Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/btrfs/ioctl.c
15109 views
1
/*
2
* Copyright (C) 2007 Oracle. All rights reserved.
3
*
4
* This program is free software; you can redistribute it and/or
5
* modify it under the terms of the GNU General Public
6
* License v2 as published by the Free Software Foundation.
7
*
8
* This program is distributed in the hope that it will be useful,
9
* but WITHOUT ANY WARRANTY; without even the implied warranty of
10
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11
* General Public License for more details.
12
*
13
* You should have received a copy of the GNU General Public
14
* License along with this program; if not, write to the
15
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16
* Boston, MA 021110-1307, USA.
17
*/
18
19
#include <linux/kernel.h>
20
#include <linux/bio.h>
21
#include <linux/buffer_head.h>
22
#include <linux/file.h>
23
#include <linux/fs.h>
24
#include <linux/fsnotify.h>
25
#include <linux/pagemap.h>
26
#include <linux/highmem.h>
27
#include <linux/time.h>
28
#include <linux/init.h>
29
#include <linux/string.h>
30
#include <linux/backing-dev.h>
31
#include <linux/mount.h>
32
#include <linux/mpage.h>
33
#include <linux/namei.h>
34
#include <linux/swap.h>
35
#include <linux/writeback.h>
36
#include <linux/statfs.h>
37
#include <linux/compat.h>
38
#include <linux/bit_spinlock.h>
39
#include <linux/security.h>
40
#include <linux/xattr.h>
41
#include <linux/vmalloc.h>
42
#include <linux/slab.h>
43
#include <linux/blkdev.h>
44
#include "compat.h"
45
#include "ctree.h"
46
#include "disk-io.h"
47
#include "transaction.h"
48
#include "btrfs_inode.h"
49
#include "ioctl.h"
50
#include "print-tree.h"
51
#include "volumes.h"
52
#include "locking.h"
53
#include "inode-map.h"
54
55
/* Mask out flags that are inappropriate for the given type of inode. */
56
static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
57
{
58
if (S_ISDIR(mode))
59
return flags;
60
else if (S_ISREG(mode))
61
return flags & ~FS_DIRSYNC_FL;
62
else
63
return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
64
}
65
66
/*
67
* Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
68
*/
69
static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
70
{
71
unsigned int iflags = 0;
72
73
if (flags & BTRFS_INODE_SYNC)
74
iflags |= FS_SYNC_FL;
75
if (flags & BTRFS_INODE_IMMUTABLE)
76
iflags |= FS_IMMUTABLE_FL;
77
if (flags & BTRFS_INODE_APPEND)
78
iflags |= FS_APPEND_FL;
79
if (flags & BTRFS_INODE_NODUMP)
80
iflags |= FS_NODUMP_FL;
81
if (flags & BTRFS_INODE_NOATIME)
82
iflags |= FS_NOATIME_FL;
83
if (flags & BTRFS_INODE_DIRSYNC)
84
iflags |= FS_DIRSYNC_FL;
85
if (flags & BTRFS_INODE_NODATACOW)
86
iflags |= FS_NOCOW_FL;
87
88
if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
89
iflags |= FS_COMPR_FL;
90
else if (flags & BTRFS_INODE_NOCOMPRESS)
91
iflags |= FS_NOCOMP_FL;
92
93
return iflags;
94
}
95
96
/*
97
* Update inode->i_flags based on the btrfs internal flags.
98
*/
99
void btrfs_update_iflags(struct inode *inode)
100
{
101
struct btrfs_inode *ip = BTRFS_I(inode);
102
103
inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
104
105
if (ip->flags & BTRFS_INODE_SYNC)
106
inode->i_flags |= S_SYNC;
107
if (ip->flags & BTRFS_INODE_IMMUTABLE)
108
inode->i_flags |= S_IMMUTABLE;
109
if (ip->flags & BTRFS_INODE_APPEND)
110
inode->i_flags |= S_APPEND;
111
if (ip->flags & BTRFS_INODE_NOATIME)
112
inode->i_flags |= S_NOATIME;
113
if (ip->flags & BTRFS_INODE_DIRSYNC)
114
inode->i_flags |= S_DIRSYNC;
115
}
116
117
/*
118
* Inherit flags from the parent inode.
119
*
120
* Unlike extN we don't have any flags we don't want to inherit currently.
121
*/
122
void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
123
{
124
unsigned int flags;
125
126
if (!dir)
127
return;
128
129
flags = BTRFS_I(dir)->flags;
130
131
if (S_ISREG(inode->i_mode))
132
flags &= ~BTRFS_INODE_DIRSYNC;
133
else if (!S_ISDIR(inode->i_mode))
134
flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
135
136
BTRFS_I(inode)->flags = flags;
137
btrfs_update_iflags(inode);
138
}
139
140
static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
141
{
142
struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
143
unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
144
145
if (copy_to_user(arg, &flags, sizeof(flags)))
146
return -EFAULT;
147
return 0;
148
}
149
150
static int check_flags(unsigned int flags)
151
{
152
if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
153
FS_NOATIME_FL | FS_NODUMP_FL | \
154
FS_SYNC_FL | FS_DIRSYNC_FL | \
155
FS_NOCOMP_FL | FS_COMPR_FL |
156
FS_NOCOW_FL))
157
return -EOPNOTSUPP;
158
159
if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
160
return -EINVAL;
161
162
return 0;
163
}
164
165
static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
166
{
167
struct inode *inode = file->f_path.dentry->d_inode;
168
struct btrfs_inode *ip = BTRFS_I(inode);
169
struct btrfs_root *root = ip->root;
170
struct btrfs_trans_handle *trans;
171
unsigned int flags, oldflags;
172
int ret;
173
174
if (btrfs_root_readonly(root))
175
return -EROFS;
176
177
if (copy_from_user(&flags, arg, sizeof(flags)))
178
return -EFAULT;
179
180
ret = check_flags(flags);
181
if (ret)
182
return ret;
183
184
if (!inode_owner_or_capable(inode))
185
return -EACCES;
186
187
mutex_lock(&inode->i_mutex);
188
189
flags = btrfs_mask_flags(inode->i_mode, flags);
190
oldflags = btrfs_flags_to_ioctl(ip->flags);
191
if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
192
if (!capable(CAP_LINUX_IMMUTABLE)) {
193
ret = -EPERM;
194
goto out_unlock;
195
}
196
}
197
198
ret = mnt_want_write(file->f_path.mnt);
199
if (ret)
200
goto out_unlock;
201
202
if (flags & FS_SYNC_FL)
203
ip->flags |= BTRFS_INODE_SYNC;
204
else
205
ip->flags &= ~BTRFS_INODE_SYNC;
206
if (flags & FS_IMMUTABLE_FL)
207
ip->flags |= BTRFS_INODE_IMMUTABLE;
208
else
209
ip->flags &= ~BTRFS_INODE_IMMUTABLE;
210
if (flags & FS_APPEND_FL)
211
ip->flags |= BTRFS_INODE_APPEND;
212
else
213
ip->flags &= ~BTRFS_INODE_APPEND;
214
if (flags & FS_NODUMP_FL)
215
ip->flags |= BTRFS_INODE_NODUMP;
216
else
217
ip->flags &= ~BTRFS_INODE_NODUMP;
218
if (flags & FS_NOATIME_FL)
219
ip->flags |= BTRFS_INODE_NOATIME;
220
else
221
ip->flags &= ~BTRFS_INODE_NOATIME;
222
if (flags & FS_DIRSYNC_FL)
223
ip->flags |= BTRFS_INODE_DIRSYNC;
224
else
225
ip->flags &= ~BTRFS_INODE_DIRSYNC;
226
if (flags & FS_NOCOW_FL)
227
ip->flags |= BTRFS_INODE_NODATACOW;
228
else
229
ip->flags &= ~BTRFS_INODE_NODATACOW;
230
231
/*
232
* The COMPRESS flag can only be changed by users, while the NOCOMPRESS
233
* flag may be changed automatically if compression code won't make
234
* things smaller.
