}
1358
1359
static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1360
{
1361
struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1362
int ret = 0;
1363
struct btrfs_device *device;
1364
struct backing_dev_info *bdi;
1365
1366
rcu_read_lock();
1367
list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1368
if (!device->bdev)
1369
continue;
1370
bdi = blk_get_backing_dev_info(device->bdev);
1371
if (bdi && bdi_congested(bdi, bdi_bits)) {
1372
ret = 1;
1373
break;
1374
}
1375
}
1376
rcu_read_unlock();
1377
return ret;
1378
}
1379
1380
/*
1381
* If this fails, caller must call bdi_destroy() to get rid of the
1382
* bdi again.
1383
*/
1384
static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1385
{
1386
int err;
1387
1388
bdi->capabilities = BDI_CAP_MAP_COPY;
1389
err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1390
if (err)
1391
return err;
1392
1393
bdi->ra_pages = default_backing_dev_info.ra_pages;
1394
bdi->congested_fn = btrfs_congested_fn;
1395
bdi->congested_data = info;
1396
return 0;
1397
}
1398
1399
static int bio_ready_for_csum(struct bio *bio)
1400
{
1401
u64 length = 0;
1402
u64 buf_len = 0;
1403
u64 start = 0;
1404
struct page *page;
1405
struct extent_io_tree *io_tree = NULL;
1406
struct bio_vec *bvec;
1407
int i;
1408
int ret;
1409
1410
bio_for_each_segment(bvec, bio, i) {
1411
page = bvec->bv_page;
1412
if (page->private == EXTENT_PAGE_PRIVATE) {
1413
length += bvec->bv_len;
1414
continue;
1415
}
1416
if (!page->private) {
1417
length += bvec->bv_len;
1418
continue;
1419
}
1420
length = bvec->bv_len;
1421
buf_len = page->private >> 2;
1422
start = page_offset(page) + bvec->bv_offset;
1423
io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1424
}
1425
/* are we fully contained in this bio? */
1426
if (buf_len <= length)
1427
return 1;
1428
1429
ret = extent_range_uptodate(io_tree, start + length,
1430
start + buf_len - 1);
1431
return ret;
1432
}
1433
1434
/*
1435
* called by the kthread helper functions to finally call the bio end_io
1436
* functions. This is where read checksum verification actually happens
1437
*/
1438
static void end_workqueue_fn(struct btrfs_work *work)
1439
{
1440
struct bio *bio;
1441
struct end_io_wq *end_io_wq;
1442
struct btrfs_fs_info *fs_info;
1443
int error;
1444
1445
end_io_wq = container_of(work, struct end_io_wq, work);
1446
bio = end_io_wq->bio;
1447
fs_info = end_io_wq->info;
1448
1449
/* metadata bio reads are special because the whole tree block must
1450
* be checksummed at once. This makes sure the entire block is in
1451
* ram and up to date before trying to verify things. For
1452
* blocksize <= pagesize, it is basically a noop
1453
*/
1454
if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1455
!bio_ready_for_csum(bio)) {
1456
btrfs_queue_worker(&fs_info->endio_meta_workers,
1457
&end_io_wq->work);
1458
return;
1459
}
1460
error = end_io_wq->error;
1461
bio->bi_private = end_io_wq->private;
1462
bio->bi_end_io = end_io_wq->end_io;
1463
kfree(end_io_wq);
1464
bio_endio(bio, error);
1465
}
1466
1467
static int cleaner_kthread(void *arg)
1468
{
1469
struct btrfs_root *root = arg;
1470
1471
do {
1472
vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1473
1474
if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1475
mutex_trylock(&root->fs_info->cleaner_mutex)) {
1476
btrfs_run_delayed_iputs(root);
1477
btrfs_clean_old_snapshots(root);
1478
mutex_unlock(&root->fs_info->cleaner_mutex);
1479
btrfs_run_defrag_inodes(root->fs_info);
1480
}
1481
1482
if (freezing(current)) {
1483
refrigerator();
1484
} else {
1485
set_current_state(TASK_INTERRUPTIBLE);
1486
if (!kthread_should_stop())
1487
schedule();
1488
__set_current_state(TASK_RUNNING);
1489
}
1490
} while (!kthread_should_stop());
1491
return 0;
1492
}
1493
1494
static int transaction_kthread(void *arg)
1495
{
1496
struct btrfs_root *root = arg;
1497
struct btrfs_trans_handle *trans;
1498
struct btrfs_transaction *cur;
1499
u64 transid;
1500
unsigned long now;
1501
unsigned long delay;
1502
int ret;
1503
1504
do {
1505
delay = HZ * 30;
1506
vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1507
mutex_lock(&root->fs_info->transaction_kthread_mutex);
1508
1509
spin_lock(&root->fs_info->trans_lock);
1510
cur = root->fs_info->running_transaction;
1511
if (!cur) {
1512
spin_unlock(&root->fs_info->trans_lock);
1513
goto sleep;
1514
}
1515
1516
now = get_seconds();
1517
if (!cur->blocked &&
1518
(now < cur->start_time || now - cur->start_time < 30)) {
1519
spin_unlock(&root->fs_info->trans_lock);
1520
delay = HZ * 5;
1521
goto sleep;
1522
}
1523
transid = cur->transid;
1524
spin_unlock(&root->fs_info->trans_lock);
1525
1526
trans = btrfs_join_transaction(root);
1527
BUG_ON(IS_ERR(trans));
1528
if (transid == trans->transid) {
1529
ret = btrfs_commit_transaction(trans, root);
1530
BUG_ON(ret);
1531
} else {
1532
btrfs_end_transaction(trans, root);
1533
}
1534
sleep:
1535
wake_up_process(root->fs_info->cleaner_kthread);
1536
mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1537
1538
if (freezing(current)) {
1539
refrigerator();
1540
} else {
1541
set_current_state(TASK_INTERRUPTIBLE);
1542
if (!kthread_should_stop() &&
1543
!btrfs_transaction_blocked(root->fs_info))
1544
schedule_timeout(delay);
1545
__set_current_state(TASK_RUNNING);
1546
}
1547
} while (!kthread_should_stop());
1548
return 0;
1549
}
1550
1551
struct btrfs_root *open_ctree(struct super_block *sb,
1552
struct btrfs_fs_devices *fs_devices,
1553
char *options)
1554
{
1555
u32 sectorsize;
1556
u32 nodesize;
1557
u32 leafsize;
1558
u32 blocksize;
1559
u32 stripesize;
1560
u64 generation;
1561
u64 features;
1562
struct btrfs_key location;
1563
struct buffer_head *bh;
1564
struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1565
GFP_NOFS);
1566
struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1567
GFP_NOFS);
1568
struct btrfs_root *tree_root = btrfs_sb(sb);
1569
struct btrfs_fs_info *fs_info = NULL;
1570
struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1571
GFP_NOFS);
1572
struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1573
GFP_NOFS);
1574
struct btrfs_root *log_tree_root;
1575
1576
int ret;
1577
int err = -EINVAL;
1578
1579
struct btrfs_super_block *disk_super;
1580
1581
if (!extent_root || !tree_root || !tree_root->fs_info ||
1582
!chunk_root || !dev_root || !csum_root) {
1583
err = -ENOMEM;
1584
goto fail;
1585
}
1586
