Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/btrfs/extent-tree.c
15109 views
1
/*
2
* Copyright (C) 2007 Oracle. All rights reserved.
3
*
4
* This program is free software; you can redistribute it and/or
5
* modify it under the terms of the GNU General Public
6
* License v2 as published by the Free Software Foundation.
7
*
8
* This program is distributed in the hope that it will be useful,
9
* but WITHOUT ANY WARRANTY; without even the implied warranty of
10
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11
* General Public License for more details.
12
*
13
* You should have received a copy of the GNU General Public
14
* License along with this program; if not, write to the
15
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16
* Boston, MA 021110-1307, USA.
17
*/
18
#include <linux/sched.h>
19
#include <linux/pagemap.h>
20
#include <linux/writeback.h>
21
#include <linux/blkdev.h>
22
#include <linux/sort.h>
23
#include <linux/rcupdate.h>
24
#include <linux/kthread.h>
25
#include <linux/slab.h>
26
#include "compat.h"
27
#include "hash.h"
28
#include "ctree.h"
29
#include "disk-io.h"
30
#include "print-tree.h"
31
#include "transaction.h"
32
#include "volumes.h"
33
#include "locking.h"
34
#include "free-space-cache.h"
35
36
/* control flags for do_chunk_alloc's force field
37
* CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38
* if we really need one.
39
*
40
* CHUNK_ALLOC_FORCE means it must try to allocate one
41
*
42
* CHUNK_ALLOC_LIMITED means to only try and allocate one
43
* if we have very few chunks already allocated. This is
44
* used as part of the clustering code to help make sure
45
* we have a good pool of storage to cluster in, without
46
* filling the FS with empty chunks
47
*
48
*/
49
enum {
50
CHUNK_ALLOC_NO_FORCE = 0,
51
CHUNK_ALLOC_FORCE = 1,
52
CHUNK_ALLOC_LIMITED = 2,
53
};
54
55
static int update_block_group(struct btrfs_trans_handle *trans,
56
struct btrfs_root *root,
57
u64 bytenr, u64 num_bytes, int alloc);
58
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
59
struct btrfs_root *root,
60
u64 bytenr, u64 num_bytes, u64 parent,
61
u64 root_objectid, u64 owner_objectid,
62
u64 owner_offset, int refs_to_drop,
63
struct btrfs_delayed_extent_op *extra_op);
64
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
65
struct extent_buffer *leaf,
66
struct btrfs_extent_item *ei);
67
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
68
struct btrfs_root *root,
69
u64 parent, u64 root_objectid,
70
u64 flags, u64 owner, u64 offset,
71
struct btrfs_key *ins, int ref_mod);
72
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
73
struct btrfs_root *root,
74
u64 parent, u64 root_objectid,
75
u64 flags, struct btrfs_disk_key *key,
76
int level, struct btrfs_key *ins);
77
static int do_chunk_alloc(struct btrfs_trans_handle *trans,
78
struct btrfs_root *extent_root, u64 alloc_bytes,
79
u64 flags, int force);
80
static int find_next_key(struct btrfs_path *path, int level,
81
struct btrfs_key *key);
82
static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
83
int dump_block_groups);
84
85
static noinline int
86
block_group_cache_done(struct btrfs_block_group_cache *cache)
87
{
88
smp_mb();
89
return cache->cached == BTRFS_CACHE_FINISHED;
90
}
91
92
static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
93
{
94
return (cache->flags & bits) == bits;
95
}
96
97
static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
98
{
99
atomic_inc(&cache->count);
100
}
101
102
void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
103
{
104
if (atomic_dec_and_test(&cache->count)) {
105
WARN_ON(cache->pinned > 0);
106
WARN_ON(cache->reserved > 0);
107
WARN_ON(cache->reserved_pinned > 0);
108
kfree(cache->free_space_ctl);
109
kfree(cache);
110
}
111
}
112
113
/*
114
* this adds the block group to the fs_info rb tree for the block group
115
* cache
116
*/
117
static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
118
struct btrfs_block_group_cache *block_group)
119
{
120
struct rb_node **p;
121
struct rb_node *parent = NULL;
122
struct btrfs_block_group_cache *cache;
123
124
spin_lock(&info->block_group_cache_lock);
125
p = &info->block_group_cache_tree.rb_node;
126
127
while (*p) {
128
parent = *p;
129
cache = rb_entry(parent, struct btrfs_block_group_cache,
130
cache_node);
131
if (block_group->key.objectid < cache->key.objectid) {
132
p = &(*p)->rb_left;
133
} else if (block_group->key.objectid > cache->key.objectid) {
134
p = &(*p)->rb_right;
135
} else {
136
spin_unlock(&info->block_group_cache_lock);
137
return -EEXIST;
138
}
139
}
140
141
rb_link_node(&block_group->cache_node, parent, p);
142
rb_insert_color(&block_group->cache_node,
143
&info->block_group_cache_tree);
144
spin_unlock(&info->block_group_cache_lock);
145
146
return 0;
147
}
148
149
/*
150
* This will return the block group at or after bytenr if contains is 0, else
151
* it will return the block group that contains the bytenr
152
*/
153
static struct btrfs_block_group_cache *
154
block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
155
int contains)
156
{
157
struct btrfs_block_group_cache *cache, *ret = NULL;
158
struct rb_node *n;
159
u64 end, start;
160
161
spin_lock(&info->block_group_cache_lock);
162
n = info->block_group_cache_tree.rb_node;
163
164
while (n) {
165
cache = rb_entry(n, struct btrfs_block_group_cache,
166
cache_node);
167
end = cache->key.objectid + cache->key.offset - 1;
168
start = cache->key.objectid;
169
170
if (bytenr < start) {
171
if (!contains && (!ret || start < ret->key.objectid))
172
ret = cache;
173
n = n->rb_left;
174
} else if (bytenr > start) {
175
if (contains && bytenr <= end) {
176
ret = cache;
177
break;
178
}
179
n = n->rb_right;
180
} else {
181
ret = cache;
182
break;
183
}
184
}
185
if (ret)
186
btrfs_get_block_group(ret);
187
spin_unlock(&info->block_group_cache_lock);
188
189
return ret;
190
}
191
192
static int add_excluded_extent(struct btrfs_root *root,
193
u64 start, u64 num_bytes)
194
{
195
u64 end = start + num_bytes - 1;
196
set_extent_bits(&root->fs_info->freed_extents[0],
197
start, end, EXTENT_UPTODATE, GFP_NOFS);
198
set_extent_bits(&root->fs_info->freed_extents[1],
199
start, end, EXTENT_UPTODATE, GFP_NOFS);
200
return 0;
201
}
202
203
static void free_excluded_extents(struct btrfs_root *root,
204
struct btrfs_block_group_cache *cache)
205
{
206
u64 start, end;
207
208
start = cache->key.objectid;
209
end = start + cache->key.offset - 1;
210
211
clear_extent_bits(&root->fs_info->freed_extents[0],
212
start, end, EXTENT_UPTODATE, GFP_NOFS);
213
clear_extent_bits(&root->fs_info->freed_extents[1],
214
start, end, EXTENT_UPTODATE, GFP_NOFS);
215
}
216
217
static int exclude_super_stripes(struct btrfs_root *root,
218
struct btrfs_block_group_cache *cache)
219
{
220
u64 bytenr;
221
u64 *logical;
222
int stripe_len;
223
int i, nr, ret;
224
225
if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
226
stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
227
cache->bytes_super += stripe_len;
228
ret = add_excluded_extent(root, cache->key.objectid,
229
stripe_len);
230
BUG_ON(ret);
231
}
232
233
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
234
bytenr = btrfs_sb_offset(i);
235
ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
236
cache->key.objectid, bytenr,
237
0, &logical, &nr, &stripe_len);
238
BUG_ON(ret);
239
240
while (nr--) {
241
cache->bytes_super += stripe_len;
242
ret = add_excluded_extent(root, logical[nr],
243
stripe_len);
244
BUG_ON(ret);
245
}
246
247
kfree(logical);
248
}
249
return 0;
250
}
251
252
static struct btrfs_caching_control *
253
get_caching_control(struct btrfs_block_group_cache *cache)
254
{
255
struct btrfs_caching_control *ctl;
256
257
spin_lock(&cache->lock);
258
if (cache->cached != BTRFS_CACHE_STARTED) {
259
spin_unlock(&cache->lock);
260
return NULL;
261
}
262
263
/* We're loading it the fast way, so we don't have a caching_ctl. */
264
if (!cache->caching_ctl) {
265
spin_unlock(&cache->lock);
266
return NULL;
267
}
268
269
ctl = cache->caching_ctl;
270
atomic_inc(&ctl->count);
271
spin_unlock(&cache->lock);
272
return ctl;
273
}
274
275
static void put_caching_control(struct btrfs_caching_control *ctl)
276
{
277
if (atomic_dec_and_test(&ctl->count))
278
kfree(ctl);
279
}
280
281
/*
282
* this is only called by cache_block_group, since we could have freed extents
283
* we need to check the pinned_extents for any extents that can't be used yet
284
* since their free space will be released as soon as the transaction commits.
285
*/
286
static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
287
struct btrfs_fs_info *info, u64 start, u64 end)
288
{
289
u64 extent_start, extent_end, size, total_added = 0;
290
int ret;
291
292
while (start < end) {
293
ret = find_first_extent_bit(info->pinned_extents, start,
294
&extent_start, &extent_end,
295
EXTENT_DIRTY | EXTENT_UPTODATE);
296
if (ret)
297
break;
298
299
if (extent_start <= start) {
300
start = extent_end + 1;
301
} else if (extent_start > start && extent_start < end) {
302
size = extent_start - start;
303
total_added += size;
304
ret = btrfs_add_free_space(block_group, start,
305
size);
306
BUG_ON(ret);
307
start = extent_end + 1;
308
} else {
309
break;
310
}
311
}
312
313
if (start < end) {
314
size = end - start;
315
total_added += size;
316
ret = btrfs_add_free_space(block_group, start, size);
317
BUG_ON(ret);
318
}
319
320
return total_added;
321
}
322
323
static int caching_kthread(void *data)
324
{
325
struct btrfs_block_group_cache *block_group = data;
326
struct btrfs_fs_info *fs_info = block_group->fs_info;
327
struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
328
struct btrfs_root *extent_root = fs_info->extent_root;
329
struct btrfs_path *path;
330
struct extent_buffer *leaf;
331
struct btrfs_key key;
332
u64 total_found = 0;
333
u64 last = 0;
334
u32 nritems;
335
int ret = 0;
336
337
path = btrfs_alloc_path();
338
if (!path)
339
return -ENOMEM;
340
341
last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
342
343
/*
344
* We don't want to deadlock with somebody trying to allocate a new
345
* extent for the extent root while also trying to search the extent
346
* root to add free space. So we skip locking and search the commit
347
* root, since its read-only
348
*/
349
path->skip_locking = 1;
350
path->search_commit_root = 1;
351
path->reada = 1;
352
353
key.objectid = last;
354
key.offset = 0;
355
key.type = BTRFS_EXTENT_ITEM_KEY;
356
again:
357
mutex_lock(&caching_ctl->mutex);
358
/* need to make sure the commit_root doesn't disappear */
359
down_read(&fs_info->extent_commit_sem);
360
361
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
362
if (ret < 0)
363
goto err;
364
365
leaf = path->nodes[0];
366
nritems = btrfs_header_nritems(leaf);
367
368
while (1) {
369
if (btrfs_fs_closing(fs_info) > 1) {
370
last = (u64)-1;
371
break;
372
}
373
374
if (path->slots[0] < nritems) {
375
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
376
} else {
377
ret = find_next_key(path, 0, &key);
378
if (ret)
379
break;
380
381
if (need_resched() ||
382
btrfs_next_leaf(extent_root, path)) {
383
caching_ctl->progress = last;
384
btrfs_release_path(path);
385
up_read(&fs_info->extent_commit_sem);
386
mutex_unlock(&caching_ctl->mutex);
387
cond_resched();
388
goto again;
389
}
390
leaf = path->nodes[0];
391
nritems = btrfs_header_nritems(leaf);
392
continue;
393
}
394
395
if (key.objectid < block_group->key.objectid) {
396
path->slots[0]++;
397
continue;
398
}
399
400
if (key.objectid >= block_group->key.objectid +
401
block_group->key.offset)
402
break;
403
404
if (key.type == BTRFS_EXTENT_ITEM_KEY) {
405
total_found += add_new_free_space(block_group,
406
fs_info, last,
407
key.objectid);
408
last = key.objectid + key.offset;
409
410
if (total_found > (1024 * 1024 * 2)) {
411
total_found = 0;
412
wake_up(&caching_ctl->wait);
413
}
414
}
415
path->slots[0]++;
416
}
417
ret = 0;
418
419
total_found += add_new_free_space(block_group, fs_info, last,
420
block_group->key.objectid +
421
block_group->key.offset);
422
caching_ctl->progress = (u64)-1;
423
424
spin_lock(&block_group->lock);
425
block_group->caching_ctl = NULL;
426
block_group->cached = BTRFS_CACHE_FINISHED;
427
spin_unlock(&block_group->lock);
428
429
err:
430
btrfs_free_path(path);
431
up_read(&fs_info->extent_commit_sem);
432
433
free_excluded_extents(extent_root, block_group);
434
435
mutex_unlock(&caching_ctl->mutex);
436
wake_up(&caching_ctl->wait);
437
438
put_caching_control(caching_ctl);
439
atomic_dec(&block_group->space_info->caching_threads);
440
btrfs_put_block_group(block_group);
441
442
return 0;
443
}
444
445
static int cache_block_group(struct btrfs_block_group_cache *cache,
446
struct btrfs_trans_handle *trans,
447
struct btrfs_root *root,
448
int load_cache_only)
449
{
450
struct btrfs_fs_info *fs_info = cache->fs_info;
451
struct btrfs_caching_control *caching_ctl;
452
struct task_struct *tsk;
453
int ret = 0;
454
455
smp_mb();
456
if (cache->cached != BTRFS_CACHE_NO)
457
return 0;
458
459
/*
460
* We can't do the read from on-disk cache during a commit since we need
461
* to have the normal tree locking. Also if we are currently trying to
462
* allocate blocks for the tree root we can't do the fast caching since
463
* we likely hold important locks.
464
*/
465
if (trans && (!trans->transaction->in_commit) &&
466
(root && root != root->fs_info->tree_root)) {
467
spin_lock(&cache->lock);
468
if (cache->cached != BTRFS_CACHE_NO) {
469
spin_unlock(&cache->lock);
470
return 0;
471
}
472
cache->cached = BTRFS_CACHE_STARTED;
473
spin_unlock(&cache->lock);
474
475
ret = load_free_space_cache(fs_info, cache);
476
477
spin_lock(&cache->lock);
478
if (ret == 1) {
479
cache->cached = BTRFS_CACHE_FINISHED;
480
cache->last_byte_to_unpin = (u64)-1;
481
} else {
482
cache->cached = BTRFS_CACHE_NO;
483
}
484
spin_unlock(&cache->lock);
485
if (ret == 1) {
486
free_excluded_extents(fs_info->extent_root, cache);
487
return 0;
488
}
489
}
490
491
if (load_cache_only)
492
return 0;
493
494
caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
495
BUG_ON(!caching_ctl);
496
497
INIT_LIST_HEAD(&caching_ctl->list);
498
mutex_init(&caching_ctl->mutex);
499
init_waitqueue_head(&caching_ctl->wait);
500
caching_ctl->block_group = cache;
501
caching_ctl->progress = cache->key.objectid;
502
/* one for caching kthread, one for caching block group list */
503
atomic_set(&caching_ctl->count, 2);
504
505
spin_lock(&cache->lock);
506
if (cache->cached != BTRFS_CACHE_NO) {
507
spin_unlock(&cache->lock);
508
kfree(caching_ctl);
509
return 0;
510
}
511
cache->caching_ctl = caching_ctl;
512
cache->cached = BTRFS_CACHE_STARTED;
513
spin_unlock(&cache->lock);
514
515
down_write(&fs_info->extent_commit_sem);
516
list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
517
up_write(&fs_info->extent_commit_sem);
518
519
atomic_inc(&cache->space_info->caching_threads);
520
btrfs_get_block_group(cache);
521
522
tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
523
cache->key.objectid);
524
if (IS_ERR(tsk)) {
525
ret = PTR_ERR(tsk);
526
printk(KERN_ERR "error running thread %d\n", ret);
527
BUG();
528
}
529
530
return ret;
531
}
532
533
/*
534
* return the block group that starts at or after bytenr
535
*/
536
static struct btrfs_block_group_cache *
537
btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
538
{
539
struct btrfs_block_group_cache *cache;
540
541
cache = block_group_cache_tree_search(info, bytenr, 0);
542
543
return cache;
544
}
545
546
/*
547
* return the block group that contains the given bytenr
548
*/
549
struct btrfs_block_group_cache *btrfs_lookup_block_group(
550
struct btrfs_fs_info *info,
551
u64 bytenr)
552
{
553
struct btrfs_block_group_cache *cache;
554
555
cache = block_group_cache_tree_search(info, bytenr, 1);
556
557
return cache;
558
}
559
560
static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
561
u64 flags)
562
{
563
struct list_head *head = &info->space_info;
564
struct btrfs_space_info *found;
565
566
flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
567
BTRFS_BLOCK_GROUP_METADATA;
568
569
rcu_read_lock();
570
list_for_each_entry_rcu(found, head, list) {
571
if (found->flags & flags) {
572
rcu_read_unlock();
573
return found;
574
}
575
}
576
rcu_read_unlock();
577
return NULL;
578
}
579
580
/*
581
* after adding space to the filesystem, we need to clear the full flags
582
* on all the space infos.
583
*/
584
void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
585
{
586
struct list_head *head = &info->space_info;
587
struct btrfs_space_info *found;
588
589
rcu_read_lock();
590
list_for_each_entry_rcu(found, head, list)
591
found->full = 0;
592
rcu_read_unlock();
593
}
594
595
static u64 div_factor(u64 num, int factor)
596
{
597
if (factor == 10)
598
return num;
599
num *= factor;
600
do_div(num, 10);
601
return num;
602
}
603
604
static u64 div_factor_fine(u64 num, int factor)
605
{
606
if (factor == 100)
607
return num;
608
num *= factor;
609
do_div(num, 100);
610
return num;
611
}
612
613
u64 btrfs_find_block_group(struct btrfs_root *root,
614
u64 search_start, u64 search_hint, int owner)
615
{
616
struct btrfs_block_group_cache *cache;
617
u64 used;
618
u64 last = max(search_hint, search_start);
619
u64 group_start = 0;
620
int full_search = 0;
621
int factor = 9;
622
int wrapped = 0;
623
again:
624
while (1) {
625
cache = btrfs_lookup_first_block_group(root->fs_info, last);
626
if (!cache)
627
break;
628
629
spin_lock(&cache->lock);
630
last = cache->key.objectid + cache->key.offset;
631
used = btrfs_block_group_used(&cache->item);
632
633
if ((full_search || !cache->ro) &&
634
block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
635
if (used + cache->pinned + cache->reserved <
636
div_factor(cache->key.offset, factor)) {
637
group_start = cache->key.objectid;
638
spin_unlock(&cache->lock);
639
btrfs_put_block_group(cache);
640
goto found;
641
}
642
}
643
spin_unlock(&cache->lock);
644
btrfs_put_block_group(cache);
645
cond_resched();
646
}
647
if (!wrapped) {
648
last = search_start;
649
wrapped = 1;
650
goto again;
651
}
652
if (!full_search && factor < 10) {
653
last = search_start;
654
full_search = 1;
655
factor = 10;
656
goto again;
657
}
658
found:
659
return group_start;
660
}
661
662
/* simple helper to search for an existing extent at a given offset */
663
int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
664
{
665
int ret;
666
struct btrfs_key key;
667
struct btrfs_path *path;
668
669
path = btrfs_alloc_path();
670
BUG_ON(!path);
671
key.objectid = start;
672
key.offset = len;
673
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
674
ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
675
0, 0);
676
btrfs_free_path(path);
677
return ret;
678
}
679
680
/*
681
* helper function to lookup reference count and flags of extent.
682
*
683
* the head node for delayed ref is used to store the sum of all the
684
* reference count modifications queued up in the rbtree. the head
685
* node may also store the extent flags to set. This way you can check
686
* to see what the reference count and extent flags would be if all of
687
* the delayed refs are not processed.
688
*/
689
int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
690
struct btrfs_root *root, u64 bytenr,
691
u64 num_bytes, u64 *refs, u64 *flags)
692
{
693
struct btrfs_delayed_ref_head *head;
694
struct btrfs_delayed_ref_root *delayed_refs;
695
struct btrfs_path *path;
696
struct btrfs_extent_item *ei;
697
struct extent_buffer *leaf;
698
struct btrfs_key key;
699
u32 item_size;
700
u64 num_refs;
701
u64 extent_flags;
702
int ret;
703
704
path = btrfs_alloc_path();
705
if (!path)
706
return -ENOMEM;
707
708
key.objectid = bytenr;
709
key.type = BTRFS_EXTENT_ITEM_KEY;
710
key.offset = num_bytes;
711
if (!trans) {
712
path->skip_locking = 1;
713
path->search_commit_root = 1;
714
}
715
again:
716
ret = btrfs_search_slot(trans, root->fs_info->extent_root,
717
&key, path, 0, 0);
718
if (ret < 0)
719
goto out_free;
720
721
if (ret == 0) {
722
leaf = path->nodes[0];
723
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
724
if (item_size >= sizeof(*ei)) {
725
ei = btrfs_item_ptr(leaf, path->slots[0],
726
struct btrfs_extent_item);
727
num_refs = btrfs_extent_refs(leaf, ei);
728
extent_flags = btrfs_extent_flags(leaf, ei);
729
} else {
730
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
731
struct btrfs_extent_item_v0 *ei0;
732
BUG_ON(item_size != sizeof(*ei0));
733
ei0 = btrfs_item_ptr(leaf, path->slots[0],
734
struct btrfs_extent_item_v0);
735
num_refs = btrfs_extent_refs_v0(leaf, ei0);
736
/* FIXME: this isn't correct for data */
737
extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
738
#else
739
BUG();
740
#endif
741
}
742
BUG_ON(num_refs == 0);
743
} else {
744
num_refs = 0;
745
extent_flags = 0;
746
ret = 0;
747
}
748
749
if (!trans)
750
goto out;
751
752
delayed_refs = &trans->transaction->delayed_refs;
753
spin_lock(&delayed_refs->lock);
754
head = btrfs_find_delayed_ref_head(trans, bytenr);
755
if (head) {
756
if (!mutex_trylock(&head->mutex)) {
757
atomic_inc(&head->node.refs);
758
spin_unlock(&delayed_refs->lock);
759
760
btrfs_release_path(path);
761
762
/*
763
* Mutex was contended, block until it's released and try
764
* again
765
*/
766
mutex_lock(&head->mutex);
767
mutex_unlock(&head->mutex);
768
btrfs_put_delayed_ref(&head->node);
769
goto again;
770
}
771
if (head->extent_op && head->extent_op->update_flags)
772
extent_flags |= head->extent_op->flags_to_set;
773
else
774
BUG_ON(num_refs == 0);
775
776
num_refs += head->node.ref_mod;
777
mutex_unlock(&head->mutex);
778
}
779
spin_unlock(&delayed_refs->lock);
780
out:
781
WARN_ON(num_refs == 0);
782
if (refs)
783
*refs = num_refs;
784
if (flags)
785
*flags = extent_flags;
786
out_free:
787
btrfs_free_path(path);
788
return ret;
789
}
790
791
/*
792
* Back reference rules. Back refs have three main goals:
793
*
794
* 1) differentiate between all holders of references to an extent so that
795
* when a reference is dropped we can make sure it was a valid reference
796
* before freeing the extent.
797
*
798
* 2) Provide enough information to quickly find the holders of an extent
799
* if we notice a given block is corrupted or bad.
800
*
801
* 3) Make it easy to migrate blocks for FS shrinking or storage pool
802
* maintenance. This is actually the same as #2, but with a slightly
803
* different use case.
804
*
805
* There are two kinds of back refs. The implicit back refs is optimized
806
* for pointers in non-shared tree blocks. For a given pointer in a block,
807
* back refs of this kind provide information about the block's owner tree
808
* and the pointer's key. These information allow us to find the block by
809
* b-tree searching. The full back refs is for pointers in tree blocks not
810
* referenced by their owner trees. The location of tree block is recorded
811
* in the back refs. Actually the full back refs is generic, and can be
812
* used in all cases the implicit back refs is used. The major shortcoming
813
* of the full back refs is its overhead. Every time a tree block gets
814
* COWed, we have to update back refs entry for all pointers in it.
815
*
816
* For a newly allocated tree block, we use implicit back refs for
817
* pointers in it. This means most tree related operations only involve
818
* implicit back refs. For a tree block created in old transaction, the
819
* only way to drop a reference to it is COW it. So we can detect the
820
* event that tree block loses its owner tree's reference and do the
821
* back refs conversion.
822
*
823
* When a tree block is COW'd through a tree, there are four cases:
824
*
825
* The reference count of the block is one and the tree is the block's
826
* owner tree. Nothing to do in this case.
827
*
828
* The reference count of the block is one and the tree is not the
829
* block's owner tree. In this case, full back refs is used for pointers
830
* in the block. Remove these full back refs, add implicit back refs for
831
* every pointers in the new block.
832
*
833
* The reference count of the block is greater than one and the tree is
834
* the block's owner tree. In this case, implicit back refs is used for
835
* pointers in the block. Add full back refs for every pointers in the
836
* block, increase lower level extents' reference counts. The original
837
* implicit back refs are entailed to the new block.
838
*
839
* The reference count of the block is greater than one and the tree is
840
* not the block's owner tree. Add implicit back refs for every pointer in
841
* the new block, increase lower level extents' reference count.
842
*
843
* Back Reference Key composing:
844
*
845
* The key objectid corresponds to the first byte in the extent,
846
* The key type is used to differentiate between types of back refs.
847
* There are different meanings of the key offset for different types
848
* of back refs.
849
*
850
* File extents can be referenced by:
851
*
852
* - multiple snapshots, subvolumes, or different generations in one subvol
853
* - different files inside a single subvolume
854
* - different offsets inside a file (bookend extents in file.c)
855
*
856
* The extent ref structure for the implicit back refs has fields for:
857
*
858
* - Objectid of the subvolume root
859
* - objectid of the file holding the reference
860
* - original offset in the file
861
* - how many bookend extents
862
*
863
* The key offset for the implicit back refs is hash of the first
864
* three fields.
865
*
866
* The extent ref structure for the full back refs has field for:
867
*
868
* - number of pointers in the tree leaf
869
*
870
* The key offset for the implicit back refs is the first byte of
871
* the tree leaf
872
*
873
* When a file extent is allocated, The implicit back refs is used.
874
* the fields are filled in:
875
*
876
* (root_key.objectid, inode objectid, offset in file, 1)
877
*
878
* When a file extent is removed file truncation, we find the
879
* corresponding implicit back refs and check the following fields:
880
*
881
* (btrfs_header_owner(leaf), inode objectid, offset in file)
882
*
883
* Btree extents can be referenced by:
884
*
885
* - Different subvolumes
886
*
887
* Both the implicit back refs and the full back refs for tree blocks
888
* only consist of key. The key offset for the implicit back refs is
889
* objectid of block's owner tree. The key offset for the full back refs
890
* is the first byte of parent block.
891
*
892
* When implicit back refs is used, information about the lowest key and
893
* level of the tree block are required. These information are stored in
894
* tree block info structure.