235
*/
236
if (flags & FS_NOCOMP_FL) {
237
ip->flags &= ~BTRFS_INODE_COMPRESS;
238
ip->flags |= BTRFS_INODE_NOCOMPRESS;
239
} else if (flags & FS_COMPR_FL) {
240
ip->flags |= BTRFS_INODE_COMPRESS;
241
ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
242
} else {
243
ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
244
}
245
246
trans = btrfs_join_transaction(root);
247
BUG_ON(IS_ERR(trans));
248
249
ret = btrfs_update_inode(trans, root, inode);
250
BUG_ON(ret);
251
252
btrfs_update_iflags(inode);
253
inode->i_ctime = CURRENT_TIME;
254
btrfs_end_transaction(trans, root);
255
256
mnt_drop_write(file->f_path.mnt);
257
258
ret = 0;
259
out_unlock:
260
mutex_unlock(&inode->i_mutex);
261
return ret;
262
}
263
264
static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
265
{
266
struct inode *inode = file->f_path.dentry->d_inode;
267
268
return put_user(inode->i_generation, arg);
269
}
270
271
static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
272
{
273
struct btrfs_root *root = fdentry(file)->d_sb->s_fs_info;
274
struct btrfs_fs_info *fs_info = root->fs_info;
275
struct btrfs_device *device;
276
struct request_queue *q;
277
struct fstrim_range range;
278
u64 minlen = ULLONG_MAX;
279
u64 num_devices = 0;
280
int ret;
281
282
if (!capable(CAP_SYS_ADMIN))
283
return -EPERM;
284
285
rcu_read_lock();
286
list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
287
dev_list) {
288
if (!device->bdev)
289
continue;
290
q = bdev_get_queue(device->bdev);
291
if (blk_queue_discard(q)) {
292
num_devices++;
293
minlen = min((u64)q->limits.discard_granularity,
294
minlen);
295
}
296
}
297
rcu_read_unlock();
298
if (!num_devices)
299
return -EOPNOTSUPP;
300
301
if (copy_from_user(&range, arg, sizeof(range)))
302
return -EFAULT;
303
304
range.minlen = max(range.minlen, minlen);
305
ret = btrfs_trim_fs(root, &range);
306
if (ret < 0)
307
return ret;
308
309
if (copy_to_user(arg, &range, sizeof(range)))
310
return -EFAULT;
311
312
return 0;
313
}
314
315
static noinline int create_subvol(struct btrfs_root *root,
316
struct dentry *dentry,
317
char *name, int namelen,
318
u64 *async_transid)
319
{
320
struct btrfs_trans_handle *trans;
321
struct btrfs_key key;
322
struct btrfs_root_item root_item;
323
struct btrfs_inode_item *inode_item;
324
struct extent_buffer *leaf;
325
struct btrfs_root *new_root;
326
struct dentry *parent = dget_parent(dentry);
327
struct inode *dir;
328
int ret;
329
int err;
330
u64 objectid;
331
u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
332
u64 index = 0;
333
334
ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
335
if (ret) {
336
dput(parent);
337
return ret;
338
}
339
340
dir = parent->d_inode;
341
342
/*
343
* 1 - inode item
344
* 2 - refs
345
* 1 - root item
346
* 2 - dir items
347
*/
348
trans = btrfs_start_transaction(root, 6);
349
if (IS_ERR(trans)) {
350
dput(parent);
351
return PTR_ERR(trans);
352
}
353
354
leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
355
0, objectid, NULL, 0, 0, 0);
356
if (IS_ERR(leaf)) {
357
ret = PTR_ERR(leaf);
358
goto fail;
359
}
360
361
memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
362
btrfs_set_header_bytenr(leaf, leaf->start);
363
btrfs_set_header_generation(leaf, trans->transid);
364
btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
365
btrfs_set_header_owner(leaf, objectid);
366
367
write_extent_buffer(leaf, root->fs_info->fsid,
368
(unsigned long)btrfs_header_fsid(leaf),
369
BTRFS_FSID_SIZE);
370
write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
371
(unsigned long)btrfs_header_chunk_tree_uuid(leaf),
372
BTRFS_UUID_SIZE);
373
btrfs_mark_buffer_dirty(leaf);
374
375
inode_item = &root_item.inode;
376
memset(inode_item, 0, sizeof(*inode_item));
377
inode_item->generation = cpu_to_le64(1);
378
inode_item->size = cpu_to_le64(3);
379
inode_item->nlink = cpu_to_le32(1);
380
inode_item->nbytes = cpu_to_le64(root->leafsize);
381
inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
382
383
root_item.flags = 0;
384
root_item.byte_limit = 0;
385
inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
386
387
btrfs_set_root_bytenr(&root_item, leaf->start);
388
btrfs_set_root_generation(&root_item, trans->transid);
389
btrfs_set_root_level(&root_item, 0);
390
btrfs_set_root_refs(&root_item, 1);
391
btrfs_set_root_used(&root_item, leaf->len);
392
btrfs_set_root_last_snapshot(&root_item, 0);
393
394
memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
395
root_item.drop_level = 0;
396
397
btrfs_tree_unlock(leaf);
398
free_extent_buffer(leaf);
399
leaf = NULL;
400
401
btrfs_set_root_dirid(&root_item, new_dirid);
402
403
key.objectid = objectid;
404
key.offset = 0;
405
btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
406
ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
407
&root_item);
408
if (ret)
409
goto fail;
410
411
key.offset = (u64)-1;
412
new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
413
BUG_ON(IS_ERR(new_root));
414
415
btrfs_record_root_in_trans(trans, new_root);
416
417
ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
418
/*
419
* insert the directory item
420
*/
421
ret = btrfs_set_inode_index(dir, &index);
422
BUG_ON(ret);
423
424
ret = btrfs_insert_dir_item(trans, root,
425
name, namelen, dir, &key,
426
BTRFS_FT_DIR, index);
427
if (ret)
428
goto fail;
429
430
btrfs_i_size_write(dir, dir->i_size + namelen * 2);
431
ret = btrfs_update_inode(trans, root, dir);
432
BUG_ON(ret);
433
434
ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
435
objectid, root->root_key.objectid,
436
btrfs_ino(dir), index, name, namelen);
437
438
BUG_ON(ret);
439
440
d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
441
fail:
442
dput(parent);
443
if (async_transid) {
444
*async_transid = trans->transid;
445
err = btrfs_commit_transaction_async(trans, root, 1);
446
} else {
447
err = btrfs_commit_transaction(trans, root);
448
}
449
if (err && !ret)
450
ret = err;
451
return ret;
452
}
453
454
static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
455
char *name, int namelen, u64 *async_transid,
456
bool readonly)
457
{
458
struct inode *inode;
459
struct dentry *parent;
460
struct btrfs_pending_snapshot *pending_snapshot;
461
struct btrfs_trans_handle *trans;
462
int ret;
463
464
if (!root->ref_cows)
465
return -EINVAL;
466
467
pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
468
if (!pending_snapshot)
469
return -ENOMEM;
470
471
btrfs_init_block_rsv(&pending_snapshot->block_rsv);
472
pending_snapshot->dentry = dentry;
473
pending_snapshot->root = root;
474
pending_snapshot->readonly = readonly;
475
476
trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
477
if (IS_ERR(trans)) {
478
ret = PTR_ERR(trans);
479
goto fail;
480
}
481
482
ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
483
BUG_ON(ret);
484
485
spin_lock(&root->fs_info->trans_lock);
486
list_add(&pending_snapshot->list,
487
&trans->transaction->pending_snapshots);
488
spin_unlock(&root->fs_info->trans_lock);
489
if (async_transid) {
490
*async_transid = trans->transid;
491
ret = btrfs_commit_transaction_async(trans,
492
root->fs_info->extent_root, 1);
493
} else {
494
ret = btrfs_commit_transaction(trans,
495
root->fs_info->extent_root);
496
}
497
BUG_ON(ret);
498
499
ret = pending_snapshot->error;
500
if (ret)
501
goto fail;
502
503
ret = btrfs_orphan_cleanup(pending_snapshot->snap);
504
if (ret)
505
goto fail;
506
507
parent = dget_parent(dentry);
508
inode = btrfs_lookup_dentry(parent->d_inode, dentry);
509
dput(parent);
510
if (IS_ERR(inode)) {
511
ret = PTR_ERR(inode);
512
goto fail;
513
}
514
BUG_ON(!inode);
515
d_instantiate(dentry, inode);
516
ret = 0;
517
fail:
518
kfree(pending_snapshot);
519
return ret;
520
}
521
522
/* copy of check_sticky in fs/namei.c()
523
* It's inline, so penalty for filesystems that don't use sticky bit is
524
* minimal.
525
*/
526
static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
527
{
528
uid_t fsuid = current_fsuid();
529
530
if (!(dir->i_mode & S_ISVTX))
531
return 0;
532
if (inode->i_uid == fsuid)
533
return 0;
534
if (dir->i_uid == fsuid)
535
return 0;
536
return !capable(CAP_FOWNER);
537
}
538
539
/* copy of may_delete in fs/namei.c()
540
* Check whether we can remove a link victim from directory dir, check
541
* whether the type of victim is right.
542
* 1. We can't do it if dir is read-only (done in permission())
543
* 2. We should have write and exec permissions on dir
544
* 3. We can't remove anything from append-only dir
545
* 4. We can't do anything with immutable dir (done in permission())
546
* 5. If the sticky bit on dir is set we should either
547
* a. be owner of dir, or
548
* b. be owner of victim, or
549
* c. have CAP_FOWNER capability
550
* 6. If the victim is append-only or immutable we can't do antyhing with
551
* links pointing to it.
552
* 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
553
* 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
554
* 9. We can't remove a root or mountpoint.
555
* 10. We don't allow removal of NFS sillyrenamed files; it's handled by
556
* nfs_async_unlink().