fs_info = tree_root->fs_info;
1587
1588
ret = init_srcu_struct(&fs_info->subvol_srcu);
1589
if (ret) {
1590
err = ret;
1591
goto fail;
1592
}
1593
1594
ret = setup_bdi(fs_info, &fs_info->bdi);
1595
if (ret) {
1596
err = ret;
1597
goto fail_srcu;
1598
}
1599
1600
fs_info->btree_inode = new_inode(sb);
1601
if (!fs_info->btree_inode) {
1602
err = -ENOMEM;
1603
goto fail_bdi;
1604
}
1605
1606
fs_info->btree_inode->i_mapping->flags &= ~__GFP_FS;
1607
1608
INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1609
INIT_LIST_HEAD(&fs_info->trans_list);
1610
INIT_LIST_HEAD(&fs_info->dead_roots);
1611
INIT_LIST_HEAD(&fs_info->delayed_iputs);
1612
INIT_LIST_HEAD(&fs_info->hashers);
1613
INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1614
INIT_LIST_HEAD(&fs_info->ordered_operations);
1615
INIT_LIST_HEAD(&fs_info->caching_block_groups);
1616
spin_lock_init(&fs_info->delalloc_lock);
1617
spin_lock_init(&fs_info->trans_lock);
1618
spin_lock_init(&fs_info->ref_cache_lock);
1619
spin_lock_init(&fs_info->fs_roots_radix_lock);
1620
spin_lock_init(&fs_info->delayed_iput_lock);
1621
spin_lock_init(&fs_info->defrag_inodes_lock);
1622
mutex_init(&fs_info->reloc_mutex);
1623
1624
init_completion(&fs_info->kobj_unregister);
1625
fs_info->tree_root = tree_root;
1626
fs_info->extent_root = extent_root;
1627
fs_info->csum_root = csum_root;
1628
fs_info->chunk_root = chunk_root;
1629
fs_info->dev_root = dev_root;
1630
fs_info->fs_devices = fs_devices;
1631
INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1632
INIT_LIST_HEAD(&fs_info->space_info);
1633
btrfs_mapping_init(&fs_info->mapping_tree);
1634
btrfs_init_block_rsv(&fs_info->global_block_rsv);
1635
btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1636
btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1637
btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1638
btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1639
INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1640
mutex_init(&fs_info->durable_block_rsv_mutex);
1641
atomic_set(&fs_info->nr_async_submits, 0);
1642
atomic_set(&fs_info->async_delalloc_pages, 0);
1643
atomic_set(&fs_info->async_submit_draining, 0);
1644
atomic_set(&fs_info->nr_async_bios, 0);
1645
atomic_set(&fs_info->defrag_running, 0);
1646
fs_info->sb = sb;
1647
fs_info->max_inline = 8192 * 1024;
1648
fs_info->metadata_ratio = 0;
1649
fs_info->defrag_inodes = RB_ROOT;
1650
fs_info->trans_no_join = 0;
1651
1652
fs_info->thread_pool_size = min_t(unsigned long,
1653
num_online_cpus() + 2, 8);
1654
1655
INIT_LIST_HEAD(&fs_info->ordered_extents);
1656
spin_lock_init(&fs_info->ordered_extent_lock);
1657
fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1658
GFP_NOFS);
1659
if (!fs_info->delayed_root) {
1660
err = -ENOMEM;
1661
goto fail_iput;
1662
}
1663
btrfs_init_delayed_root(fs_info->delayed_root);
1664
1665
mutex_init(&fs_info->scrub_lock);
1666
atomic_set(&fs_info->scrubs_running, 0);
1667
atomic_set(&fs_info->scrub_pause_req, 0);
1668
atomic_set(&fs_info->scrubs_paused, 0);
1669
atomic_set(&fs_info->scrub_cancel_req, 0);
1670
init_waitqueue_head(&fs_info->scrub_pause_wait);
1671
init_rwsem(&fs_info->scrub_super_lock);
1672
fs_info->scrub_workers_refcnt = 0;
1673
1674
sb->s_blocksize = 4096;
1675
sb->s_blocksize_bits = blksize_bits(4096);
1676
sb->s_bdi = &fs_info->bdi;
1677
1678
fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1679
fs_info->btree_inode->i_nlink = 1;
1680
/*
1681
* we set the i_size on the btree inode to the max possible int.
1682
* the real end of the address space is determined by all of
1683
* the devices in the system
1684
*/
1685
fs_info->btree_inode->i_size = OFFSET_MAX;
1686
fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1687
fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1688
1689
RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1690
extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1691
fs_info->btree_inode->i_mapping);
1692
extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
1693
1694
BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1695
1696
BTRFS_I(fs_info->btree_inode)->root = tree_root;
1697
memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1698
sizeof(struct btrfs_key));
1699
BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1700
insert_inode_hash(fs_info->btree_inode);
1701
1702
spin_lock_init(&fs_info->block_group_cache_lock);
1703
fs_info->block_group_cache_tree = RB_ROOT;
1704
1705
extent_io_tree_init(&fs_info->freed_extents[0],
1706
fs_info->btree_inode->i_mapping);
1707
extent_io_tree_init(&fs_info->freed_extents[1],
1708
fs_info->btree_inode->i_mapping);
1709
fs_info->pinned_extents = &fs_info->freed_extents[0];
1710
fs_info->do_barriers = 1;
1711
1712
1713
mutex_init(&fs_info->ordered_operations_mutex);
1714
mutex_init(&fs_info->tree_log_mutex);
1715
mutex_init(&fs_info->chunk_mutex);
1716
mutex_init(&fs_info->transaction_kthread_mutex);
1717
mutex_init(&fs_info->cleaner_mutex);
1718
mutex_init(&fs_info->volume_mutex);
1719
init_rwsem(&fs_info->extent_commit_sem);
1720
init_rwsem(&fs_info->cleanup_work_sem);
1721
init_rwsem(&fs_info->subvol_sem);
1722
1723
btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1724
btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1725
1726
init_waitqueue_head(&fs_info->transaction_throttle);
1727
init_waitqueue_head(&fs_info->transaction_wait);
1728
init_waitqueue_head(&fs_info->transaction_blocked_wait);
1729
init_waitqueue_head(&fs_info->async_submit_wait);
1730
1731
__setup_root(4096, 4096, 4096, 4096, tree_root,
1732
fs_info, BTRFS_ROOT_TREE_OBJECTID);
1733
1734
bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1735
if (!bh) {
1736
err = -EINVAL;
1737
goto fail_alloc;
1738
}
1739
1740
memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1741
memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1742
sizeof(fs_info->super_for_commit));
1743
brelse(bh);
1744
1745
memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1746
1747
disk_super = &fs_info->super_copy;
1748
if (!btrfs_super_root(disk_super))
1749
goto fail_alloc;
1750
1751
/* check FS state, whether FS is broken. */
1752
fs_info->fs_state |= btrfs_super_flags(disk_super);
1753
1754
btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1755
1756
/*
1757
* In the long term, we'll store the compression type in the super
1758
* block, and it'll be used for per file compression control.