895
*/
896
897
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
898
static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
899
struct btrfs_root *root,
900
struct btrfs_path *path,
901
u64 owner, u32 extra_size)
902
{
903
struct btrfs_extent_item *item;
904
struct btrfs_extent_item_v0 *ei0;
905
struct btrfs_extent_ref_v0 *ref0;
906
struct btrfs_tree_block_info *bi;
907
struct extent_buffer *leaf;
908
struct btrfs_key key;
909
struct btrfs_key found_key;
910
u32 new_size = sizeof(*item);
911
u64 refs;
912
int ret;
913
914
leaf = path->nodes[0];
915
BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
916
917
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
918
ei0 = btrfs_item_ptr(leaf, path->slots[0],
919
struct btrfs_extent_item_v0);
920
refs = btrfs_extent_refs_v0(leaf, ei0);
921
922
if (owner == (u64)-1) {
923
while (1) {
924
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
925
ret = btrfs_next_leaf(root, path);
926
if (ret < 0)
927
return ret;
928
BUG_ON(ret > 0);
929
leaf = path->nodes[0];
930
}
931
btrfs_item_key_to_cpu(leaf, &found_key,
932
path->slots[0]);
933
BUG_ON(key.objectid != found_key.objectid);
934
if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
935
path->slots[0]++;
936
continue;
937
}
938
ref0 = btrfs_item_ptr(leaf, path->slots[0],
939
struct btrfs_extent_ref_v0);
940
owner = btrfs_ref_objectid_v0(leaf, ref0);
941
break;
942
}
943
}
944
btrfs_release_path(path);
945
946
if (owner < BTRFS_FIRST_FREE_OBJECTID)
947
new_size += sizeof(*bi);
948
949
new_size -= sizeof(*ei0);
950
ret = btrfs_search_slot(trans, root, &key, path,
951
new_size + extra_size, 1);
952
if (ret < 0)
953
return ret;
954
BUG_ON(ret);
955
956
ret = btrfs_extend_item(trans, root, path, new_size);
957
958
leaf = path->nodes[0];
959
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
960
btrfs_set_extent_refs(leaf, item, refs);
961
/* FIXME: get real generation */
962
btrfs_set_extent_generation(leaf, item, 0);
963
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
964
btrfs_set_extent_flags(leaf, item,
965
BTRFS_EXTENT_FLAG_TREE_BLOCK |
966
BTRFS_BLOCK_FLAG_FULL_BACKREF);
967
bi = (struct btrfs_tree_block_info *)(item + 1);
968
/* FIXME: get first key of the block */
969
memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
970
btrfs_set_tree_block_level(leaf, bi, (int)owner);
971
} else {
972
btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
973
}
974
btrfs_mark_buffer_dirty(leaf);
975
return 0;
976
}
977
#endif
978
979
static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
980
{
981
u32 high_crc = ~(u32)0;
982
u32 low_crc = ~(u32)0;
983
__le64 lenum;
984
985
lenum = cpu_to_le64(root_objectid);
986
high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
987
lenum = cpu_to_le64(owner);
988
low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
989
lenum = cpu_to_le64(offset);
990
low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
991
992
return ((u64)high_crc << 31) ^ (u64)low_crc;
993
}
994
995
static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
996
struct btrfs_extent_data_ref *ref)
997
{
998
return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
999
btrfs_extent_data_ref_objectid(leaf, ref),
1000
btrfs_extent_data_ref_offset(leaf, ref));
1001
}
1002
1003
static int match_extent_data_ref(struct extent_buffer *leaf,
1004
struct btrfs_extent_data_ref *ref,
1005
u64 root_objectid, u64 owner, u64 offset)
1006
{
1007
if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1008
btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1009
btrfs_extent_data_ref_offset(leaf, ref) != offset)
1010
return 0;
1011
return 1;
1012
}
1013
1014
static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1015
struct btrfs_root *root,
1016
struct btrfs_path *path,
1017
u64 bytenr, u64 parent,
1018
u64 root_objectid,
1019
u64 owner, u64 offset)
1020
{
1021
struct btrfs_key key;
1022
struct btrfs_extent_data_ref *ref;
1023
struct extent_buffer *leaf;
1024
u32 nritems;
1025
int ret;
1026
int recow;
1027
int err = -ENOENT;
1028
1029
key.objectid = bytenr;
1030
if (parent) {
1031
key.type = BTRFS_SHARED_DATA_REF_KEY;
1032
key.offset = parent;
1033
} else {
1034
key.type = BTRFS_EXTENT_DATA_REF_KEY;
1035
key.offset = hash_extent_data_ref(root_objectid,
1036
owner, offset);
1037
}
1038
again:
1039
recow = 0;
1040
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1041
if (ret < 0) {
1042
err = ret;
1043
goto fail;
1044
}
1045
1046
if (parent) {
1047
if (!ret)
1048
return 0;
1049
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1050
key.type = BTRFS_EXTENT_REF_V0_KEY;
1051
btrfs_release_path(path);
1052
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1053
if (ret < 0) {
1054
err = ret;
1055
goto fail;
1056
}
1057
if (!ret)
1058
return 0;
1059
#endif
1060
goto fail;
1061
}
1062
1063
leaf = path->nodes[0];
1064
nritems = btrfs_header_nritems(leaf);
1065
while (1) {
1066
if (path->slots[0] >= nritems) {
1067
ret = btrfs_next_leaf(root, path);
1068
if (ret < 0)
1069
err = ret;
1070
if (ret)
1071
goto fail;
1072
1073
leaf = path->nodes[0];
1074
nritems = btrfs_header_nritems(leaf);
1075
recow = 1;
1076
}
1077
1078
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1079
if (key.objectid != bytenr ||
1080
key.type != BTRFS_EXTENT_DATA_REF_KEY)
1081
goto fail;
1082
1083
ref = btrfs_item_ptr(leaf, path->slots[0],
1084
struct btrfs_extent_data_ref);
1085
1086
if (match_extent_data_ref(leaf, ref, root_objectid,
1087
owner, offset)) {
1088
if (recow) {
1089
btrfs_release_path(path);
1090
goto again;
1091
}
1092
err = 0;
1093
break;
1094
}
1095
path->slots[0]++;
1096
}
1097
fail:
1098
return err;
1099
}
1100
1101
static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1102
struct btrfs_root *root,
1103
struct btrfs_path *path,
1104
u64 bytenr, u64 parent,
1105
u64 root_objectid, u64 owner,
1106
u64 offset, int refs_to_add)
1107
{
1108
struct btrfs_key key;
1109
struct extent_buffer *leaf;
1110
u32 size;
1111
u32 num_refs;
1112
int ret;
1113
1114
key.objectid = bytenr;
1115
if (parent) {
1116
key.type = BTRFS_SHARED_DATA_REF_KEY;
1117
key.offset = parent;
1118
size = sizeof(struct btrfs_shared_data_ref);
1119
} else {
1120
key.type = BTRFS_EXTENT_DATA_REF_KEY;
1121
key.offset = hash_extent_data_ref(root_objectid,
1122
owner, offset);
1123
size = sizeof(struct btrfs_extent_data_ref);
1124
}
1125
1126
ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1127
if (ret && ret != -EEXIST)
1128
goto fail;
1129
1130
leaf = path->nodes[0];
1131
if (parent) {
1132
struct btrfs_shared_data_ref *ref;
1133
ref = btrfs_item_ptr(leaf, path->slots[0],
1134
struct btrfs_shared_data_ref);
1135
if (ret == 0) {
1136
btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1137
} else {
1138
num_refs = btrfs_shared_data_ref_count(leaf, ref);
1139
num_refs += refs_to_add;
1140
btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1141
}
1142
} else {
1143
struct btrfs_extent_data_ref *ref;
1144
while (ret == -EEXIST) {
1145
ref = btrfs_item_ptr(leaf, path->slots[0],
1146
struct btrfs_extent_data_ref);
1147
if (match_extent_data_ref(leaf, ref, root_objectid,
1148
owner, offset))
1149
break;
1150
btrfs_release_path(path);
1151
key.offset++;
1152
ret = btrfs_insert_empty_item(trans, root, path, &key,
1153
size);
1154
if (ret && ret != -EEXIST)
1155
goto fail;
1156
1157
leaf = path->nodes[0];
1158
}
1159
ref = btrfs_item_ptr(leaf, path->slots[0],
1160
struct btrfs_extent_data_ref);
1161
if (ret == 0) {
1162
btrfs_set_extent_data_ref_root(leaf, ref,
1163
root_objectid);
1164
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1165
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1166
btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1167
} else {
1168
num_refs = btrfs_extent_data_ref_count(leaf, ref);
1169
num_refs += refs_to_add;
1170
btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1171
}
1172
}
1173
btrfs_mark_buffer_dirty(leaf);
1174
ret = 0;
1175
fail:
1176
btrfs_release_path(path);
1177
return ret;
1178
}
1179
1180
static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1181
struct btrfs_root *root,
1182
struct btrfs_path *path,
1183
int refs_to_drop)
1184
{
1185
struct btrfs_key key;
1186
struct btrfs_extent_data_ref *ref1 = NULL;
1187
struct btrfs_shared_data_ref *ref2 = NULL;
1188
struct extent_buffer *leaf;
1189
u32 num_refs = 0;
1190
int ret = 0;
1191
1192
leaf = path->nodes[0];
1193
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1194
1195
if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1196
ref1 = btrfs_item_ptr(leaf, path->slots[0],
1197
struct btrfs_extent_data_ref);
1198
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1199
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1200
ref2 = btrfs_item_ptr(leaf, path->slots[0],
1201
struct btrfs_shared_data_ref);
1202
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1203
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1204
} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1205
struct btrfs_extent_ref_v0 *ref0;
1206
ref0 = btrfs_item_ptr(leaf, path->slots[0],
1207
struct btrfs_extent_ref_v0);
1208
num_refs = btrfs_ref_count_v0(leaf, ref0);
1209
#endif
1210
} else {
1211
BUG();
1212
}
1213
1214
BUG_ON(num_refs < refs_to_drop);
1215
num_refs -= refs_to_drop;
1216
1217
if (num_refs == 0) {
1218
ret = btrfs_del_item(trans, root, path);
1219
} else {
1220
if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1221
btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1222
else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1223
btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1224
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1225
else {
1226
struct btrfs_extent_ref_v0 *ref0;
1227
ref0 = btrfs_item_ptr(leaf, path->slots[0],
1228
struct btrfs_extent_ref_v0);
1229
btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1230
}
1231
#endif
1232
btrfs_mark_buffer_dirty(leaf);
1233
}
1234
return ret;
1235
}
1236
1237
static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1238
struct btrfs_path *path,
1239
struct btrfs_extent_inline_ref *iref)
1240
{
1241
struct btrfs_key key;
1242
struct extent_buffer *leaf;
1243
struct btrfs_extent_data_ref *ref1;
1244
struct btrfs_shared_data_ref *ref2;
1245
u32 num_refs = 0;
1246
1247
leaf = path->nodes[0];
1248
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1249
if (iref) {
1250
if (btrfs_extent_inline_ref_type(leaf, iref) ==
1251
BTRFS_EXTENT_DATA_REF_KEY) {
1252
ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1253
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1254
} else {
1255
ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1256
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1257
}
1258
} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1259
ref1 = btrfs_item_ptr(leaf, path->slots[0],
1260
struct btrfs_extent_data_ref);
1261
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1262
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1263
ref2 = btrfs_item_ptr(leaf, path->slots[0],
1264
struct btrfs_shared_data_ref);
1265
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1266
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1267
} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1268
struct btrfs_extent_ref_v0 *ref0;
1269
ref0 = btrfs_item_ptr(leaf, path->slots[0],
1270
struct btrfs_extent_ref_v0);
1271
num_refs = btrfs_ref_count_v0(leaf, ref0);
1272
#endif
1273
} else {
1274
WARN_ON(1);
1275
}
1276
return num_refs;
1277
}
1278
1279
static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1280
struct btrfs_root *root,
1281
struct btrfs_path *path,
1282
u64 bytenr, u64 parent,
1283
u64 root_objectid)
1284
{
1285
struct btrfs_key key;
1286
int ret;
1287
1288
key.objectid = bytenr;
1289
if (parent) {
1290
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1291
key.offset = parent;
1292
} else {
1293
key.type = BTRFS_TREE_BLOCK_REF_KEY;
1294
key.offset = root_objectid;
1295
}
1296
1297
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1298
if (ret > 0)
1299
ret = -ENOENT;
1300
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1301
if (ret == -ENOENT && parent) {
1302
btrfs_release_path(path);
1303
key.type = BTRFS_EXTENT_REF_V0_KEY;
1304
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1305
if (ret > 0)
1306
ret = -ENOENT;
1307
}
1308
#endif
1309
return ret;
1310
}
1311
1312
static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1313
struct btrfs_root *root,
1314
struct btrfs_path *path,
1315
u64 bytenr, u64 parent,
1316
u64 root_objectid)
1317
{
1318
struct btrfs_key key;
1319
int ret;
1320
1321
key.objectid = bytenr;
1322
if (parent) {
1323
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1324
key.offset = parent;
1325
} else {
1326
key.type = BTRFS_TREE_BLOCK_REF_KEY;
1327
key.offset = root_objectid;
1328
}
1329
1330
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1331
btrfs_release_path(path);
1332
return ret;
1333
}
1334
1335
static inline int extent_ref_type(u64 parent, u64 owner)
1336
{
1337
int type;
1338
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1339
if (parent > 0)
1340
type = BTRFS_SHARED_BLOCK_REF_KEY;
1341
else
1342
type = BTRFS_TREE_BLOCK_REF_KEY;
1343
} else {
1344
if (parent > 0)
1345
type = BTRFS_SHARED_DATA_REF_KEY;
1346
else
1347
type = BTRFS_EXTENT_DATA_REF_KEY;
1348
}
1349
return type;
1350
}
1351
1352
static int find_next_key(struct btrfs_path *path, int level,
1353
struct btrfs_key *key)
1354
1355
{
1356
for (; level < BTRFS_MAX_LEVEL; level++) {
1357
if (!path->nodes[level])
1358
break;
1359
if (path->slots[level] + 1 >=
1360
btrfs_header_nritems(path->nodes[level]))
1361
continue;
1362
if (level == 0)
1363
btrfs_item_key_to_cpu(path->nodes[level], key,
1364
path->slots[level] + 1);
1365
else
1366
btrfs_node_key_to_cpu(path->nodes[level], key,
1367
path->slots[level] + 1);
1368
return 0;
1369
}
1370
return 1;
1371
}
1372
1373
/*
1374
* look for inline back ref. if back ref is found, *ref_ret is set
1375
* to the address of inline back ref, and 0 is returned.
1376
*
1377
* if back ref isn't found, *ref_ret is set to the address where it
1378
* should be inserted, and -ENOENT is returned.
1379
*
1380
* if insert is true and there are too many inline back refs, the path
1381
* points to the extent item, and -EAGAIN is returned.
1382
*
1383
* NOTE: inline back refs are ordered in the same way that back ref
1384
* items in the tree are ordered.
1385
*/
1386
static noinline_for_stack
1387
int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1388
struct btrfs_root *root,
1389
struct btrfs_path *path,
1390
struct btrfs_extent_inline_ref **ref_ret,
1391
u64 bytenr, u64 num_bytes,
1392
u64 parent, u64 root_objectid,
1393
u64 owner, u64 offset, int insert)
1394
{
1395
struct btrfs_key key;
1396
struct extent_buffer *leaf;
1397
struct btrfs_extent_item *ei;
1398
struct btrfs_extent_inline_ref *iref;
1399
u64 flags;
1400
u64 item_size;
1401
unsigned long ptr;
1402
unsigned long end;
1403
int extra_size;
1404
int type;
1405
int want;
1406
int ret;
1407
int err = 0;
1408
1409
key.objectid = bytenr;
1410
key.type = BTRFS_EXTENT_ITEM_KEY;
1411
key.offset = num_bytes;
1412
1413
want = extent_ref_type(parent, owner);
1414
if (insert) {
1415
extra_size = btrfs_extent_inline_ref_size(want);
1416
path->keep_locks = 1;
1417
} else
1418
extra_size = -1;
1419
ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1420
if (ret < 0) {
1421
err = ret;
1422
goto out;
1423
}
1424
BUG_ON(ret);
1425
1426
leaf = path->nodes[0];
1427
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1428
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1429
if (item_size < sizeof(*ei)) {
1430
if (!insert) {
1431
err = -ENOENT;
1432
goto out;
1433
}
1434
ret = convert_extent_item_v0(trans, root, path, owner,
1435
extra_size);
1436
if (ret < 0) {
1437
err = ret;
1438
goto out;
1439
}
1440
leaf = path->nodes[0];
1441
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1442
}
1443
#endif
1444
BUG_ON(item_size < sizeof(*ei));
1445
1446
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1447
flags = btrfs_extent_flags(leaf, ei);
1448
1449
ptr = (unsigned long)(ei + 1);
1450
end = (unsigned long)ei + item_size;
1451
1452
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1453
ptr += sizeof(struct btrfs_tree_block_info);
1454
BUG_ON(ptr > end);
1455
} else {
1456
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1457
}
1458
1459
err = -ENOENT;
1460
while (1) {
1461
if (ptr >= end) {
1462
WARN_ON(ptr > end);
1463
break;
1464
}
1465
iref = (struct btrfs_extent_inline_ref *)ptr;
1466
type = btrfs_extent_inline_ref_type(leaf, iref);
1467
if (want < type)
1468
break;
1469
if (want > type) {
1470
ptr += btrfs_extent_inline_ref_size(type);
1471
continue;
1472
}
1473
1474
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1475
struct btrfs_extent_data_ref *dref;
1476
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1477
if (match_extent_data_ref(leaf, dref, root_objectid,
1478
owner, offset)) {
1479
err = 0;
1480
break;
1481
}
1482
if (hash_extent_data_ref_item(leaf, dref) <
1483
hash_extent_data_ref(root_objectid, owner, offset))
1484
break;
1485
} else {
1486
u64 ref_offset;
1487
ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1488
if (parent > 0) {
1489
if (parent == ref_offset) {
1490
err = 0;
1491
break;
1492
}
1493
if (ref_offset < parent)
1494
break;
1495
} else {
1496
if (root_objectid == ref_offset) {
1497
err = 0;
1498
break;
1499
}
1500
if (ref_offset < root_objectid)
1501
break;
1502
}
1503
}
1504
ptr += btrfs_extent_inline_ref_size(type);
1505
}
1506
if (err == -ENOENT && insert) {
1507
if (item_size + extra_size >=
1508
BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1509
err = -EAGAIN;
1510
goto out;
1511
}
1512
/*
1513
* To add new inline back ref, we have to make sure
1514
* there is no corresponding back ref item.
1515
* For simplicity, we just do not add new inline back
1516
* ref if there is any kind of item for this block
1517
*/
1518
if (find_next_key(path, 0, &key) == 0 &&
1519
key.objectid == bytenr &&
1520
key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1521
err = -EAGAIN;
1522
goto out;
1523
}
1524
}
1525
*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1526
out:
1527
if (insert) {
1528
path->keep_locks = 0;
1529
btrfs_unlock_up_safe(path, 1);
1530
}
1531
return err;
1532
}
1533
1534
/*
1535
* helper to add new inline back ref
1536
*/
1537
static noinline_for_stack
1538
int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1539
struct btrfs_root *root,
1540
struct btrfs_path *path,
1541
struct btrfs_extent_inline_ref *iref,
1542
u64 parent, u64 root_objectid,
1543
u64 owner, u64 offset, int refs_to_add,
1544
struct btrfs_delayed_extent_op *extent_op)
1545
{
1546
struct extent_buffer *leaf;
1547
struct btrfs_extent_item *ei;
1548
unsigned long ptr;
1549
unsigned long end;
1550
unsigned long item_offset;
1551
u64 refs;
1552
int size;
1553
int type;
1554
int ret;
1555
1556
leaf = path->nodes[0];
1557
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1558
item_offset = (unsigned long)iref - (unsigned long)ei;
1559
1560
type = extent_ref_type(parent, owner);
1561
size = btrfs_extent_inline_ref_size(type);
1562
1563
ret = btrfs_extend_item(trans, root, path, size);
1564
1565
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1566
refs = btrfs_extent_refs(leaf, ei);
1567
refs += refs_to_add;
1568
btrfs_set_extent_refs(leaf, ei, refs);
1569
if (extent_op)
1570
__run_delayed_extent_op(extent_op, leaf, ei);
1571
1572
ptr = (unsigned long)ei + item_offset;
1573
end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1574
if (ptr < end - size)
1575
memmove_extent_buffer(leaf, ptr + size, ptr,
1576
end - size - ptr);
1577
1578
iref = (struct btrfs_extent_inline_ref *)ptr;
1579
btrfs_set_extent_inline_ref_type(leaf, iref, type);
1580
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1581
struct btrfs_extent_data_ref *dref;
1582
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1583
btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1584
btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1585
btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1586
btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1587
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1588
struct btrfs_shared_data_ref *sref;
1589
sref = (struct btrfs_shared_data_ref *)(iref + 1);
1590
btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1591
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1592
} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1593
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1594
} else {
1595
btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1596
}
1597
btrfs_mark_buffer_dirty(leaf);
1598
return 0;
1599
}
1600
1601
static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1602
struct btrfs_root *root,
1603
struct btrfs_path *path,
1604
struct btrfs_extent_inline_ref **ref_ret,
1605
u64 bytenr, u64 num_bytes, u64 parent,
1606
u64 root_objectid, u64 owner, u64 offset)
1607
{
1608
int ret;
1609
1610
ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1611
bytenr, num_bytes, parent,
1612
root_objectid, owner, offset, 0);
1613
if (ret != -ENOENT)
1614
return ret;
1615
1616
btrfs_release_path(path);
1617
*ref_ret = NULL;
1618
1619
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1620
ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1621
root_objectid);
1622
} else {
1623
ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1624
root_objectid, owner, offset);
1625
}
1626
return ret;
1627
}
1628
1629
/*
1630
* helper to update/remove inline back ref
1631
*/
1632
static noinline_for_stack
1633
int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1634
struct btrfs_root *root,
1635
struct btrfs_path *path,
1636
struct btrfs_extent_inline_ref *iref,
1637
int refs_to_mod,
1638
struct btrfs_delayed_extent_op *extent_op)
1639
{
1640
struct extent_buffer *leaf;
1641
struct btrfs_extent_item *ei;
1642
struct btrfs_extent_data_ref *dref = NULL;
1643
struct btrfs_shared_data_ref *sref = NULL;
1644
unsigned long ptr;
1645
unsigned long end;
1646
u32 item_size;
1647
int size;
1648
int type;
1649
int ret;
1650
u64 refs;
1651
1652
leaf = path->nodes[0];
1653
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1654
refs = btrfs_extent_refs(leaf, ei);
1655
WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1656
refs += refs_to_mod;
1657
btrfs_set_extent_refs(leaf, ei, refs);
1658
if (extent_op)
1659
__run_delayed_extent_op(extent_op, leaf, ei);
1660
1661
type = btrfs_extent_inline_ref_type(leaf, iref);
1662
1663
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1664
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1665
refs = btrfs_extent_data_ref_count(leaf, dref);
1666
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1667
sref = (struct btrfs_shared_data_ref *)(iref + 1);
1668
refs = btrfs_shared_data_ref_count(leaf, sref);
1669
} else {
1670
refs = 1;
1671
BUG_ON(refs_to_mod != -1);
1672
}
1673
1674
BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1675
refs += refs_to_mod;
1676
1677
if (refs > 0) {
1678
if (type == BTRFS_EXTENT_DATA_REF_KEY)
1679
btrfs_set_extent_data_ref_count(leaf, dref, refs);
1680
else
1681
btrfs_set_shared_data_ref_count(leaf, sref, refs);
1682
} else {
1683
size = btrfs_extent_inline_ref_size(type);
1684
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1685
ptr = (unsigned long)iref;
1686
end = (unsigned long)ei + item_size;
1687
if (ptr + size < end)
1688
memmove_extent_buffer(leaf, ptr, ptr + size,
1689
end - ptr - size);
1690
item_size -= size;
1691
ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1692
}
1693
btrfs_mark_buffer_dirty(leaf);
1694
return 0;
1695
}
1696
1697
static noinline_for_stack
1698
int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1699
struct btrfs_root *root,
1700
struct btrfs_path *path,
1701
u64 bytenr, u64 num_bytes, u64 parent,
1702
u64 root_objectid, u64 owner,
1703
u64 offset, int refs_to_add,
1704
struct btrfs_delayed_extent_op *extent_op)
1705
{
1706
struct btrfs_extent_inline_ref *iref;
1707
int ret;
1708
1709
ret = lookup_inline_extent_backref(trans, root, path, &iref,
1710
bytenr, num_bytes, parent,
1711
root_objectid, owner, offset, 1);
1712
if (ret == 0) {
1713
BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1714
ret = update_inline_extent_backref(trans, root, path, iref,
1715
refs_to_add, extent_op);
1716
} else if (ret == -ENOENT) {
1717
ret = setup_inline_extent_backref(trans, root, path, iref,
1718
parent, root_objectid,
1719
owner, offset, refs_to_add,
1720
extent_op);
1721
}
1722
return ret;
1723
}
1724
1725
static int insert_extent_backref(struct btrfs_trans_handle *trans,
1726
struct btrfs_root *root,
1727
struct btrfs_path *path,
1728
u64 bytenr, u64 parent, u64 root_objectid,
1729
u64 owner, u64 offset, int refs_to_add)
1730
{
1731
int ret;
1732
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1733
BUG_ON(refs_to_add != 1);
1734
ret = insert_tree_block_ref(trans, root, path, bytenr,
1735
parent, root_objectid);
1736
} else {
1737
ret = insert_extent_data_ref(trans, root, path, bytenr,
1738
parent, root_objectid,
1739
owner, offset, refs_to_add);
1740
}
1741
return ret;
1742
}
1743
1744
static int remove_extent_backref(struct btrfs_trans_handle *trans,
1745
struct btrfs_root *root,
1746
struct btrfs_path *path,
1747
struct btrfs_extent_inline_ref *iref,
1748
int refs_to_drop, int is_data)
1749
{
1750
int ret;
1751
1752
BUG_ON(!is_data && refs_to_drop != 1);
1753
if (iref) {
1754
ret = update_inline_extent_backref(trans, root, path, iref,
1755
-refs_to_drop, NULL);
1756
} else if (is_data) {
1757
ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1758
} else {
1759
ret = btrfs_del_item(trans, root, path);
1760
}
1761
return ret;
1762
}
1763
1764
static int btrfs_issue_discard(struct block_device *bdev,
1765
u64 start, u64 len)
1766
{
1767
return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1768
}
1769
1770
static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1771
u64 num_bytes, u64 *actual_bytes)
1772
{
1773
int ret;
1774
u64 discarded_bytes = 0;
1775
struct btrfs_multi_bio *multi = NULL;
1776
1777
1778
/* Tell the block device(s) that the sectors can be discarded */
1779
ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1780
bytenr, &num_bytes, &multi, 0);
1781
if (!ret) {
1782
struct btrfs_bio_stripe *stripe = multi->stripes;
1783
int i;
1784
1785
1786
for (i = 0; i < multi->num_stripes; i++, stripe++) {
1787
ret = btrfs_issue_discard(stripe->dev->bdev,
1788
stripe->physical,
1789
stripe->length);
1790
if (!ret)
1791
discarded_bytes += stripe->length;
1792
else if (ret != -EOPNOTSUPP)
1793
break;
1794
}
1795
kfree(multi);
1796
}
1797
if (discarded_bytes && ret == -EOPNOTSUPP)
1798
ret = 0;
1799
1800
if (actual_bytes)
1801
*actual_bytes = discarded_bytes;
1802
1803
1804
return ret;
1805
}
1806
1807
int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1808
struct btrfs_root *root,
1809
u64 bytenr, u64 num_bytes, u64 parent,
1810
u64 root_objectid, u64 owner, u64 offset)
1811
{
1812
int ret;
1813
BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1814
root_objectid == BTRFS_TREE_LOG_OBJECTID);
1815
1816
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1817
ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1818
parent, root_objectid, (int)owner,
1819
BTRFS_ADD_DELAYED_REF, NULL);
1820
} else {
1821
ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1822
parent, root_objectid, owner, offset,
1823
BTRFS_ADD_DELAYED_REF, NULL);
1824
}
1825
return ret;
1826
}
1827
1828
static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1829
struct btrfs_root *root,
1830
u64 bytenr, u64 num_bytes,
1831
u64 parent, u64 root_objectid,
1832
u64 owner, u64 offset, int refs_to_add,
1833
struct btrfs_delayed_extent_op *extent_op)
1834
{
1835
struct btrfs_path *path;
1836
struct extent_buffer *leaf;
1837
struct btrfs_extent_item *item;
1838
u64 refs;
1839
int ret;
1840
int err = 0;
1841
1842
path = btrfs_alloc_path();
1843
if (!path)
1844
return -ENOMEM;
1845
1846
path->reada = 1;
1847
path->leave_spinning = 1;
1848
/* this will setup the path even if it fails to insert the back ref */
1849
ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1850
path, bytenr, num_bytes, parent,
1851
root_objectid, owner, offset,
1852
refs_to_add, extent_op);
1853
if (ret == 0)
1854
goto out;
1855
1856
if (ret != -EAGAIN) {
1857
err = ret;
1858
goto out;
1859
}
1860
1861
leaf = path->nodes[0];
1862
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1863
refs = btrfs_extent_refs(leaf, item);
1864
btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1865
if (extent_op)
1866
__run_delayed_extent_op(extent_op, leaf, item);
1867
1868
btrfs_mark_buffer_dirty(leaf);
1869
btrfs_release_path(path);
1870
1871
path->reada = 1;
1872
path->leave_spinning = 1;
1873
1874
/* now insert the actual backref */
1875
ret = insert_extent_backref(trans, root->fs_info->extent_root,
1876
path, bytenr, parent, root_objectid,
1877
owner, offset, refs_to_add);
1878
BUG_ON(ret);
1879
out:
1880
btrfs_free_path(path);
1881
return err;
1882
}
1883
1884
static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1885
struct btrfs_root *root,
1886
struct btrfs_delayed_ref_node *node,
1887
struct btrfs_delayed_extent_op *extent_op,
1888
int insert_reserved)
1889
{
1890
int ret = 0;
1891
struct btrfs_delayed_data_ref *ref;
1892
struct btrfs_key ins;
1893
u64 parent = 0;
1894
u64 ref_root = 0;
1895
u64 flags = 0;
1896
1897
ins.objectid = node->bytenr;
1898
ins.offset = node->num_bytes;
1899
ins.type = BTRFS_EXTENT_ITEM_KEY;
1900
1901
ref = btrfs_delayed_node_to_data_ref(node);
1902
if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1903
parent = ref->parent;
1904
else
1905
ref_root = ref->root;
1906
1907
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1908
if (extent_op) {
1909
BUG_ON(extent_op->update_key);
1910
flags |= extent_op->flags_to_set;
1911
}
1912
ret = alloc_reserved_file_extent(trans, root,
1913
parent, ref_root, flags,
1914
ref->objectid, ref->offset,
1915
&ins, node->ref_mod);
1916
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1917
ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1918
node->num_bytes, parent,
1919
ref_root, ref->objectid,
1920
ref->offset, node->ref_mod,
1921
extent_op);
1922
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1923
ret = __btrfs_free_extent(trans, root, node->bytenr,
1924
node->num_bytes, parent,
1925
ref_root, ref->objectid,
1926
ref->offset, node->ref_mod,
1927
extent_op);
1928
} else {
1929
BUG();
1930
}
1931
return ret;
1932
}
1933
1934
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1935
struct extent_buffer *leaf,
1936
struct btrfs_extent_item *ei)
1937
{
1938
u64 flags = btrfs_extent_flags(leaf, ei);
1939
if (extent_op->update_flags) {
1940
flags |= extent_op->flags_to_set;
1941
btrfs_set_extent_flags(leaf, ei, flags);
1942
}
1943
1944
if (extent_op->update_key) {
1945
struct btrfs_tree_block_info *bi;
1946
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1947
bi = (struct btrfs_tree_block_info *)(ei + 1);
1948
btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1949
}
1950
}
1951
1952
static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1953
struct btrfs_root *root,
1954
struct btrfs_delayed_ref_node *node,
1955
struct btrfs_delayed_extent_op *extent_op)
1956
{
1957
struct btrfs_key key;
1958
struct btrfs_path *path;
1959
struct btrfs_extent_item *ei;
1960
struct extent_buffer *leaf;
1961
u32 item_size;
1962
int ret;
1963
int err = 0;
1964
1965
path = btrfs_alloc_path();
1966
if (!path)
1967
return -ENOMEM;
1968
1969
key.objectid = node->bytenr;
1970
key.type = BTRFS_EXTENT_ITEM_KEY;
1971
key.offset = node->num_bytes;
1972
1973
path->reada = 1;
1974
path->leave_spinning = 1;
1975
ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1976
path, 0, 1);
1977
if (ret < 0) {
1978
err = ret;
1979
goto out;
1980
}
1981
if (ret > 0) {
1982
err = -EIO;
1983
goto out;
1984
}
1985
1986
leaf = path->nodes[0];
1987
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1988
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1989
if (item_size < sizeof(*ei)) {
1990
ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1991
path, (u64)-1, 0);
1992
if (ret < 0) {
1993
err = ret;
1994
goto out;
1995
}
1996
leaf = path->nodes[0];
1997
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1998
}
1999
#endif
2000
BUG_ON(item_size < sizeof(*ei));
2001
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2002
__run_delayed_extent_op(extent_op, leaf, ei);
2003
2004
btrfs_mark_buffer_dirty(leaf);
2005
out:
2006
btrfs_free_path(path);
2007
return err;
2008
}
2009
2010
static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2011
struct btrfs_root *root,
2012
struct btrfs_delayed_ref_node *node,
2013
struct btrfs_delayed_extent_op *extent_op,
2014
int insert_reserved)
2015
{
2016
int ret = 0;
2017
struct btrfs_delayed_tree_ref *ref;
2018
struct btrfs_key ins;
2019
u64 parent = 0;
2020
u64 ref_root = 0;
2021
2022
ins.objectid = node->bytenr;
2023
ins.offset = node->num_bytes;
2024
ins.type = BTRFS_EXTENT_ITEM_KEY;
2025
2026
ref = btrfs_delayed_node_to_tree_ref(node);
2027
if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2028
parent = ref->parent;
2029
else
2030
ref_root = ref->root;
2031
2032
BUG_ON(node->ref_mod != 1);
2033
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2034
BUG_ON(!extent_op || !extent_op->update_flags ||
2035
!extent_op->update_key);
2036
ret = alloc_reserved_tree_block(trans, root,
2037
parent, ref_root,
2038
extent_op->flags_to_set,
2039
&extent_op->key,
2040
ref->level, &ins);
2041
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2042
ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2043
node->num_bytes, parent, ref_root,
2044
ref->level, 0, 1, extent_op);
2045
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2046
ret = __btrfs_free_extent(trans, root, node->bytenr,
2047
node->num_bytes, parent, ref_root,
2048
ref->level, 0, 1, extent_op);
2049
} else {
2050
BUG();
2051
}
2052
return ret;
2053
}
2054
2055
/* helper function to actually process a single delayed ref entry */
2056
static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2057
struct btrfs_root *root,
2058
struct btrfs_delayed_ref_node *node,
2059
struct btrfs_delayed_extent_op *extent_op,
2060
int insert_reserved)
2061
{
2062
int ret;
2063
if (btrfs_delayed_ref_is_head(node)) {
2064
struct btrfs_delayed_ref_head *head;
2065
/*
2066
* we've hit the end of the chain and we were supposed
2067
* to insert this extent into the tree. But, it got
2068
* deleted before we ever needed to insert it, so all
2069
* we have to do is clean up the accounting
2070
*/
2071
BUG_ON(extent_op);
2072
head = btrfs_delayed_node_to_head(node);
2073
if (insert_reserved) {
2074
btrfs_pin_extent(root, node->bytenr,
2075
node->num_bytes, 1);
2076
if (head->is_data) {
2077
ret = btrfs_del_csums(trans, root,
2078
node->bytenr,
2079
node->num_bytes);
2080
BUG_ON(ret);
2081
}
2082
}
2083
mutex_unlock(&head->mutex);
2084
return 0;
2085
}
2086
2087
if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2088
node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2089
ret = run_delayed_tree_ref(trans, root, node, extent_op,
2090
insert_reserved);
2091
else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2092
node->type == BTRFS_SHARED_DATA_REF_KEY)
2093
ret = run_delayed_data_ref(trans, root, node, extent_op,
2094
insert_reserved);
2095
else
2096
BUG();
2097
return ret;
2098
}
2099
2100
static noinline struct btrfs_delayed_ref_node *
2101
select_delayed_ref(struct btrfs_delayed_ref_head *head)
2102
{
2103
struct rb_node *node;
2104
struct btrfs_delayed_ref_node *ref;
2105
int action = BTRFS_ADD_DELAYED_REF;
2106
again:
2107
/*
2108
* select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2109
* this prevents ref count from going down to zero when
2110
* there still are pending delayed ref.