557
*/
558
559
static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
560
{
561
int error;
562
563
if (!victim->d_inode)
564
return -ENOENT;
565
566
BUG_ON(victim->d_parent->d_inode != dir);
567
audit_inode_child(victim, dir);
568
569
error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
570
if (error)
571
return error;
572
if (IS_APPEND(dir))
573
return -EPERM;
574
if (btrfs_check_sticky(dir, victim->d_inode)||
575
IS_APPEND(victim->d_inode)||
576
IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
577
return -EPERM;
578
if (isdir) {
579
if (!S_ISDIR(victim->d_inode->i_mode))
580
return -ENOTDIR;
581
if (IS_ROOT(victim))
582
return -EBUSY;
583
} else if (S_ISDIR(victim->d_inode->i_mode))
584
return -EISDIR;
585
if (IS_DEADDIR(dir))
586
return -ENOENT;
587
if (victim->d_flags & DCACHE_NFSFS_RENAMED)
588
return -EBUSY;
589
return 0;
590
}
591
592
/* copy of may_create in fs/namei.c() */
593
static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
594
{
595
if (child->d_inode)
596
return -EEXIST;
597
if (IS_DEADDIR(dir))
598
return -ENOENT;
599
return inode_permission(dir, MAY_WRITE | MAY_EXEC);
600
}
601
602
/*
603
* Create a new subvolume below @parent. This is largely modeled after
604
* sys_mkdirat and vfs_mkdir, but we only do a single component lookup
605
* inside this filesystem so it's quite a bit simpler.
606
*/
607
static noinline int btrfs_mksubvol(struct path *parent,
608
char *name, int namelen,
609
struct btrfs_root *snap_src,
610
u64 *async_transid, bool readonly)
611
{
612
struct inode *dir = parent->dentry->d_inode;
613
struct dentry *dentry;
614
int error;
615
616
mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
617
618
dentry = lookup_one_len(name, parent->dentry, namelen);
619
error = PTR_ERR(dentry);
620
if (IS_ERR(dentry))
621
goto out_unlock;
622
623
error = -EEXIST;
624
if (dentry->d_inode)
625
goto out_dput;
626
627
error = mnt_want_write(parent->mnt);
628
if (error)
629
goto out_dput;
630
631
error = btrfs_may_create(dir, dentry);
632
if (error)
633
goto out_drop_write;
634
635
down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
636
637
if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
638
goto out_up_read;
639
640
if (snap_src) {
641
error = create_snapshot(snap_src, dentry,
642
name, namelen, async_transid, readonly);
643
} else {
644
error = create_subvol(BTRFS_I(dir)->root, dentry,
645
name, namelen, async_transid);
646
}
647
if (!error)
648
fsnotify_mkdir(dir, dentry);
649
out_up_read:
650
up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
651
out_drop_write:
652
mnt_drop_write(parent->mnt);
653
out_dput:
654
dput(dentry);
655
out_unlock:
656
mutex_unlock(&dir->i_mutex);
657
return error;
658
}
659
660
/*
661
* When we're defragging a range, we don't want to kick it off again
662
* if it is really just waiting for delalloc to send it down.
663
* If we find a nice big extent or delalloc range for the bytes in the
664
* file you want to defrag, we return 0 to let you know to skip this
665
* part of the file
666
*/
667
static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
668
{
669
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
670
struct extent_map *em = NULL;
671
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
672
u64 end;
673
674
read_lock(&em_tree->lock);
675
em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
676
read_unlock(&em_tree->lock);
677
678
if (em) {
679
end = extent_map_end(em);
680
free_extent_map(em);
681
if (end - offset > thresh)
682
return 0;
683
}
684
/* if we already have a nice delalloc here, just stop */
685
thresh /= 2;
686
end = count_range_bits(io_tree, &offset, offset + thresh,
687
thresh, EXTENT_DELALLOC, 1);
688
if (end >= thresh)
689
return 0;
690
return 1;
691
}
692
693
/*
694
* helper function to walk through a file and find extents
695
* newer than a specific transid, and smaller than thresh.
696
*
697
* This is used by the defragging code to find new and small
698
* extents
699
*/
700
static int find_new_extents(struct btrfs_root *root,
701
struct inode *inode, u64 newer_than,
702
u64 *off, int thresh)
703
{
704
struct btrfs_path *path;
705
struct btrfs_key min_key;
706
struct btrfs_key max_key;
707
struct extent_buffer *leaf;
708
struct btrfs_file_extent_item *extent;
709
int type;
710
int ret;
711
u64 ino = btrfs_ino(inode);
712
713
path = btrfs_alloc_path();
714
if (!path)
715
return -ENOMEM;
716
717
min_key.objectid = ino;
718
min_key.type = BTRFS_EXTENT_DATA_KEY;
719
min_key.offset = *off;
720
721
max_key.objectid = ino;
722
max_key.type = (u8)-1;
723
max_key.offset = (u64)-1;
724
725
path->keep_locks = 1;
726
727
while(1) {
728
ret = btrfs_search_forward(root, &min_key, &max_key,
729
path, 0, newer_than);
730
if (ret != 0)
731
goto none;
732
if (min_key.objectid != ino)
733
goto none;
734
if (min_key.type != BTRFS_EXTENT_DATA_KEY)
735
goto none;
736
737
leaf = path->nodes[0];
738
extent = btrfs_item_ptr(leaf, path->slots[0],
739
struct btrfs_file_extent_item);
740
741
type = btrfs_file_extent_type(leaf, extent);
742
if (type == BTRFS_FILE_EXTENT_REG &&
743
btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
744
check_defrag_in_cache(inode, min_key.offset, thresh)) {
745
*off = min_key.offset;
746
btrfs_free_path(path);
747
return 0;
748
}
749
750
if (min_key.offset == (u64)-1)
751
goto none;
752
753
min_key.offset++;
754
btrfs_release_path(path);
755
}
756
none:
757
btrfs_free_path(path);
758
return -ENOENT;
759
}
760
761
static int should_defrag_range(struct inode *inode, u64 start, u64 len,
762
int thresh, u64 *last_len, u64 *skip,
763
u64 *defrag_end)
764
{
765
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
766
struct extent_map *em = NULL;
767
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
768
int ret = 1;
769
770
/*
771
* make sure that once we start defragging and extent, we keep on
772
* defragging it
773
*/
774
if (start < *defrag_end)
775
return 1;
776
777
*skip = 0;
778
779
/*
780
* hopefully we have this extent in the tree already, try without
781
* the full extent lock
782
*/
783
read_lock(&em_tree->lock);
784
em = lookup_extent_mapping(em_tree, start, len);
785
read_unlock(&em_tree->lock);
786
787
if (!em) {
788
/* get the big lock and read metadata off disk */
789
lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
790
em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
791
unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
792
793
if (IS_ERR(em))
794
return 0;
795
}
796
797
/* this will cover holes, and inline extents */
798
if (em->block_start >= EXTENT_MAP_LAST_BYTE)
799
ret = 0;
800
801
/*
802
* we hit a real extent, if it is big don't bother defragging it again
803
*/
804
if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
805
ret = 0;
806
807
/*
808
* last_len ends up being a counter of how many bytes we've defragged.
809
* every time we choose not to defrag an extent, we reset *last_len
810
* so that the next tiny extent will force a defrag.
811
*
812
* The end result of this is that tiny extents before a single big
813
* extent will force at least part of that big extent to be defragged.
814
*/
815
if (ret) {
816
*last_len += len;
817
*defrag_end = extent_map_end(em);
818
} else {
819
*last_len = 0;
820
*skip = extent_map_end(em);
821
*defrag_end = 0;
822
}
823
824
free_extent_map(em);
825
return ret;
826
}
827
828
/*
829
* it doesn't do much good to defrag one or two pages
830
* at a time. This pulls in a nice chunk of pages
831
* to COW and defrag.
832
*
833
* It also makes sure the delalloc code has enough
834
* dirty data to avoid making new small extents as part
835
* of the defrag
836
*
837
* It's a good idea to start RA on this range
838
* before calling this.