1759
*/
1760
fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
1761
1762
ret = btrfs_parse_options(tree_root, options);
1763
if (ret) {
1764
err = ret;
1765
goto fail_alloc;
1766
}
1767
1768
features = btrfs_super_incompat_flags(disk_super) &
1769
~BTRFS_FEATURE_INCOMPAT_SUPP;
1770
if (features) {
1771
printk(KERN_ERR "BTRFS: couldn't mount because of "
1772
"unsupported optional features (%Lx).\n",
1773
(unsigned long long)features);
1774
err = -EINVAL;
1775
goto fail_alloc;
1776
}
1777
1778
features = btrfs_super_incompat_flags(disk_super);
1779
features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1780
if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1781
features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1782
btrfs_set_super_incompat_flags(disk_super, features);
1783
1784
features = btrfs_super_compat_ro_flags(disk_super) &
1785
~BTRFS_FEATURE_COMPAT_RO_SUPP;
1786
if (!(sb->s_flags & MS_RDONLY) && features) {
1787
printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1788
"unsupported option features (%Lx).\n",
1789
(unsigned long long)features);
1790
err = -EINVAL;
1791
goto fail_alloc;
1792
}
1793
1794
btrfs_init_workers(&fs_info->generic_worker,
1795
"genwork", 1, NULL);
1796
1797
btrfs_init_workers(&fs_info->workers, "worker",
1798
fs_info->thread_pool_size,
1799
&fs_info->generic_worker);
1800
1801
btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1802
fs_info->thread_pool_size,
1803
&fs_info->generic_worker);
1804
1805
btrfs_init_workers(&fs_info->submit_workers, "submit",
1806
min_t(u64, fs_devices->num_devices,
1807
fs_info->thread_pool_size),
1808
&fs_info->generic_worker);
1809
1810
/* a higher idle thresh on the submit workers makes it much more
1811
* likely that bios will be send down in a sane order to the
1812
* devices
1813
*/
1814
fs_info->submit_workers.idle_thresh = 64;
1815
1816
fs_info->workers.idle_thresh = 16;
1817
fs_info->workers.ordered = 1;
1818
1819
fs_info->delalloc_workers.idle_thresh = 2;
1820
fs_info->delalloc_workers.ordered = 1;
1821
1822
btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1823
&fs_info->generic_worker);
1824
btrfs_init_workers(&fs_info->endio_workers, "endio",
1825
fs_info->thread_pool_size,
1826
&fs_info->generic_worker);
1827
btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1828
fs_info->thread_pool_size,
1829
&fs_info->generic_worker);
1830
btrfs_init_workers(&fs_info->endio_meta_write_workers,
1831
"endio-meta-write", fs_info->thread_pool_size,
1832
&fs_info->generic_worker);
1833
btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1834
fs_info->thread_pool_size,
1835
&fs_info->generic_worker);
1836
btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1837
1, &fs_info->generic_worker);
1838
btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
1839
fs_info->thread_pool_size,
1840
&fs_info->generic_worker);
1841
1842
/*
1843
* endios are largely parallel and should have a very
1844
* low idle thresh
1845
*/
1846
fs_info->endio_workers.idle_thresh = 4;
1847
fs_info->endio_meta_workers.idle_thresh = 4;
1848
1849
fs_info->endio_write_workers.idle_thresh = 2;
1850
fs_info->endio_meta_write_workers.idle_thresh = 2;
1851
1852
btrfs_start_workers(&fs_info->workers, 1);
1853
btrfs_start_workers(&fs_info->generic_worker, 1);
1854
btrfs_start_workers(&fs_info->submit_workers, 1);
1855
btrfs_start_workers(&fs_info->delalloc_workers, 1);
1856
btrfs_start_workers(&fs_info->fixup_workers, 1);
1857
btrfs_start_workers(&fs_info->endio_workers, 1);
1858
btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1859
btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1860
btrfs_start_workers(&fs_info->endio_write_workers, 1);
1861
btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1862
btrfs_start_workers(&fs_info->delayed_workers, 1);
1863
1864
fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1865
fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1866
4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1867
1868
nodesize = btrfs_super_nodesize(disk_super);
1869
leafsize = btrfs_super_leafsize(disk_super);
1870
sectorsize = btrfs_super_sectorsize(disk_super);
1871
stripesize = btrfs_super_stripesize(disk_super);
1872
tree_root->nodesize = nodesize;
1873
tree_root->leafsize = leafsize;
1874
tree_root->sectorsize = sectorsize;
1875
tree_root->stripesize = stripesize;
1876
1877
sb->s_blocksize = sectorsize;
1878
sb->s_blocksize_bits = blksize_bits(sectorsize);
1879
1880
if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1881
sizeof(disk_super->magic))) {
1882
printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1883
goto fail_sb_buffer;
1884
}
1885
1886
mutex_lock(&fs_info->chunk_mutex);
1887
ret = btrfs_read_sys_array(tree_root);
1888
mutex_unlock(&fs_info->chunk_mutex);
1889
if (ret) {
1890
printk(KERN_WARNING "btrfs: failed to read the system "
1891
"array on %s\n", sb->s_id);
1892
goto fail_sb_buffer;
1893
}
1894
1895
blocksize = btrfs_level_size(tree_root,
1896
btrfs_super_chunk_root_level(disk_super));
1897
generation = btrfs_super_chunk_root_generation(disk_super);
1898
1899
__setup_root(nodesize, leafsize, sectorsize, stripesize,
1900
chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1901
1902
chunk_root->node = read_tree_block(chunk_root,
1903
btrfs_super_chunk_root(disk_super),
1904
blocksize, generation);
1905
BUG_ON(!chunk_root->node);
1906
if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1907
printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1908
sb->s_id);
1909
goto fail_chunk_root;
1910
}
1911
btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1912
chunk_root->commit_root = btrfs_root_node(chunk_root);
1913
1914
read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1915
(unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1916
BTRFS_UUID_SIZE);
1917
1918
mutex_lock(&fs_info->chunk_mutex);
1919
ret = btrfs_read_chunk_tree(chunk_root);
1920
mutex_unlock(&fs_info->chunk_mutex);
1921
if (ret) {
1922
printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1923
sb->s_id);
1924
goto fail_chunk_root;
1925
}
1926
1927
btrfs_close_extra_devices(fs_devices);
1928
1929
blocksize = btrfs_level_size(tree_root,
1930
btrfs_super_root_level(disk_super));
1931
generation = btrfs_super_generation(disk_super);
1932
1933
tree_root->node = read_tree_block(tree_root,
1934
btrfs_super_root(disk_super),
1935
blocksize, generation);
1936
if (!tree_root->node)
1937
goto fail_chunk_root;
1938
if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1939
printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1940
sb->s_id);
1941
goto fail_tree_root;
1942
}
1943
btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1944
tree_root->commit_root = btrfs_root_node(tree_root);
1945
1946
ret = find_and_setup_root(tree_root, fs_info,
1947
BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1948
if (ret)
1949
goto fail_tree_root;
1950
extent_root->track_dirty = 1;
1951
1952
ret = find_and_setup_root(tree_root, fs_info,
1953
BTRFS_DEV_TREE_OBJECTID, dev_root);
1954
if (ret)
1955
goto fail_extent_root;
1956
dev_root->track_dirty = 1;
1957
1958
ret = find_and_setup_root(tree_root, fs_info,
1959
BTRFS_CSUM_TREE_OBJECTID, csum_root);
1960
if (ret)
1961
goto fail_dev_root;
1962
1963
csum_root->track_dirty = 1;
1964
1965
fs_info->generation = generation;
1966
fs_info->last_trans_committed = generation;
1967
fs_info->data_alloc_profile = (u64)-1;
1968
fs_info->metadata_alloc_profile = (u64)-1;
1969
fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1970
1971
ret = btrfs_init_space_info(fs_info);
1972
if (ret) {
1973
printk(KERN_ERR "Failed to initial space info: %d\n", ret);
1974
goto fail_block_groups;
1975
}
1976
1977
ret = btrfs_read_block_groups(extent_root);
1978
if (ret) {
1979
printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1980
goto fail_block_groups;
1981
}
1982
1983
fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1984
"btrfs-cleaner");
1985
if (IS_ERR(fs_info->cleaner_kthread))
1986
goto fail_block_groups;
1987
1988
fs_info->transaction_kthread = kthread_run(transaction_kthread,
1989
tree_root,
1990
"btrfs-transaction");
1991
if (IS_ERR(fs_info->transaction_kthread))
1992
goto fail_cleaner;
1993
1994
if (!btrfs_test_opt(tree_root, SSD) &&
1995
!btrfs_test_opt(tree_root, NOSSD) &&
1996
!fs_info->fs_devices->rotating) {
1997
printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1998
"mode\n");
1999
btrfs_set_opt(fs_info->mount_opt, SSD);
2000
}
2001
2002
/* do not make disk changes in broken FS */
2003
if (btrfs_super_log_root(disk_super) != 0 &&
2004
!(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2005
u64 bytenr = btrfs_super_log_root(disk_super);
2006
2007
if (fs_devices->rw_devices == 0) {
2008
printk(KERN_WARNING "Btrfs log replay required "
2009
"on RO media\n");
2010
err = -EIO;
2011
goto fail_trans_kthread;
2012
}
2013
blocksize =
2014
btrfs_level_size(tree_root,
2015
btrfs_super_log_root_level(disk_super));
2016
2017
log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2018
if (!log_tree_root) {
2019
err = -ENOMEM;
2020
goto fail_trans_kthread;
2021
}
2022
2023
__setup_root(nodesize, leafsize, sectorsize, stripesize,
2024
log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2025
2026
log_tree_root->node = read_tree_block(tree_root, bytenr,
2027
blocksize,
2028
generation + 1);
2029
ret = btrfs_recover_log_trees(log_tree_root);
2030
BUG_ON(ret);
2031
2032
if (sb->s_flags & MS_RDONLY) {
2033
ret = btrfs_commit_super(tree_root);
2034
BUG_ON(ret);
2035
}
2036
}
2037
2038
ret = btrfs_find_orphan_roots(tree_root);
2039
BUG_ON(ret);
2040
2041
if (!(sb->s_flags & MS_RDONLY)) {
2042
ret = btrfs_cleanup_fs_roots(fs_info);
2043
BUG_ON(ret);
2044
2045
ret = btrfs_recover_relocation(tree_root);
2046
if (ret < 0) {
2047
printk(KERN_WARNING
2048
"btrfs: failed to recover relocation\n");
2049
err = -EINVAL;
2050
goto fail_trans_kthread;
2051
}
2052
}
2053
2054
location.objectid = BTRFS_FS_TREE_OBJECTID;
2055
location.type = BTRFS_ROOT_ITEM_KEY;
2056
location.offset = (u64)-1;
2057
2058
fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2059
if (!fs_info->fs_root)
2060
goto fail_trans_kthread;
2061
if (IS_ERR(fs_info->fs_root)) {
2062
err = PTR_ERR(fs_info->fs_root);
2063
goto fail_trans_kthread;
2064
}
2065
2066
if (!(sb->s_flags & MS_RDONLY)) {
2067
down_read(&fs_info->cleanup_work_sem);
2068
err = btrfs_orphan_cleanup(fs_info->fs_root);
2069
if (!err)
2070
err = btrfs_orphan_cleanup(fs_info->tree_root);
2071
up_read(&fs_info->cleanup_work_sem);
2072
if (err) {
2073
close_ctree(tree_root);
2074
return ERR_PTR(err);
2075
}
2076
}
2077
2078
return tree_root;
2079
2080
fail_trans_kthread:
2081
kthread_stop(fs_info->transaction_kthread);
2082
fail_cleaner:
2083
kthread_stop(fs_info->cleaner_kthread);
2084
2085
/*
2086
* make sure we're done with the btree inode before we stop our
2087
* kthreads
2088
*/
2089
filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2090
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2091
2092
fail_block_groups:
2093
btrfs_free_block_groups(fs_info);
2094
free_extent_buffer(csum_root->node);
2095
free_extent_buffer(csum_root->commit_root);
2096
fail_dev_root:
2097
free_extent_buffer(dev_root->node);
2098
free_extent_buffer(dev_root->commit_root);
2099
fail_extent_root:
2100
free_extent_buffer(extent_root->node);
2101
free_extent_buffer(extent_root->commit_root);
2102
fail_tree_root:
2103
free_extent_buffer(tree_root->node);
2104
free_extent_buffer(tree_root->commit_root);
2105
fail_chunk_root:
2106
free_extent_buffer(chunk_root->node);
2107
free_extent_buffer(chunk_root->commit_root);
2108
fail_sb_buffer:
2109
btrfs_stop_workers(&fs_info->generic_worker);
2110
btrfs_stop_workers(&fs_info->fixup_workers);
2111
btrfs_stop_workers(&fs_info->delalloc_workers);
2112
btrfs_stop_workers(&fs_info->workers);
2113
btrfs_stop_workers(&fs_info->endio_workers);
2114
btrfs_stop_workers(&fs_info->endio_meta_workers);
2115
btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2116
btrfs_stop_workers(&fs_info->endio_write_workers);
2117
btrfs_stop_workers(&fs_info->endio_freespace_worker);
2118
btrfs_stop_workers(&fs_info->submit_workers);
2119
btrfs_stop_workers(&fs_info->delayed_workers);
2120
fail_alloc:
2121
kfree(fs_info->delayed_root);
2122
fail_iput:
2123
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2124
iput(fs_info->btree_inode);
2125
2126
btrfs_close_devices(fs_info->fs_devices);
2127
btrfs_mapping_tree_free(&fs_info->mapping_tree);
2128
fail_bdi:
2129
bdi_destroy(&fs_info->bdi);
2130
fail_srcu:
2131
cleanup_srcu_struct(&fs_info->subvol_srcu);
2132
fail:
2133
kfree(extent_root);
2134
kfree(tree_root);
2135
kfree(fs_info);
2136
kfree(chunk_root);
2137
kfree(dev_root);
2138
kfree(csum_root);
2139
return ERR_PTR(err);
2140
}
2141
2142
static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2143
{
2144
char b[BDEVNAME_SIZE];
2145
2146
if (uptodate) {
2147
set_buffer_uptodate(bh);
2148
} else {
2149
printk_ratelimited(KERN_WARNING "lost page write due to "
2150
"I/O error on %s\n",
2151
bdevname(bh->b_bdev, b));
2152
/* note, we dont' set_buffer_write_io_error because we have
2153
* our own ways of dealing with the IO errors
2154
*/
2155
clear_buffer_uptodate(bh);
2156
}
2157
unlock_buffer(bh);
2158
put_bh(bh);
2159
}
2160
2161
struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2162
{
2163
struct buffer_head *bh;
2164
struct buffer_head *latest = NULL;
2165
struct btrfs_super_block *super;
2166
int i;
2167
u64 transid = 0;
2168
u64 bytenr;
2169
2170
/* we would like to check all the supers, but that would make
2171
* a btrfs mount succeed after a mkfs from a different FS.