2111
*/
2112
node = rb_prev(&head->node.rb_node);
2113
while (1) {
2114
if (!node)
2115
break;
2116
ref = rb_entry(node, struct btrfs_delayed_ref_node,
2117
rb_node);
2118
if (ref->bytenr != head->node.bytenr)
2119
break;
2120
if (ref->action == action)
2121
return ref;
2122
node = rb_prev(node);
2123
}
2124
if (action == BTRFS_ADD_DELAYED_REF) {
2125
action = BTRFS_DROP_DELAYED_REF;
2126
goto again;
2127
}
2128
return NULL;
2129
}
2130
2131
static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2132
struct btrfs_root *root,
2133
struct list_head *cluster)
2134
{
2135
struct btrfs_delayed_ref_root *delayed_refs;
2136
struct btrfs_delayed_ref_node *ref;
2137
struct btrfs_delayed_ref_head *locked_ref = NULL;
2138
struct btrfs_delayed_extent_op *extent_op;
2139
int ret;
2140
int count = 0;
2141
int must_insert_reserved = 0;
2142
2143
delayed_refs = &trans->transaction->delayed_refs;
2144
while (1) {
2145
if (!locked_ref) {
2146
/* pick a new head ref from the cluster list */
2147
if (list_empty(cluster))
2148
break;
2149
2150
locked_ref = list_entry(cluster->next,
2151
struct btrfs_delayed_ref_head, cluster);
2152
2153
/* grab the lock that says we are going to process
2154
* all the refs for this head */
2155
ret = btrfs_delayed_ref_lock(trans, locked_ref);
2156
2157
/*
2158
* we may have dropped the spin lock to get the head
2159
* mutex lock, and that might have given someone else
2160
* time to free the head. If that's true, it has been
2161
* removed from our list and we can move on.
2162
*/
2163
if (ret == -EAGAIN) {
2164
locked_ref = NULL;
2165
count++;
2166
continue;
2167
}
2168
}
2169
2170
/*
2171
* record the must insert reserved flag before we
2172
* drop the spin lock.
2173
*/
2174
must_insert_reserved = locked_ref->must_insert_reserved;
2175
locked_ref->must_insert_reserved = 0;
2176
2177
extent_op = locked_ref->extent_op;
2178
locked_ref->extent_op = NULL;
2179
2180
/*
2181
* locked_ref is the head node, so we have to go one
2182
* node back for any delayed ref updates
2183
*/
2184
ref = select_delayed_ref(locked_ref);
2185
if (!ref) {
2186
/* All delayed refs have been processed, Go ahead
2187
* and send the head node to run_one_delayed_ref,
2188
* so that any accounting fixes can happen
2189
*/
2190
ref = &locked_ref->node;
2191
2192
if (extent_op && must_insert_reserved) {
2193
kfree(extent_op);
2194
extent_op = NULL;
2195
}
2196
2197
if (extent_op) {
2198
spin_unlock(&delayed_refs->lock);
2199
2200
ret = run_delayed_extent_op(trans, root,
2201
ref, extent_op);
2202
BUG_ON(ret);
2203
kfree(extent_op);
2204
2205
cond_resched();
2206
spin_lock(&delayed_refs->lock);
2207
continue;
2208
}
2209
2210
list_del_init(&locked_ref->cluster);
2211
locked_ref = NULL;
2212
}
2213
2214
ref->in_tree = 0;
2215
rb_erase(&ref->rb_node, &delayed_refs->root);
2216
delayed_refs->num_entries--;
2217
2218
spin_unlock(&delayed_refs->lock);
2219
2220
ret = run_one_delayed_ref(trans, root, ref, extent_op,
2221
must_insert_reserved);
2222
BUG_ON(ret);
2223
2224
btrfs_put_delayed_ref(ref);
2225
kfree(extent_op);
2226
count++;
2227
2228
cond_resched();
2229
spin_lock(&delayed_refs->lock);
2230
}
2231
return count;
2232
}
2233
2234
/*
2235
* this starts processing the delayed reference count updates and
2236
* extent insertions we have queued up so far. count can be
2237
* 0, which means to process everything in the tree at the start
2238
* of the run (but not newly added entries), or it can be some target
2239
* number you'd like to process.
2240
*/
2241
int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2242
struct btrfs_root *root, unsigned long count)
2243
{
2244
struct rb_node *node;
2245
struct btrfs_delayed_ref_root *delayed_refs;
2246
struct btrfs_delayed_ref_node *ref;
2247
struct list_head cluster;
2248
int ret;
2249
int run_all = count == (unsigned long)-1;
2250
int run_most = 0;
2251
2252
if (root == root->fs_info->extent_root)
2253
root = root->fs_info->tree_root;
2254
2255
delayed_refs = &trans->transaction->delayed_refs;
2256
INIT_LIST_HEAD(&cluster);
2257
again:
2258
spin_lock(&delayed_refs->lock);
2259
if (count == 0) {
2260
count = delayed_refs->num_entries * 2;
2261
run_most = 1;
2262
}
2263
while (1) {
2264
if (!(run_all || run_most) &&
2265
delayed_refs->num_heads_ready < 64)
2266
break;
2267
2268
/*
2269
* go find something we can process in the rbtree. We start at
2270
* the beginning of the tree, and then build a cluster
2271
* of refs to process starting at the first one we are able to
2272
* lock
2273
*/
2274
ret = btrfs_find_ref_cluster(trans, &cluster,
2275
delayed_refs->run_delayed_start);
2276
if (ret)
2277
break;
2278
2279
ret = run_clustered_refs(trans, root, &cluster);
2280
BUG_ON(ret < 0);
2281
2282
count -= min_t(unsigned long, ret, count);
2283
2284
if (count == 0)
2285
break;
2286
}
2287
2288
if (run_all) {
2289
node = rb_first(&delayed_refs->root);
2290
if (!node)
2291
goto out;
2292
count = (unsigned long)-1;
2293
2294
while (node) {
2295
ref = rb_entry(node, struct btrfs_delayed_ref_node,
2296
rb_node);
2297
if (btrfs_delayed_ref_is_head(ref)) {
2298
struct btrfs_delayed_ref_head *head;
2299
2300
head = btrfs_delayed_node_to_head(ref);
2301
atomic_inc(&ref->refs);
2302
2303
spin_unlock(&delayed_refs->lock);
2304
/*
2305
* Mutex was contended, block until it's
2306
* released and try again
2307
*/
2308
mutex_lock(&head->mutex);
2309
mutex_unlock(&head->mutex);
2310
2311
btrfs_put_delayed_ref(ref);
2312
cond_resched();
2313
goto again;
2314
}
2315
node = rb_next(node);
2316
}
2317
spin_unlock(&delayed_refs->lock);
2318
schedule_timeout(1);
2319
goto again;
2320
}
2321
out:
2322
spin_unlock(&delayed_refs->lock);
2323
return 0;
2324
}
2325
2326
int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2327
struct btrfs_root *root,
2328
u64 bytenr, u64 num_bytes, u64 flags,
2329
int is_data)
2330
{
2331
struct btrfs_delayed_extent_op *extent_op;
2332
int ret;
2333
2334
extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2335
if (!extent_op)
2336
return -ENOMEM;
2337
2338
extent_op->flags_to_set = flags;
2339
extent_op->update_flags = 1;
2340
extent_op->update_key = 0;
2341
extent_op->is_data = is_data ? 1 : 0;
2342
2343
ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2344
if (ret)
2345
kfree(extent_op);
2346
return ret;
2347
}
2348
2349
static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2350
struct btrfs_root *root,
2351
struct btrfs_path *path,
2352
u64 objectid, u64 offset, u64 bytenr)
2353
{
2354
struct btrfs_delayed_ref_head *head;
2355
struct btrfs_delayed_ref_node *ref;
2356
struct btrfs_delayed_data_ref *data_ref;
2357
struct btrfs_delayed_ref_root *delayed_refs;
2358
struct rb_node *node;
2359
int ret = 0;
2360
2361
ret = -ENOENT;
2362
delayed_refs = &trans->transaction->delayed_refs;
2363
spin_lock(&delayed_refs->lock);
2364
head = btrfs_find_delayed_ref_head(trans, bytenr);
2365
if (!head)
2366
goto out;
2367
2368
if (!mutex_trylock(&head->mutex)) {
2369
atomic_inc(&head->node.refs);
2370
spin_unlock(&delayed_refs->lock);
2371
2372
btrfs_release_path(path);
2373
2374
/*
2375
* Mutex was contended, block until it's released and let
2376
* caller try again
2377
*/
2378
mutex_lock(&head->mutex);
2379
mutex_unlock(&head->mutex);
2380
btrfs_put_delayed_ref(&head->node);
2381
return -EAGAIN;
2382
}
2383
2384
node = rb_prev(&head->node.rb_node);
2385
if (!node)
2386
goto out_unlock;
2387
2388
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2389
2390
if (ref->bytenr != bytenr)
2391
goto out_unlock;
2392
2393
ret = 1;
2394
if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2395
goto out_unlock;
2396
2397
data_ref = btrfs_delayed_node_to_data_ref(ref);
2398
2399
node = rb_prev(node);
2400
if (node) {
2401
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2402
if (ref->bytenr == bytenr)
2403
goto out_unlock;
2404
}
2405
2406
if (data_ref->root != root->root_key.objectid ||
2407
data_ref->objectid != objectid || data_ref->offset != offset)
2408
goto out_unlock;
2409
2410
ret = 0;
2411
out_unlock:
2412
mutex_unlock(&head->mutex);
2413
out:
2414
spin_unlock(&delayed_refs->lock);
2415
return ret;
2416
}
2417
2418
static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2419
struct btrfs_root *root,
2420
struct btrfs_path *path,
2421
u64 objectid, u64 offset, u64 bytenr)
2422
{
2423
struct btrfs_root *extent_root = root->fs_info->extent_root;
2424
struct extent_buffer *leaf;
2425
struct btrfs_extent_data_ref *ref;
2426
struct btrfs_extent_inline_ref *iref;
2427
struct btrfs_extent_item *ei;
2428
struct btrfs_key key;
2429
u32 item_size;
2430
int ret;
2431
2432
key.objectid = bytenr;
2433
key.offset = (u64)-1;
2434
key.type = BTRFS_EXTENT_ITEM_KEY;
2435
2436
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2437
if (ret < 0)
2438
goto out;
2439
BUG_ON(ret == 0);
2440
2441
ret = -ENOENT;
2442
if (path->slots[0] == 0)
2443
goto out;
2444
2445
path->slots[0]--;
2446
leaf = path->nodes[0];
2447
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2448
2449
if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2450
goto out;
2451
2452
ret = 1;
2453
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2454
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2455
if (item_size < sizeof(*ei)) {
2456
WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2457
goto out;
2458
}
2459
#endif
2460
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2461
2462
if (item_size != sizeof(*ei) +
2463
btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2464
goto out;
2465
2466
if (btrfs_extent_generation(leaf, ei) <=
2467
btrfs_root_last_snapshot(&root->root_item))
2468
goto out;
2469
2470
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2471
if (btrfs_extent_inline_ref_type(leaf, iref) !=
2472
BTRFS_EXTENT_DATA_REF_KEY)
2473
goto out;
2474
2475
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2476
if (btrfs_extent_refs(leaf, ei) !=
2477
btrfs_extent_data_ref_count(leaf, ref) ||
2478
btrfs_extent_data_ref_root(leaf, ref) !=
2479
root->root_key.objectid ||
2480
btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2481
btrfs_extent_data_ref_offset(leaf, ref) != offset)
2482
goto out;
2483
2484
ret = 0;
2485
out:
2486
return ret;
2487
}
2488
2489
int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2490
struct btrfs_root *root,
2491
u64 objectid, u64 offset, u64 bytenr)
2492
{
2493
struct btrfs_path *path;
2494
int ret;
2495
int ret2;
2496
2497
path = btrfs_alloc_path();
2498
if (!path)
2499
return -ENOENT;
2500
2501
do {
2502
ret = check_committed_ref(trans, root, path, objectid,
2503
offset, bytenr);
2504
if (ret && ret != -ENOENT)
2505
goto out;
2506
2507
ret2 = check_delayed_ref(trans, root, path, objectid,
2508
offset, bytenr);
2509
} while (ret2 == -EAGAIN);
2510
2511
if (ret2 && ret2 != -ENOENT) {
2512
ret = ret2;
2513
goto out;
2514
}
2515
2516
if (ret != -ENOENT || ret2 != -ENOENT)
2517
ret = 0;
2518
out:
2519
btrfs_free_path(path);
2520
if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2521
WARN_ON(ret > 0);
2522
return ret;
2523
}
2524
2525
static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2526
struct btrfs_root *root,
2527
struct extent_buffer *buf,
2528
int full_backref, int inc)
2529
{
2530
u64 bytenr;
2531
u64 num_bytes;
2532
u64 parent;
2533
u64 ref_root;
2534
u32 nritems;
2535
struct btrfs_key key;
2536
struct btrfs_file_extent_item *fi;
2537
int i;
2538
int level;
2539
int ret = 0;
2540
int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2541
u64, u64, u64, u64, u64, u64);
2542
2543
ref_root = btrfs_header_owner(buf);
2544
nritems = btrfs_header_nritems(buf);
2545
level = btrfs_header_level(buf);
2546
2547
if (!root->ref_cows && level == 0)
2548
return 0;
2549
2550
if (inc)
2551
process_func = btrfs_inc_extent_ref;
2552
else
2553
process_func = btrfs_free_extent;
2554
2555
if (full_backref)
2556
parent = buf->start;
2557
else
2558
parent = 0;
2559
2560
for (i = 0; i < nritems; i++) {
2561
if (level == 0) {
2562
btrfs_item_key_to_cpu(buf, &key, i);
2563
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2564
continue;
2565
fi = btrfs_item_ptr(buf, i,
2566
struct btrfs_file_extent_item);
2567
if (btrfs_file_extent_type(buf, fi) ==
2568
BTRFS_FILE_EXTENT_INLINE)
2569
continue;
2570
bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2571
if (bytenr == 0)
2572
continue;
2573
2574
num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2575
key.offset -= btrfs_file_extent_offset(buf, fi);
2576
ret = process_func(trans, root, bytenr, num_bytes,
2577
parent, ref_root, key.objectid,
2578
key.offset);
2579
if (ret)
2580
goto fail;
2581
} else {
2582
bytenr = btrfs_node_blockptr(buf, i);
2583
num_bytes = btrfs_level_size(root, level - 1);
2584
ret = process_func(trans, root, bytenr, num_bytes,
2585
parent, ref_root, level - 1, 0);
2586
if (ret)
2587
goto fail;
2588
}
2589
}
2590
return 0;
2591
fail:
2592
BUG();
2593
return ret;
2594
}
2595
2596
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2597
struct extent_buffer *buf, int full_backref)
2598
{
2599
return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2600
}
2601
2602
int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2603
struct extent_buffer *buf, int full_backref)
2604
{
2605
return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2606
}
2607
2608
static int write_one_cache_group(struct btrfs_trans_handle *trans,
2609
struct btrfs_root *root,
2610
struct btrfs_path *path,
2611
struct btrfs_block_group_cache *cache)
2612
{
2613
int ret;
2614
struct btrfs_root *extent_root = root->fs_info->extent_root;
2615
unsigned long bi;
2616
struct extent_buffer *leaf;
2617
2618
ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2619
if (ret < 0)
2620
goto fail;
2621
BUG_ON(ret);
2622
2623
leaf = path->nodes[0];
2624
bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2625
write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2626
btrfs_mark_buffer_dirty(leaf);
2627
btrfs_release_path(path);
2628
fail:
2629
if (ret)
2630
return ret;
2631
return 0;
2632
2633
}
2634
2635
static struct btrfs_block_group_cache *
2636
next_block_group(struct btrfs_root *root,
2637
struct btrfs_block_group_cache *cache)
2638
{
2639
struct rb_node *node;
2640
spin_lock(&root->fs_info->block_group_cache_lock);
2641
node = rb_next(&cache->cache_node);
2642
btrfs_put_block_group(cache);
2643
if (node) {
2644
cache = rb_entry(node, struct btrfs_block_group_cache,
2645
cache_node);
2646
btrfs_get_block_group(cache);
2647
} else
2648
cache = NULL;
2649
spin_unlock(&root->fs_info->block_group_cache_lock);
2650
return cache;
2651
}
2652
2653
static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2654
struct btrfs_trans_handle *trans,
2655
struct btrfs_path *path)
2656
{
2657
struct btrfs_root *root = block_group->fs_info->tree_root;
2658
struct inode *inode = NULL;
2659
u64 alloc_hint = 0;
2660
int dcs = BTRFS_DC_ERROR;
2661
int num_pages = 0;
2662
int retries = 0;
2663
int ret = 0;
2664
2665
/*
2666
* If this block group is smaller than 100 megs don't bother caching the
2667
* block group.
2668
*/
2669
if (block_group->key.offset < (100 * 1024 * 1024)) {
2670
spin_lock(&block_group->lock);
2671
block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2672
spin_unlock(&block_group->lock);
2673
return 0;
2674
}
2675
2676
again:
2677
inode = lookup_free_space_inode(root, block_group, path);
2678
if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2679
ret = PTR_ERR(inode);
2680
btrfs_release_path(path);
2681
goto out;
2682
}
2683
2684
if (IS_ERR(inode)) {
2685
BUG_ON(retries);
2686
retries++;
2687
2688
if (block_group->ro)
2689
goto out_free;
2690
2691
ret = create_free_space_inode(root, trans, block_group, path);
2692
if (ret)
2693
goto out_free;
2694
goto again;
2695
}
2696
2697
/*
2698
* We want to set the generation to 0, that way if anything goes wrong
2699
* from here on out we know not to trust this cache when we load up next
2700
* time.
2701
*/
2702
BTRFS_I(inode)->generation = 0;
2703
ret = btrfs_update_inode(trans, root, inode);
2704
WARN_ON(ret);
2705
2706
if (i_size_read(inode) > 0) {
2707
ret = btrfs_truncate_free_space_cache(root, trans, path,
2708
inode);
2709
if (ret)
2710
goto out_put;
2711
}
2712
2713
spin_lock(&block_group->lock);
2714
if (block_group->cached != BTRFS_CACHE_FINISHED) {
2715
/* We're not cached, don't bother trying to write stuff out */
2716
dcs = BTRFS_DC_WRITTEN;
2717
spin_unlock(&block_group->lock);
2718
goto out_put;
2719
}
2720
spin_unlock(&block_group->lock);
2721
2722
num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2723
if (!num_pages)
2724
num_pages = 1;
2725
2726
/*
2727
* Just to make absolutely sure we have enough space, we're going to
2728
* preallocate 12 pages worth of space for each block group. In
2729
* practice we ought to use at most 8, but we need extra space so we can
2730
* add our header and have a terminator between the extents and the
2731
* bitmaps.
2732
*/
2733
num_pages *= 16;
2734
num_pages *= PAGE_CACHE_SIZE;
2735
2736
ret = btrfs_check_data_free_space(inode, num_pages);
2737
if (ret)
2738
goto out_put;
2739
2740
ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2741
num_pages, num_pages,
2742
&alloc_hint);
2743
if (!ret)
2744
dcs = BTRFS_DC_SETUP;
2745
btrfs_free_reserved_data_space(inode, num_pages);
2746
out_put:
2747
iput(inode);
2748
out_free:
2749
btrfs_release_path(path);
2750
out:
2751
spin_lock(&block_group->lock);
2752
block_group->disk_cache_state = dcs;
2753
spin_unlock(&block_group->lock);
2754
2755
return ret;
2756
}
2757
2758
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2759
struct btrfs_root *root)
2760
{
2761
struct btrfs_block_group_cache *cache;
2762
int err = 0;
2763
struct btrfs_path *path;
2764
u64 last = 0;
2765
2766
path = btrfs_alloc_path();
2767
if (!path)
2768
return -ENOMEM;
2769
2770
again:
2771
while (1) {
2772
cache = btrfs_lookup_first_block_group(root->fs_info, last);
2773
while (cache) {
2774
if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2775
break;
2776
cache = next_block_group(root, cache);
2777
}
2778
if (!cache) {
2779
if (last == 0)
2780
break;
2781
last = 0;
2782
continue;
2783
}
2784
err = cache_save_setup(cache, trans, path);
2785
last = cache->key.objectid + cache->key.offset;
2786
btrfs_put_block_group(cache);
2787
}
2788
2789
while (1) {
2790
if (last == 0) {
2791
err = btrfs_run_delayed_refs(trans, root,
2792
(unsigned long)-1);
2793
BUG_ON(err);
2794
}
2795
2796
cache = btrfs_lookup_first_block_group(root->fs_info, last);
2797
while (cache) {
2798
if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2799
btrfs_put_block_group(cache);
2800
goto again;
2801
}
2802
2803
if (cache->dirty)
2804
break;
2805
cache = next_block_group(root, cache);
2806
}
2807
if (!cache) {
2808
if (last == 0)
2809
break;
2810
last = 0;
2811
continue;
2812
}
2813
2814
if (cache->disk_cache_state == BTRFS_DC_SETUP)
2815
cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2816
cache->dirty = 0;
2817
last = cache->key.objectid + cache->key.offset;
2818
2819
err = write_one_cache_group(trans, root, path, cache);
2820
BUG_ON(err);
2821
btrfs_put_block_group(cache);
2822
}
2823
2824
while (1) {
2825
/*
2826
* I don't think this is needed since we're just marking our
2827
* preallocated extent as written, but just in case it can't
2828
* hurt.
2829
*/
2830
if (last == 0) {
2831
err = btrfs_run_delayed_refs(trans, root,
2832
(unsigned long)-1);
2833
BUG_ON(err);
2834
}
2835
2836
cache = btrfs_lookup_first_block_group(root->fs_info, last);
2837
while (cache) {
2838
/*
2839
* Really this shouldn't happen, but it could if we
2840
* couldn't write the entire preallocated extent and
2841
* splitting the extent resulted in a new block.