839
*/
840
static int cluster_pages_for_defrag(struct inode *inode,
841
struct page **pages,
842
unsigned long start_index,
843
int num_pages)
844
{
845
unsigned long file_end;
846
u64 isize = i_size_read(inode);
847
u64 page_start;
848
u64 page_end;
849
int ret;
850
int i;
851
int i_done;
852
struct btrfs_ordered_extent *ordered;
853
struct extent_state *cached_state = NULL;
854
855
if (isize == 0)
856
return 0;
857
file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
858
859
ret = btrfs_delalloc_reserve_space(inode,
860
num_pages << PAGE_CACHE_SHIFT);
861
if (ret)
862
return ret;
863
again:
864
ret = 0;
865
i_done = 0;
866
867
/* step one, lock all the pages */
868
for (i = 0; i < num_pages; i++) {
869
struct page *page;
870
page = grab_cache_page(inode->i_mapping,
871
start_index + i);
872
if (!page)
873
break;
874
875
if (!PageUptodate(page)) {
876
btrfs_readpage(NULL, page);
877
lock_page(page);
878
if (!PageUptodate(page)) {
879
unlock_page(page);
880
page_cache_release(page);
881
ret = -EIO;
882
break;
883
}
884
}
885
isize = i_size_read(inode);
886
file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
887
if (!isize || page->index > file_end ||
888
page->mapping != inode->i_mapping) {
889
/* whoops, we blew past eof, skip this page */
890
unlock_page(page);
891
page_cache_release(page);
892
break;
893
}
894
pages[i] = page;
895
i_done++;
896
}
897
if (!i_done || ret)
898
goto out;
899
900
if (!(inode->i_sb->s_flags & MS_ACTIVE))
901
goto out;
902
903
/*
904
* so now we have a nice long stream of locked
905
* and up to date pages, lets wait on them
906
*/
907
for (i = 0; i < i_done; i++)
908
wait_on_page_writeback(pages[i]);
909
910
page_start = page_offset(pages[0]);
911
page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
912
913
lock_extent_bits(&BTRFS_I(inode)->io_tree,
914
page_start, page_end - 1, 0, &cached_state,
915
GFP_NOFS);
916
ordered = btrfs_lookup_first_ordered_extent(inode, page_end - 1);
917
if (ordered &&
918
ordered->file_offset + ordered->len > page_start &&
919
ordered->file_offset < page_end) {
920
btrfs_put_ordered_extent(ordered);
921
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
922
page_start, page_end - 1,
923
&cached_state, GFP_NOFS);
924
for (i = 0; i < i_done; i++) {
925
unlock_page(pages[i]);
926
page_cache_release(pages[i]);
927
}
928
btrfs_wait_ordered_range(inode, page_start,
929
page_end - page_start);
930
goto again;
931
}
932
if (ordered)
933
btrfs_put_ordered_extent(ordered);
934
935
clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
936
page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
937
EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
938
GFP_NOFS);
939
940
if (i_done != num_pages) {
941
atomic_inc(&BTRFS_I(inode)->outstanding_extents);
942
btrfs_delalloc_release_space(inode,
943
(num_pages - i_done) << PAGE_CACHE_SHIFT);
944
}
945
946
947
btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
948
&cached_state);
949
950
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
951
page_start, page_end - 1, &cached_state,
952
GFP_NOFS);
953
954
for (i = 0; i < i_done; i++) {
955
clear_page_dirty_for_io(pages[i]);
956
ClearPageChecked(pages[i]);
957
set_page_extent_mapped(pages[i]);
958
set_page_dirty(pages[i]);
959
unlock_page(pages[i]);
960
page_cache_release(pages[i]);
961
}
962
return i_done;
963
out:
964
for (i = 0; i < i_done; i++) {
965
unlock_page(pages[i]);
966
page_cache_release(pages[i]);
967
}
968
btrfs_delalloc_release_space(inode, num_pages << PAGE_CACHE_SHIFT);
969
return ret;
970
971
}
972
973
int btrfs_defrag_file(struct inode *inode, struct file *file,
974
struct btrfs_ioctl_defrag_range_args *range,
975
u64 newer_than, unsigned long max_to_defrag)
976
{
977
struct btrfs_root *root = BTRFS_I(inode)->root;
978
struct btrfs_super_block *disk_super;
979
struct file_ra_state *ra = NULL;
980
unsigned long last_index;
981
u64 features;
982
u64 last_len = 0;
983
u64 skip = 0;
984
u64 defrag_end = 0;
985
u64 newer_off = range->start;
986
int newer_left = 0;
987
unsigned long i;
988
int ret;
989
int defrag_count = 0;
990
int compress_type = BTRFS_COMPRESS_ZLIB;
991
int extent_thresh = range->extent_thresh;
992
int newer_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
993
u64 new_align = ~((u64)128 * 1024 - 1);
994
struct page **pages = NULL;
995
996
if (extent_thresh == 0)
997
extent_thresh = 256 * 1024;
998
999
if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1000
if (range->compress_type > BTRFS_COMPRESS_TYPES)
1001
return -EINVAL;
1002
if (range->compress_type)
1003
compress_type = range->compress_type;
1004
}
1005
1006
if (inode->i_size == 0)
1007
return 0;
1008
1009
/*
1010
* if we were not given a file, allocate a readahead
1011
* context
1012
*/
1013
if (!file) {
1014
ra = kzalloc(sizeof(*ra), GFP_NOFS);
1015
if (!ra)
1016
return -ENOMEM;
1017
file_ra_state_init(ra, inode->i_mapping);
1018
} else {
1019
ra = &file->f_ra;
1020
}
1021
1022
pages = kmalloc(sizeof(struct page *) * newer_cluster,
1023
GFP_NOFS);
1024
if (!pages) {
1025
ret = -ENOMEM;
1026
goto out_ra;
1027
}
1028
1029
/* find the last page to defrag */
1030
if (range->start + range->len > range->start) {
1031
last_index = min_t(u64, inode->i_size - 1,
1032
range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1033
} else {
1034
last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
1035
}
1036
1037
if (newer_than) {
1038
ret = find_new_extents(root, inode, newer_than,
1039
&newer_off, 64 * 1024);
1040
if (!ret) {
1041
range->start = newer_off;
1042
/*
1043
* we always align our defrag to help keep
1044
* the extents in the file evenly spaced
1045
*/
1046
i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1047
newer_left = newer_cluster;
1048
} else
1049
goto out_ra;
1050
} else {
1051
i = range->start >> PAGE_CACHE_SHIFT;
1052
}
1053
if (!max_to_defrag)
1054
max_to_defrag = last_index - 1;
1055
1056
while (i <= last_index && defrag_count < max_to_defrag) {
1057
/*
1058
* make sure we stop running if someone unmounts
1059
* the FS
1060
*/
1061
if (!(inode->i_sb->s_flags & MS_ACTIVE))
1062
break;
1063
1064
if (!newer_than &&
1065
!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1066
PAGE_CACHE_SIZE,
1067
extent_thresh,
1068
&last_len, &skip,
1069
&defrag_end)) {
1070
unsigned long next;
1071
/*
1072
* the should_defrag function tells us how much to skip
1073
* bump our counter by the suggested amount
1074
*/
1075
next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1076
i = max(i + 1, next);
1077
continue;
1078
}
1079
if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1080
BTRFS_I(inode)->force_compress = compress_type;
1081
1082
btrfs_force_ra(inode->i_mapping, ra, file, i, newer_cluster);
1083
1084
ret = cluster_pages_for_defrag(inode, pages, i, newer_cluster);
1085
if (ret < 0)
1086
goto out_ra;
1087
1088
defrag_count += ret;
1089
balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1090
i += ret;
1091
1092
if (newer_than) {
1093
if (newer_off == (u64)-1)
1094
break;
1095
1096
newer_off = max(newer_off + 1,
1097
(u64)i << PAGE_CACHE_SHIFT);
1098
1099
ret = find_new_extents(root, inode,
1100
newer_than, &newer_off,
1101
64 * 1024);
1102
if (!ret) {
1103
range->start = newer_off;
1104
i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1105
newer_left = newer_cluster;
1106
} else {
1107
break;
1108
}
1109
} else {
1110
i++;
1111
}
1112
}
1113
1114
if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1115
filemap_flush(inode->i_mapping);
1116
1117
if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1118
/* the filemap_flush will queue IO into the worker threads, but
1119
* we have to make sure the IO is actually started and that
1120
* ordered extents get created before we return
1121
*/
1122
atomic_inc(&root->fs_info->async_submit_draining);
1123
while (atomic_read(&root->fs_info->nr_async_submits) ||
1124
atomic_read(&root->fs_info->async_delalloc_pages)) {
1125
wait_event(root->fs_info->async_submit_wait,
1126
(atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1127
atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1128
}
1129
atomic_dec(&root->fs_info->async_submit_draining);
1130
1131
mutex_lock(&inode->i_mutex);
1132
BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1133
mutex_unlock(&inode->i_mutex);
1134
}
1135
1136
disk_super = &root->fs_info->super_copy;
1137
features = btrfs_super_incompat_flags(disk_super);
1138
if (range->compress_type == BTRFS_COMPRESS_LZO) {
1139
features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1140
btrfs_set_super_incompat_flags(disk_super, features);
1141
}
1142
1143
if (!file)
1144
kfree(ra);
1145
return defrag_count;
1146
1147
out_ra:
1148
if (!file)
1149
kfree(ra);
1150
kfree(pages);
1151
return ret;
1152
}
1153
1154
static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1155
void __user *arg)
1156
{
1157
u64 new_size;