2172
* So, we need to add a special mount option to scan for
2173
* later supers, using BTRFS_SUPER_MIRROR_MAX instead
2174
*/
2175
for (i = 0; i < 1; i++) {
2176
bytenr = btrfs_sb_offset(i);
2177
if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2178
break;
2179
bh = __bread(bdev, bytenr / 4096, 4096);
2180
if (!bh)
2181
continue;
2182
2183
super = (struct btrfs_super_block *)bh->b_data;
2184
if (btrfs_super_bytenr(super) != bytenr ||
2185
strncmp((char *)(&super->magic), BTRFS_MAGIC,
2186
sizeof(super->magic))) {
2187
brelse(bh);
2188
continue;
2189
}
2190
2191
if (!latest || btrfs_super_generation(super) > transid) {
2192
brelse(latest);
2193
latest = bh;
2194
transid = btrfs_super_generation(super);
2195
} else {
2196
brelse(bh);
2197
}
2198
}
2199
return latest;
2200
}
2201
2202
/*
2203
* this should be called twice, once with wait == 0 and
2204
* once with wait == 1. When wait == 0 is done, all the buffer heads
2205
* we write are pinned.
2206
*
2207
* They are released when wait == 1 is done.
2208
* max_mirrors must be the same for both runs, and it indicates how
2209
* many supers on this one device should be written.
2210
*
2211
* max_mirrors == 0 means to write them all.
2212
*/
2213
static int write_dev_supers(struct btrfs_device *device,
2214
struct btrfs_super_block *sb,
2215
int do_barriers, int wait, int max_mirrors)
2216
{
2217
struct buffer_head *bh;
2218
int i;
2219
int ret;
2220
int errors = 0;
2221
u32 crc;
2222
u64 bytenr;
2223
int last_barrier = 0;
2224
2225
if (max_mirrors == 0)
2226
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2227
2228
/* make sure only the last submit_bh does a barrier */
2229
if (do_barriers) {
2230
for (i = 0; i < max_mirrors; i++) {
2231
bytenr = btrfs_sb_offset(i);
2232
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2233
device->total_bytes)
2234
break;
2235
last_barrier = i;
2236
}
2237
}
2238
2239
for (i = 0; i < max_mirrors; i++) {
2240
bytenr = btrfs_sb_offset(i);
2241
if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2242
break;
2243
2244
if (wait) {
2245
bh = __find_get_block(device->bdev, bytenr / 4096,
2246
BTRFS_SUPER_INFO_SIZE);
2247
BUG_ON(!bh);
2248
wait_on_buffer(bh);
2249
if (!buffer_uptodate(bh))
2250
errors++;
2251
2252
/* drop our reference */
2253
brelse(bh);
2254
2255
/* drop the reference from the wait == 0 run */
2256
brelse(bh);
2257
continue;
2258
} else {
2259
btrfs_set_super_bytenr(sb, bytenr);
2260
2261
crc = ~(u32)0;
2262
crc = btrfs_csum_data(NULL, (char *)sb +
2263
BTRFS_CSUM_SIZE, crc,
2264
BTRFS_SUPER_INFO_SIZE -
2265
BTRFS_CSUM_SIZE);
2266
btrfs_csum_final(crc, sb->csum);
2267
2268
/*
2269
* one reference for us, and we leave it for the
2270
* caller
2271
*/
2272
bh = __getblk(device->bdev, bytenr / 4096,
2273
BTRFS_SUPER_INFO_SIZE);
2274
memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2275
2276
/* one reference for submit_bh */
2277
get_bh(bh);
2278
2279
set_buffer_uptodate(bh);
2280
lock_buffer(bh);
2281
bh->b_end_io = btrfs_end_buffer_write_sync;
2282
}
2283
2284
if (i == last_barrier && do_barriers)
2285
ret = submit_bh(WRITE_FLUSH_FUA, bh);
2286
else
2287
ret = submit_bh(WRITE_SYNC, bh);
2288
2289
if (ret)
2290
errors++;
2291
}
2292
return errors < i ? 0 : -1;
2293
}
2294
2295
int write_all_supers(struct btrfs_root *root, int max_mirrors)
2296
{
2297
struct list_head *head;
2298
struct btrfs_device *dev;
2299
struct btrfs_super_block *sb;
2300
struct btrfs_dev_item *dev_item;
2301
int ret;
2302
int do_barriers;
2303
int max_errors;
2304
int total_errors = 0;
2305
u64 flags;
2306
2307
max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2308
do_barriers = !btrfs_test_opt(root, NOBARRIER);
2309
2310
sb = &root->fs_info->super_for_commit;
2311
dev_item = &sb->dev_item;
2312
2313
mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2314
head = &root->fs_info->fs_devices->devices;
2315
list_for_each_entry_rcu(dev, head, dev_list) {
2316
if (!dev->bdev) {
2317
total_errors++;
2318
continue;
2319
}
2320
if (!dev->in_fs_metadata || !dev->writeable)
2321
continue;
2322
2323
btrfs_set_stack_device_generation(dev_item, 0);
2324
btrfs_set_stack_device_type(dev_item, dev->type);
2325
btrfs_set_stack_device_id(dev_item, dev->devid);
2326
btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2327
btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2328
btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2329
btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2330
btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2331
memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2332
memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2333
2334
flags = btrfs_super_flags(sb);
2335
btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2336
2337
ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2338
if (ret)
2339
total_errors++;
2340
}
2341
if (total_errors > max_errors) {
2342
printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2343
total_errors);
2344
BUG();
2345
}
2346
2347
total_errors = 0;
2348
list_for_each_entry_rcu(dev, head, dev_list) {
2349
if (!dev->bdev)
2350
continue;
2351
if (!dev->in_fs_metadata || !dev->writeable)
2352
continue;
2353
2354
ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2355
if (ret)
2356
total_errors++;
2357
}
2358
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2359
if (total_errors > max_errors) {
2360
printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2361
total_errors);
2362
BUG();
2363
}
2364
return 0;
2365
}
2366
2367
int write_ctree_super(struct btrfs_trans_handle *trans,
2368
struct btrfs_root *root, int max_mirrors)
2369
{
2370
int ret;
2371
2372
ret = write_all_supers(root, max_mirrors);
2373
return ret;
2374
}
2375
2376
int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2377
{
2378
spin_lock(&fs_info->fs_roots_radix_lock);
2379
radix_tree_delete(&fs_info->fs_roots_radix,
2380
(unsigned long)root->root_key.objectid);
2381
spin_unlock(&fs_info->fs_roots_radix_lock);
2382
2383
if (btrfs_root_refs(&root->root_item) == 0)
2384
synchronize_srcu(&fs_info->subvol_srcu);
2385
2386
__btrfs_remove_free_space_cache(root->free_ino_pinned);
2387
__btrfs_remove_free_space_cache(root->free_ino_ctl);
2388
free_fs_root(root);
2389
return 0;
2390
}
2391
2392
static void free_fs_root(struct btrfs_root *root)
2393
{
2394
iput(root->cache_inode);
2395
WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2396
if (root->anon_super.s_dev) {
2397
down_write(&root->anon_super.s_umount);
2398
kill_anon_super(&root->anon_super);
2399
}
2400
free_extent_buffer(root->node);
2401
free_extent_buffer(root->commit_root);