2842
*/
2843
if (cache->dirty) {
2844
btrfs_put_block_group(cache);
2845
goto again;
2846
}
2847
if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2848
break;
2849
cache = next_block_group(root, cache);
2850
}
2851
if (!cache) {
2852
if (last == 0)
2853
break;
2854
last = 0;
2855
continue;
2856
}
2857
2858
btrfs_write_out_cache(root, trans, cache, path);
2859
2860
/*
2861
* If we didn't have an error then the cache state is still
2862
* NEED_WRITE, so we can set it to WRITTEN.
2863
*/
2864
if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2865
cache->disk_cache_state = BTRFS_DC_WRITTEN;
2866
last = cache->key.objectid + cache->key.offset;
2867
btrfs_put_block_group(cache);
2868
}
2869
2870
btrfs_free_path(path);
2871
return 0;
2872
}
2873
2874
int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2875
{
2876
struct btrfs_block_group_cache *block_group;
2877
int readonly = 0;
2878
2879
block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2880
if (!block_group || block_group->ro)
2881
readonly = 1;
2882
if (block_group)
2883
btrfs_put_block_group(block_group);
2884
return readonly;
2885
}
2886
2887
static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2888
u64 total_bytes, u64 bytes_used,
2889
struct btrfs_space_info **space_info)
2890
{
2891
struct btrfs_space_info *found;
2892
int i;
2893
int factor;
2894
2895
if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2896
BTRFS_BLOCK_GROUP_RAID10))
2897
factor = 2;
2898
else
2899
factor = 1;
2900
2901
found = __find_space_info(info, flags);
2902
if (found) {
2903
spin_lock(&found->lock);
2904
found->total_bytes += total_bytes;
2905
found->disk_total += total_bytes * factor;
2906
found->bytes_used += bytes_used;
2907
found->disk_used += bytes_used * factor;
2908
found->full = 0;
2909
spin_unlock(&found->lock);
2910
*space_info = found;
2911
return 0;
2912
}
2913
found = kzalloc(sizeof(*found), GFP_NOFS);
2914
if (!found)
2915
return -ENOMEM;
2916
2917
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2918
INIT_LIST_HEAD(&found->block_groups[i]);
2919
init_rwsem(&found->groups_sem);
2920
spin_lock_init(&found->lock);
2921
found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2922
BTRFS_BLOCK_GROUP_SYSTEM |
2923
BTRFS_BLOCK_GROUP_METADATA);
2924
found->total_bytes = total_bytes;
2925
found->disk_total = total_bytes * factor;
2926
found->bytes_used = bytes_used;
2927
found->disk_used = bytes_used * factor;
2928
found->bytes_pinned = 0;
2929
found->bytes_reserved = 0;
2930
found->bytes_readonly = 0;
2931
found->bytes_may_use = 0;
2932
found->full = 0;
2933
found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2934
found->chunk_alloc = 0;
2935
*space_info = found;
2936
list_add_rcu(&found->list, &info->space_info);
2937
atomic_set(&found->caching_threads, 0);
2938
return 0;
2939
}
2940
2941
static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2942
{
2943
u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2944
BTRFS_BLOCK_GROUP_RAID1 |
2945
BTRFS_BLOCK_GROUP_RAID10 |
2946
BTRFS_BLOCK_GROUP_DUP);
2947
if (extra_flags) {
2948
if (flags & BTRFS_BLOCK_GROUP_DATA)
2949
fs_info->avail_data_alloc_bits |= extra_flags;
2950
if (flags & BTRFS_BLOCK_GROUP_METADATA)
2951
fs_info->avail_metadata_alloc_bits |= extra_flags;
2952
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2953
fs_info->avail_system_alloc_bits |= extra_flags;
2954
}
2955
}
2956
2957
u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2958
{
2959
/*
2960
* we add in the count of missing devices because we want
2961
* to make sure that any RAID levels on a degraded FS
2962
* continue to be honored.
2963
*/
2964
u64 num_devices = root->fs_info->fs_devices->rw_devices +
2965
root->fs_info->fs_devices->missing_devices;
2966
2967
if (num_devices == 1)
2968
flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2969
if (num_devices < 4)
2970
flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2971
2972
if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2973
(flags & (BTRFS_BLOCK_GROUP_RAID1 |
2974
BTRFS_BLOCK_GROUP_RAID10))) {
2975
flags &= ~BTRFS_BLOCK_GROUP_DUP;
2976
}
2977
2978
if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2979
(flags & BTRFS_BLOCK_GROUP_RAID10)) {
2980
flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2981
}
2982
2983
if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2984
((flags & BTRFS_BLOCK_GROUP_RAID1) |
2985
(flags & BTRFS_BLOCK_GROUP_RAID10) |
2986
(flags & BTRFS_BLOCK_GROUP_DUP)))
2987
flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2988
return flags;
2989
}
2990
2991
static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
2992
{
2993
if (flags & BTRFS_BLOCK_GROUP_DATA)
2994
flags |= root->fs_info->avail_data_alloc_bits &
2995
root->fs_info->data_alloc_profile;
2996
else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2997
flags |= root->fs_info->avail_system_alloc_bits &
2998
root->fs_info->system_alloc_profile;
2999
else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3000
flags |= root->fs_info->avail_metadata_alloc_bits &
3001
root->fs_info->metadata_alloc_profile;
3002
return btrfs_reduce_alloc_profile(root, flags);
3003
}
3004
3005
u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3006
{
3007
u64 flags;
3008
3009
if (data)
3010
flags = BTRFS_BLOCK_GROUP_DATA;
3011
else if (root == root->fs_info->chunk_root)
3012
flags = BTRFS_BLOCK_GROUP_SYSTEM;
3013
else
3014
flags = BTRFS_BLOCK_GROUP_METADATA;
3015
3016
return get_alloc_profile(root, flags);
3017
}
3018
3019
void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3020
{
3021
BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3022
BTRFS_BLOCK_GROUP_DATA);
3023
}
3024
3025
/*
3026
* This will check the space that the inode allocates from to make sure we have
3027
* enough space for bytes.
3028
*/
3029
int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3030
{
3031
struct btrfs_space_info *data_sinfo;
3032
struct btrfs_root *root = BTRFS_I(inode)->root;
3033
u64 used;
3034
int ret = 0, committed = 0, alloc_chunk = 1;
3035
3036
/* make sure bytes are sectorsize aligned */
3037
bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3038
3039
if (root == root->fs_info->tree_root ||
3040
BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3041
alloc_chunk = 0;
3042
committed = 1;
3043
}
3044
3045
data_sinfo = BTRFS_I(inode)->space_info;
3046
if (!data_sinfo)
3047
goto alloc;
3048
3049
again:
3050
/* make sure we have enough space to handle the data first */
3051
spin_lock(&data_sinfo->lock);
3052
used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3053
data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3054
data_sinfo->bytes_may_use;
3055
3056
if (used + bytes > data_sinfo->total_bytes) {
3057
struct btrfs_trans_handle *trans;
3058
3059
/*
3060
* if we don't have enough free bytes in this space then we need
3061
* to alloc a new chunk.
3062
*/
3063
if (!data_sinfo->full && alloc_chunk) {
3064
u64 alloc_target;
3065
3066
data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3067
spin_unlock(&data_sinfo->lock);
3068
alloc:
3069
alloc_target = btrfs_get_alloc_profile(root, 1);
3070
trans = btrfs_join_transaction(root);
3071
if (IS_ERR(trans))
3072
return PTR_ERR(trans);
3073
3074
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3075
bytes + 2 * 1024 * 1024,
3076
alloc_target,
3077
CHUNK_ALLOC_NO_FORCE);
3078
btrfs_end_transaction(trans, root);
3079
if (ret < 0) {
3080
if (ret != -ENOSPC)
3081
return ret;
3082
else
3083
goto commit_trans;
3084
}
3085
3086
if (!data_sinfo) {
3087
btrfs_set_inode_space_info(root, inode);
3088
data_sinfo = BTRFS_I(inode)->space_info;
3089
}
3090
goto again;
3091
}
3092
3093
/*
3094
* If we have less pinned bytes than we want to allocate then
3095
* don't bother committing the transaction, it won't help us.
3096
*/
3097
if (data_sinfo->bytes_pinned < bytes)
3098
committed = 1;
3099
spin_unlock(&data_sinfo->lock);
3100
3101
/* commit the current transaction and try again */
3102
commit_trans:
3103
if (!committed &&
3104
!atomic_read(&root->fs_info->open_ioctl_trans)) {
3105
committed = 1;
3106
trans = btrfs_join_transaction(root);
3107
if (IS_ERR(trans))
3108
return PTR_ERR(trans);
3109
ret = btrfs_commit_transaction(trans, root);
3110
if (ret)
3111
return ret;
3112
goto again;
3113
}
3114
3115
return -ENOSPC;
3116
}
3117
data_sinfo->bytes_may_use += bytes;
3118
BTRFS_I(inode)->reserved_bytes += bytes;
3119
spin_unlock(&data_sinfo->lock);
3120
3121
return 0;
3122
}
3123
3124
/*
3125
* called when we are clearing an delalloc extent from the
3126
* inode's io_tree or there was an error for whatever reason
3127
* after calling btrfs_check_data_free_space
3128
*/
3129
void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3130
{
3131
struct btrfs_root *root = BTRFS_I(inode)->root;
3132
struct btrfs_space_info *data_sinfo;
3133
3134
/* make sure bytes are sectorsize aligned */
3135
bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3136
3137
data_sinfo = BTRFS_I(inode)->space_info;
3138
spin_lock(&data_sinfo->lock);
3139
data_sinfo->bytes_may_use -= bytes;
3140
BTRFS_I(inode)->reserved_bytes -= bytes;
3141
spin_unlock(&data_sinfo->lock);
3142
}
3143
3144
static void force_metadata_allocation(struct btrfs_fs_info *info)
3145
{
3146
struct list_head *head = &info->space_info;
3147
struct btrfs_space_info *found;
3148
3149
rcu_read_lock();
3150
list_for_each_entry_rcu(found, head, list) {
3151
if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3152
found->force_alloc = CHUNK_ALLOC_FORCE;
3153
}
3154
rcu_read_unlock();
3155
}
3156
3157
static int should_alloc_chunk(struct btrfs_root *root,
3158
struct btrfs_space_info *sinfo, u64 alloc_bytes,
3159
int force)
3160
{
3161
u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3162
u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3163
u64 thresh;
3164
3165
if (force == CHUNK_ALLOC_FORCE)
3166
return 1;
3167
3168
/*
3169
* in limited mode, we want to have some free space up to
3170
* about 1% of the FS size.
3171
*/
3172
if (force == CHUNK_ALLOC_LIMITED) {
3173
thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3174
thresh = max_t(u64, 64 * 1024 * 1024,
3175
div_factor_fine(thresh, 1));
3176
3177
if (num_bytes - num_allocated < thresh)
3178
return 1;
3179
}
3180
3181
/*
3182
* we have two similar checks here, one based on percentage
3183
* and once based on a hard number of 256MB. The idea
3184
* is that if we have a good amount of free
3185
* room, don't allocate a chunk. A good mount is
3186
* less than 80% utilized of the chunks we have allocated,
3187
* or more than 256MB free
3188
*/
3189
if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3190
return 0;
3191
3192
if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3193
return 0;
3194
3195
thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3196
3197
/* 256MB or 5% of the FS */
3198
thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3199
3200
if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3201
return 0;
3202
return 1;
3203
}
3204
3205
static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3206
struct btrfs_root *extent_root, u64 alloc_bytes,
3207
u64 flags, int force)
3208
{
3209
struct btrfs_space_info *space_info;
3210
struct btrfs_fs_info *fs_info = extent_root->fs_info;
3211
int wait_for_alloc = 0;
3212
int ret = 0;
3213
3214
flags = btrfs_reduce_alloc_profile(extent_root, flags);
3215
3216
space_info = __find_space_info(extent_root->fs_info, flags);
3217
if (!space_info) {
3218
ret = update_space_info(extent_root->fs_info, flags,
3219
0, 0, &space_info);
3220
BUG_ON(ret);
3221
}
3222
BUG_ON(!space_info);
3223
3224
again:
3225
spin_lock(&space_info->lock);
3226
if (space_info->force_alloc)
3227
force = space_info->force_alloc;
3228
if (space_info->full) {
3229
spin_unlock(&space_info->lock);
3230
return 0;
3231
}
3232
3233
if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3234
spin_unlock(&space_info->lock);
3235
return 0;
3236
} else if (space_info->chunk_alloc) {
3237
wait_for_alloc = 1;
3238
} else {
3239
space_info->chunk_alloc = 1;
3240
}
3241
3242
spin_unlock(&space_info->lock);
3243
3244
mutex_lock(&fs_info->chunk_mutex);
3245
3246
/*
3247
* The chunk_mutex is held throughout the entirety of a chunk
3248
* allocation, so once we've acquired the chunk_mutex we know that the
3249
* other guy is done and we need to recheck and see if we should
3250
* allocate.
3251
*/
3252
if (wait_for_alloc) {
3253
mutex_unlock(&fs_info->chunk_mutex);
3254
wait_for_alloc = 0;
3255
goto again;
3256
}
3257
3258
/*
3259
* If we have mixed data/metadata chunks we want to make sure we keep
3260
* allocating mixed chunks instead of individual chunks.
3261
*/
3262
if (btrfs_mixed_space_info(space_info))
3263
flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3264
3265
/*
3266
* if we're doing a data chunk, go ahead and make sure that
3267
* we keep a reasonable number of metadata chunks allocated in the
3268
* FS as well.
3269
*/
3270
if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3271
fs_info->data_chunk_allocations++;
3272
if (!(fs_info->data_chunk_allocations %
3273
fs_info->metadata_ratio))
3274
force_metadata_allocation(fs_info);
3275
}
3276
3277
ret = btrfs_alloc_chunk(trans, extent_root, flags);
3278
spin_lock(&space_info->lock);
3279
if (ret)
3280
space_info->full = 1;
3281
else
3282
ret = 1;
3283
3284
space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3285
space_info->chunk_alloc = 0;
3286
spin_unlock(&space_info->lock);
3287
mutex_unlock(&extent_root->fs_info->chunk_mutex);
3288
return ret;
3289
}
3290
3291
/*
3292
* shrink metadata reservation for delalloc
3293
*/
3294
static int shrink_delalloc(struct btrfs_trans_handle *trans,
3295
struct btrfs_root *root, u64 to_reclaim, int sync)
3296
{
3297
struct btrfs_block_rsv *block_rsv;
3298
struct btrfs_space_info *space_info;
3299
u64 reserved;
3300
u64 max_reclaim;
3301
u64 reclaimed = 0;
3302
long time_left;
3303
int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3304
int loops = 0;
3305
unsigned long progress;
3306
3307
block_rsv = &root->fs_info->delalloc_block_rsv;
3308
space_info = block_rsv->space_info;
3309
3310
smp_mb();
3311
reserved = space_info->bytes_reserved;
3312
progress = space_info->reservation_progress;
3313
3314
if (reserved == 0)
3315
return 0;
3316
3317
max_reclaim = min(reserved, to_reclaim);
3318
3319
while (loops < 1024) {
3320
/* have the flusher threads jump in and do some IO */
3321
smp_mb();
3322
nr_pages = min_t(unsigned long, nr_pages,
3323
root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3324
writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3325
3326
spin_lock(&space_info->lock);
3327
if (reserved > space_info->bytes_reserved)
3328
reclaimed += reserved - space_info->bytes_reserved;
3329
reserved = space_info->bytes_reserved;
3330
spin_unlock(&space_info->lock);
3331
3332
loops++;
3333
3334
if (reserved == 0 || reclaimed >= max_reclaim)
3335
break;
3336
3337
if (trans && trans->transaction->blocked)
3338
return -EAGAIN;
3339
3340
time_left = schedule_timeout_interruptible(1);
3341
3342
/* We were interrupted, exit */
3343
if (time_left)
3344
break;
3345
3346
/* we've kicked the IO a few times, if anything has been freed,
3347
* exit. There is no sense in looping here for a long time
3348
* when we really need to commit the transaction, or there are
3349
* just too many writers without enough free space
3350
*/
3351
3352
if (loops > 3) {
3353
smp_mb();
3354
if (progress != space_info->reservation_progress)
3355
break;
3356
}
3357
3358
}
3359
return reclaimed >= to_reclaim;
3360
}
3361
3362
/*
3363
* Retries tells us how many times we've called reserve_metadata_bytes. The
3364
* idea is if this is the first call (retries == 0) then we will add to our
3365
* reserved count if we can't make the allocation in order to hold our place
3366
* while we go and try and free up space. That way for retries > 1 we don't try
3367
* and add space, we just check to see if the amount of unused space is >= the
3368
* total space, meaning that our reservation is valid.
3369
*
3370
* However if we don't intend to retry this reservation, pass -1 as retries so
3371
* that it short circuits this logic.
3372
*/
3373
static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3374
struct btrfs_root *root,
3375
struct btrfs_block_rsv *block_rsv,
3376
u64 orig_bytes, int flush)
3377
{
3378
struct btrfs_space_info *space_info = block_rsv->space_info;
3379
u64 unused;
3380
u64 num_bytes = orig_bytes;
3381
int retries = 0;
3382
int ret = 0;
3383
bool reserved = false;
3384
bool committed = false;
3385
3386
again:
3387
ret = -ENOSPC;
3388
if (reserved)
3389
num_bytes = 0;
3390
3391
spin_lock(&space_info->lock);
3392
unused = space_info->bytes_used + space_info->bytes_reserved +
3393
space_info->bytes_pinned + space_info->bytes_readonly +
3394
space_info->bytes_may_use;
3395
3396
/*
3397
* The idea here is that we've not already over-reserved the block group
3398
* then we can go ahead and save our reservation first and then start
3399
* flushing if we need to. Otherwise if we've already overcommitted
3400
* lets start flushing stuff first and then come back and try to make
3401
* our reservation.
3402
*/
3403
if (unused <= space_info->total_bytes) {
3404
unused = space_info->total_bytes - unused;
3405
if (unused >= num_bytes) {
3406
if (!reserved)
3407
space_info->bytes_reserved += orig_bytes;
3408
ret = 0;
3409
} else {
3410
/*
3411
* Ok set num_bytes to orig_bytes since we aren't
3412
* overocmmitted, this way we only try and reclaim what
3413
* we need.
3414
*/
3415
num_bytes = orig_bytes;
3416
}
3417
} else {
3418
/*
3419
* Ok we're over committed, set num_bytes to the overcommitted
3420
* amount plus the amount of bytes that we need for this
3421
* reservation.
3422
*/
3423
num_bytes = unused - space_info->total_bytes +
3424
(orig_bytes * (retries + 1));
3425
}
3426
3427
/*
3428
* Couldn't make our reservation, save our place so while we're trying
3429
* to reclaim space we can actually use it instead of somebody else
3430
* stealing it from us.
3431
*/
3432
if (ret && !reserved) {
3433
space_info->bytes_reserved += orig_bytes;
3434
reserved = true;
3435
}
3436
3437
spin_unlock(&space_info->lock);
3438
3439
if (!ret)
3440
return 0;
3441
3442
if (!flush)
3443
goto out;
3444
3445
/*
3446
* We do synchronous shrinking since we don't actually unreserve
3447
* metadata until after the IO is completed.
3448
*/
3449
ret = shrink_delalloc(trans, root, num_bytes, 1);
3450
if (ret > 0)
3451
return 0;
3452
else if (ret < 0)
3453
goto out;
3454
3455
/*
3456
* So if we were overcommitted it's possible that somebody else flushed
3457
* out enough space and we simply didn't have enough space to reclaim,
3458
* so go back around and try again.
3459
*/
3460
if (retries < 2) {
3461
retries++;
3462
goto again;
3463
}
3464
3465
spin_lock(&space_info->lock);
3466
/*
3467
* Not enough space to be reclaimed, don't bother committing the
3468
* transaction.
3469
*/
3470
if (space_info->bytes_pinned < orig_bytes)
3471
ret = -ENOSPC;
3472
spin_unlock(&space_info->lock);
3473
if (ret)
3474
goto out;
3475
3476
ret = -EAGAIN;
3477
if (trans || committed)
3478
goto out;
3479
3480
ret = -ENOSPC;
3481
trans = btrfs_join_transaction(root);
3482
if (IS_ERR(trans))
3483
goto out;
3484
ret = btrfs_commit_transaction(trans, root);
3485
if (!ret) {
3486
trans = NULL;
3487
committed = true;
3488
goto again;
3489
}
3490
3491
out:
3492
if (reserved) {
3493
spin_lock(&space_info->lock);
3494
space_info->bytes_reserved -= orig_bytes;
3495
spin_unlock(&space_info->lock);
3496
}
3497
3498
return ret;
3499
}
3500
3501
static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3502
struct btrfs_root *root)
3503
{
3504
struct btrfs_block_rsv *block_rsv;
3505
if (root->ref_cows)
3506
block_rsv = trans->block_rsv;
3507
else
3508
block_rsv = root->block_rsv;
3509
3510
if (!block_rsv)
3511
block_rsv = &root->fs_info->empty_block_rsv;
3512
3513
return block_rsv;
3514
}
3515
3516
static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3517
u64 num_bytes)
3518
{
3519
int ret = -ENOSPC;
3520
spin_lock(&block_rsv->lock);
3521
if (block_rsv->reserved >= num_bytes) {
3522
block_rsv->reserved -= num_bytes;
3523
if (block_rsv->reserved < block_rsv->size)
3524
block_rsv->full = 0;
3525
ret = 0;
3526
}
3527
spin_unlock(&block_rsv->lock);
3528
return ret;
3529
}
3530
3531
static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3532
u64 num_bytes, int update_size)
3533
{
3534
spin_lock(&block_rsv->lock);
3535
block_rsv->reserved += num_bytes;
3536
if (update_size)
3537
block_rsv->size += num_bytes;
3538
else if (block_rsv->reserved >= block_rsv->size)
3539
block_rsv->full = 1;
3540
spin_unlock(&block_rsv->lock);
3541
}
3542
3543
static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3544
struct btrfs_block_rsv *dest, u64 num_bytes)
3545
{
3546
struct btrfs_space_info *space_info = block_rsv->space_info;
3547
3548
spin_lock(&block_rsv->lock);
3549
if (num_bytes == (u64)-1)
3550
num_bytes = block_rsv->size;
3551
block_rsv->size -= num_bytes;
3552
if (block_rsv->reserved >= block_rsv->size) {
3553
num_bytes = block_rsv->reserved - block_rsv->size;
3554
block_rsv->reserved = block_rsv->size;
3555
block_rsv->full = 1;
3556
} else {
3557
num_bytes = 0;
3558
}
3559
spin_unlock(&block_rsv->lock);
3560
3561
if (num_bytes > 0) {
3562
if (dest) {
3563
spin_lock(&dest->lock);
3564
if (!dest->full) {
3565
u64 bytes_to_add;
3566
3567
bytes_to_add = dest->size - dest->reserved;
3568
bytes_to_add = min(num_bytes, bytes_to_add);
3569
dest->reserved += bytes_to_add;
3570
if (dest->reserved >= dest->size)
3571
dest->full = 1;
3572
num_bytes -= bytes_to_add;
3573
}
3574
spin_unlock(&dest->lock);
3575
}
3576
if (num_bytes) {
3577
spin_lock(&space_info->lock);
3578
space_info->bytes_reserved -= num_bytes;
3579
space_info->reservation_progress++;
3580
spin_unlock(&space_info->lock);
3581
}
3582
}
3583
}
3584
3585
static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3586
struct btrfs_block_rsv *dst, u64 num_bytes)
3587
{
3588
int ret;
3589
3590
ret = block_rsv_use_bytes(src, num_bytes);
3591
if (ret)
3592
return ret;
3593
3594
block_rsv_add_bytes(dst, num_bytes, 1);
3595
return 0;
3596
}
3597
3598
void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3599
{
3600
memset(rsv, 0, sizeof(*rsv));
3601
spin_lock_init(&rsv->lock);
3602
atomic_set(&rsv->usage, 1);
3603
rsv->priority = 6;
3604
INIT_LIST_HEAD(&rsv->list);
3605
}
3606
3607
struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3608
{
3609
struct btrfs_block_rsv *block_rsv;
3610
struct btrfs_fs_info *fs_info = root->fs_info;
3611
3612
block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3613
if (!block_rsv)
3614
return NULL;
3615
3616
btrfs_init_block_rsv(block_rsv);
3617
block_rsv->space_info = __find_space_info(fs_info,
3618
BTRFS_BLOCK_GROUP_METADATA);
3619
return block_rsv;
3620
}
3621
3622
void btrfs_free_block_rsv(struct btrfs_root *root,
3623
struct btrfs_block_rsv *rsv)
3624
{
3625
if (rsv && atomic_dec_and_test(&rsv->usage)) {
3626
btrfs_block_rsv_release(root, rsv, (u64)-1);
3627
if (!rsv->durable)
3628
kfree(rsv);
3629
}
3630
}
3631
3632
/*
3633
* make the block_rsv struct be able to capture freed space.
3634
* the captured space will re-add to the the block_rsv struct
3635
* after transaction commit
3636
*/
3637
void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3638
struct btrfs_block_rsv *block_rsv)
3639
{
3640
block_rsv->durable = 1;
3641
mutex_lock(&fs_info->durable_block_rsv_mutex);
3642
list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3643
mutex_unlock(&fs_info->durable_block_rsv_mutex);
3644
}
3645
3646
int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3647
struct btrfs_root *root,
3648
struct btrfs_block_rsv *block_rsv,
3649
u64 num_bytes)
3650
{
3651
int ret;
3652
3653
if (num_bytes == 0)
3654
return 0;
3655
3656
ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3657
if (!ret) {
3658
block_rsv_add_bytes(block_rsv, num_bytes, 1);
3659
return 0;
3660
}
3661
3662
return ret;
3663
}
3664
3665
int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3666
struct btrfs_root *root,
3667
struct btrfs_block_rsv *block_rsv,
3668
u64 min_reserved, int min_factor)
3669
{
3670
u64 num_bytes = 0;
3671
int commit_trans = 0;
3672
int ret = -ENOSPC;
3673
3674
if (!block_rsv)
3675
return 0;
3676
3677
spin_lock(&block_rsv->lock);
3678
if (min_factor > 0)
3679
num_bytes = div_factor(block_rsv->size, min_factor);
3680
if (min_reserved > num_bytes)
3681
num_bytes = min_reserved;
3682
3683
if (block_rsv->reserved >= num_bytes) {
3684
ret = 0;
3685
} else {
3686
num_bytes -= block_rsv->reserved;
3687
if (block_rsv->durable &&
3688
block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3689
commit_trans = 1;
3690
}
3691
spin_unlock(&block_rsv->lock);
3692
if (!ret)
3693
return 0;
3694
3695
if (block_rsv->refill_used) {
3696
ret = reserve_metadata_bytes(trans, root, block_rsv,
3697
num_bytes, 0);
3698
if (!ret) {
3699
block_rsv_add_bytes(block_rsv, num_bytes, 0);
3700
return 0;
3701
}
3702
}
3703
3704
if (commit_trans) {
3705
if (trans)
3706
return -EAGAIN;
3707
3708
trans = btrfs_join_transaction(root);
3709
BUG_ON(IS_ERR(trans));
3710
ret = btrfs_commit_transaction(trans, root);
3711
return 0;
3712
}
3713
3714
return -ENOSPC;
3715
}
3716
3717
int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3718
struct btrfs_block_rsv *dst_rsv,
3719
u64 num_bytes)
3720
{
3721
return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3722
}
3723
3724
void btrfs_block_rsv_release(struct btrfs_root *root,
3725
struct btrfs_block_rsv *block_rsv,
3726
u64 num_bytes)
3727
{
3728
struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3729
if (global_rsv->full || global_rsv == block_rsv ||
3730
block_rsv->space_info != global_rsv->space_info)
3731
global_rsv = NULL;
3732
block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3733
}
3734
3735
/*
3736
* helper to calculate size of global block reservation.