1158
u64 old_size;
1159
u64 devid = 1;
1160
struct btrfs_ioctl_vol_args *vol_args;
1161
struct btrfs_trans_handle *trans;
1162
struct btrfs_device *device = NULL;
1163
char *sizestr;
1164
char *devstr = NULL;
1165
int ret = 0;
1166
int mod = 0;
1167
1168
if (root->fs_info->sb->s_flags & MS_RDONLY)
1169
return -EROFS;
1170
1171
if (!capable(CAP_SYS_ADMIN))
1172
return -EPERM;
1173
1174
vol_args = memdup_user(arg, sizeof(*vol_args));
1175
if (IS_ERR(vol_args))
1176
return PTR_ERR(vol_args);
1177
1178
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1179
1180
mutex_lock(&root->fs_info->volume_mutex);
1181
sizestr = vol_args->name;
1182
devstr = strchr(sizestr, ':');
1183
if (devstr) {
1184
char *end;
1185
sizestr = devstr + 1;
1186
*devstr = '\0';
1187
devstr = vol_args->name;
1188
devid = simple_strtoull(devstr, &end, 10);
1189
printk(KERN_INFO "resizing devid %llu\n",
1190
(unsigned long long)devid);
1191
}
1192
device = btrfs_find_device(root, devid, NULL, NULL);
1193
if (!device) {
1194
printk(KERN_INFO "resizer unable to find device %llu\n",
1195
(unsigned long long)devid);
1196
ret = -EINVAL;
1197
goto out_unlock;
1198
}
1199
if (!strcmp(sizestr, "max"))
1200
new_size = device->bdev->bd_inode->i_size;
1201
else {
1202
if (sizestr[0] == '-') {
1203
mod = -1;
1204
sizestr++;
1205
} else if (sizestr[0] == '+') {
1206
mod = 1;
1207
sizestr++;
1208
}
1209
new_size = memparse(sizestr, NULL);
1210
if (new_size == 0) {
1211
ret = -EINVAL;
1212
goto out_unlock;
1213
}
1214
}
1215
1216
old_size = device->total_bytes;
1217
1218
if (mod < 0) {
1219
if (new_size > old_size) {
1220
ret = -EINVAL;
1221
goto out_unlock;
1222
}
1223
new_size = old_size - new_size;
1224
} else if (mod > 0) {
1225
new_size = old_size + new_size;
1226
}
1227
1228
if (new_size < 256 * 1024 * 1024) {
1229
ret = -EINVAL;
1230
goto out_unlock;
1231
}
1232
if (new_size > device->bdev->bd_inode->i_size) {
1233
ret = -EFBIG;
1234
goto out_unlock;
1235
}
1236
1237
do_div(new_size, root->sectorsize);
1238
new_size *= root->sectorsize;
1239
1240
printk(KERN_INFO "new size for %s is %llu\n",
1241
device->name, (unsigned long long)new_size);
1242
1243
if (new_size > old_size) {
1244
trans = btrfs_start_transaction(root, 0);
1245
if (IS_ERR(trans)) {
1246
ret = PTR_ERR(trans);
1247
goto out_unlock;
1248
}
1249
ret = btrfs_grow_device(trans, device, new_size);
1250
btrfs_commit_transaction(trans, root);
1251
} else {
1252
ret = btrfs_shrink_device(device, new_size);
1253
}
1254
1255
out_unlock:
1256
mutex_unlock(&root->fs_info->volume_mutex);
1257
kfree(vol_args);
1258
return ret;
1259
}
1260
1261
static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1262
char *name,
1263
unsigned long fd,
1264
int subvol,
1265
u64 *transid,
1266
bool readonly)
1267
{
1268
struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1269
struct file *src_file;
1270
int namelen;
1271
int ret = 0;
1272
1273
if (root->fs_info->sb->s_flags & MS_RDONLY)
1274
return -EROFS;
1275
1276
namelen = strlen(name);
1277
if (strchr(name, '/')) {
1278
ret = -EINVAL;
1279
goto out;
1280
}
1281
1282
if (subvol) {
1283
ret = btrfs_mksubvol(&file->f_path, name, namelen,
1284
NULL, transid, readonly);
1285
} else {
1286
struct inode *src_inode;
1287
src_file = fget(fd);
1288
if (!src_file) {
1289
ret = -EINVAL;
1290
goto out;
1291
}
1292
1293
src_inode = src_file->f_path.dentry->d_inode;
1294
if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1295
printk(KERN_INFO "btrfs: Snapshot src from "
1296
"another FS\n");
1297
ret = -EINVAL;
1298
fput(src_file);
1299
goto out;
1300
}
1301
ret = btrfs_mksubvol(&file->f_path, name, namelen,
1302
BTRFS_I(src_inode)->root,
1303
transid, readonly);
1304
fput(src_file);
1305
}
1306
out:
1307
return ret;
1308
}
1309
1310
static noinline int btrfs_ioctl_snap_create(struct file *file,
1311
void __user *arg, int subvol)
1312
{
1313
struct btrfs_ioctl_vol_args *vol_args;
1314
int ret;
1315
1316
vol_args = memdup_user(arg, sizeof(*vol_args));
1317
if (IS_ERR(vol_args))
1318
return PTR_ERR(vol_args);
1319
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1320
1321
ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1322
vol_args->fd, subvol,
1323
NULL, false);
1324
1325
kfree(vol_args);
1326
return ret;
1327
}
1328
1329
static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1330
void __user *arg, int subvol)
1331
{
1332
struct btrfs_ioctl_vol_args_v2 *vol_args;
1333
int ret;
1334
u64 transid = 0;
1335
u64 *ptr = NULL;
1336
bool readonly = false;
1337
1338
vol_args = memdup_user(arg, sizeof(*vol_args));
1339
if (IS_ERR(vol_args))
1340
return PTR_ERR(vol_args);
1341
vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1342
1343
if (vol_args->flags &
1344
~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1345
ret = -EOPNOTSUPP;
1346
goto out;
1347
}
1348
1349
if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1350
ptr = &transid;
1351
if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1352
readonly = true;
1353
1354
ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1355
vol_args->fd, subvol,
1356
ptr, readonly);
1357
1358
if (ret == 0 && ptr &&
1359
copy_to_user(arg +
1360
offsetof(struct btrfs_ioctl_vol_args_v2,
1361
transid), ptr, sizeof(*ptr)))
1362
ret = -EFAULT;
1363
out:
1364
kfree(vol_args);
1365
return ret;
1366
}
1367
1368
static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1369
void __user *arg)
1370
{
1371
struct inode *inode = fdentry(file)->d_inode;
1372
struct btrfs_root *root = BTRFS_I(inode)->root;
1373
int ret = 0;
1374
u64 flags = 0;
1375
1376
if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1377
return -EINVAL;
1378
1379
down_read(&root->fs_info->subvol_sem);
1380
if (btrfs_root_readonly(root))
1381
flags |= BTRFS_SUBVOL_RDONLY;
1382
up_read(&root->fs_info->subvol_sem);
1383
1384
if (copy_to_user(arg, &flags, sizeof(flags)))
1385
ret = -EFAULT;
1386
1387
return ret;
1388
}
1389
1390
static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1391
void __user *arg)
1392
{
1393
struct inode *inode = fdentry(file)->d_inode;
1394
struct btrfs_root *root = BTRFS_I(inode)->root;
1395
struct btrfs_trans_handle *trans;
1396
u64 root_flags;
1397
u64 flags;
1398
int ret = 0;
1399
1400
if (root->fs_info->sb->s_flags & MS_RDONLY)
1401
return -EROFS;
1402
1403
if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1404
return -EINVAL;
1405
1406
if (copy_from_user(&flags, arg, sizeof(flags)))
1407
return -EFAULT;
1408
1409
if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1410
return -EINVAL;
1411
1412
if (flags & ~BTRFS_SUBVOL_RDONLY)
1413
return -EOPNOTSUPP;
1414
1415
if (!inode_owner_or_capable(inode))
1416
return -EACCES;
1417
1418
down_write(&root->fs_info->subvol_sem);
1419
1420
/* nothing to do */
1421
if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1422
goto out;
1423
1424
root_flags = btrfs_root_flags(&root->root_item);
1425
if (flags & BTRFS_SUBVOL_RDONLY)
1426
btrfs_set_root_flags(&root->root_item,
1427
root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1428
else
1429
btrfs_set_root_flags(&root->root_item,
1430
root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1431
1432
trans = btrfs_start_transaction(root, 1);
1433
if (IS_ERR(trans)) {
1434
ret = PTR_ERR(trans);
1435
goto out_reset;
1436
}
1437
1438
ret = btrfs_update_root(trans, root->fs_info->tree_root,
1439
&root->root_key, &root->root_item);
1440
1441
btrfs_commit_transaction(trans, root);
1442
out_reset:
1443
if (ret)
1444
btrfs_set_root_flags(&root->root_item, root_flags);
1445
out:
1446
up_write(&root->fs_info->subvol_sem);
1447
return ret;
1448
}
1449
1450
/*
1451
* helper to check if the subvolume references other subvolumes
1452
*/
1453
static noinline int may_destroy_subvol(struct btrfs_root *root)
1454
{
1455
struct btrfs_path *path;
1456
struct btrfs_key key;
1457
int ret;
1458
1459
path = btrfs_alloc_path();
1460
if (!path)
1461
return -ENOMEM;
1462
1463
key.objectid = root->root_key.objectid;
1464
key.type = BTRFS_ROOT_REF_KEY;
1465
key.offset = (u64)-1;
1466
1467
ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1468
&key, path, 0, 0);
1469
if (ret < 0)
1470
goto out;
1471
BUG_ON(ret == 0);
1472
1473
ret = 0;
1474
if (path->slots[0] > 0) {
1475
path->slots[0]--;
1476
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1477
if (key.objectid == root->root_key.objectid &&
1478
key.type == BTRFS_ROOT_REF_KEY)
1479
ret = -ENOTEMPTY;
1480
}
1481
out:
1482
btrfs_free_path(path);
1483
return ret;
1484
}
1485
1486
static noinline int key_in_sk(struct btrfs_key *key,
1487
struct btrfs_ioctl_search_key *sk)
1488
{
1489
struct btrfs_key test;
1490
int ret;
1491
1492
test.objectid = sk->min_objectid;
1493
test.type = sk->min_type;
1494
test.offset = sk->min_offset;
1495
1496
ret = btrfs_comp_cpu_keys(key, &test);
1497
if (ret < 0)
1498
return 0;
1499
1500
test.objectid = sk->max_objectid;
1501
test.type = sk->max_type;