2402
kfree(root->free_ino_ctl);
2403
kfree(root->free_ino_pinned);
2404
kfree(root->name);
2405
kfree(root);
2406
}
2407
2408
static int del_fs_roots(struct btrfs_fs_info *fs_info)
2409
{
2410
int ret;
2411
struct btrfs_root *gang[8];
2412
int i;
2413
2414
while (!list_empty(&fs_info->dead_roots)) {
2415
gang[0] = list_entry(fs_info->dead_roots.next,
2416
struct btrfs_root, root_list);
2417
list_del(&gang[0]->root_list);
2418
2419
if (gang[0]->in_radix) {
2420
btrfs_free_fs_root(fs_info, gang[0]);
2421
} else {
2422
free_extent_buffer(gang[0]->node);
2423
free_extent_buffer(gang[0]->commit_root);
2424
kfree(gang[0]);
2425
}
2426
}
2427
2428
while (1) {
2429
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2430
(void **)gang, 0,
2431
ARRAY_SIZE(gang));
2432
if (!ret)
2433
break;
2434
for (i = 0; i < ret; i++)
2435
btrfs_free_fs_root(fs_info, gang[i]);
2436
}
2437
return 0;
2438
}
2439
2440
int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2441
{
2442
u64 root_objectid = 0;
2443
struct btrfs_root *gang[8];
2444
int i;
2445
int ret;
2446
2447
while (1) {
2448
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2449
(void **)gang, root_objectid,
2450
ARRAY_SIZE(gang));
2451
if (!ret)
2452
break;
2453
2454
root_objectid = gang[ret - 1]->root_key.objectid + 1;
2455
for (i = 0; i < ret; i++) {
2456
int err;
2457
2458
root_objectid = gang[i]->root_key.objectid;
2459
err = btrfs_orphan_cleanup(gang[i]);
2460
if (err)
2461
return err;
2462
}
2463
root_objectid++;
2464
}
2465
return 0;
2466
}
2467
2468
int btrfs_commit_super(struct btrfs_root *root)
2469
{
2470
struct btrfs_trans_handle *trans;
2471
int ret;
2472
2473
mutex_lock(&root->fs_info->cleaner_mutex);
2474
btrfs_run_delayed_iputs(root);
2475
btrfs_clean_old_snapshots(root);
2476
mutex_unlock(&root->fs_info->cleaner_mutex);
2477
2478
/* wait until ongoing cleanup work done */
2479
down_write(&root->fs_info->cleanup_work_sem);
2480
up_write(&root->fs_info->cleanup_work_sem);
2481
2482
trans = btrfs_join_transaction(root);
2483
if (IS_ERR(trans))
2484
return PTR_ERR(trans);
2485
ret = btrfs_commit_transaction(trans, root);
2486
BUG_ON(ret);
2487
/* run commit again to drop the original snapshot */
2488
trans = btrfs_join_transaction(root);
2489
if (IS_ERR(trans))
2490
return PTR_ERR(trans);
2491
btrfs_commit_transaction(trans, root);
2492
ret = btrfs_write_and_wait_transaction(NULL, root);
2493
BUG_ON(ret);
2494
2495
ret = write_ctree_super(NULL, root, 0);
2496
return ret;
2497
}
2498
2499
int close_ctree(struct btrfs_root *root)
2500
{
2501
struct btrfs_fs_info *fs_info = root->fs_info;
2502
int ret;
2503
2504
fs_info->closing = 1;
2505
smp_mb();
2506
2507
btrfs_scrub_cancel(root);
2508
2509
/* wait for any defraggers to finish */
2510
wait_event(fs_info->transaction_wait,
2511
(atomic_read(&fs_info->defrag_running) == 0));
2512
2513
/* clear out the rbtree of defraggable inodes */
2514
btrfs_run_defrag_inodes(root->fs_info);
2515
2516
btrfs_put_block_group_cache(fs_info);
2517
2518
/*
2519
* Here come 2 situations when btrfs is broken to flip readonly:
2520
*
2521
* 1. when btrfs flips readonly somewhere else before
2522
* btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2523
* and btrfs will skip to write sb directly to keep
2524
* ERROR state on disk.
2525
*
2526
* 2. when btrfs flips readonly just in btrfs_commit_super,
2527
* and in such case, btrfs cannot write sb via btrfs_commit_super,
2528
* and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2529
* btrfs will cleanup all FS resources first and write sb then.
2530
*/
2531
if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2532
ret = btrfs_commit_super(root);
2533
if (ret)
2534
printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2535
}
2536
2537
if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2538
ret = btrfs_error_commit_super(root);
2539
if (ret)
2540
printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2541
}
2542
2543
kthread_stop(root->fs_info->transaction_kthread);
2544
kthread_stop(root->fs_info->cleaner_kthread);
2545
2546
fs_info->closing = 2;
2547
smp_mb();
2548
2549
if (fs_info->delalloc_bytes) {
2550
printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2551
(unsigned long long)fs_info->delalloc_bytes);
2552
}
2553
if (fs_info->total_ref_cache_size) {
2554
printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2555
(unsigned long long)fs_info->total_ref_cache_size);
2556
}
2557
2558
free_extent_buffer(fs_info->extent_root->node);
2559
free_extent_buffer(fs_info->extent_root->commit_root);
2560
free_extent_buffer(fs_info->tree_root->node);
2561
free_extent_buffer(fs_info->tree_root->commit_root);
2562
free_extent_buffer(root->fs_info->chunk_root->node);
2563
free_extent_buffer(root->fs_info->chunk_root->commit_root);
2564
free_extent_buffer(root->fs_info->dev_root->node);
2565
free_extent_buffer(root->fs_info->dev_root->commit_root);
2566
free_extent_buffer(root->fs_info->csum_root->node);
2567
free_extent_buffer(root->fs_info->csum_root->commit_root);
2568
2569
btrfs_free_block_groups(root->fs_info);
2570
2571
del_fs_roots(fs_info);
2572
2573
iput(fs_info->btree_inode);
2574
kfree(fs_info->delayed_root);
2575
2576
btrfs_stop_workers(&fs_info->generic_worker);
2577
btrfs_stop_workers(&fs_info->fixup_workers);
2578
btrfs_stop_workers(&fs_info->delalloc_workers);
2579
btrfs_stop_workers(&fs_info->workers);
2580
btrfs_stop_workers(&fs_info->endio_workers);
2581
btrfs_stop_workers(&fs_info->endio_meta_workers);
2582
btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2583
btrfs_stop_workers(&fs_info->endio_write_workers);
2584
btrfs_stop_workers(&fs_info->endio_freespace_worker);
2585
btrfs_stop_workers(&fs_info->submit_workers);
2586
btrfs_stop_workers(&fs_info->delayed_workers);
2587
2588
btrfs_close_devices(fs_info->fs_devices);
2589
btrfs_mapping_tree_free(&fs_info->mapping_tree);
2590
2591
bdi_destroy(&fs_info->bdi);
2592
cleanup_srcu_struct(&fs_info->subvol_srcu);
2593
2594
kfree(fs_info->extent_root);
2595
kfree(fs_info->tree_root);
2596
kfree(fs_info->chunk_root);
2597
kfree(fs_info->dev_root);
2598
kfree(fs_info->csum_root);
2599
kfree(fs_info);
2600
2601
return 0;
2602
}
2603
2604
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2605
{
2606
int ret;
2607
struct inode *btree_inode = buf->first_page->mapping->host;
2608
2609
ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2610
NULL);
2611
if (!ret)
2612
return ret;
2613
2614
ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2615
parent_transid);
2616
return !ret;
2617
}
2618
2619
int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2620