3737
* the desired value is sum of space used by extent tree,
3738
* checksum tree and root tree
3739
*/
3740
static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3741
{
3742
struct btrfs_space_info *sinfo;
3743
u64 num_bytes;
3744
u64 meta_used;
3745
u64 data_used;
3746
int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3747
3748
sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3749
spin_lock(&sinfo->lock);
3750
data_used = sinfo->bytes_used;
3751
spin_unlock(&sinfo->lock);
3752
3753
sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3754
spin_lock(&sinfo->lock);
3755
if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3756
data_used = 0;
3757
meta_used = sinfo->bytes_used;
3758
spin_unlock(&sinfo->lock);
3759
3760
num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3761
csum_size * 2;
3762
num_bytes += div64_u64(data_used + meta_used, 50);
3763
3764
if (num_bytes * 3 > meta_used)
3765
num_bytes = div64_u64(meta_used, 3);
3766
3767
return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3768
}
3769
3770
static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3771
{
3772
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3773
struct btrfs_space_info *sinfo = block_rsv->space_info;
3774
u64 num_bytes;
3775
3776
num_bytes = calc_global_metadata_size(fs_info);
3777
3778
spin_lock(&block_rsv->lock);
3779
spin_lock(&sinfo->lock);
3780
3781
block_rsv->size = num_bytes;
3782
3783
num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3784
sinfo->bytes_reserved + sinfo->bytes_readonly +
3785
sinfo->bytes_may_use;
3786
3787
if (sinfo->total_bytes > num_bytes) {
3788
num_bytes = sinfo->total_bytes - num_bytes;
3789
block_rsv->reserved += num_bytes;
3790
sinfo->bytes_reserved += num_bytes;
3791
}
3792
3793
if (block_rsv->reserved >= block_rsv->size) {
3794
num_bytes = block_rsv->reserved - block_rsv->size;
3795
sinfo->bytes_reserved -= num_bytes;
3796
sinfo->reservation_progress++;
3797
block_rsv->reserved = block_rsv->size;
3798
block_rsv->full = 1;
3799
}
3800
3801
spin_unlock(&sinfo->lock);
3802
spin_unlock(&block_rsv->lock);
3803
}
3804
3805
static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3806
{
3807
struct btrfs_space_info *space_info;
3808
3809
space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3810
fs_info->chunk_block_rsv.space_info = space_info;
3811
fs_info->chunk_block_rsv.priority = 10;
3812
3813
space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3814
fs_info->global_block_rsv.space_info = space_info;
3815
fs_info->global_block_rsv.priority = 10;
3816
fs_info->global_block_rsv.refill_used = 1;
3817
fs_info->delalloc_block_rsv.space_info = space_info;
3818
fs_info->trans_block_rsv.space_info = space_info;
3819
fs_info->empty_block_rsv.space_info = space_info;
3820
fs_info->empty_block_rsv.priority = 10;
3821
3822
fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3823
fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3824
fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3825
fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3826
fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3827
3828
btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3829
3830
btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3831
3832
update_global_block_rsv(fs_info);
3833
}
3834
3835
static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3836
{
3837
block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3838
WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3839
WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3840
WARN_ON(fs_info->trans_block_rsv.size > 0);
3841
WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3842
WARN_ON(fs_info->chunk_block_rsv.size > 0);
3843
WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3844
}
3845
3846
int btrfs_truncate_reserve_metadata(struct btrfs_trans_handle *trans,
3847
struct btrfs_root *root,
3848
struct btrfs_block_rsv *rsv)
3849
{
3850
struct btrfs_block_rsv *trans_rsv = &root->fs_info->trans_block_rsv;
3851
u64 num_bytes;
3852
int ret;
3853
3854
/*
3855
* Truncate should be freeing data, but give us 2 items just in case it
3856
* needs to use some space. We may want to be smarter about this in the
3857
* future.
3858
*/
3859
num_bytes = btrfs_calc_trans_metadata_size(root, 2);
3860
3861
/* We already have enough bytes, just return */
3862
if (rsv->reserved >= num_bytes)
3863
return 0;
3864
3865
num_bytes -= rsv->reserved;
3866
3867
/*
3868
* You should have reserved enough space before hand to do this, so this
3869
* should not fail.
3870
*/
3871
ret = block_rsv_migrate_bytes(trans_rsv, rsv, num_bytes);
3872
BUG_ON(ret);
3873
3874
return 0;
3875
}
3876
3877
int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3878
struct btrfs_root *root,
3879
int num_items)
3880
{
3881
u64 num_bytes;
3882
int ret;
3883
3884
if (num_items == 0 || root->fs_info->chunk_root == root)
3885
return 0;
3886
3887
num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
3888
ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3889
num_bytes);
3890
if (!ret) {
3891
trans->bytes_reserved += num_bytes;
3892
trans->block_rsv = &root->fs_info->trans_block_rsv;
3893
}
3894
return ret;
3895
}
3896
3897
void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3898
struct btrfs_root *root)
3899
{
3900
if (!trans->bytes_reserved)
3901
return;
3902
3903
BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3904
btrfs_block_rsv_release(root, trans->block_rsv,
3905
trans->bytes_reserved);
3906
trans->bytes_reserved = 0;
3907
}
3908
3909
int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3910
struct inode *inode)
3911
{
3912
struct btrfs_root *root = BTRFS_I(inode)->root;
3913
struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3914
struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3915
3916
/*
3917
* We need to hold space in order to delete our orphan item once we've
3918
* added it, so this takes the reservation so we can release it later
3919
* when we are truly done with the orphan item.
3920
*/
3921
u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3922
return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3923
}
3924
3925
void btrfs_orphan_release_metadata(struct inode *inode)
3926
{
3927
struct btrfs_root *root = BTRFS_I(inode)->root;
3928
u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3929
btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3930
}
3931
3932
int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3933
struct btrfs_pending_snapshot *pending)
3934
{
3935
struct btrfs_root *root = pending->root;
3936
struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3937
struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3938
/*
3939
* two for root back/forward refs, two for directory entries
3940
* and one for root of the snapshot.
3941
*/
3942
u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3943
dst_rsv->space_info = src_rsv->space_info;
3944
return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3945
}
3946
3947
static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3948
{
3949
return num_bytes >>= 3;
3950
}
3951
3952
int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3953
{
3954
struct btrfs_root *root = BTRFS_I(inode)->root;
3955
struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3956
u64 to_reserve;
3957
int nr_extents;
3958
int reserved_extents;
3959
int ret;
3960
3961
if (btrfs_transaction_in_commit(root->fs_info))
3962
schedule_timeout(1);
3963
3964
num_bytes = ALIGN(num_bytes, root->sectorsize);
3965
3966
nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
3967
reserved_extents = atomic_read(&BTRFS_I(inode)->reserved_extents);
3968
3969
if (nr_extents > reserved_extents) {
3970
nr_extents -= reserved_extents;
3971
to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
3972
} else {
3973
nr_extents = 0;
3974
to_reserve = 0;
3975
}
3976
3977
to_reserve += calc_csum_metadata_size(inode, num_bytes);
3978
ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
3979
if (ret)
3980
return ret;
3981
3982
atomic_add(nr_extents, &BTRFS_I(inode)->reserved_extents);
3983
atomic_inc(&BTRFS_I(inode)->outstanding_extents);
3984
3985
block_rsv_add_bytes(block_rsv, to_reserve, 1);
3986
3987
if (block_rsv->size > 512 * 1024 * 1024)
3988
shrink_delalloc(NULL, root, to_reserve, 0);
3989
3990
return 0;
3991
}
3992
3993
void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
3994
{
3995
struct btrfs_root *root = BTRFS_I(inode)->root;
3996
u64 to_free;
3997
int nr_extents;
3998
int reserved_extents;
3999
4000
num_bytes = ALIGN(num_bytes, root->sectorsize);
4001
atomic_dec(&BTRFS_I(inode)->outstanding_extents);
4002
WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents) < 0);
4003
4004
reserved_extents = atomic_read(&BTRFS_I(inode)->reserved_extents);
4005
do {
4006
int old, new;
4007
4008
nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
4009
if (nr_extents >= reserved_extents) {
4010
nr_extents = 0;
4011
break;
4012
}
4013
old = reserved_extents;
4014
nr_extents = reserved_extents - nr_extents;
4015
new = reserved_extents - nr_extents;
4016
old = atomic_cmpxchg(&BTRFS_I(inode)->reserved_extents,
4017
reserved_extents, new);
4018
if (likely(old == reserved_extents))
4019
break;
4020
reserved_extents = old;
4021
} while (1);
4022
4023
to_free = calc_csum_metadata_size(inode, num_bytes);
4024
if (nr_extents > 0)
4025
to_free += btrfs_calc_trans_metadata_size(root, nr_extents);
4026
4027
btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4028
to_free);
4029
}
4030
4031
int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4032
{
4033
int ret;
4034
4035
ret = btrfs_check_data_free_space(inode, num_bytes);
4036
if (ret)
4037
return ret;
4038
4039
ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4040
if (ret) {
4041
btrfs_free_reserved_data_space(inode, num_bytes);
4042
return ret;
4043
}
4044
4045
return 0;
4046
}
4047
4048
void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4049
{
4050
btrfs_delalloc_release_metadata(inode, num_bytes);
4051
btrfs_free_reserved_data_space(inode, num_bytes);
4052
}
4053
4054
static int update_block_group(struct btrfs_trans_handle *trans,
4055
struct btrfs_root *root,
4056
u64 bytenr, u64 num_bytes, int alloc)
4057
{
4058
struct btrfs_block_group_cache *cache = NULL;
4059
struct btrfs_fs_info *info = root->fs_info;
4060
u64 total = num_bytes;
4061
u64 old_val;
4062
u64 byte_in_group;
4063
int factor;
4064
4065
/* block accounting for super block */
4066
spin_lock(&info->delalloc_lock);
4067
old_val = btrfs_super_bytes_used(&info->super_copy);
4068
if (alloc)
4069
old_val += num_bytes;
4070
else
4071
old_val -= num_bytes;
4072
btrfs_set_super_bytes_used(&info->super_copy, old_val);
4073
spin_unlock(&info->delalloc_lock);
4074
4075
while (total) {
4076
cache = btrfs_lookup_block_group(info, bytenr);
4077
if (!cache)
4078
return -1;
4079
if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4080
BTRFS_BLOCK_GROUP_RAID1 |
4081
BTRFS_BLOCK_GROUP_RAID10))
4082
factor = 2;
4083
else
4084
factor = 1;
4085
/*
4086
* If this block group has free space cache written out, we
4087
* need to make sure to load it if we are removing space. This
4088
* is because we need the unpinning stage to actually add the
4089
* space back to the block group, otherwise we will leak space.
4090
*/
4091
if (!alloc && cache->cached == BTRFS_CACHE_NO)
4092
cache_block_group(cache, trans, NULL, 1);
4093
4094
byte_in_group = bytenr - cache->key.objectid;
4095
WARN_ON(byte_in_group > cache->key.offset);
4096
4097
spin_lock(&cache->space_info->lock);
4098
spin_lock(&cache->lock);
4099
4100
if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4101
cache->disk_cache_state < BTRFS_DC_CLEAR)
4102
cache->disk_cache_state = BTRFS_DC_CLEAR;
4103
4104
cache->dirty = 1;
4105
old_val = btrfs_block_group_used(&cache->item);
4106
num_bytes = min(total, cache->key.offset - byte_in_group);
4107
if (alloc) {
4108
old_val += num_bytes;
4109
btrfs_set_block_group_used(&cache->item, old_val);
4110
cache->reserved -= num_bytes;
4111
cache->space_info->bytes_reserved -= num_bytes;
4112
cache->space_info->reservation_progress++;
4113
cache->space_info->bytes_used += num_bytes;
4114
cache->space_info->disk_used += num_bytes * factor;
4115
spin_unlock(&cache->lock);
4116
spin_unlock(&cache->space_info->lock);
4117
} else {
4118
old_val -= num_bytes;
4119
btrfs_set_block_group_used(&cache->item, old_val);
4120
cache->pinned += num_bytes;
4121
cache->space_info->bytes_pinned += num_bytes;
4122
cache->space_info->bytes_used -= num_bytes;
4123
cache->space_info->disk_used -= num_bytes * factor;
4124
spin_unlock(&cache->lock);
4125
spin_unlock(&cache->space_info->lock);
4126
4127
set_extent_dirty(info->pinned_extents,
4128
bytenr, bytenr + num_bytes - 1,
4129
GFP_NOFS | __GFP_NOFAIL);
4130
}
4131
btrfs_put_block_group(cache);
4132
total -= num_bytes;
4133
bytenr += num_bytes;
4134
}
4135
return 0;
4136
}
4137
4138
static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4139
{
4140
struct btrfs_block_group_cache *cache;
4141
u64 bytenr;
4142
4143
cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4144
if (!cache)
4145
return 0;
4146
4147
bytenr = cache->key.objectid;
4148
btrfs_put_block_group(cache);
4149
4150
return bytenr;
4151
}
4152
4153
static int pin_down_extent(struct btrfs_root *root,
4154
struct btrfs_block_group_cache *cache,
4155
u64 bytenr, u64 num_bytes, int reserved)
4156
{
4157
spin_lock(&cache->space_info->lock);
4158
spin_lock(&cache->lock);
4159
cache->pinned += num_bytes;
4160
cache->space_info->bytes_pinned += num_bytes;
4161
if (reserved) {
4162
cache->reserved -= num_bytes;
4163
cache->space_info->bytes_reserved -= num_bytes;
4164
cache->space_info->reservation_progress++;
4165
}
4166
spin_unlock(&cache->lock);
4167
spin_unlock(&cache->space_info->lock);
4168
4169
set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4170
bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4171
return 0;
4172
}
4173
4174
/*
4175
* this function must be called within transaction
4176
*/
4177
int btrfs_pin_extent(struct btrfs_root *root,
4178
u64 bytenr, u64 num_bytes, int reserved)
4179
{
4180
struct btrfs_block_group_cache *cache;
4181
4182
cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4183
BUG_ON(!cache);
4184
4185
pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4186
4187
btrfs_put_block_group(cache);
4188
return 0;
4189
}
4190
4191
/*
4192
* update size of reserved extents. this function may return -EAGAIN
4193
* if 'reserve' is true or 'sinfo' is false.
4194
*/
4195
int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4196
u64 num_bytes, int reserve, int sinfo)
4197
{
4198
int ret = 0;
4199
if (sinfo) {
4200
struct btrfs_space_info *space_info = cache->space_info;
4201
spin_lock(&space_info->lock);
4202
spin_lock(&cache->lock);
4203
if (reserve) {
4204
if (cache->ro) {
4205
ret = -EAGAIN;
4206
} else {
4207
cache->reserved += num_bytes;
4208
space_info->bytes_reserved += num_bytes;
4209
}
4210
} else {
4211
if (cache->ro)
4212
space_info->bytes_readonly += num_bytes;
4213
cache->reserved -= num_bytes;
4214
space_info->bytes_reserved -= num_bytes;
4215
space_info->reservation_progress++;
4216
}
4217
spin_unlock(&cache->lock);
4218
spin_unlock(&space_info->lock);
4219
} else {
4220
spin_lock(&cache->lock);
4221
if (cache->ro) {
4222
ret = -EAGAIN;
4223
} else {
4224
if (reserve)
4225
cache->reserved += num_bytes;
4226
else
4227
cache->reserved -= num_bytes;
4228
}
4229
spin_unlock(&cache->lock);
4230
}
4231
return ret;
4232
}
4233
4234
int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4235
struct btrfs_root *root)
4236
{
4237
struct btrfs_fs_info *fs_info = root->fs_info;
4238
struct btrfs_caching_control *next;
4239
struct btrfs_caching_control *caching_ctl;
4240
struct btrfs_block_group_cache *cache;
4241
4242
down_write(&fs_info->extent_commit_sem);
4243
4244
list_for_each_entry_safe(caching_ctl, next,
4245
&fs_info->caching_block_groups, list) {
4246
cache = caching_ctl->block_group;
4247
if (block_group_cache_done(cache)) {
4248
cache->last_byte_to_unpin = (u64)-1;
4249
list_del_init(&caching_ctl->list);
4250
put_caching_control(caching_ctl);
4251
} else {
4252
cache->last_byte_to_unpin = caching_ctl->progress;
4253
}
4254
}
4255
4256
if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4257
fs_info->pinned_extents = &fs_info->freed_extents[1];
4258
else
4259
fs_info->pinned_extents = &fs_info->freed_extents[0];
4260
4261
up_write(&fs_info->extent_commit_sem);
4262
4263
update_global_block_rsv(fs_info);
4264
return 0;
4265
}
4266
4267
static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4268
{
4269
struct btrfs_fs_info *fs_info = root->fs_info;
4270
struct btrfs_block_group_cache *cache = NULL;
4271
u64 len;
4272
4273
while (start <= end) {
4274
if (!cache ||
4275
start >= cache->key.objectid + cache->key.offset) {
4276
if (cache)
4277
btrfs_put_block_group(cache);
4278
cache = btrfs_lookup_block_group(fs_info, start);
4279
BUG_ON(!cache);
4280
}
4281
4282
len = cache->key.objectid + cache->key.offset - start;
4283
len = min(len, end + 1 - start);
4284
4285
if (start < cache->last_byte_to_unpin) {
4286
len = min(len, cache->last_byte_to_unpin - start);
4287
btrfs_add_free_space(cache, start, len);
4288
}
4289
4290
start += len;
4291
4292
spin_lock(&cache->space_info->lock);
4293
spin_lock(&cache->lock);
4294
cache->pinned -= len;
4295
cache->space_info->bytes_pinned -= len;
4296
if (cache->ro) {
4297
cache->space_info->bytes_readonly += len;
4298
} else if (cache->reserved_pinned > 0) {
4299
len = min(len, cache->reserved_pinned);
4300
cache->reserved_pinned -= len;
4301
cache->space_info->bytes_reserved += len;
4302
}
4303
spin_unlock(&cache->lock);
4304
spin_unlock(&cache->space_info->lock);
4305
}
4306
4307
if (cache)
4308
btrfs_put_block_group(cache);
4309
return 0;
4310
}
4311
4312
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4313
struct btrfs_root *root)
4314
{
4315
struct btrfs_fs_info *fs_info = root->fs_info;
4316
struct extent_io_tree *unpin;
4317
struct btrfs_block_rsv *block_rsv;
4318
struct btrfs_block_rsv *next_rsv;
4319
u64 start;
4320
u64 end;
4321
int idx;
4322
int ret;
4323
4324
if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4325
unpin = &fs_info->freed_extents[1];
4326
else
4327
unpin = &fs_info->freed_extents[0];
4328
4329
while (1) {
4330
ret = find_first_extent_bit(unpin, 0, &start, &end,
4331
EXTENT_DIRTY);
4332
if (ret)
4333
break;
4334
4335
if (btrfs_test_opt(root, DISCARD))
4336
ret = btrfs_discard_extent(root, start,
4337
end + 1 - start, NULL);
4338
4339
clear_extent_dirty(unpin, start, end, GFP_NOFS);
4340
unpin_extent_range(root, start, end);
4341
cond_resched();
4342
}
4343
4344
mutex_lock(&fs_info->durable_block_rsv_mutex);
4345
list_for_each_entry_safe(block_rsv, next_rsv,
4346
&fs_info->durable_block_rsv_list, list) {
4347
4348
idx = trans->transid & 0x1;
4349
if (block_rsv->freed[idx] > 0) {
4350
block_rsv_add_bytes(block_rsv,
4351
block_rsv->freed[idx], 0);
4352
block_rsv->freed[idx] = 0;
4353
}
4354
if (atomic_read(&block_rsv->usage) == 0) {
4355
btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4356
4357
if (block_rsv->freed[0] == 0 &&
4358
block_rsv->freed[1] == 0) {
4359
list_del_init(&block_rsv->list);
4360
kfree(block_rsv);
4361
}
4362
} else {
4363
btrfs_block_rsv_release(root, block_rsv, 0);
4364
}
4365
}
4366
mutex_unlock(&fs_info->durable_block_rsv_mutex);
4367
4368
return 0;
4369
}
4370
4371
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4372
struct btrfs_root *root,
4373
u64 bytenr, u64 num_bytes, u64 parent,
4374
u64 root_objectid, u64 owner_objectid,
4375
u64 owner_offset, int refs_to_drop,
4376
struct btrfs_delayed_extent_op *extent_op)
4377
{
4378
struct btrfs_key key;
4379
struct btrfs_path *path;
4380
struct btrfs_fs_info *info = root->fs_info;
4381
struct btrfs_root *extent_root = info->extent_root;
4382
struct extent_buffer *leaf;
4383
struct btrfs_extent_item *ei;
4384
struct btrfs_extent_inline_ref *iref;
4385
int ret;
4386
int is_data;
4387
int extent_slot = 0;
4388
int found_extent = 0;
4389
int num_to_del = 1;
4390
u32 item_size;
4391
u64 refs;
4392
4393
path = btrfs_alloc_path();
4394
if (!path)
4395
return -ENOMEM;
4396
4397
path->reada = 1;
4398
path->leave_spinning = 1;
4399
4400
is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4401
BUG_ON(!is_data && refs_to_drop != 1);
4402
4403
ret = lookup_extent_backref(trans, extent_root, path, &iref,
4404
bytenr, num_bytes, parent,
4405
root_objectid, owner_objectid,
4406
owner_offset);
4407
if (ret == 0) {
4408
extent_slot = path->slots[0];
4409
while (extent_slot >= 0) {
4410
btrfs_item_key_to_cpu(path->nodes[0], &key,
4411
extent_slot);
4412
if (key.objectid != bytenr)
4413
break;
4414
if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4415
key.offset == num_bytes) {
4416
found_extent = 1;
4417
break;
4418
}
4419
if (path->slots[0] - extent_slot > 5)
4420
break;
4421
extent_slot--;
4422
}
4423
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4424
item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4425
if (found_extent && item_size < sizeof(*ei))
4426
found_extent = 0;
4427
#endif
4428
if (!found_extent) {
4429
BUG_ON(iref);
4430
ret = remove_extent_backref(trans, extent_root, path,
4431
NULL, refs_to_drop,
4432
is_data);
4433
BUG_ON(ret);
4434
btrfs_release_path(path);
4435
path->leave_spinning = 1;
4436
4437
key.objectid = bytenr;
4438
key.type = BTRFS_EXTENT_ITEM_KEY;
4439
key.offset = num_bytes;
4440
4441
ret = btrfs_search_slot(trans, extent_root,
4442
&key, path, -1, 1);
4443
if (ret) {
4444
printk(KERN_ERR "umm, got %d back from search"
4445
", was looking for %llu\n", ret,
4446
(unsigned long long)bytenr);
4447
btrfs_print_leaf(extent_root, path->nodes[0]);
4448
}
4449
BUG_ON(ret);
4450
extent_slot = path->slots[0];
4451
}
4452
} else {
4453
btrfs_print_leaf(extent_root, path->nodes[0]);
4454
WARN_ON(1);
4455
printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4456
"parent %llu root %llu owner %llu offset %llu\n",
4457
(unsigned long long)bytenr,
4458
(unsigned long long)parent,
4459
(unsigned long long)root_objectid,
4460
(unsigned long long)owner_objectid,
4461
(unsigned long long)owner_offset);
4462
}
4463
4464
leaf = path->nodes[0];
4465
item_size = btrfs_item_size_nr(leaf, extent_slot);
4466
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4467
if (item_size < sizeof(*ei)) {
4468
BUG_ON(found_extent || extent_slot != path->slots[0]);
4469
ret = convert_extent_item_v0(trans, extent_root, path,
4470
owner_objectid, 0);
4471
BUG_ON(ret < 0);
4472
4473
btrfs_release_path(path);
4474
path->leave_spinning = 1;
4475
4476
key.objectid = bytenr;
4477
key.type = BTRFS_EXTENT_ITEM_KEY;
4478
key.offset = num_bytes;
4479
4480
ret = btrfs_search_slot(trans, extent_root, &key, path,
4481
-1, 1);
4482
if (ret) {
4483
printk(KERN_ERR "umm, got %d back from search"
4484
", was looking for %llu\n", ret,
4485
(unsigned long long)bytenr);
4486
btrfs_print_leaf(extent_root, path->nodes[0]);
4487
}
4488
BUG_ON(ret);
4489
extent_slot = path->slots[0];
4490
leaf = path->nodes[0];
4491
item_size = btrfs_item_size_nr(leaf, extent_slot);
4492
}
4493
#endif
4494
BUG_ON(item_size < sizeof(*ei));
4495
ei = btrfs_item_ptr(leaf, extent_slot,
4496
struct btrfs_extent_item);
4497
if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4498
struct btrfs_tree_block_info *bi;
4499
BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4500
bi = (struct btrfs_tree_block_info *)(ei + 1);
4501
WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4502
}
4503
4504
refs = btrfs_extent_refs(leaf, ei);
4505
BUG_ON(refs < refs_to_drop);
4506
refs -= refs_to_drop;
4507
4508
if (refs > 0) {
4509
if (extent_op)
4510
__run_delayed_extent_op(extent_op, leaf, ei);
4511
/*
4512
* In the case of inline back ref, reference count will
4513
* be updated by remove_extent_backref
4514
*/
4515
if (iref) {
4516
BUG_ON(!found_extent);
4517
} else {
4518
btrfs_set_extent_refs(leaf, ei, refs);
4519
btrfs_mark_buffer_dirty(leaf);
4520
}
4521
if (found_extent) {
4522
ret = remove_extent_backref(trans, extent_root, path,
4523
iref, refs_to_drop,
4524
is_data);
4525
BUG_ON(ret);
4526
}
4527
} else {
4528
if (found_extent) {
4529
BUG_ON(is_data && refs_to_drop !=
4530
extent_data_ref_count(root, path, iref));
4531
if (iref) {
4532
BUG_ON(path->slots[0] != extent_slot);
4533
} else {
4534
BUG_ON(path->slots[0] != extent_slot + 1);
4535
path->slots[0] = extent_slot;
4536
num_to_del = 2;
4537
}
4538
}
4539
4540
ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4541
num_to_del);
4542
BUG_ON(ret);
4543
btrfs_release_path(path);
4544
4545
if (is_data) {
4546
ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4547
BUG_ON(ret);
4548
} else {
4549
invalidate_mapping_pages(info->btree_inode->i_mapping,
4550
bytenr >> PAGE_CACHE_SHIFT,
4551
(bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4552
}
4553
4554
ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4555
BUG_ON(ret);
4556
}
4557
btrfs_free_path(path);
4558
return ret;
4559
}
4560
4561
/*
4562
* when we free an block, it is possible (and likely) that we free the last
4563
* delayed ref for that extent as well. This searches the delayed ref tree for
4564
* a given extent, and if there are no other delayed refs to be processed, it
4565
* removes it from the tree.
4566
*/
4567
static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4568
struct btrfs_root *root, u64 bytenr)
4569
{
4570
struct btrfs_delayed_ref_head *head;
4571
struct btrfs_delayed_ref_root *delayed_refs;
4572
struct btrfs_delayed_ref_node *ref;
4573
struct rb_node *node;
4574
int ret = 0;
4575
4576
delayed_refs = &trans->transaction->delayed_refs;
4577
spin_lock(&delayed_refs->lock);
4578
head = btrfs_find_delayed_ref_head(trans, bytenr);
4579
if (!head)
4580
goto out;
4581
4582
node = rb_prev(&head->node.rb_node);
4583
if (!node)
4584
goto out;
4585
4586
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4587
4588
/* there are still entries for this ref, we can't drop it */
4589
if (ref->bytenr == bytenr)
4590
goto out;
4591
4592
if (head->extent_op) {
4593
if (!head->must_insert_reserved)
4594
goto out;
4595
kfree(head->extent_op);
4596
head->extent_op = NULL;
4597
}
4598
4599
/*
4600
* waiting for the lock here would deadlock. If someone else has it
4601
* locked they are already in the process of dropping it anyway
4602
*/
4603
if (!mutex_trylock(&head->mutex))
4604
goto out;
4605
4606
/*
4607
* at this point we have a head with no other entries. Go
4608
* ahead and process it.
4609
*/
4610
head->node.in_tree = 0;
4611
rb_erase(&head->node.rb_node, &delayed_refs->root);
4612
4613
delayed_refs->num_entries--;
4614
4615
/*
4616
* we don't take a ref on the node because we're removing it from the
4617
* tree, so we just steal the ref the tree was holding.