1502
test.offset = sk->max_offset;
1503
1504
ret = btrfs_comp_cpu_keys(key, &test);
1505
if (ret > 0)
1506
return 0;
1507
return 1;
1508
}
1509
1510
static noinline int copy_to_sk(struct btrfs_root *root,
1511
struct btrfs_path *path,
1512
struct btrfs_key *key,
1513
struct btrfs_ioctl_search_key *sk,
1514
char *buf,
1515
unsigned long *sk_offset,
1516
int *num_found)
1517
{
1518
u64 found_transid;
1519
struct extent_buffer *leaf;
1520
struct btrfs_ioctl_search_header sh;
1521
unsigned long item_off;
1522
unsigned long item_len;
1523
int nritems;
1524
int i;
1525
int slot;
1526
int ret = 0;
1527
1528
leaf = path->nodes[0];
1529
slot = path->slots[0];
1530
nritems = btrfs_header_nritems(leaf);
1531
1532
if (btrfs_header_generation(leaf) > sk->max_transid) {
1533
i = nritems;
1534
goto advance_key;
1535
}
1536
found_transid = btrfs_header_generation(leaf);
1537
1538
for (i = slot; i < nritems; i++) {
1539
item_off = btrfs_item_ptr_offset(leaf, i);
1540
item_len = btrfs_item_size_nr(leaf, i);
1541
1542
if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1543
item_len = 0;
1544
1545
if (sizeof(sh) + item_len + *sk_offset >
1546
BTRFS_SEARCH_ARGS_BUFSIZE) {
1547
ret = 1;
1548
goto overflow;
1549
}
1550
1551
btrfs_item_key_to_cpu(leaf, key, i);
1552
if (!key_in_sk(key, sk))
1553
continue;
1554
1555
sh.objectid = key->objectid;
1556
sh.offset = key->offset;
1557
sh.type = key->type;
1558
sh.len = item_len;
1559
sh.transid = found_transid;
1560
1561
/* copy search result header */
1562
memcpy(buf + *sk_offset, &sh, sizeof(sh));
1563
*sk_offset += sizeof(sh);
1564
1565
if (item_len) {
1566
char *p = buf + *sk_offset;
1567
/* copy the item */
1568
read_extent_buffer(leaf, p,
1569
item_off, item_len);
1570
*sk_offset += item_len;
1571
}
1572
(*num_found)++;
1573
1574
if (*num_found >= sk->nr_items)
1575
break;
1576
}
1577
advance_key:
1578
ret = 0;
1579
if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1580
key->offset++;
1581
else if (key->type < (u8)-1 && key->type < sk->max_type) {
1582
key->offset = 0;
1583
key->type++;
1584
} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1585
key->offset = 0;
1586
key->type = 0;
1587
key->objectid++;
1588
} else
1589
ret = 1;
1590
overflow:
1591
return ret;
1592
}
1593
1594
static noinline int search_ioctl(struct inode *inode,
1595
struct btrfs_ioctl_search_args *args)
1596
{
1597
struct btrfs_root *root;
1598
struct btrfs_key key;
1599
struct btrfs_key max_key;
1600
struct btrfs_path *path;
1601
struct btrfs_ioctl_search_key *sk = &args->key;
1602
struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1603
int ret;
1604
int num_found = 0;
1605
unsigned long sk_offset = 0;
1606
1607
path = btrfs_alloc_path();
1608
if (!path)
1609
return -ENOMEM;
1610
1611
if (sk->tree_id == 0) {
1612
/* search the root of the inode that was passed */
1613
root = BTRFS_I(inode)->root;
1614
} else {
1615
key.objectid = sk->tree_id;
1616
key.type = BTRFS_ROOT_ITEM_KEY;
1617
key.offset = (u64)-1;
1618
root = btrfs_read_fs_root_no_name(info, &key);
1619
if (IS_ERR(root)) {
1620
printk(KERN_ERR "could not find root %llu\n",
1621
sk->tree_id);
1622
btrfs_free_path(path);
1623
return -ENOENT;
1624
}
1625
}
1626
1627
key.objectid = sk->min_objectid;
1628
key.type = sk->min_type;
1629
key.offset = sk->min_offset;
1630
1631
max_key.objectid = sk->max_objectid;
1632
max_key.type = sk->max_type;
1633
max_key.offset = sk->max_offset;
1634
1635
path->keep_locks = 1;
1636
1637
while(1) {
1638
ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1639
sk->min_transid);
1640
if (ret != 0) {
1641
if (ret > 0)
1642
ret = 0;
1643
goto err;
1644
}
1645
ret = copy_to_sk(root, path, &key, sk, args->buf,
1646
&sk_offset, &num_found);
1647
btrfs_release_path(path);
1648
if (ret || num_found >= sk->nr_items)
1649
break;
1650
1651
}
1652
ret = 0;
1653
err:
1654
sk->nr_items = num_found;
1655
btrfs_free_path(path);
1656
return ret;
1657
}
1658
1659
static noinline int btrfs_ioctl_tree_search(struct file *file,
1660
void __user *argp)
1661
{
1662
struct btrfs_ioctl_search_args *args;
1663
struct inode *inode;
1664
int ret;
1665
1666
if (!capable(CAP_SYS_ADMIN))
1667
return -EPERM;
1668
1669
args = memdup_user(argp, sizeof(*args));
1670
if (IS_ERR(args))
1671
return PTR_ERR(args);
1672
1673
inode = fdentry(file)->d_inode;
1674
ret = search_ioctl(inode, args);
1675
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1676
ret = -EFAULT;
1677
kfree(args);
1678
return ret;
1679
}
1680
1681
/*
1682
* Search INODE_REFs to identify path name of 'dirid' directory
1683
* in a 'tree_id' tree. and sets path name to 'name'.
1684
*/
1685
static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1686
u64 tree_id, u64 dirid, char *name)
1687
{
1688
struct btrfs_root *root;
1689
struct btrfs_key key;
1690
char *ptr;
1691
int ret = -1;
1692
int slot;
1693
int len;
1694
int total_len = 0;
1695
struct btrfs_inode_ref *iref;
1696
struct extent_buffer *l;
1697
struct btrfs_path *path;
1698
1699
if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1700
name[0]='\0';
1701
return 0;
1702
}
1703
1704
path = btrfs_alloc_path();
1705
if (!path)
1706
return -ENOMEM;
1707
1708
ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1709
1710
key.objectid = tree_id;
1711
key.type = BTRFS_ROOT_ITEM_KEY;
1712
key.offset = (u64)-1;
1713
root = btrfs_read_fs_root_no_name(info, &key);
1714
if (IS_ERR(root)) {
1715
printk(KERN_ERR "could not find root %llu\n", tree_id);
1716
ret = -ENOENT;
1717
goto out;
1718
}
1719
1720
key.objectid = dirid;
1721
key.type = BTRFS_INODE_REF_KEY;
1722
key.offset = (u64)-1;
1723
1724
while(1) {
1725
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1726
if (ret < 0)
1727
goto out;
1728
1729
l = path->nodes[0];
1730
slot = path->slots[0];
1731
if (ret > 0 && slot > 0)
1732
slot--;
1733
btrfs_item_key_to_cpu(l, &key, slot);
1734
1735
if (ret > 0 && (key.objectid != dirid ||
1736
key.type != BTRFS_INODE_REF_KEY)) {
1737
ret = -ENOENT;
1738
goto out;
1739
}
1740
1741
iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1742
len = btrfs_inode_ref_name_len(l, iref);
1743
ptr -= len + 1;
1744
total_len += len + 1;
1745
if (ptr < name)
1746
goto out;
1747
1748
*(ptr + len) = '/';
1749
read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1750
1751
if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1752
break;
1753
1754
btrfs_release_path(path);
1755
key.objectid = key.offset;
1756
key.offset = (u64)-1;
1757
dirid = key.objectid;
1758
1759
}
1760
if (ptr < name)
1761
goto out;
1762
memcpy(name, ptr, total_len);
1763
name[total_len]='\0';
1764
ret = 0;
1765
out:
1766
btrfs_free_path(path);
1767
return ret;
1768
}
1769
1770
static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1771
void __user *argp)
1772
{
1773
struct btrfs_ioctl_ino_lookup_args *args;
1774
struct inode *inode;
1775
int ret;
1776
1777
if (!capable(CAP_SYS_ADMIN))
1778
return -EPERM;
1779
1780
args = memdup_user(argp, sizeof(*args));
1781
if (IS_ERR(args))
1782
return PTR_ERR(args);
1783
1784
inode = fdentry(file)->d_inode;
1785
1786
if (args->treeid == 0)
1787
args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1788
1789
ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1790
args->treeid, args->objectid,
1791
args->name);
1792
1793
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1794
ret = -EFAULT;
1795
1796
kfree(args);
1797
return ret;
1798
}
1799
1800
static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1801
void __user *arg)
1802
{
1803
struct dentry *parent = fdentry(file);
1804
struct dentry *dentry;
1805
struct inode *dir = parent->d_inode;
1806
struct inode *inode;
1807
struct btrfs_root *root = BTRFS_I(dir)->root;
1808
struct btrfs_root *dest = NULL;
1809
struct btrfs_ioctl_vol_args *vol_args;
1810
struct btrfs_trans_handle *trans;
1811
int namelen;
1812
int ret;
1813
int err = 0;
1814
1815
vol_args = memdup_user(arg, sizeof(*vol_args));
1816
if (IS_ERR(vol_args))
1817
return PTR_ERR(vol_args);
1818
1819
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1820
namelen = strlen(vol_args->name);
1821
if (strchr(vol_args->name, '/') ||
1822
strncmp(vol_args->name, "..", namelen) == 0) {
1823
err = -EINVAL;
1824
goto out;
1825
}
1826
1827
err = mnt_want_write(file->f_path.mnt);
1828
if (err)
1829
goto out;
1830
1831
mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1832
dentry = lookup_one_len(vol_args->name, parent, namelen);
1833
if (IS_ERR(dentry)) {
1834
err = PTR_ERR(dentry);
1835
goto out_unlock_dir;
1836
}
1837
1838
if (!dentry->d_inode) {
1839
err = -ENOENT;
1840
goto out_dput;
1841
}
1842
1843
inode = dentry->d_inode;
1844
dest = BTRFS_I(inode)->root;
1845
if (!capable(CAP_SYS_ADMIN)){
1846
/*
1847
* Regular user. Only allow this with a special mount
1848
* option, when the user has write+exec access to the
1849
* subvol root, and when rmdir(2) would have been
1850
* allowed.