{
2621
struct inode *btree_inode = buf->first_page->mapping->host;
2622
return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2623
buf);
2624
}
2625
2626
void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2627
{
2628
struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2629
u64 transid = btrfs_header_generation(buf);
2630
struct inode *btree_inode = root->fs_info->btree_inode;
2631
int was_dirty;
2632
2633
btrfs_assert_tree_locked(buf);
2634
if (transid != root->fs_info->generation) {
2635
printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2636
"found %llu running %llu\n",
2637
(unsigned long long)buf->start,
2638
(unsigned long long)transid,
2639
(unsigned long long)root->fs_info->generation);
2640
WARN_ON(1);
2641
}
2642
was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2643
buf);
2644
if (!was_dirty) {
2645
spin_lock(&root->fs_info->delalloc_lock);
2646
root->fs_info->dirty_metadata_bytes += buf->len;
2647
spin_unlock(&root->fs_info->delalloc_lock);
2648
}
2649
}
2650
2651
void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2652
{
2653
/*
2654
* looks as though older kernels can get into trouble with
2655
* this code, they end up stuck in balance_dirty_pages forever
2656
*/
2657
u64 num_dirty;
2658
unsigned long thresh = 32 * 1024 * 1024;
2659
2660
if (current->flags & PF_MEMALLOC)
2661
return;
2662
2663
btrfs_balance_delayed_items(root);
2664
2665
num_dirty = root->fs_info->dirty_metadata_bytes;
2666
2667
if (num_dirty > thresh) {
2668
balance_dirty_pages_ratelimited_nr(
2669
root->fs_info->btree_inode->i_mapping, 1);
2670
}
2671
return;
2672
}
2673
2674
void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2675
{
2676
/*
2677
* looks as though older kernels can get into trouble with
2678
* this code, they end up stuck in balance_dirty_pages forever
2679
*/
2680
u64 num_dirty;
2681
unsigned long thresh = 32 * 1024 * 1024;
2682
2683
if (current->flags & PF_MEMALLOC)
2684
return;
2685
2686
num_dirty = root->fs_info->dirty_metadata_bytes;
2687
2688
if (num_dirty > thresh) {
2689
balance_dirty_pages_ratelimited_nr(
2690
root->fs_info->btree_inode->i_mapping, 1);
2691
}
2692
return;
2693
}
2694
2695
int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2696
{
2697
struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2698
int ret;
2699
ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2700
if (ret == 0)
2701
set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2702
return ret;
2703
}
2704
2705
int btree_lock_page_hook(struct page *page)
2706
{
2707
struct inode *inode = page->mapping->host;
2708
struct btrfs_root *root = BTRFS_I(inode)->root;
2709
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2710
struct extent_buffer *eb;
2711
unsigned long len;
2712
u64 bytenr = page_offset(page);
2713
2714
if (page->private == EXTENT_PAGE_PRIVATE)
2715
goto out;
2716
2717
len = page->private >> 2;
2718
eb = find_extent_buffer(io_tree, bytenr, len);
2719
if (!eb)
2720
goto out;
2721
2722
btrfs_tree_lock(eb);
2723
btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2724
2725
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2726
spin_lock(&root->fs_info->delalloc_lock);
2727
if (root->fs_info->dirty_metadata_bytes >= eb->len)
2728
root->fs_info->dirty_metadata_bytes -= eb->len;
2729
else
2730
WARN_ON(1);
2731
spin_unlock(&root->fs_info->delalloc_lock);
2732
}
2733
2734
btrfs_tree_unlock(eb);
2735
free_extent_buffer(eb);
2736
out:
2737
lock_page(page);
2738
return 0;
2739
}
2740
2741
static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2742
int read_only)
2743
{
2744
if (read_only)
2745
return;
2746
2747
if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2748
printk(KERN_WARNING "warning: mount fs with errors, "
2749
"running btrfsck is recommended\n");
2750
}
2751
2752
int btrfs_error_commit_super(struct btrfs_root *root)
2753
{
2754
int ret;
2755
2756
mutex_lock(&root->fs_info->cleaner_mutex);
2757
btrfs_run_delayed_iputs(root);
2758
mutex_unlock(&root->fs_info->cleaner_mutex);
2759
2760
down_write(&root->fs_info->cleanup_work_sem);
2761
up_write(&root->fs_info->cleanup_work_sem);
2762
2763
/* cleanup FS via transaction */
2764
btrfs_cleanup_transaction(root);
2765
2766
ret = write_ctree_super(NULL, root, 0);
2767
2768
return ret;
2769
}
2770
2771
static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2772
{
2773
struct btrfs_inode *btrfs_inode;
2774
struct list_head splice;
2775
2776
INIT_LIST_HEAD(&splice);
2777
2778
mutex_lock(&root->fs_info->ordered_operations_mutex);
2779
spin_lock(&root->fs_info->ordered_extent_lock);
2780
2781
list_splice_init(&root->fs_info->ordered_operations, &splice);
2782
while (!list_empty(&splice)) {
2783
btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2784
ordered_operations);
2785
2786
list_del_init(&btrfs_inode->ordered_operations);
2787
2788
btrfs_invalidate_inodes(btrfs_inode->root);
2789
}
2790
2791
spin_unlock(&root->fs_info->ordered_extent_lock);
2792
mutex_unlock(&root->fs_info->ordered_operations_mutex);
2793
2794
return 0;
2795
}
2796
2797
static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2798
{
2799
struct list_head splice;
2800
struct btrfs_ordered_extent *ordered;
2801
struct inode *inode;
2802
2803
INIT_LIST_HEAD(&splice);
2804
2805
spin_lock(&root->fs_info->ordered_extent_lock);
2806
2807
list_splice_init(&root->fs_info->ordered_extents, &splice);
2808
while (!list_empty(&splice)) {
2809
ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2810
root_extent_list);
2811
2812
list_del_init(&ordered->root_extent_list);
2813
atomic_inc(&ordered->refs);
2814
2815
/* the inode may be getting freed (in sys_unlink path). */
2816
inode = igrab(ordered->inode);
2817
2818
spin_unlock(&root->fs_info->ordered_extent_lock);
2819
if (inode)
2820
iput(inode);
2821
2822
atomic_set(&ordered->refs, 1);
2823
btrfs_put_ordered_extent(ordered);
2824
2825
spin_lock(&root->fs_info->ordered_extent_lock);
2826
}
2827
2828
spin_unlock(&root->fs_info->ordered_extent_lock);
2829
2830
return 0;
2831
}
2832
2833
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2834
struct btrfs_root *root)
2835
{
2836
struct rb_node *node;
2837
struct btrfs_delayed_ref_root *delayed_refs;
2838
struct btrfs_delayed_ref_node *ref;
2839
int ret = 0;
2840
2841
delayed_refs = &trans->delayed_refs;
2842
2843
spin_lock(&delayed_refs->lock);
2844
if (delayed_refs->num_entries == 0) {
2845
spin_unlock(&delayed_refs->lock);
2846
printk(KERN_INFO "delayed_refs has NO entry\n");
2847
return ret;
2848
}
2849
2850
node = rb_first(&delayed_refs->root);
2851
while (node) {
2852