4618
*/
4619
delayed_refs->num_heads--;
4620
if (list_empty(&head->cluster))
4621
delayed_refs->num_heads_ready--;
4622
4623
list_del_init(&head->cluster);
4624
spin_unlock(&delayed_refs->lock);
4625
4626
BUG_ON(head->extent_op);
4627
if (head->must_insert_reserved)
4628
ret = 1;
4629
4630
mutex_unlock(&head->mutex);
4631
btrfs_put_delayed_ref(&head->node);
4632
return ret;
4633
out:
4634
spin_unlock(&delayed_refs->lock);
4635
return 0;
4636
}
4637
4638
void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4639
struct btrfs_root *root,
4640
struct extent_buffer *buf,
4641
u64 parent, int last_ref)
4642
{
4643
struct btrfs_block_rsv *block_rsv;
4644
struct btrfs_block_group_cache *cache = NULL;
4645
int ret;
4646
4647
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4648
ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4649
parent, root->root_key.objectid,
4650
btrfs_header_level(buf),
4651
BTRFS_DROP_DELAYED_REF, NULL);
4652
BUG_ON(ret);
4653
}
4654
4655
if (!last_ref)
4656
return;
4657
4658
block_rsv = get_block_rsv(trans, root);
4659
cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4660
if (block_rsv->space_info != cache->space_info)
4661
goto out;
4662
4663
if (btrfs_header_generation(buf) == trans->transid) {
4664
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4665
ret = check_ref_cleanup(trans, root, buf->start);
4666
if (!ret)
4667
goto pin;
4668
}
4669
4670
if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4671
pin_down_extent(root, cache, buf->start, buf->len, 1);
4672
goto pin;
4673
}
4674
4675
WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4676
4677
btrfs_add_free_space(cache, buf->start, buf->len);
4678
ret = btrfs_update_reserved_bytes(cache, buf->len, 0, 0);
4679
if (ret == -EAGAIN) {
4680
/* block group became read-only */
4681
btrfs_update_reserved_bytes(cache, buf->len, 0, 1);
4682
goto out;
4683
}
4684
4685
ret = 1;
4686
spin_lock(&block_rsv->lock);
4687
if (block_rsv->reserved < block_rsv->size) {
4688
block_rsv->reserved += buf->len;
4689
ret = 0;
4690
}
4691
spin_unlock(&block_rsv->lock);
4692
4693
if (ret) {
4694
spin_lock(&cache->space_info->lock);
4695
cache->space_info->bytes_reserved -= buf->len;
4696
cache->space_info->reservation_progress++;
4697
spin_unlock(&cache->space_info->lock);
4698
}
4699
goto out;
4700
}
4701
pin:
4702
if (block_rsv->durable && !cache->ro) {
4703
ret = 0;
4704
spin_lock(&cache->lock);
4705
if (!cache->ro) {
4706
cache->reserved_pinned += buf->len;
4707
ret = 1;
4708
}
4709
spin_unlock(&cache->lock);
4710
4711
if (ret) {
4712
spin_lock(&block_rsv->lock);
4713
block_rsv->freed[trans->transid & 0x1] += buf->len;
4714
spin_unlock(&block_rsv->lock);
4715
}
4716
}
4717
out:
4718
/*
4719
* Deleting the buffer, clear the corrupt flag since it doesn't matter
4720
* anymore.
4721
*/
4722
clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4723
btrfs_put_block_group(cache);
4724
}
4725
4726
int btrfs_free_extent(struct btrfs_trans_handle *trans,
4727
struct btrfs_root *root,
4728
u64 bytenr, u64 num_bytes, u64 parent,
4729
u64 root_objectid, u64 owner, u64 offset)
4730
{
4731
int ret;
4732
4733
/*
4734
* tree log blocks never actually go into the extent allocation
4735
* tree, just update pinning info and exit early.
4736
*/
4737
if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4738
WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4739
/* unlocks the pinned mutex */
4740
btrfs_pin_extent(root, bytenr, num_bytes, 1);
4741
ret = 0;
4742
} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4743
ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4744
parent, root_objectid, (int)owner,
4745
BTRFS_DROP_DELAYED_REF, NULL);
4746
BUG_ON(ret);
4747
} else {
4748
ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4749
parent, root_objectid, owner,
4750
offset, BTRFS_DROP_DELAYED_REF, NULL);
4751
BUG_ON(ret);
4752
}
4753
return ret;
4754
}
4755
4756
static u64 stripe_align(struct btrfs_root *root, u64 val)
4757
{
4758
u64 mask = ((u64)root->stripesize - 1);
4759
u64 ret = (val + mask) & ~mask;
4760
return ret;
4761
}
4762
4763
/*
4764
* when we wait for progress in the block group caching, its because
4765
* our allocation attempt failed at least once. So, we must sleep
4766
* and let some progress happen before we try again.
4767
*
4768
* This function will sleep at least once waiting for new free space to
4769
* show up, and then it will check the block group free space numbers
4770
* for our min num_bytes. Another option is to have it go ahead
4771
* and look in the rbtree for a free extent of a given size, but this
4772
* is a good start.
4773
*/
4774
static noinline int
4775
wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4776
u64 num_bytes)
4777
{
4778
struct btrfs_caching_control *caching_ctl;
4779
DEFINE_WAIT(wait);
4780
4781
caching_ctl = get_caching_control(cache);
4782
if (!caching_ctl)
4783
return 0;
4784
4785
wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4786
(cache->free_space_ctl->free_space >= num_bytes));
4787
4788
put_caching_control(caching_ctl);
4789
return 0;
4790
}
4791
4792
static noinline int
4793
wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4794
{
4795
struct btrfs_caching_control *caching_ctl;
4796
DEFINE_WAIT(wait);
4797
4798
caching_ctl = get_caching_control(cache);
4799
if (!caching_ctl)
4800
return 0;
4801
4802
wait_event(caching_ctl->wait, block_group_cache_done(cache));
4803
4804
put_caching_control(caching_ctl);
4805
return 0;
4806
}
4807
4808
static int get_block_group_index(struct btrfs_block_group_cache *cache)
4809
{
4810
int index;
4811
if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4812
index = 0;
4813
else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4814
index = 1;
4815
else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4816
index = 2;
4817
else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4818
index = 3;
4819
else
4820
index = 4;
4821
return index;
4822
}
4823
4824
enum btrfs_loop_type {
4825
LOOP_FIND_IDEAL = 0,
4826
LOOP_CACHING_NOWAIT = 1,
4827
LOOP_CACHING_WAIT = 2,
4828
LOOP_ALLOC_CHUNK = 3,
4829
LOOP_NO_EMPTY_SIZE = 4,
4830
};
4831
4832
/*
4833
* walks the btree of allocated extents and find a hole of a given size.
4834
* The key ins is changed to record the hole:
4835
* ins->objectid == block start
4836
* ins->flags = BTRFS_EXTENT_ITEM_KEY
4837
* ins->offset == number of blocks
4838
* Any available blocks before search_start are skipped.
4839
*/
4840
static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4841
struct btrfs_root *orig_root,
4842
u64 num_bytes, u64 empty_size,
4843
u64 search_start, u64 search_end,
4844
u64 hint_byte, struct btrfs_key *ins,
4845
u64 data)
4846
{
4847
int ret = 0;
4848
struct btrfs_root *root = orig_root->fs_info->extent_root;
4849
struct btrfs_free_cluster *last_ptr = NULL;
4850
struct btrfs_block_group_cache *block_group = NULL;
4851
int empty_cluster = 2 * 1024 * 1024;
4852
int allowed_chunk_alloc = 0;
4853
int done_chunk_alloc = 0;
4854
struct btrfs_space_info *space_info;
4855
int last_ptr_loop = 0;
4856
int loop = 0;
4857
int index = 0;
4858
bool found_uncached_bg = false;
4859
bool failed_cluster_refill = false;
4860
bool failed_alloc = false;
4861
bool use_cluster = true;
4862
u64 ideal_cache_percent = 0;
4863
u64 ideal_cache_offset = 0;
4864
4865
WARN_ON(num_bytes < root->sectorsize);
4866
btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4867
ins->objectid = 0;
4868
ins->offset = 0;
4869
4870
space_info = __find_space_info(root->fs_info, data);
4871
if (!space_info) {
4872
printk(KERN_ERR "No space info for %llu\n", data);
4873
return -ENOSPC;
4874
}
4875
4876
/*
4877
* If the space info is for both data and metadata it means we have a
4878
* small filesystem and we can't use the clustering stuff.
4879
*/
4880
if (btrfs_mixed_space_info(space_info))
4881
use_cluster = false;
4882
4883
if (orig_root->ref_cows || empty_size)
4884
allowed_chunk_alloc = 1;
4885
4886
if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4887
last_ptr = &root->fs_info->meta_alloc_cluster;
4888
if (!btrfs_test_opt(root, SSD))
4889
empty_cluster = 64 * 1024;
4890
}
4891
4892
if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4893
btrfs_test_opt(root, SSD)) {
4894
last_ptr = &root->fs_info->data_alloc_cluster;
4895
}
4896
4897
if (last_ptr) {
4898
spin_lock(&last_ptr->lock);
4899
if (last_ptr->block_group)
4900
hint_byte = last_ptr->window_start;
4901
spin_unlock(&last_ptr->lock);
4902
}
4903
4904
search_start = max(search_start, first_logical_byte(root, 0));
4905
search_start = max(search_start, hint_byte);
4906
4907
if (!last_ptr)
4908
empty_cluster = 0;
4909
4910
if (search_start == hint_byte) {
4911
ideal_cache:
4912
block_group = btrfs_lookup_block_group(root->fs_info,
4913
search_start);
4914
/*
4915
* we don't want to use the block group if it doesn't match our
4916
* allocation bits, or if its not cached.
4917
*
4918
* However if we are re-searching with an ideal block group
4919
* picked out then we don't care that the block group is cached.
4920
*/
4921
if (block_group && block_group_bits(block_group, data) &&
4922
(block_group->cached != BTRFS_CACHE_NO ||
4923
search_start == ideal_cache_offset)) {
4924
down_read(&space_info->groups_sem);
4925
if (list_empty(&block_group->list) ||
4926
block_group->ro) {
4927
/*
4928
* someone is removing this block group,
4929
* we can't jump into the have_block_group
4930
* target because our list pointers are not
4931
* valid
4932
*/
4933
btrfs_put_block_group(block_group);
4934
up_read(&space_info->groups_sem);
4935
} else {
4936
index = get_block_group_index(block_group);
4937
goto have_block_group;
4938
}
4939
} else if (block_group) {
4940
btrfs_put_block_group(block_group);
4941
}
4942
}
4943
search:
4944
down_read(&space_info->groups_sem);
4945
list_for_each_entry(block_group, &space_info->block_groups[index],
4946
list) {
4947
u64 offset;
4948
int cached;
4949
4950
btrfs_get_block_group(block_group);
4951
search_start = block_group->key.objectid;
4952
4953
/*
4954
* this can happen if we end up cycling through all the
4955
* raid types, but we want to make sure we only allocate
4956
* for the proper type.
4957
*/
4958
if (!block_group_bits(block_group, data)) {
4959
u64 extra = BTRFS_BLOCK_GROUP_DUP |
4960
BTRFS_BLOCK_GROUP_RAID1 |
4961
BTRFS_BLOCK_GROUP_RAID10;
4962
4963
/*
4964
* if they asked for extra copies and this block group
4965
* doesn't provide them, bail. This does allow us to
4966
* fill raid0 from raid1.
4967
*/
4968
if ((data & extra) && !(block_group->flags & extra))
4969
goto loop;
4970
}
4971
4972
have_block_group:
4973
if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4974
u64 free_percent;
4975
4976
ret = cache_block_group(block_group, trans,
4977
orig_root, 1);
4978
if (block_group->cached == BTRFS_CACHE_FINISHED)
4979
goto have_block_group;
4980
4981
free_percent = btrfs_block_group_used(&block_group->item);
4982
free_percent *= 100;
4983
free_percent = div64_u64(free_percent,
4984
block_group->key.offset);
4985
free_percent = 100 - free_percent;
4986
if (free_percent > ideal_cache_percent &&
4987
likely(!block_group->ro)) {
4988
ideal_cache_offset = block_group->key.objectid;
4989
ideal_cache_percent = free_percent;
4990
}
4991
4992
/*
4993
* We only want to start kthread caching if we are at
4994
* the point where we will wait for caching to make
4995
* progress, or if our ideal search is over and we've
4996
* found somebody to start caching.
4997
*/
4998
if (loop > LOOP_CACHING_NOWAIT ||
4999
(loop > LOOP_FIND_IDEAL &&
5000
atomic_read(&space_info->caching_threads) < 2)) {
5001
ret = cache_block_group(block_group, trans,
5002
orig_root, 0);
5003
BUG_ON(ret);
5004
}
5005
found_uncached_bg = true;
5006
5007
/*
5008
* If loop is set for cached only, try the next block
5009
* group.
5010
*/
5011
if (loop == LOOP_FIND_IDEAL)
5012
goto loop;
5013
}
5014
5015
cached = block_group_cache_done(block_group);
5016
if (unlikely(!cached))
5017
found_uncached_bg = true;
5018
5019
if (unlikely(block_group->ro))
5020
goto loop;
5021
5022
spin_lock(&block_group->free_space_ctl->tree_lock);
5023
if (cached &&
5024
block_group->free_space_ctl->free_space <
5025
num_bytes + empty_size) {
5026
spin_unlock(&block_group->free_space_ctl->tree_lock);
5027
goto loop;
5028
}
5029
spin_unlock(&block_group->free_space_ctl->tree_lock);
5030
5031
/*
5032
* Ok we want to try and use the cluster allocator, so lets look
5033
* there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5034
* have tried the cluster allocator plenty of times at this
5035
* point and not have found anything, so we are likely way too
5036
* fragmented for the clustering stuff to find anything, so lets
5037
* just skip it and let the allocator find whatever block it can
5038
* find
5039
*/
5040
if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5041
/*
5042
* the refill lock keeps out other
5043
* people trying to start a new cluster
5044
*/
5045
spin_lock(&last_ptr->refill_lock);
5046
if (last_ptr->block_group &&
5047
(last_ptr->block_group->ro ||
5048
!block_group_bits(last_ptr->block_group, data))) {
5049
offset = 0;
5050
goto refill_cluster;
5051
}
5052
5053
offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5054
num_bytes, search_start);
5055
if (offset) {
5056
/* we have a block, we're done */
5057
spin_unlock(&last_ptr->refill_lock);
5058
goto checks;
5059
}
5060
5061
spin_lock(&last_ptr->lock);
5062
/*
5063
* whoops, this cluster doesn't actually point to
5064
* this block group. Get a ref on the block
5065
* group is does point to and try again
5066
*/
5067
if (!last_ptr_loop && last_ptr->block_group &&
5068
last_ptr->block_group != block_group) {
5069
5070
btrfs_put_block_group(block_group);
5071
block_group = last_ptr->block_group;
5072
btrfs_get_block_group(block_group);
5073
spin_unlock(&last_ptr->lock);
5074
spin_unlock(&last_ptr->refill_lock);
5075
5076
last_ptr_loop = 1;
5077
search_start = block_group->key.objectid;
5078
/*
5079
* we know this block group is properly
5080
* in the list because
5081
* btrfs_remove_block_group, drops the
5082
* cluster before it removes the block
5083
* group from the list
5084
*/
5085
goto have_block_group;
5086
}
5087
spin_unlock(&last_ptr->lock);
5088
refill_cluster:
5089
/*
5090
* this cluster didn't work out, free it and
5091
* start over
5092
*/
5093
btrfs_return_cluster_to_free_space(NULL, last_ptr);
5094
5095
last_ptr_loop = 0;
5096
5097
/* allocate a cluster in this block group */
5098
ret = btrfs_find_space_cluster(trans, root,
5099
block_group, last_ptr,
5100
offset, num_bytes,
5101
empty_cluster + empty_size);
5102
if (ret == 0) {
5103
/*
5104
* now pull our allocation out of this
5105
* cluster
5106
*/
5107
offset = btrfs_alloc_from_cluster(block_group,
5108
last_ptr, num_bytes,
5109
search_start);
5110
if (offset) {
5111
/* we found one, proceed */
5112
spin_unlock(&last_ptr->refill_lock);
5113
goto checks;
5114
}
5115
} else if (!cached && loop > LOOP_CACHING_NOWAIT
5116
&& !failed_cluster_refill) {
5117
spin_unlock(&last_ptr->refill_lock);
5118
5119
failed_cluster_refill = true;
5120
wait_block_group_cache_progress(block_group,
5121
num_bytes + empty_cluster + empty_size);
5122
goto have_block_group;
5123
}
5124
5125
/*
5126
* at this point we either didn't find a cluster
5127
* or we weren't able to allocate a block from our
5128
* cluster. Free the cluster we've been trying
5129
* to use, and go to the next block group
5130
*/
5131
btrfs_return_cluster_to_free_space(NULL, last_ptr);
5132
spin_unlock(&last_ptr->refill_lock);
5133
goto loop;
5134
}
5135
5136
offset = btrfs_find_space_for_alloc(block_group, search_start,
5137
num_bytes, empty_size);
5138
/*
5139
* If we didn't find a chunk, and we haven't failed on this
5140
* block group before, and this block group is in the middle of
5141
* caching and we are ok with waiting, then go ahead and wait
5142
* for progress to be made, and set failed_alloc to true.
5143
*
5144
* If failed_alloc is true then we've already waited on this
5145
* block group once and should move on to the next block group.
5146
*/
5147
if (!offset && !failed_alloc && !cached &&
5148
loop > LOOP_CACHING_NOWAIT) {
5149
wait_block_group_cache_progress(block_group,
5150
num_bytes + empty_size);
5151
failed_alloc = true;
5152
goto have_block_group;
5153
} else if (!offset) {
5154
goto loop;
5155
}
5156
checks:
5157
search_start = stripe_align(root, offset);
5158
/* move on to the next group */
5159
if (search_start + num_bytes >= search_end) {
5160
btrfs_add_free_space(block_group, offset, num_bytes);
5161
goto loop;
5162
}
5163
5164
/* move on to the next group */
5165
if (search_start + num_bytes >
5166
block_group->key.objectid + block_group->key.offset) {
5167
btrfs_add_free_space(block_group, offset, num_bytes);
5168
goto loop;
5169
}
5170
5171
ins->objectid = search_start;
5172
ins->offset = num_bytes;
5173
5174
if (offset < search_start)
5175
btrfs_add_free_space(block_group, offset,
5176
search_start - offset);
5177
BUG_ON(offset > search_start);
5178
5179
ret = btrfs_update_reserved_bytes(block_group, num_bytes, 1,
5180
(data & BTRFS_BLOCK_GROUP_DATA));
5181
if (ret == -EAGAIN) {
5182
btrfs_add_free_space(block_group, offset, num_bytes);
5183
goto loop;
5184
}
5185
5186
/* we are all good, lets return */
5187
ins->objectid = search_start;
5188
ins->offset = num_bytes;
5189
5190
if (offset < search_start)
5191
btrfs_add_free_space(block_group, offset,
5192
search_start - offset);
5193
BUG_ON(offset > search_start);
5194
btrfs_put_block_group(block_group);
5195
break;
5196
loop:
5197
failed_cluster_refill = false;
5198
failed_alloc = false;
5199
BUG_ON(index != get_block_group_index(block_group));
5200
btrfs_put_block_group(block_group);
5201
}
5202
up_read(&space_info->groups_sem);
5203
5204
if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5205
goto search;
5206
5207
/* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5208
* for them to make caching progress. Also
5209
* determine the best possible bg to cache
5210
* LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5211
* caching kthreads as we move along
5212
* LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5213
* LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5214
* LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5215
* again
5216
*/
5217
if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5218
index = 0;
5219
if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5220
found_uncached_bg = false;
5221
loop++;
5222
if (!ideal_cache_percent &&
5223
atomic_read(&space_info->caching_threads))
5224
goto search;
5225
5226
/*
5227
* 1 of the following 2 things have happened so far
5228
*
5229
* 1) We found an ideal block group for caching that
5230
* is mostly full and will cache quickly, so we might
5231
* as well wait for it.
5232
*
5233
* 2) We searched for cached only and we didn't find
5234
* anything, and we didn't start any caching kthreads
5235
* either, so chances are we will loop through and
5236
* start a couple caching kthreads, and then come back
5237
* around and just wait for them. This will be slower
5238
* because we will have 2 caching kthreads reading at
5239
* the same time when we could have just started one
5240
* and waited for it to get far enough to give us an
5241
* allocation, so go ahead and go to the wait caching
5242
* loop.
5243
*/
5244
loop = LOOP_CACHING_WAIT;
5245
search_start = ideal_cache_offset;
5246
ideal_cache_percent = 0;
5247
goto ideal_cache;
5248
} else if (loop == LOOP_FIND_IDEAL) {
5249
/*
5250
* Didn't find a uncached bg, wait on anything we find
5251
* next.
5252
*/
5253
loop = LOOP_CACHING_WAIT;
5254
goto search;
5255
}
5256
5257
loop++;
5258
5259
if (loop == LOOP_ALLOC_CHUNK) {
5260
if (allowed_chunk_alloc) {
5261
ret = do_chunk_alloc(trans, root, num_bytes +
5262
2 * 1024 * 1024, data,
5263
CHUNK_ALLOC_LIMITED);
5264
allowed_chunk_alloc = 0;
5265
if (ret == 1)
5266
done_chunk_alloc = 1;
5267
} else if (!done_chunk_alloc &&
5268
space_info->force_alloc ==
5269
CHUNK_ALLOC_NO_FORCE) {
5270
space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5271
}
5272
5273
/*
5274
* We didn't allocate a chunk, go ahead and drop the
5275
* empty size and loop again.
5276
*/
5277
if (!done_chunk_alloc)
5278
loop = LOOP_NO_EMPTY_SIZE;
5279
}
5280
5281
if (loop == LOOP_NO_EMPTY_SIZE) {
5282
empty_size = 0;
5283
empty_cluster = 0;
5284
}
5285
5286
goto search;
5287
} else if (!ins->objectid) {
5288
ret = -ENOSPC;
5289
} else if (ins->objectid) {
5290
ret = 0;
5291
}
5292
5293
return ret;
5294
}
5295
5296
static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5297
int dump_block_groups)
5298
{
5299
struct btrfs_block_group_cache *cache;
5300
int index = 0;
5301
5302
spin_lock(&info->lock);
5303
printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5304
(unsigned long long)(info->total_bytes - info->bytes_used -
5305
info->bytes_pinned - info->bytes_reserved -
5306
info->bytes_readonly),
5307
(info->full) ? "" : "not ");
5308
printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5309
"reserved=%llu, may_use=%llu, readonly=%llu\n",
5310
(unsigned long long)info->total_bytes,
5311
(unsigned long long)info->bytes_used,
5312
(unsigned long long)info->bytes_pinned,
5313
(unsigned long long)info->bytes_reserved,
5314
(unsigned long long)info->bytes_may_use,
5315
(unsigned long long)info->bytes_readonly);
5316
spin_unlock(&info->lock);
5317
5318
if (!dump_block_groups)
5319
return;
5320
5321
down_read(&info->groups_sem);
5322
again:
5323
list_for_each_entry(cache, &info->block_groups[index], list) {
5324
spin_lock(&cache->lock);
5325
printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5326
"%llu pinned %llu reserved\n",
5327
(unsigned long long)cache->key.objectid,
5328
(unsigned long long)cache->key.offset,
5329
(unsigned long long)btrfs_block_group_used(&cache->item),
5330
(unsigned long long)cache->pinned,
5331
(unsigned long long)cache->reserved);
5332
btrfs_dump_free_space(cache, bytes);
5333
spin_unlock(&cache->lock);
5334
}
5335
if (++index < BTRFS_NR_RAID_TYPES)
5336
goto again;
5337
up_read(&info->groups_sem);
5338
}
5339
5340
int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5341
struct btrfs_root *root,
5342
u64 num_bytes, u64 min_alloc_size,
5343
u64 empty_size, u64 hint_byte,
5344
u64 search_end, struct btrfs_key *ins,
5345
u64 data)
5346
{
5347
int ret;
5348
u64 search_start = 0;
5349
5350
data = btrfs_get_alloc_profile(root, data);
5351
again:
5352
/*
5353
* the only place that sets empty_size is btrfs_realloc_node, which
5354
* is not called recursively on allocations
5355
*/
5356
if (empty_size || root->ref_cows)
5357
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5358
num_bytes + 2 * 1024 * 1024, data,
5359
CHUNK_ALLOC_NO_FORCE);
5360
5361
WARN_ON(num_bytes < root->sectorsize);
5362
ret = find_free_extent(trans, root, num_bytes, empty_size,
5363
search_start, search_end, hint_byte,
5364
ins, data);
5365
5366
if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5367
num_bytes = num_bytes >> 1;
5368
num_bytes = num_bytes & ~(root->sectorsize - 1);
5369
num_bytes = max(num_bytes, min_alloc_size);
5370
do_chunk_alloc(trans, root->fs_info->extent_root,
5371
num_bytes, data, CHUNK_ALLOC_FORCE);
5372
goto again;
5373
}
5374
if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5375
struct btrfs_space_info *sinfo;
5376
5377
sinfo = __find_space_info(root->fs_info, data);
5378
printk(KERN_ERR "btrfs allocation failed flags %llu, "
5379
"wanted %llu\n", (unsigned long long)data,
5380
(unsigned long long)num_bytes);
5381
dump_space_info(sinfo, num_bytes, 1);
5382
}
5383
5384
trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5385
5386
return ret;
5387
}
5388
5389
int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5390
{
5391
struct btrfs_block_group_cache *cache;
5392
int ret = 0;
5393
5394
cache = btrfs_lookup_block_group(root->fs_info, start);
5395
if (!cache) {
5396
printk(KERN_ERR "Unable to find block group for %llu\n",
5397
(unsigned long long)start);
5398
return -ENOSPC;
5399
}
5400
5401
if (btrfs_test_opt(root, DISCARD))
5402
ret = btrfs_discard_extent(root, start, len, NULL);
5403
5404
btrfs_add_free_space(cache, start, len);
5405
btrfs_update_reserved_bytes(cache, len, 0, 1);
5406
btrfs_put_block_group(cache);
5407
5408
trace_btrfs_reserved_extent_free(root, start, len);
5409
5410
return ret;
5411
}
5412
5413
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5414
struct btrfs_root *root,
5415
u64 parent, u64 root_objectid,
5416
u64 flags, u64 owner, u64 offset,
5417
struct btrfs_key *ins, int ref_mod)
5418
{
5419
int ret;
5420
struct btrfs_fs_info *fs_info = root->fs_info;
5421
struct btrfs_extent_item *extent_item;
5422
struct btrfs_extent_inline_ref *iref;
5423
struct btrfs_path *path;
5424
struct extent_buffer *leaf;
5425
int type;
5426
u32 size;
5427
5428
if (parent > 0)
5429
type = BTRFS_SHARED_DATA_REF_KEY;
5430
else
5431
type = BTRFS_EXTENT_DATA_REF_KEY;
5432
5433
size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5434
5435
path = btrfs_alloc_path();
5436
if (!path)
5437
return -ENOMEM;
5438
5439
path->leave_spinning = 1;
5440
ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5441
ins, size);
5442
BUG_ON(ret);
5443
5444
leaf = path->nodes[0];
5445
extent_item = btrfs_item_ptr(leaf, path->slots[0],
5446
struct btrfs_extent_item);
5447
btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5448
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5449
btrfs_set_extent_flags(leaf, extent_item,
5450
flags | BTRFS_EXTENT_FLAG_DATA);
5451
5452
iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5453
btrfs_set_extent_inline_ref_type(leaf, iref, type);
5454
if (parent > 0) {
5455
struct btrfs_shared_data_ref *ref;
5456
ref = (struct btrfs_shared_data_ref *)(iref + 1);
5457
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5458
btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5459
} else {
5460
struct btrfs_extent_data_ref *ref;
5461
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5462
btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5463
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5464
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5465
btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5466
}
5467
5468
btrfs_mark_buffer_dirty(path->nodes[0]);
5469
btrfs_free_path(path);
5470
5471
ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5472
if (ret) {
5473
printk(KERN_ERR "btrfs update block group failed for %llu "
5474
"%llu\n", (unsigned long long)ins->objectid,
5475
(unsigned long long)ins->offset);
5476
BUG();
5477
}
5478
return ret;
5479
}
5480
5481
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5482
struct btrfs_root *root,
5483
u64 parent, u64 root_objectid,
5484
u64 flags, struct btrfs_disk_key *key,
5485
int level, struct btrfs_key *ins)
5486
{
5487
int ret;
5488
struct btrfs_fs_info *fs_info = root->fs_info;
5489
struct btrfs_extent_item *extent_item;
5490
struct btrfs_tree_block_info *block_info;
5491
struct btrfs_extent_inline_ref *iref;
5492
struct btrfs_path *path;
5493
struct extent_buffer *leaf;
5494
u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5495
5496
path = btrfs_alloc_path();
5497
BUG_ON(!path);
5498
5499
path->leave_spinning = 1;
5500
ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5501
ins, size);
5502
BUG_ON(ret);
5503
5504
leaf = path->nodes[0];
5505
extent_item = btrfs_item_ptr(leaf, path->slots[0],
5506
struct btrfs_extent_item);
5507
btrfs_set_extent_refs(leaf, extent_item, 1);
5508
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5509
btrfs_set_extent_flags(leaf, extent_item,
5510
flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5511
block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5512
5513
btrfs_set_tree_block_key(leaf, block_info, key);
5514
btrfs_set_tree_block_level(leaf, block_info, level);
5515
5516
iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5517
if (parent > 0) {
5518
BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5519
btrfs_set_extent_inline_ref_type(leaf, iref,
5520
BTRFS_SHARED_BLOCK_REF_KEY);
5521
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5522
} else {
5523
btrfs_set_extent_inline_ref_type(leaf, iref,
5524
BTRFS_TREE_BLOCK_REF_KEY);
5525
btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5526
}
5527
5528
btrfs_mark_buffer_dirty(leaf);
5529
btrfs_free_path(path);
5530
5531
ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5532
if (ret) {
5533
printk(KERN_ERR "btrfs update block group failed for %llu "
5534
"%llu\n", (unsigned long long)ins->objectid,
5535
(unsigned long long)ins->offset);
5536
BUG();
5537
}
5538
return ret;
5539
}
5540
5541
int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5542
struct btrfs_root *root,
5543
u64 root_objectid, u64 owner,
5544
u64 offset, struct btrfs_key *ins)
5545
{
5546
int ret;
5547
5548
BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5549
5550
ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5551
0, root_objectid, owner, offset,
5552
BTRFS_ADD_DELAYED_EXTENT, NULL);
5553
return ret;
5554
}
5555
5556
/*
5557
* this is used by the tree logging recovery code. It records that
5558
* an extent has been allocated and makes sure to clear the free
5559
* space cache bits as well
5560
*/
5561
int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5562
struct btrfs_root *root,
5563
u64 root_objectid, u64 owner, u64 offset,
5564
struct btrfs_key *ins)
5565
{
5566
int ret;
5567
struct btrfs_block_group_cache *block_group;
5568
struct btrfs_caching_control *caching_ctl;
5569
u64 start = ins->objectid;
5570
u64 num_bytes = ins->offset;
5571
5572
block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5573
cache_block_group(block_group, trans, NULL, 0);
5574
caching_ctl = get_caching_control(block_group);
5575
5576
if (!caching_ctl) {
5577
BUG_ON(!block_group_cache_done(block_group));
5578
ret = btrfs_remove_free_space(block_group, start, num_bytes);
5579
BUG_ON(ret);
5580
} else {
5581
mutex_lock(&caching_ctl->mutex);
5582
5583
if (start >= caching_ctl->progress) {
5584
ret = add_excluded_extent(root, start, num_bytes);
5585
BUG_ON(ret);
5586
} else if (start + num_bytes <= caching_ctl->progress) {
5587
ret = btrfs_remove_free_space(block_group,
5588
start, num_bytes);
5589
BUG_ON(ret);
5590
} else {
5591
num_bytes = caching_ctl->progress - start;
5592
ret = btrfs_remove_free_space(block_group,
5593
start, num_bytes);
5594
BUG_ON(ret);
5595
5596
start = caching_ctl->progress;
5597
num_bytes = ins->objectid + ins->offset -
5598
caching_ctl->progress;
5599
ret = add_excluded_extent(root, start, num_bytes);
5600
BUG_ON(ret);
5601
}
5602
5603
mutex_unlock(&caching_ctl->mutex);
5604
put_caching_control(caching_ctl);
5605
}
5606
5607
ret = btrfs_update_reserved_bytes(block_group, ins->offset, 1, 1);
5608
BUG_ON(ret);
5609
btrfs_put_block_group(block_group);
5610
ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5611
0, owner, offset, ins, 1);
5612
return ret;
5613
}
5614
5615
struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5616
struct btrfs_root *root,
5617
u64 bytenr, u32 blocksize,
5618
int level)
5619
{
5620
struct extent_buffer *buf;
5621
5622
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5623
if (!buf)
5624
return ERR_PTR(-ENOMEM);
5625
btrfs_set_header_generation(buf, trans->transid);
5626
btrfs_set_buffer_lockdep_class(buf, level);
5627
btrfs_tree_lock(buf);
5628
clean_tree_block(trans, root, buf);
5629
5630
btrfs_set_lock_blocking(buf);
5631
btrfs_set_buffer_uptodate(buf);
5632
5633
if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5634
/*
5635
* we allow two log transactions at a time, use different
5636
* EXENT bit to differentiate dirty pages.