1851
*
1852
* Note that this is _not_ check that the subvol is
1853
* empty or doesn't contain data that we wouldn't
1854
* otherwise be able to delete.
1855
*
1856
* Users who want to delete empty subvols should try
1857
* rmdir(2).
1858
*/
1859
err = -EPERM;
1860
if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1861
goto out_dput;
1862
1863
/*
1864
* Do not allow deletion if the parent dir is the same
1865
* as the dir to be deleted. That means the ioctl
1866
* must be called on the dentry referencing the root
1867
* of the subvol, not a random directory contained
1868
* within it.
1869
*/
1870
err = -EINVAL;
1871
if (root == dest)
1872
goto out_dput;
1873
1874
err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1875
if (err)
1876
goto out_dput;
1877
1878
/* check if subvolume may be deleted by a non-root user */
1879
err = btrfs_may_delete(dir, dentry, 1);
1880
if (err)
1881
goto out_dput;
1882
}
1883
1884
if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1885
err = -EINVAL;
1886
goto out_dput;
1887
}
1888
1889
mutex_lock(&inode->i_mutex);
1890
err = d_invalidate(dentry);
1891
if (err)
1892
goto out_unlock;
1893
1894
down_write(&root->fs_info->subvol_sem);
1895
1896
err = may_destroy_subvol(dest);
1897
if (err)
1898
goto out_up_write;
1899
1900
trans = btrfs_start_transaction(root, 0);
1901
if (IS_ERR(trans)) {
1902
err = PTR_ERR(trans);
1903
goto out_up_write;
1904
}
1905
trans->block_rsv = &root->fs_info->global_block_rsv;
1906
1907
ret = btrfs_unlink_subvol(trans, root, dir,
1908
dest->root_key.objectid,
1909
dentry->d_name.name,
1910
dentry->d_name.len);
1911
BUG_ON(ret);
1912
1913
btrfs_record_root_in_trans(trans, dest);
1914
1915
memset(&dest->root_item.drop_progress, 0,
1916
sizeof(dest->root_item.drop_progress));
1917
dest->root_item.drop_level = 0;
1918
btrfs_set_root_refs(&dest->root_item, 0);
1919
1920
if (!xchg(&dest->orphan_item_inserted, 1)) {
1921
ret = btrfs_insert_orphan_item(trans,
1922
root->fs_info->tree_root,
1923
dest->root_key.objectid);
1924
BUG_ON(ret);
1925
}
1926
1927
ret = btrfs_end_transaction(trans, root);
1928
BUG_ON(ret);
1929
inode->i_flags |= S_DEAD;
1930
out_up_write:
1931
up_write(&root->fs_info->subvol_sem);
1932
out_unlock:
1933
mutex_unlock(&inode->i_mutex);
1934
if (!err) {
1935
shrink_dcache_sb(root->fs_info->sb);
1936
btrfs_invalidate_inodes(dest);
1937
d_delete(dentry);
1938
}
1939
out_dput:
1940
dput(dentry);
1941
out_unlock_dir:
1942
mutex_unlock(&dir->i_mutex);
1943
mnt_drop_write(file->f_path.mnt);
1944
out:
1945
kfree(vol_args);
1946
return err;
1947
}
1948
1949
static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
1950
{
1951
struct inode *inode = fdentry(file)->d_inode;
1952
struct btrfs_root *root = BTRFS_I(inode)->root;
1953
struct btrfs_ioctl_defrag_range_args *range;
1954
int ret;
1955
1956
if (btrfs_root_readonly(root))
1957
return -EROFS;
1958
1959
ret = mnt_want_write(file->f_path.mnt);
1960
if (ret)
1961
return ret;
1962
1963
switch (inode->i_mode & S_IFMT) {
1964
case S_IFDIR:
1965
if (!capable(CAP_SYS_ADMIN)) {
1966
ret = -EPERM;
1967
goto out;
1968
}
1969
ret = btrfs_defrag_root(root, 0);
1970
if (ret)
1971
goto out;
1972
ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
1973
break;
1974
case S_IFREG:
1975
if (!(file->f_mode & FMODE_WRITE)) {
1976
ret = -EINVAL;
1977
goto out;
1978
}
1979
1980
range = kzalloc(sizeof(*range), GFP_KERNEL);
1981
if (!range) {
1982
ret = -ENOMEM;
1983
goto out;
1984
}
1985
1986
if (argp) {
1987
if (copy_from_user(range, argp,
1988
sizeof(*range))) {
1989
ret = -EFAULT;
1990
kfree(range);
1991
goto out;
1992
}
1993
/* compression requires us to start the IO */
1994
if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1995
range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
1996
range->extent_thresh = (u32)-1;
1997
}
1998
} else {
1999
/* the rest are all set to zero by kzalloc */
2000
range->len = (u64)-1;
2001
}
2002
ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2003
range, 0, 0);
2004
if (ret > 0)
2005
ret = 0;
2006
kfree(range);
2007
break;
2008
default:
2009
ret = -EINVAL;
2010
}
2011
out:
2012
mnt_drop_write(file->f_path.mnt);
2013
return ret;
2014
}
2015
2016
static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2017
{
2018
struct btrfs_ioctl_vol_args *vol_args;
2019
int ret;
2020
2021
if (!capable(CAP_SYS_ADMIN))
2022
return -EPERM;
2023
2024
vol_args = memdup_user(arg, sizeof(*vol_args));
2025
if (IS_ERR(vol_args))
2026
return PTR_ERR(vol_args);
2027
2028
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2029
ret = btrfs_init_new_device(root, vol_args->name);
2030
2031
kfree(vol_args);
2032
return ret;
2033
}
2034
2035
static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2036
{
2037
struct btrfs_ioctl_vol_args *vol_args;
2038
int ret;
2039
2040
if (!capable(CAP_SYS_ADMIN))
2041
return -EPERM;
2042
2043
if (root->fs_info->sb->s_flags & MS_RDONLY)
2044
return -EROFS;
2045
2046
vol_args = memdup_user(arg, sizeof(*vol_args));
2047
if (IS_ERR(vol_args))
2048
return PTR_ERR(vol_args);
2049
2050
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2051
ret = btrfs_rm_device(root, vol_args->name);
2052
2053
kfree(vol_args);
2054
return ret;
2055
}
2056
2057
static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2058
{
2059
struct btrfs_ioctl_fs_info_args *fi_args;
2060
struct btrfs_device *device;
2061
struct btrfs_device *next;
2062
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2063
int ret = 0;
2064
2065
if (!capable(CAP_SYS_ADMIN))
2066
return -EPERM;
2067
2068
fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2069
if (!fi_args)
2070
return -ENOMEM;
2071
2072
fi_args->num_devices = fs_devices->num_devices;
2073
memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2074
2075
mutex_lock(&fs_devices->device_list_mutex);
2076
list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2077
if (device->devid > fi_args->max_id)
2078
fi_args->max_id = device->devid;
2079
}
2080
mutex_unlock(&fs_devices->device_list_mutex);
2081
2082
if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2083
ret = -EFAULT;
2084
2085
kfree(fi_args);
2086
return ret;
2087
}
2088
2089
static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2090
{
2091
struct btrfs_ioctl_dev_info_args *di_args;
2092
struct btrfs_device *dev;
2093
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2094
int ret = 0;
2095
char *s_uuid = NULL;
2096
char empty_uuid[BTRFS_UUID_SIZE] = {0};
2097
2098
if (!capable(CAP_SYS_ADMIN))
2099
return -EPERM;
2100
2101
di_args = memdup_user(arg, sizeof(*di_args));
2102
if (IS_ERR(di_args))
2103
return PTR_ERR(di_args);
2104
2105
if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2106
s_uuid = di_args->uuid;
2107
2108
mutex_lock(&fs_devices->device_list_mutex);
2109
dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2110
mutex_unlock(&fs_devices->device_list_mutex);
2111
2112
if (!dev) {
2113
ret = -ENODEV;
2114
goto out;
2115
}
2116
2117
di_args->devid = dev->devid;
2118
di_args->bytes_used = dev->bytes_used;
2119
di_args->total_bytes = dev->total_bytes;
2120
memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2121
strncpy(di_args->path, dev->name, sizeof(di_args->path));
2122
2123
out:
2124
if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2125
ret = -EFAULT;
2126
2127
kfree(di_args);
2128
return ret;
2129
}
2130
2131
static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2132
u64 off, u64 olen, u64 destoff)
2133
{
2134
struct inode *inode = fdentry(file)->d_inode;
2135
struct btrfs_root *root = BTRFS_I(inode)->root;
2136
struct file *src_file;
2137
struct inode *src;
2138
struct btrfs_trans_handle *trans;
2139
struct btrfs_path *path;
2140
struct extent_buffer *leaf;
2141
char *buf;
2142
struct btrfs_key key;
2143
u32 nritems;
2144
int slot;
2145
int ret;
2146
u64 len = olen;
2147
u64 bs = root->fs_info->sb->s_blocksize;
2148
u64 hint_byte;
2149
2150
/*
2151
* TODO:
2152
* - split compressed inline extents. annoying: we need to
2153
* decompress into destination's address_space (the file offset
2154
* may change, so source mapping won't do), then recompress (or
2155
* otherwise reinsert) a subrange.