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2853
node = rb_next(node);
2854
2855
ref->in_tree = 0;
2856
rb_erase(&ref->rb_node, &delayed_refs->root);
2857
delayed_refs->num_entries--;
2858
2859
atomic_set(&ref->refs, 1);
2860
if (btrfs_delayed_ref_is_head(ref)) {
2861
struct btrfs_delayed_ref_head *head;
2862
2863
head = btrfs_delayed_node_to_head(ref);
2864
mutex_lock(&head->mutex);
2865
kfree(head->extent_op);
2866
delayed_refs->num_heads--;
2867
if (list_empty(&head->cluster))
2868
delayed_refs->num_heads_ready--;
2869
list_del_init(&head->cluster);
2870
mutex_unlock(&head->mutex);
2871
}
2872
2873
spin_unlock(&delayed_refs->lock);
2874
btrfs_put_delayed_ref(ref);
2875
2876
cond_resched();
2877
spin_lock(&delayed_refs->lock);
2878
}
2879
2880
spin_unlock(&delayed_refs->lock);
2881
2882
return ret;
2883
}
2884
2885
static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2886
{
2887
struct btrfs_pending_snapshot *snapshot;
2888
struct list_head splice;
2889
2890
INIT_LIST_HEAD(&splice);
2891
2892
list_splice_init(&t->pending_snapshots, &splice);
2893
2894
while (!list_empty(&splice)) {
2895
snapshot = list_entry(splice.next,
2896
struct btrfs_pending_snapshot,
2897
list);
2898
2899
list_del_init(&snapshot->list);
2900
2901
kfree(snapshot);
2902
}
2903
2904
return 0;
2905
}
2906
2907
static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2908
{
2909
struct btrfs_inode *btrfs_inode;
2910
struct list_head splice;
2911
2912
INIT_LIST_HEAD(&splice);
2913
2914
spin_lock(&root->fs_info->delalloc_lock);
2915
list_splice_init(&root->fs_info->delalloc_inodes, &splice);
2916
2917
while (!list_empty(&splice)) {
2918
btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2919
delalloc_inodes);
2920
2921
list_del_init(&btrfs_inode->delalloc_inodes);
2922
2923
btrfs_invalidate_inodes(btrfs_inode->root);
2924
}
2925
2926
spin_unlock(&root->fs_info->delalloc_lock);
2927
2928
return 0;
2929
}
2930
2931
static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2932
struct extent_io_tree *dirty_pages,
2933
int mark)
2934
{
2935
int ret;
2936
struct page *page;
2937
struct inode *btree_inode = root->fs_info->btree_inode;
2938
struct extent_buffer *eb;
2939
u64 start = 0;
2940
u64 end;
2941
u64 offset;
2942
unsigned long index;
2943
2944
while (1) {
2945
ret = find_first_extent_bit(dirty_pages, start, &start, &end,
2946
mark);
2947
if (ret)
2948
break;
2949
2950
clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
2951
while (start <= end) {
2952
index = start >> PAGE_CACHE_SHIFT;
2953
start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
2954
page = find_get_page(btree_inode->i_mapping, index);
2955
if (!page)
2956
continue;
2957
offset = page_offset(page);
2958
2959
spin_lock(&dirty_pages->buffer_lock);
2960
eb = radix_tree_lookup(
2961
&(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
2962
offset >> PAGE_CACHE_SHIFT);
2963
spin_unlock(&dirty_pages->buffer_lock);
2964
if (eb) {
2965
ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
2966
&eb->bflags);
2967
atomic_set(&eb->refs, 1);
2968
}
2969
if (PageWriteback(page))
2970
end_page_writeback(page);
2971
2972
lock_page(page);
2973
if (PageDirty(page)) {
2974
clear_page_dirty_for_io(page);
2975
spin_lock_irq(&page->mapping->tree_lock);
2976
radix_tree_tag_clear(&page->mapping->page_tree,
2977
page_index(page),
2978
PAGECACHE_TAG_DIRTY);
2979
spin_unlock_irq(&page->mapping->tree_lock);
2980
}
2981
2982
page->mapping->a_ops->invalidatepage(page, 0);
2983
unlock_page(page);
2984
}
2985
}
2986
2987
return ret;
2988
}
2989
2990
static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
2991
struct extent_io_tree *pinned_extents)
2992
{
2993
struct extent_io_tree *unpin;
2994
u64 start;
2995
u64 end;
2996
int ret;
2997
2998
unpin = pinned_extents;
2999
while (1) {
3000
ret = find_first_extent_bit(unpin, 0, &start, &end,
3001
EXTENT_DIRTY);
3002
if (ret)
3003
break;
3004
3005
/* opt_discard */
3006
if (btrfs_test_opt(root, DISCARD))
3007
ret = btrfs_error_discard_extent(root, start,
3008
end + 1 - start,
3009
NULL);
3010
3011
clear_extent_dirty(unpin, start, end, GFP_NOFS);
3012
btrfs_error_unpin_extent_range(root, start, end);
3013
cond_resched();
3014
}
3015
3016
return 0;
3017
}
3018
3019
static int btrfs_cleanup_transaction(struct btrfs_root *root)
3020
{
3021
struct btrfs_transaction *t;
3022
LIST_HEAD(list);
3023
3024
WARN_ON(1);
3025
3026
mutex_lock(&root->fs_info->transaction_kthread_mutex);
3027
3028
spin_lock(&root->fs_info->trans_lock);
3029
list_splice_init(&root->fs_info->trans_list, &list);
3030
root->fs_info->trans_no_join = 1;
3031
spin_unlock(&root->fs_info->trans_lock);
3032
3033
while (!list_empty(&list)) {
3034
t = list_entry(list.next, struct btrfs_transaction, list);
3035
if (!t)
3036
break;
3037
3038
btrfs_destroy_ordered_operations(root);
3039
3040
btrfs_destroy_ordered_extents(root);
3041
3042
btrfs_destroy_delayed_refs(t, root);
3043
3044
btrfs_block_rsv_release(root,
3045
&root->fs_info->trans_block_rsv,
3046
t->dirty_pages.dirty_bytes);
3047
3048
/* FIXME: cleanup wait for commit */
3049
t->in_commit = 1;
3050
t->blocked = 1;
3051
if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3052
wake_up(&root->fs_info->transaction_blocked_wait);
3053
3054
t->blocked = 0;
3055
if (waitqueue_active(&root->fs_info->transaction_wait))
3056
wake_up(&root->fs_info->transaction_wait);
3057
3058
t->commit_done = 1;
3059
if (waitqueue_active(&t->commit_wait))
3060
wake_up(&t->commit_wait);
3061
3062
btrfs_destroy_pending_snapshots(t);
3063
3064
btrfs_destroy_delalloc_inodes(root);
3065
3066
spin_lock(&root->fs_info->trans_lock);
3067
root->fs_info->running_transaction = NULL;
3068
spin_unlock(&root->fs_info->trans_lock);
3069
3070
btrfs_destroy_marked_extents(root, &t->dirty_pages,
3071
EXTENT_DIRTY);
3072
3073
btrfs_destroy_pinned_extent(root,
3074
root->fs_info->pinned_extents);
3075
3076
atomic_set(&t->use_count, 0);
3077
list_del_init(&t->list);
3078
memset(t, 0, sizeof(*t));
3079
kmem_cache_free(btrfs_transaction_cachep, t);
3080
}
3081
3082
spin_lock(&root->fs_info->trans_lock);
3083
root->fs_info->trans_no_join = 0;
3084
spin_unlock(&root->fs_info->trans_lock);
3085
mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3086
3087
return 0;
3088
}
3089
3090
static struct extent_io_ops btree_extent_io_ops = {
3091
.write_cache_pages_lock_hook = btree_lock_page_hook,
3092
.readpage_end_io_hook = btree_readpage_end_io_hook,
3093
.submit_bio_hook = btree_submit_bio_hook,
3094
/* note we're sharing with inode.c for the merge bio hook */
3095
.merge_bio_hook = btrfs_merge_bio_hook,
3096
};
3097
3098