5637
*/
5638
if (root->log_transid % 2 == 0)
5639
set_extent_dirty(&root->dirty_log_pages, buf->start,
5640
buf->start + buf->len - 1, GFP_NOFS);
5641
else
5642
set_extent_new(&root->dirty_log_pages, buf->start,
5643
buf->start + buf->len - 1, GFP_NOFS);
5644
} else {
5645
set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5646
buf->start + buf->len - 1, GFP_NOFS);
5647
}
5648
trans->blocks_used++;
5649
/* this returns a buffer locked for blocking */
5650
return buf;
5651
}
5652
5653
static struct btrfs_block_rsv *
5654
use_block_rsv(struct btrfs_trans_handle *trans,
5655
struct btrfs_root *root, u32 blocksize)
5656
{
5657
struct btrfs_block_rsv *block_rsv;
5658
struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5659
int ret;
5660
5661
block_rsv = get_block_rsv(trans, root);
5662
5663
if (block_rsv->size == 0) {
5664
ret = reserve_metadata_bytes(trans, root, block_rsv,
5665
blocksize, 0);
5666
/*
5667
* If we couldn't reserve metadata bytes try and use some from
5668
* the global reserve.
5669
*/
5670
if (ret && block_rsv != global_rsv) {
5671
ret = block_rsv_use_bytes(global_rsv, blocksize);
5672
if (!ret)
5673
return global_rsv;
5674
return ERR_PTR(ret);
5675
} else if (ret) {
5676
return ERR_PTR(ret);
5677
}
5678
return block_rsv;
5679
}
5680
5681
ret = block_rsv_use_bytes(block_rsv, blocksize);
5682
if (!ret)
5683
return block_rsv;
5684
if (ret) {
5685
WARN_ON(1);
5686
ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize,
5687
0);
5688
if (!ret) {
5689
spin_lock(&block_rsv->lock);
5690
block_rsv->size += blocksize;
5691
spin_unlock(&block_rsv->lock);
5692
return block_rsv;
5693
} else if (ret && block_rsv != global_rsv) {
5694
ret = block_rsv_use_bytes(global_rsv, blocksize);
5695
if (!ret)
5696
return global_rsv;
5697
}
5698
}
5699
5700
return ERR_PTR(-ENOSPC);
5701
}
5702
5703
static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5704
{
5705
block_rsv_add_bytes(block_rsv, blocksize, 0);
5706
block_rsv_release_bytes(block_rsv, NULL, 0);
5707
}
5708
5709
/*
5710
* finds a free extent and does all the dirty work required for allocation
5711
* returns the key for the extent through ins, and a tree buffer for
5712
* the first block of the extent through buf.
5713
*
5714
* returns the tree buffer or NULL.
5715
*/
5716
struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5717
struct btrfs_root *root, u32 blocksize,
5718
u64 parent, u64 root_objectid,
5719
struct btrfs_disk_key *key, int level,
5720
u64 hint, u64 empty_size)
5721
{
5722
struct btrfs_key ins;
5723
struct btrfs_block_rsv *block_rsv;
5724
struct extent_buffer *buf;
5725
u64 flags = 0;
5726
int ret;
5727
5728
5729
block_rsv = use_block_rsv(trans, root, blocksize);
5730
if (IS_ERR(block_rsv))
5731
return ERR_CAST(block_rsv);
5732
5733
ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5734
empty_size, hint, (u64)-1, &ins, 0);
5735
if (ret) {
5736
unuse_block_rsv(block_rsv, blocksize);
5737
return ERR_PTR(ret);
5738
}
5739
5740
buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5741
blocksize, level);
5742
BUG_ON(IS_ERR(buf));
5743
5744
if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5745
if (parent == 0)
5746
parent = ins.objectid;
5747
flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5748
} else
5749
BUG_ON(parent > 0);
5750
5751
if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5752
struct btrfs_delayed_extent_op *extent_op;
5753
extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5754
BUG_ON(!extent_op);
5755
if (key)
5756
memcpy(&extent_op->key, key, sizeof(extent_op->key));
5757
else
5758
memset(&extent_op->key, 0, sizeof(extent_op->key));
5759
extent_op->flags_to_set = flags;
5760
extent_op->update_key = 1;
5761
extent_op->update_flags = 1;
5762
extent_op->is_data = 0;
5763
5764
ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5765
ins.offset, parent, root_objectid,
5766
level, BTRFS_ADD_DELAYED_EXTENT,
5767
extent_op);
5768
BUG_ON(ret);
5769
}
5770
return buf;
5771
}
5772
5773
struct walk_control {
5774
u64 refs[BTRFS_MAX_LEVEL];
5775
u64 flags[BTRFS_MAX_LEVEL];
5776
struct btrfs_key update_progress;
5777
int stage;
5778
int level;
5779
int shared_level;
5780
int update_ref;
5781
int keep_locks;
5782
int reada_slot;
5783
int reada_count;
5784
};
5785
5786
#define DROP_REFERENCE 1
5787
#define UPDATE_BACKREF 2
5788
5789
static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5790
struct btrfs_root *root,
5791
struct walk_control *wc,
5792
struct btrfs_path *path)
5793
{
5794
u64 bytenr;
5795
u64 generation;
5796
u64 refs;
5797
u64 flags;
5798
u32 nritems;
5799
u32 blocksize;
5800
struct btrfs_key key;
5801
struct extent_buffer *eb;
5802
int ret;
5803
int slot;
5804
int nread = 0;
5805
5806
if (path->slots[wc->level] < wc->reada_slot) {
5807
wc->reada_count = wc->reada_count * 2 / 3;
5808
wc->reada_count = max(wc->reada_count, 2);
5809
} else {
5810
wc->reada_count = wc->reada_count * 3 / 2;
5811
wc->reada_count = min_t(int, wc->reada_count,
5812
BTRFS_NODEPTRS_PER_BLOCK(root));
5813
}
5814
5815
eb = path->nodes[wc->level];
5816
nritems = btrfs_header_nritems(eb);
5817
blocksize = btrfs_level_size(root, wc->level - 1);
5818
5819
for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5820
if (nread >= wc->reada_count)
5821
break;
5822
5823
cond_resched();
5824
bytenr = btrfs_node_blockptr(eb, slot);
5825
generation = btrfs_node_ptr_generation(eb, slot);
5826
5827
if (slot == path->slots[wc->level])
5828
goto reada;
5829
5830
if (wc->stage == UPDATE_BACKREF &&
5831
generation <= root->root_key.offset)
5832
continue;
5833
5834
/* We don't lock the tree block, it's OK to be racy here */
5835
ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5836
&refs, &flags);
5837
BUG_ON(ret);
5838
BUG_ON(refs == 0);
5839
5840
if (wc->stage == DROP_REFERENCE) {
5841
if (refs == 1)
5842
goto reada;
5843
5844
if (wc->level == 1 &&
5845
(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5846
continue;
5847
if (!wc->update_ref ||
5848
generation <= root->root_key.offset)
5849
continue;
5850
btrfs_node_key_to_cpu(eb, &key, slot);
5851
ret = btrfs_comp_cpu_keys(&key,
5852
&wc->update_progress);
5853
if (ret < 0)
5854
continue;
5855
} else {
5856
if (wc->level == 1 &&
5857
(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5858
continue;
5859
}
5860
reada:
5861
ret = readahead_tree_block(root, bytenr, blocksize,
5862
generation);
5863
if (ret)
5864
break;
5865
nread++;
5866
}
5867
wc->reada_slot = slot;
5868
}
5869
5870
/*
5871
* hepler to process tree block while walking down the tree.
5872
*
5873
* when wc->stage == UPDATE_BACKREF, this function updates
5874
* back refs for pointers in the block.
5875
*
5876
* NOTE: return value 1 means we should stop walking down.
5877
*/
5878
static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5879
struct btrfs_root *root,
5880
struct btrfs_path *path,
5881
struct walk_control *wc, int lookup_info)
5882
{
5883
int level = wc->level;
5884
struct extent_buffer *eb = path->nodes[level];
5885
u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5886
int ret;
5887
5888
if (wc->stage == UPDATE_BACKREF &&
5889
btrfs_header_owner(eb) != root->root_key.objectid)
5890
return 1;
5891
5892
/*
5893
* when reference count of tree block is 1, it won't increase
5894
* again. once full backref flag is set, we never clear it.
5895
*/
5896
if (lookup_info &&
5897
((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5898
(wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5899
BUG_ON(!path->locks[level]);
5900
ret = btrfs_lookup_extent_info(trans, root,
5901
eb->start, eb->len,
5902
&wc->refs[level],
5903
&wc->flags[level]);
5904
BUG_ON(ret);
5905
BUG_ON(wc->refs[level] == 0);
5906
}
5907
5908
if (wc->stage == DROP_REFERENCE) {
5909
if (wc->refs[level] > 1)
5910
return 1;
5911
5912
if (path->locks[level] && !wc->keep_locks) {
5913
btrfs_tree_unlock(eb);
5914
path->locks[level] = 0;
5915
}
5916
return 0;
5917
}
5918
5919
/* wc->stage == UPDATE_BACKREF */
5920
if (!(wc->flags[level] & flag)) {
5921
BUG_ON(!path->locks[level]);
5922
ret = btrfs_inc_ref(trans, root, eb, 1);
5923
BUG_ON(ret);
5924
ret = btrfs_dec_ref(trans, root, eb, 0);
5925
BUG_ON(ret);
5926
ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5927
eb->len, flag, 0);
5928
BUG_ON(ret);
5929
wc->flags[level] |= flag;
5930
}
5931
5932
/*
5933
* the block is shared by multiple trees, so it's not good to
5934
* keep the tree lock
5935
*/
5936
if (path->locks[level] && level > 0) {
5937
btrfs_tree_unlock(eb);
5938
path->locks[level] = 0;
5939
}
5940
return 0;
5941
}
5942
5943
/*
5944
* hepler to process tree block pointer.
5945
*
5946
* when wc->stage == DROP_REFERENCE, this function checks
5947
* reference count of the block pointed to. if the block
5948
* is shared and we need update back refs for the subtree
5949
* rooted at the block, this function changes wc->stage to
5950
* UPDATE_BACKREF. if the block is shared and there is no
5951
* need to update back, this function drops the reference
5952
* to the block.
5953
*
5954
* NOTE: return value 1 means we should stop walking down.
5955
*/
5956
static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5957
struct btrfs_root *root,
5958
struct btrfs_path *path,
5959
struct walk_control *wc, int *lookup_info)
5960
{
5961
u64 bytenr;
5962
u64 generation;
5963
u64 parent;
5964
u32 blocksize;
5965
struct btrfs_key key;
5966
struct extent_buffer *next;
5967
int level = wc->level;
5968
int reada = 0;
5969
int ret = 0;
5970
5971
generation = btrfs_node_ptr_generation(path->nodes[level],
5972
path->slots[level]);
5973
/*
5974
* if the lower level block was created before the snapshot
5975
* was created, we know there is no need to update back refs
5976
* for the subtree
5977
*/
5978
if (wc->stage == UPDATE_BACKREF &&
5979
generation <= root->root_key.offset) {
5980
*lookup_info = 1;
5981
return 1;
5982
}
5983
5984
bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5985
blocksize = btrfs_level_size(root, level - 1);
5986
5987
next = btrfs_find_tree_block(root, bytenr, blocksize);
5988
if (!next) {
5989
next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5990
if (!next)
5991
return -ENOMEM;
5992
reada = 1;
5993
}
5994
btrfs_tree_lock(next);
5995
btrfs_set_lock_blocking(next);
5996
5997
ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5998
&wc->refs[level - 1],
5999
&wc->flags[level - 1]);
6000
BUG_ON(ret);
6001
BUG_ON(wc->refs[level - 1] == 0);
6002
*lookup_info = 0;
6003
6004
if (wc->stage == DROP_REFERENCE) {
6005
if (wc->refs[level - 1] > 1) {
6006
if (level == 1 &&
6007
(wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6008
goto skip;
6009
6010
if (!wc->update_ref ||
6011
generation <= root->root_key.offset)
6012
goto skip;
6013
6014
btrfs_node_key_to_cpu(path->nodes[level], &key,
6015
path->slots[level]);
6016
ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6017
if (ret < 0)
6018
goto skip;
6019
6020
wc->stage = UPDATE_BACKREF;
6021
wc->shared_level = level - 1;
6022
}
6023
} else {
6024
if (level == 1 &&
6025
(wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6026
goto skip;
6027
}
6028
6029
if (!btrfs_buffer_uptodate(next, generation)) {
6030
btrfs_tree_unlock(next);
6031
free_extent_buffer(next);
6032
next = NULL;
6033
*lookup_info = 1;
6034
}
6035
6036
if (!next) {
6037
if (reada && level == 1)
6038
reada_walk_down(trans, root, wc, path);
6039
next = read_tree_block(root, bytenr, blocksize, generation);
6040
if (!next)
6041
return -EIO;
6042
btrfs_tree_lock(next);
6043
btrfs_set_lock_blocking(next);
6044
}
6045
6046
level--;
6047
BUG_ON(level != btrfs_header_level(next));
6048
path->nodes[level] = next;
6049
path->slots[level] = 0;
6050
path->locks[level] = 1;
6051
wc->level = level;
6052
if (wc->level == 1)
6053
wc->reada_slot = 0;
6054
return 0;
6055
skip:
6056
wc->refs[level - 1] = 0;
6057
wc->flags[level - 1] = 0;
6058
if (wc->stage == DROP_REFERENCE) {
6059
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6060
parent = path->nodes[level]->start;
6061
} else {
6062
BUG_ON(root->root_key.objectid !=
6063
btrfs_header_owner(path->nodes[level]));
6064
parent = 0;
6065
}
6066
6067
ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6068
root->root_key.objectid, level - 1, 0);
6069
BUG_ON(ret);
6070
}
6071
btrfs_tree_unlock(next);
6072
free_extent_buffer(next);
6073
*lookup_info = 1;
6074
return 1;
6075
}
6076
6077
/*
6078
* hepler to process tree block while walking up the tree.
6079
*
6080
* when wc->stage == DROP_REFERENCE, this function drops
6081
* reference count on the block.
6082
*
6083
* when wc->stage == UPDATE_BACKREF, this function changes
6084
* wc->stage back to DROP_REFERENCE if we changed wc->stage
6085
* to UPDATE_BACKREF previously while processing the block.
6086
*
6087
* NOTE: return value 1 means we should stop walking up.
6088
*/
6089
static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6090
struct btrfs_root *root,
6091
struct btrfs_path *path,
6092
struct walk_control *wc)
6093
{
6094
int ret;
6095
int level = wc->level;
6096
struct extent_buffer *eb = path->nodes[level];
6097
u64 parent = 0;
6098
6099
if (wc->stage == UPDATE_BACKREF) {
6100
BUG_ON(wc->shared_level < level);
6101
if (level < wc->shared_level)
6102
goto out;
6103
6104
ret = find_next_key(path, level + 1, &wc->update_progress);
6105
if (ret > 0)
6106
wc->update_ref = 0;
6107
6108
wc->stage = DROP_REFERENCE;
6109
wc->shared_level = -1;
6110
path->slots[level] = 0;
6111
6112
/*
6113
* check reference count again if the block isn't locked.
6114
* we should start walking down the tree again if reference
6115
* count is one.
6116
*/
6117
if (!path->locks[level]) {
6118
BUG_ON(level == 0);
6119
btrfs_tree_lock(eb);
6120
btrfs_set_lock_blocking(eb);
6121
path->locks[level] = 1;
6122
6123
ret = btrfs_lookup_extent_info(trans, root,
6124
eb->start, eb->len,
6125
&wc->refs[level],
6126
&wc->flags[level]);
6127
BUG_ON(ret);
6128
BUG_ON(wc->refs[level] == 0);
6129
if (wc->refs[level] == 1) {
6130
btrfs_tree_unlock(eb);
6131
path->locks[level] = 0;
6132
return 1;
6133
}
6134
}
6135
}
6136
6137
/* wc->stage == DROP_REFERENCE */
6138
BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6139
6140
if (wc->refs[level] == 1) {
6141
if (level == 0) {
6142
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6143
ret = btrfs_dec_ref(trans, root, eb, 1);
6144
else
6145
ret = btrfs_dec_ref(trans, root, eb, 0);
6146
BUG_ON(ret);
6147
}
6148
/* make block locked assertion in clean_tree_block happy */
6149
if (!path->locks[level] &&
6150
btrfs_header_generation(eb) == trans->transid) {
6151
btrfs_tree_lock(eb);
6152
btrfs_set_lock_blocking(eb);
6153
path->locks[level] = 1;
6154
}
6155
clean_tree_block(trans, root, eb);
6156
}
6157
6158
if (eb == root->node) {
6159
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6160
parent = eb->start;
6161
else
6162
BUG_ON(root->root_key.objectid !=
6163
btrfs_header_owner(eb));
6164
} else {
6165
if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6166
parent = path->nodes[level + 1]->start;
6167
else
6168
BUG_ON(root->root_key.objectid !=
6169
btrfs_header_owner(path->nodes[level + 1]));
6170
}
6171
6172
btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6173
out:
6174
wc->refs[level] = 0;
6175
wc->flags[level] = 0;
6176
return 0;
6177
}
6178
6179
static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6180
struct btrfs_root *root,
6181
struct btrfs_path *path,
6182
struct walk_control *wc)
6183
{
6184
int level = wc->level;
6185
int lookup_info = 1;
6186
int ret;
6187
6188
while (level >= 0) {
6189
ret = walk_down_proc(trans, root, path, wc, lookup_info);
6190
if (ret > 0)
6191
break;
6192
6193
if (level == 0)
6194
break;
6195
6196
if (path->slots[level] >=
6197
btrfs_header_nritems(path->nodes[level]))
6198
break;
6199
6200
ret = do_walk_down(trans, root, path, wc, &lookup_info);
6201
if (ret > 0) {
6202
path->slots[level]++;
6203
continue;
6204
} else if (ret < 0)
6205
return ret;
6206
level = wc->level;
6207
}
6208
return 0;
6209
}
6210
6211
static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6212
struct btrfs_root *root,
6213
struct btrfs_path *path,
6214
struct walk_control *wc, int max_level)
6215
{
6216
int level = wc->level;
6217
int ret;
6218
6219
path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6220
while (level < max_level && path->nodes[level]) {
6221
wc->level = level;
6222
if (path->slots[level] + 1 <
6223
btrfs_header_nritems(path->nodes[level])) {
6224
path->slots[level]++;
6225
return 0;
6226
} else {
6227
ret = walk_up_proc(trans, root, path, wc);
6228
if (ret > 0)
6229
return 0;
6230
6231
if (path->locks[level]) {
6232
btrfs_tree_unlock(path->nodes[level]);
6233
path->locks[level] = 0;
6234
}
6235
free_extent_buffer(path->nodes[level]);
6236
path->nodes[level] = NULL;
6237
level++;
6238
}
6239
}
6240
return 1;
6241
}
6242
6243
/*
6244
* drop a subvolume tree.
6245
*
6246
* this function traverses the tree freeing any blocks that only
6247
* referenced by the tree.
6248
*
6249
* when a shared tree block is found. this function decreases its
6250
* reference count by one. if update_ref is true, this function
6251
* also make sure backrefs for the shared block and all lower level
6252
* blocks are properly updated.
6253
*/
6254
int btrfs_drop_snapshot(struct btrfs_root *root,
6255
struct btrfs_block_rsv *block_rsv, int update_ref)
6256
{
6257
struct btrfs_path *path;
6258
struct btrfs_trans_handle *trans;
6259
struct btrfs_root *tree_root = root->fs_info->tree_root;
6260
struct btrfs_root_item *root_item = &root->root_item;
6261
struct walk_control *wc;
6262
struct btrfs_key key;
6263
int err = 0;
6264
int ret;
6265
int level;
6266
6267
path = btrfs_alloc_path();
6268
BUG_ON(!path);
6269
6270
wc = kzalloc(sizeof(*wc), GFP_NOFS);
6271
BUG_ON(!wc);
6272
6273
trans = btrfs_start_transaction(tree_root, 0);
6274
BUG_ON(IS_ERR(trans));
6275
6276
if (block_rsv)
6277
trans->block_rsv = block_rsv;
6278
6279
if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6280
level = btrfs_header_level(root->node);
6281
path->nodes[level] = btrfs_lock_root_node(root);
6282
btrfs_set_lock_blocking(path->nodes[level]);
6283
path->slots[level] = 0;
6284
path->locks[level] = 1;
6285
memset(&wc->update_progress, 0,
6286
sizeof(wc->update_progress));
6287
} else {
6288
btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6289
memcpy(&wc->update_progress, &key,
6290
sizeof(wc->update_progress));
6291
6292
level = root_item->drop_level;
6293
BUG_ON(level == 0);
6294
path->lowest_level = level;
6295
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6296
path->lowest_level = 0;
6297
if (ret < 0) {
6298
err = ret;
6299
goto out;
6300
}
6301
WARN_ON(ret > 0);
6302
6303
/*
6304
* unlock our path, this is safe because only this
6305
* function is allowed to delete this snapshot
6306
*/
6307
btrfs_unlock_up_safe(path, 0);
6308
6309
level = btrfs_header_level(root->node);
6310
while (1) {
6311
btrfs_tree_lock(path->nodes[level]);
6312
btrfs_set_lock_blocking(path->nodes[level]);
6313
6314
ret = btrfs_lookup_extent_info(trans, root,
6315
path->nodes[level]->start,
6316
path->nodes[level]->len,
6317
&wc->refs[level],
6318
&wc->flags[level]);
6319
BUG_ON(ret);
6320
BUG_ON(wc->refs[level] == 0);
6321
6322
if (level == root_item->drop_level)
6323
break;
6324
6325
btrfs_tree_unlock(path->nodes[level]);
6326
WARN_ON(wc->refs[level] != 1);
6327
level--;
6328
}
6329
}
6330
6331
wc->level = level;
6332
wc->shared_level = -1;
6333
wc->stage = DROP_REFERENCE;
6334
wc->update_ref = update_ref;
6335
wc->keep_locks = 0;
6336
wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6337
6338
while (1) {
6339
ret = walk_down_tree(trans, root, path, wc);
6340
if (ret < 0) {
6341
err = ret;
6342
break;
6343
}
6344
6345
ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6346
if (ret < 0) {
6347
err = ret;
6348
break;
6349
}
6350
6351
if (ret > 0) {
6352
BUG_ON(wc->stage != DROP_REFERENCE);
6353
break;
6354
}
6355
6356
if (wc->stage == DROP_REFERENCE) {
6357
level = wc->level;
6358
btrfs_node_key(path->nodes[level],
6359
&root_item->drop_progress,
6360
path->slots[level]);
6361
root_item->drop_level = level;
6362
}
6363
6364
BUG_ON(wc->level == 0);
6365
if (btrfs_should_end_transaction(trans, tree_root)) {
6366
ret = btrfs_update_root(trans, tree_root,
6367
&root->root_key,
6368
root_item);
6369
BUG_ON(ret);
6370
6371
btrfs_end_transaction_throttle(trans, tree_root);
6372
trans = btrfs_start_transaction(tree_root, 0);
6373
BUG_ON(IS_ERR(trans));
6374
if (block_rsv)
6375
trans->block_rsv = block_rsv;
6376
}
6377
}
6378
btrfs_release_path(path);
6379
BUG_ON(err);
6380
6381
ret = btrfs_del_root(trans, tree_root, &root->root_key);
6382
BUG_ON(ret);
6383
6384
if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6385
ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6386
NULL, NULL);
6387
BUG_ON(ret < 0);
6388
if (ret > 0) {
6389
/* if we fail to delete the orphan item this time
6390
* around, it'll get picked up the next time.
6391
*
6392
* The most common failure here is just -ENOENT.
6393
*/
6394
btrfs_del_orphan_item(trans, tree_root,
6395
root->root_key.objectid);
6396
}
6397
}
6398
6399
if (root->in_radix) {
6400
btrfs_free_fs_root(tree_root->fs_info, root);
6401
} else {
6402
free_extent_buffer(root->node);
6403
free_extent_buffer(root->commit_root);
6404
kfree(root);
6405
}
6406
out:
6407
btrfs_end_transaction_throttle(trans, tree_root);
6408
kfree(wc);
6409
btrfs_free_path(path);
6410
return err;
6411
}
6412
6413
/*
6414
* drop subtree rooted at tree block 'node'.
6415
*
6416
* NOTE: this function will unlock and release tree block 'node'
6417
*/
6418
int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6419
struct btrfs_root *root,
6420
struct extent_buffer *node,
6421
struct extent_buffer *parent)
6422
{
6423
struct btrfs_path *path;
6424
struct walk_control *wc;
6425
int level;
6426
int parent_level;
6427
int ret = 0;
6428
int wret;
6429
6430
BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6431
6432
path = btrfs_alloc_path();
6433
if (!path)
6434
return -ENOMEM;
6435
6436
wc = kzalloc(sizeof(*wc), GFP_NOFS);
6437
if (!wc) {
6438
btrfs_free_path(path);
6439
return -ENOMEM;
6440
}
6441
6442
btrfs_assert_tree_locked(parent);
6443
parent_level = btrfs_header_level(parent);
6444
extent_buffer_get(parent);
6445
path->nodes[parent_level] = parent;
6446
path->slots[parent_level] = btrfs_header_nritems(parent);
6447
6448
btrfs_assert_tree_locked(node);
6449
level = btrfs_header_level(node);
6450
path->nodes[level] = node;
6451
path->slots[level] = 0;
6452
path->locks[level] = 1;
6453
6454
wc->refs[parent_level] = 1;
6455
wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6456
wc->level = level;
6457
wc->shared_level = -1;
6458
wc->stage = DROP_REFERENCE;
6459
wc->update_ref = 0;
6460
wc->keep_locks = 1;
6461
wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6462
6463
while (1) {
6464
wret = walk_down_tree(trans, root, path, wc);
6465
if (wret < 0) {
6466
ret = wret;
6467
break;
6468
}
6469
6470
wret = walk_up_tree(trans, root, path, wc, parent_level);
6471
if (wret < 0)
6472
ret = wret;
6473
if (wret != 0)
6474
break;
6475
}
6476
6477
kfree(wc);
6478
btrfs_free_path(path);
6479
return ret;
6480
}
6481
6482
static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6483
{
6484
u64 num_devices;
6485
u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6486
BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6487
6488
/*
6489
* we add in the count of missing devices because we want
6490
* to make sure that any RAID levels on a degraded FS
6491
* continue to be honored.
6492
*/
6493
num_devices = root->fs_info->fs_devices->rw_devices +
6494
root->fs_info->fs_devices->missing_devices;
6495
6496
if (num_devices == 1) {
6497
stripped |= BTRFS_BLOCK_GROUP_DUP;
6498
stripped = flags & ~stripped;
6499
6500
/* turn raid0 into single device chunks */
6501
if (flags & BTRFS_BLOCK_GROUP_RAID0)
6502
return stripped;
6503
6504
/* turn mirroring into duplication */
6505
if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6506
BTRFS_BLOCK_GROUP_RAID10))
6507
return stripped | BTRFS_BLOCK_GROUP_DUP;
6508
return flags;
6509
} else {
6510
/* they already had raid on here, just return */
6511
if (flags & stripped)
6512
return flags;
6513
6514
stripped |= BTRFS_BLOCK_GROUP_DUP;
6515
stripped = flags & ~stripped;
6516
6517
/* switch duplicated blocks with raid1 */
6518
if (flags & BTRFS_BLOCK_GROUP_DUP)
6519
return stripped | BTRFS_BLOCK_GROUP_RAID1;
6520
6521
/* turn single device chunks into raid0 */
6522
return stripped | BTRFS_BLOCK_GROUP_RAID0;
6523
}
6524
return flags;
6525
}
6526
6527
static int set_block_group_ro(struct btrfs_block_group_cache *cache)
6528
{
6529
struct btrfs_space_info *sinfo = cache->space_info;
6530
u64 num_bytes;
6531
int ret = -ENOSPC;
6532
6533
if (cache->ro)
6534
return 0;
6535
6536
spin_lock(&sinfo->lock);
6537
spin_lock(&cache->lock);
6538
num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6539
cache->bytes_super - btrfs_block_group_used(&cache->item);
6540
6541
if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6542
sinfo->bytes_may_use + sinfo->bytes_readonly +
6543
cache->reserved_pinned + num_bytes <= sinfo->total_bytes) {
6544
sinfo->bytes_readonly += num_bytes;
6545
sinfo->bytes_reserved += cache->reserved_pinned;
6546
cache->reserved_pinned = 0;
6547
cache->ro = 1;
6548
ret = 0;
6549
}
6550
6551
spin_unlock(&cache->lock);
6552
spin_unlock(&sinfo->lock);
6553
return ret;
6554
}
6555
6556
int btrfs_set_block_group_ro(struct btrfs_root *root,
6557
struct btrfs_block_group_cache *cache)
6558
6559
{
6560
struct btrfs_trans_handle *trans;
6561
u64 alloc_flags;
6562
int ret;
6563
6564
BUG_ON(cache->ro);
6565
6566
trans = btrfs_join_transaction(root);
6567
BUG_ON(IS_ERR(trans));
6568
6569
alloc_flags = update_block_group_flags(root, cache->flags);
6570
if (alloc_flags != cache->flags)
6571
do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6572
CHUNK_ALLOC_FORCE);
6573
6574
ret = set_block_group_ro(cache);
6575
if (!ret)
6576
goto out;
6577
alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6578
ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6579
CHUNK_ALLOC_FORCE);
6580
if (ret < 0)
6581
goto out;
6582
ret = set_block_group_ro(cache);
6583
out:
6584
btrfs_end_transaction(trans, root);
6585
return ret;
6586
}
6587
6588
int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6589
struct btrfs_root *root, u64 type)
6590
{
6591
u64 alloc_flags = get_alloc_profile(root, type);
6592
return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6593
CHUNK_ALLOC_FORCE);
6594
}
6595
6596
/*
6597
* helper to account the unused space of all the readonly block group in the
6598
* list. takes mirrors into account.
6599
*/
6600
static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6601
{
6602
struct btrfs_block_group_cache *block_group;
6603
u64 free_bytes = 0;
6604
int factor;
6605
6606
list_for_each_entry(block_group, groups_list, list) {
6607
spin_lock(&block_group->lock);
6608
6609
if (!block_group->ro) {
6610
spin_unlock(&block_group->lock);
6611
continue;
6612
}
6613
6614
if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6615
BTRFS_BLOCK_GROUP_RAID10 |
6616
BTRFS_BLOCK_GROUP_DUP))
6617
factor = 2;
6618
else
6619
factor = 1;
6620
6621
free_bytes += (block_group->key.offset -
6622
btrfs_block_group_used(&block_group->item)) *
6623
factor;
6624
6625
spin_unlock(&block_group->lock);
6626
}
6627
6628
return free_bytes;
6629
}
6630
6631
/*
6632
* helper to account the unused space of all the readonly block group in the
6633
* space_info. takes mirrors into account.
6634
*/
6635
u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6636
{
6637
int i;
6638
u64 free_bytes = 0;
6639
6640
spin_lock(&sinfo->lock);
6641
6642
for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6643
if (!list_empty(&sinfo->block_groups[i]))
6644
free_bytes += __btrfs_get_ro_block_group_free_space(
6645
&sinfo->block_groups[i]);
6646
6647
spin_unlock(&sinfo->lock);
6648
6649
return free_bytes;
6650
}
6651
6652
int btrfs_set_block_group_rw(struct btrfs_root *root,
6653
struct btrfs_block_group_cache *cache)
6654
{
6655
struct btrfs_space_info *sinfo = cache->space_info;
6656
u64 num_bytes;
6657
6658
BUG_ON(!cache->ro);
6659
6660
spin_lock(&sinfo->lock);
6661
spin_lock(&cache->lock);
6662
num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6663
cache->bytes_super - btrfs_block_group_used(&cache->item);
6664
sinfo->bytes_readonly -= num_bytes;
6665
cache->ro = 0;
6666
spin_unlock(&cache->lock);
6667
spin_unlock(&sinfo->lock);
6668
return 0;
6669
}
6670
6671
/*
6672
* checks to see if its even possible to relocate this block group.
6673
*
6674
* @return - -1 if it's not a good idea to relocate this block group, 0 if its
6675
* ok to go ahead and try.
6676
*/
6677
int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6678
{
6679
struct btrfs_block_group_cache *block_group;
6680
struct btrfs_space_info *space_info;
6681
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6682
struct btrfs_device *device;
6683
int full = 0;
6684
int ret = 0;
6685
6686
block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6687
6688
/* odd, couldn't find the block group, leave it alone */
6689
if (!block_group)
6690
return -1;
6691
6692
/* no bytes used, we're good */
6693
if (!btrfs_block_group_used(&block_group->item))
6694
goto out;
6695
6696
space_info = block_group->space_info;
6697
spin_lock(&space_info->lock);
6698
6699
full = space_info->full;
6700
6701
/*
6702
* if this is the last block group we have in this space, we can't
6703
* relocate it unless we're able to allocate a new chunk below.
6704
*
6705
* Otherwise, we need to make sure we have room in the space to handle
6706
* all of the extents from this block group. If we can, we're good
6707
*/
6708
if ((space_info->total_bytes != block_group->key.offset) &&
6709
(space_info->bytes_used + space_info->bytes_reserved +
6710
space_info->bytes_pinned + space_info->bytes_readonly +
6711
btrfs_block_group_used(&block_group->item) <
6712
space_info->total_bytes)) {
6713
spin_unlock(&space_info->lock);
6714
goto out;
6715
}
6716
spin_unlock(&space_info->lock);
6717
6718
/*
6719
* ok we don't have enough space, but maybe we have free space on our
6720
* devices to allocate new chunks for relocation, so loop through our
6721
* alloc devices and guess if we have enough space. However, if we
6722
* were marked as full, then we know there aren't enough chunks, and we
6723
* can just return.
6724
*/
6725
ret = -1;
6726
if (full)
6727
goto out;
6728
6729
mutex_lock(&root->fs_info->chunk_mutex);
6730
list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
6731
u64 min_free = btrfs_block_group_used(&block_group->item);
6732
u64 dev_offset;
6733
6734
/*
6735
* check to make sure we can actually find a chunk with enough
6736
* space to fit our block group in.
6737
*/
6738
if (device->total_bytes > device->bytes_used + min_free) {
6739
ret = find_free_dev_extent(NULL, device, min_free,
6740
&dev_offset, NULL);
6741
if (!ret)
6742
break;
6743
ret = -1;
6744
}
6745
}
6746
mutex_unlock(&root->fs_info->chunk_mutex);
6747
out:
6748
btrfs_put_block_group(block_group);
6749
return ret;
6750
}
6751
6752
static int find_first_block_group(struct btrfs_root *root,
6753
struct btrfs_path *path, struct btrfs_key *key)
6754
{
6755
int ret = 0;
6756
struct btrfs_key found_key;
6757
struct extent_buffer *leaf;
6758
int slot;
6759
6760
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6761
if (ret < 0)
6762
goto out;
6763
6764
while (1) {
6765
slot = path->slots[0];
6766
leaf = path->nodes[0];
6767
if (slot >= btrfs_header_nritems(leaf)) {
6768
ret = btrfs_next_leaf(root, path);
6769
if (ret == 0)
6770
continue;
6771
if (ret < 0)
6772
goto out;
6773
break;
6774
}
6775
btrfs_item_key_to_cpu(leaf, &found_key, slot);
6776
6777
if (found_key.objectid >= key->objectid &&
6778
found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6779
ret = 0;
6780
goto out;
6781
}
6782
path->slots[0]++;
6783
}
6784
out:
6785
return ret;
6786
}
6787
6788
void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
6789
{
6790
struct btrfs_block_group_cache *block_group;
6791
u64 last = 0;
6792
6793
while (1) {
6794
struct inode *inode;
6795
6796
block_group = btrfs_lookup_first_block_group(info, last);
6797
while (block_group) {
6798
spin_lock(&block_group->lock);
6799
if (block_group->iref)
6800
break;
6801
spin_unlock(&block_group->lock);
6802
block_group = next_block_group(info->tree_root,
6803
block_group);
6804
}
6805
if (!block_group) {
6806
if (last == 0)
6807
break;
6808
last = 0;
6809
continue;
6810
}
6811
6812
inode = block_group->inode;
6813
block_group->iref = 0;
6814
block_group->inode = NULL;
6815
spin_unlock(&block_group->lock);
6816
iput(inode);
6817
last = block_group->key.objectid + block_group->key.offset;
6818
btrfs_put_block_group(block_group);
6819
}
6820
}
6821
6822
int btrfs_free_block_groups(struct btrfs_fs_info *info)
6823
{
6824
struct btrfs_block_group_cache *block_group;
6825
struct btrfs_space_info *space_info;
6826
struct btrfs_caching_control *caching_ctl;
6827
struct rb_node *n;
6828
6829
down_write(&info->extent_commit_sem);
6830
while (!list_empty(&info->caching_block_groups)) {
6831
caching_ctl = list_entry(info->caching_block_groups.next,
6832
struct btrfs_caching_control, list);
6833
list_del(&caching_ctl->list);
6834
put_caching_control(caching_ctl);
6835
}
6836
up_write(&info->extent_commit_sem);
6837
6838
spin_lock(&info->block_group_cache_lock);
6839
while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
6840
block_group = rb_entry(n, struct btrfs_block_group_cache,
6841
cache_node);
6842
rb_erase(&block_group->cache_node,
6843
&info->block_group_cache_tree);
6844
spin_unlock(&info->block_group_cache_lock);
6845
6846
down_write(&block_group->space_info->groups_sem);
6847
list_del(&block_group->list);
6848
up_write(&block_group->space_info->groups_sem);
6849
6850
if (block_group->cached == BTRFS_CACHE_STARTED)
6851
wait_block_group_cache_done(block_group);
6852
6853
/*
6854
* We haven't cached this block group, which means we could
6855
* possibly have excluded extents on this block group.
6856
*/
6857
if (block_group->cached == BTRFS_CACHE_NO)
6858
free_excluded_extents(info->extent_root, block_group);
6859
6860
btrfs_remove_free_space_cache(block_group);
6861
btrfs_put_block_group(block_group);
6862
6863
spin_lock(&info->block_group_cache_lock);
6864
}
6865
spin_unlock(&info->block_group_cache_lock);
6866
6867
/* now that all the block groups are freed, go through and
6868
* free all the space_info structs. This is only called during
6869
* the final stages of unmount, and so we know nobody is
6870
* using them. We call synchronize_rcu() once before we start,
6871
* just to be on the safe side.
6872
*/
6873
synchronize_rcu();
6874
6875
release_global_block_rsv(info);
6876
6877
while(!list_empty(&info->space_info)) {
6878
space_info = list_entry(info->space_info.next,
6879
struct btrfs_space_info,
6880
list);
6881
if (space_info->bytes_pinned > 0 ||
6882
space_info->bytes_reserved > 0) {
6883
WARN_ON(1);
6884
dump_space_info(space_info, 0, 0);
6885
}
6886
list_del(&space_info->list);
6887
kfree(space_info);
6888
}
6889
return 0;
6890
}
6891
6892
static void __link_block_group(struct btrfs_space_info *space_info,
6893
struct btrfs_block_group_cache *cache)
6894
{
6895
int index = get_block_group_index(cache);
6896
6897
down_write(&space_info->groups_sem);
6898
list_add_tail(&cache->list, &space_info->block_groups[index]);
6899
up_write(&space_info->groups_sem);
6900
}
6901
6902
int btrfs_read_block_groups(struct btrfs_root *root)
6903
{
6904
struct btrfs_path *path;
6905
int ret;
6906
struct btrfs_block_group_cache *cache;
6907
struct btrfs_fs_info *info = root->fs_info;
6908
struct btrfs_space_info *space_info;
6909
struct btrfs_key key;
6910
struct btrfs_key found_key;
6911
struct extent_buffer *leaf;
6912
int need_clear = 0;
6913
u64 cache_gen;
6914
6915
root = info->extent_root;
6916
key.objectid = 0;
6917
key.offset = 0;
6918
btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
6919
path = btrfs_alloc_path();
6920
if (!path)
6921
return -ENOMEM;
6922
path->reada = 1;
6923
6924
cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
6925
if (cache_gen != 0 &&
6926
btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
6927
need_clear = 1;
6928
if (btrfs_test_opt(root, CLEAR_CACHE))
6929
need_clear = 1;
6930
if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
6931
printk(KERN_INFO "btrfs: disk space caching is enabled\n");
6932
6933
while (1) {
6934
ret = find_first_block_group(root, path, &key);
6935
if (ret > 0)
6936
break;
6937
if (ret != 0)
6938
goto error;
6939
leaf = path->nodes[0];
6940
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6941
cache = kzalloc(sizeof(*cache), GFP_NOFS);
6942
if (!cache) {
6943
ret = -ENOMEM;
6944
goto error;
6945
}
6946
cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
6947
GFP_NOFS);
6948
if (!cache->free_space_ctl) {
6949
kfree(cache);
6950
ret = -ENOMEM;
6951
goto error;
6952
}
6953
6954
atomic_set(&cache->count, 1);
6955
spin_lock_init(&cache->lock);
6956
cache->fs_info = info;
6957
INIT_LIST_HEAD(&cache->list);
6958
INIT_LIST_HEAD(&cache->cluster_list);
6959
6960
if (need_clear)
6961
cache->disk_cache_state = BTRFS_DC_CLEAR;
6962
6963
read_extent_buffer(leaf, &cache->item,
6964
btrfs_item_ptr_offset(leaf, path->slots[0]),
6965
sizeof(cache->item));
6966
memcpy(&cache->key, &found_key, sizeof(found_key));
6967
6968
key.objectid = found_key.objectid + found_key.offset;
6969
btrfs_release_path(path);
6970
cache->flags = btrfs_block_group_flags(&cache->item);
6971
cache->sectorsize = root->sectorsize;
6972
6973
btrfs_init_free_space_ctl(cache);
6974
6975
/*
6976
* We need to exclude the super stripes now so that the space
6977
* info has super bytes accounted for, otherwise we'll think
6978
* we have more space than we actually do.
6979
*/
6980
exclude_super_stripes(root, cache);
6981
6982
/*
6983
* check for two cases, either we are full, and therefore
6984
* don't need to bother with the caching work since we won't
6985
* find any space, or we are empty, and we can just add all
6986
* the space in and be done with it. This saves us _alot_ of
6987
* time, particularly in the full case.
6988
*/
6989
if (found_key.offset == btrfs_block_group_used(&cache->item)) {
6990
cache->last_byte_to_unpin = (u64)-1;
6991
cache->cached = BTRFS_CACHE_FINISHED;
6992
free_excluded_extents(root, cache);
6993
} else if (btrfs_block_group_used(&cache->item) == 0) {
6994
cache->last_byte_to_unpin = (u64)-1;
6995
cache->cached = BTRFS_CACHE_FINISHED;
6996
add_new_free_space(cache, root->fs_info,
6997
found_key.objectid,
6998
found_key.objectid +
6999
found_key.offset);
7000
free_excluded_extents(root, cache);
7001
}
7002
7003
ret = update_space_info(info, cache->flags, found_key.offset,
7004
btrfs_block_group_used(&cache->item),
7005
&space_info);
7006
BUG_ON(ret);
7007
cache->space_info = space_info;
7008
spin_lock(&cache->space_info->lock);
7009
cache->space_info->bytes_readonly += cache->bytes_super;
7010
spin_unlock(&cache->space_info->lock);
7011
7012
__link_block_group(space_info, cache);
7013
7014
ret = btrfs_add_block_group_cache(root->fs_info, cache);
7015
BUG_ON(ret);
7016
7017
set_avail_alloc_bits(root->fs_info, cache->flags);
7018
if (btrfs_chunk_readonly(root, cache->key.objectid))
7019
set_block_group_ro(cache);
7020
}
7021
7022
list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7023
if (!(get_alloc_profile(root, space_info->flags) &
7024
(BTRFS_BLOCK_GROUP_RAID10 |
7025
BTRFS_BLOCK_GROUP_RAID1 |
7026
BTRFS_BLOCK_GROUP_DUP)))
7027
continue;
7028
/*
7029
* avoid allocating from un-mirrored block group if there are
7030
* mirrored block groups.
7031
*/
7032
list_for_each_entry(cache, &space_info->block_groups[3], list)
7033
set_block_group_ro(cache);
7034
list_for_each_entry(cache, &space_info->block_groups[4], list)
7035
set_block_group_ro(cache);
7036
}
7037
7038
init_global_block_rsv(info);
7039
ret = 0;
7040
error:
7041
btrfs_free_path(path);
7042
return ret;
7043
}
7044
7045
int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7046
struct btrfs_root *root, u64 bytes_used,
7047
u64 type, u64 chunk_objectid, u64 chunk_offset,
7048
u64 size)
7049
{
7050
int ret;
7051
struct btrfs_root *extent_root;
7052
struct btrfs_block_group_cache *cache;
7053
7054
extent_root = root->fs_info->extent_root;
7055
7056
root->fs_info->last_trans_log_full_commit = trans->transid;
7057
7058
cache = kzalloc(sizeof(*cache), GFP_NOFS);
7059
if (!cache)
7060
return -ENOMEM;
7061
cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7062
GFP_NOFS);
7063
if (!cache->free_space_ctl) {
7064
kfree(cache);
7065
return -ENOMEM;
7066
}
7067
7068
cache->key.objectid = chunk_offset;
7069
cache->key.offset = size;
7070
cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7071
cache->sectorsize = root->sectorsize;
7072
cache->fs_info = root->fs_info;
7073
7074
atomic_set(&cache->count, 1);
7075
spin_lock_init(&cache->lock);
7076
INIT_LIST_HEAD(&cache->list);
7077
INIT_LIST_HEAD(&cache->cluster_list);
7078
7079
btrfs_init_free_space_ctl(cache);
7080
7081
btrfs_set_block_group_used(&cache->item, bytes_used);
7082
btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7083
cache->flags = type;
7084
btrfs_set_block_group_flags(&cache->item, type);
7085
7086
cache->last_byte_to_unpin = (u64)-1;
7087
cache->cached = BTRFS_CACHE_FINISHED;
7088
exclude_super_stripes(root, cache);
7089
7090
add_new_free_space(cache, root->fs_info, chunk_offset,
7091
chunk_offset + size);
7092
7093
free_excluded_extents(root, cache);
7094
7095
ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7096
&cache->space_info);
7097
BUG_ON(ret);
7098
7099
spin_lock(&cache->space_info->lock);
7100
cache->space_info->bytes_readonly += cache->bytes_super;
7101
spin_unlock(&cache->space_info->lock);
7102
7103
__link_block_group(cache->space_info, cache);
7104
7105
ret = btrfs_add_block_group_cache(root->fs_info, cache);
7106
BUG_ON(ret);
7107
7108
ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7109
sizeof(cache->item));
7110
BUG_ON(ret);
7111
7112
set_avail_alloc_bits(extent_root->fs_info, type);
7113
7114
return 0;
7115
}
7116
7117
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7118
struct btrfs_root *root, u64 group_start)
7119
{
7120
struct btrfs_path *path;
7121
struct btrfs_block_group_cache *block_group;
7122
struct btrfs_free_cluster *cluster;
7123
struct btrfs_root *tree_root = root->fs_info->tree_root;
7124
struct btrfs_key key;
7125
struct inode *inode;
7126
int ret;
7127
int factor;
7128
7129
root = root->fs_info->extent_root;
7130
7131
block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7132
BUG_ON(!block_group);
7133
BUG_ON(!block_group->ro);
7134
7135
/*
7136
* Free the reserved super bytes from this block group before
7137
* remove it.
7138
*/
7139
free_excluded_extents(root, block_group);
7140
7141
memcpy(&key, &block_group->key, sizeof(key));
7142
if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7143
BTRFS_BLOCK_GROUP_RAID1 |
7144
BTRFS_BLOCK_GROUP_RAID10))
7145
factor = 2;
7146
else
7147
factor = 1;
7148
7149
/* make sure this block group isn't part of an allocation cluster */
7150
cluster = &root->fs_info->data_alloc_cluster;
7151
spin_lock(&cluster->refill_lock);
7152
btrfs_return_cluster_to_free_space(block_group, cluster);
7153
spin_unlock(&cluster->refill_lock);
7154
7155
/*
7156
* make sure this block group isn't part of a metadata
7157
* allocation cluster
7158
*/
7159
cluster = &root->fs_info->meta_alloc_cluster;
7160
spin_lock(&cluster->refill_lock);
7161
btrfs_return_cluster_to_free_space(block_group, cluster);
7162
spin_unlock(&cluster->refill_lock);
7163
7164
path = btrfs_alloc_path();
7165
BUG_ON(!path);
7166
7167
inode = lookup_free_space_inode(root, block_group, path);
7168
if (!IS_ERR(inode)) {
7169
btrfs_orphan_add(trans, inode);
7170
clear_nlink(inode);
7171
/* One for the block groups ref */
7172
spin_lock(&block_group->lock);
7173
if (block_group->iref) {
7174
block_group->iref = 0;
7175
block_group->inode = NULL;
7176
spin_unlock(&block_group->lock);
7177
iput(inode);
7178
} else {
7179
spin_unlock(&block_group->lock);
7180
}
7181
/* One for our lookup ref */
7182
iput(inode);
7183
}
7184
7185
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7186
key.offset = block_group->key.objectid;
7187
key.type = 0;
7188
7189
ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7190
if (ret < 0)
7191
goto out;
7192
if (ret > 0)
7193
btrfs_release_path(path);
7194
if (ret == 0) {
7195
ret = btrfs_del_item(trans, tree_root, path);
7196
if (ret)
7197
goto out;
7198
btrfs_release_path(path);
7199
}
7200
7201
spin_lock(&root->fs_info->block_group_cache_lock);
7202
rb_erase(&block_group->cache_node,
7203
&root->fs_info->block_group_cache_tree);
7204
spin_unlock(&root->fs_info->block_group_cache_lock);
7205
7206
down_write(&block_group->space_info->groups_sem);
7207
/*
7208
* we must use list_del_init so people can check to see if they
7209
* are still on the list after taking the semaphore
7210
*/
7211
list_del_init(&block_group->list);
7212
up_write(&block_group->space_info->groups_sem);
7213
7214
if (block_group->cached == BTRFS_CACHE_STARTED)
7215
wait_block_group_cache_done(block_group);
7216
7217
btrfs_remove_free_space_cache(block_group);
7218
7219
spin_lock(&block_group->space_info->lock);
7220
block_group->space_info->total_bytes -= block_group->key.offset;
7221
block_group->space_info->bytes_readonly -= block_group->key.offset;
7222
block_group->space_info->disk_total -= block_group->key.offset * factor;
7223
spin_unlock(&block_group->space_info->lock);
7224
7225
memcpy(&key, &block_group->key, sizeof(key));
7226
7227
btrfs_clear_space_info_full(root->fs_info);
7228
7229
btrfs_put_block_group(block_group);
7230
btrfs_put_block_group(block_group);
7231
7232
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7233
if (ret > 0)
7234
ret = -EIO;
7235
if (ret < 0)
7236
goto out;
7237
7238
ret = btrfs_del_item(trans, root, path);
7239
out:
7240
btrfs_free_path(path);
7241
return ret;
7242
}
7243
7244
int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7245
{
7246
struct btrfs_space_info *space_info;
7247
struct btrfs_super_block *disk_super;
7248
u64 features;
7249
u64 flags;
7250
int mixed = 0;
7251
int ret;
7252
7253
disk_super = &fs_info->super_copy;
7254
if (!btrfs_super_root(disk_super))
7255
return 1;
7256
7257
features = btrfs_super_incompat_flags(disk_super);
7258
if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7259
mixed = 1;
7260
7261
flags = BTRFS_BLOCK_GROUP_SYSTEM;
7262
ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7263
if (ret)
7264
goto out;
7265
7266
if (mixed) {
7267
flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7268
ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7269
} else {
7270
flags = BTRFS_BLOCK_GROUP_METADATA;
7271
ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7272
if (ret)
7273
goto out;
7274
7275
flags = BTRFS_BLOCK_GROUP_DATA;
7276
ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7277
}
7278
out:
7279
return ret;
7280
}
7281
7282
int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7283
{
7284
return unpin_extent_range(root, start, end);
7285
}
7286
7287
int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7288
u64 num_bytes, u64 *actual_bytes)
7289
{
7290
return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7291
}
7292
7293
int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7294
{
7295
struct btrfs_fs_info *fs_info = root->fs_info;
7296
struct btrfs_block_group_cache *cache = NULL;
7297
u64 group_trimmed;
7298
u64 start;
7299
u64 end;
7300
u64 trimmed = 0;
7301
int ret = 0;
7302
7303
cache = btrfs_lookup_block_group(fs_info, range->start);
7304
7305
while (cache) {
7306
if (cache->key.objectid >= (range->start + range->len)) {
7307
btrfs_put_block_group(cache);
7308
break;
7309
}
7310
7311
start = max(range->start, cache->key.objectid);
7312
end = min(range->start + range->len,
7313
cache->key.objectid + cache->key.offset);
7314
7315
if (end - start >= range->minlen) {
7316
if (!block_group_cache_done(cache)) {
7317
ret = cache_block_group(cache, NULL, root, 0);
7318
if (!ret)
7319
wait_block_group_cache_done(cache);
7320
}
7321
ret = btrfs_trim_block_group(cache,
7322
&group_trimmed,
7323
start,
7324
end,
7325
range->minlen);
7326
7327
trimmed += group_trimmed;
7328
if (ret) {
7329
btrfs_put_block_group(cache);
7330
break;
7331
}
7332
}
7333
7334
cache = next_block_group(fs_info->tree_root, cache);
7335
}
7336
7337
range->len = trimmed;
7338
return ret;
7339
}
7340
7341