2156
* - allow ranges within the same file to be cloned (provided
2157
* they don't overlap)?
2158
*/
2159
2160
/* the destination must be opened for writing */
2161
if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2162
return -EINVAL;
2163
2164
if (btrfs_root_readonly(root))
2165
return -EROFS;
2166
2167
ret = mnt_want_write(file->f_path.mnt);
2168
if (ret)
2169
return ret;
2170
2171
src_file = fget(srcfd);
2172
if (!src_file) {
2173
ret = -EBADF;
2174
goto out_drop_write;
2175
}
2176
2177
src = src_file->f_dentry->d_inode;
2178
2179
ret = -EINVAL;
2180
if (src == inode)
2181
goto out_fput;
2182
2183
/* the src must be open for reading */
2184
if (!(src_file->f_mode & FMODE_READ))
2185
goto out_fput;
2186
2187
ret = -EISDIR;
2188
if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2189
goto out_fput;
2190
2191
ret = -EXDEV;
2192
if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2193
goto out_fput;
2194
2195
ret = -ENOMEM;
2196
buf = vmalloc(btrfs_level_size(root, 0));
2197
if (!buf)
2198
goto out_fput;
2199
2200
path = btrfs_alloc_path();
2201
if (!path) {
2202
vfree(buf);
2203
goto out_fput;
2204
}
2205
path->reada = 2;
2206
2207
if (inode < src) {
2208
mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2209
mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2210
} else {
2211
mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2212
mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2213
}
2214
2215
/* determine range to clone */
2216
ret = -EINVAL;
2217
if (off + len > src->i_size || off + len < off)
2218
goto out_unlock;
2219
if (len == 0)
2220
olen = len = src->i_size - off;
2221
/* if we extend to eof, continue to block boundary */
2222
if (off + len == src->i_size)
2223
len = ALIGN(src->i_size, bs) - off;
2224
2225
/* verify the end result is block aligned */
2226
if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2227
!IS_ALIGNED(destoff, bs))
2228
goto out_unlock;
2229
2230
/* do any pending delalloc/csum calc on src, one way or
2231
another, and lock file content */
2232
while (1) {
2233
struct btrfs_ordered_extent *ordered;
2234
lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2235
ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2236
if (!ordered &&
2237
!test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2238
EXTENT_DELALLOC, 0, NULL))
2239
break;
2240
unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2241
if (ordered)
2242
btrfs_put_ordered_extent(ordered);
2243
btrfs_wait_ordered_range(src, off, len);
2244
}
2245
2246
/* clone data */
2247
key.objectid = btrfs_ino(src);
2248
key.type = BTRFS_EXTENT_DATA_KEY;
2249
key.offset = 0;
2250
2251
while (1) {
2252
/*
2253
* note the key will change type as we walk through the
2254
* tree.
2255
*/
2256
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2257
if (ret < 0)
2258
goto out;
2259
2260
nritems = btrfs_header_nritems(path->nodes[0]);
2261
if (path->slots[0] >= nritems) {
2262
ret = btrfs_next_leaf(root, path);
2263
if (ret < 0)
2264
goto out;
2265
if (ret > 0)
2266
break;
2267
nritems = btrfs_header_nritems(path->nodes[0]);
2268
}
2269
leaf = path->nodes[0];
2270
slot = path->slots[0];
2271
2272
btrfs_item_key_to_cpu(leaf, &key, slot);
2273
if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2274
key.objectid != btrfs_ino(src))
2275
break;
2276
2277
if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2278
struct btrfs_file_extent_item *extent;
2279
int type;
2280
u32 size;
2281
struct btrfs_key new_key;
2282
u64 disko = 0, diskl = 0;
2283
u64 datao = 0, datal = 0;
2284
u8 comp;
2285
u64 endoff;
2286
2287
size = btrfs_item_size_nr(leaf, slot);
2288
read_extent_buffer(leaf, buf,
2289
btrfs_item_ptr_offset(leaf, slot),
2290
size);
2291
2292
extent = btrfs_item_ptr(leaf, slot,
2293
struct btrfs_file_extent_item);
2294
comp = btrfs_file_extent_compression(leaf, extent);
2295
type = btrfs_file_extent_type(leaf, extent);
2296
if (type == BTRFS_FILE_EXTENT_REG ||
2297
type == BTRFS_FILE_EXTENT_PREALLOC) {
2298
disko = btrfs_file_extent_disk_bytenr(leaf,
2299
extent);
2300
diskl = btrfs_file_extent_disk_num_bytes(leaf,
2301
extent);
2302
datao = btrfs_file_extent_offset(leaf, extent);
2303
datal = btrfs_file_extent_num_bytes(leaf,
2304
extent);
2305
} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2306
/* take upper bound, may be compressed */
2307
datal = btrfs_file_extent_ram_bytes(leaf,
2308
extent);
2309
}
2310
btrfs_release_path(path);
2311
2312
if (key.offset + datal <= off ||
2313
key.offset >= off+len)
2314
goto next;
2315
2316
memcpy(&new_key, &key, sizeof(new_key));
2317
new_key.objectid = btrfs_ino(inode);
2318
if (off <= key.offset)
2319
new_key.offset = key.offset + destoff - off;
2320
else
2321
new_key.offset = destoff;
2322
2323
trans = btrfs_start_transaction(root, 1);
2324
if (IS_ERR(trans)) {
2325
ret = PTR_ERR(trans);
2326
goto out;
2327
}
2328
2329
if (type == BTRFS_FILE_EXTENT_REG ||
2330
type == BTRFS_FILE_EXTENT_PREALLOC) {
2331
if (off > key.offset) {
2332
datao += off - key.offset;
2333
datal -= off - key.offset;
2334
}
2335
2336
if (key.offset + datal > off + len)
2337
datal = off + len - key.offset;
2338
2339
ret = btrfs_drop_extents(trans, inode,
2340
new_key.offset,
2341
new_key.offset + datal,
2342
&hint_byte, 1);
2343
BUG_ON(ret);
2344
2345
ret = btrfs_insert_empty_item(trans, root, path,
2346
&new_key, size);
2347
BUG_ON(ret);
2348
2349
leaf = path->nodes[0];
2350
slot = path->slots[0];
2351
write_extent_buffer(leaf, buf,
2352
btrfs_item_ptr_offset(leaf, slot),
2353
size);
2354
2355
extent = btrfs_item_ptr(leaf, slot,
2356
struct btrfs_file_extent_item);
2357
2358
/* disko == 0 means it's a hole */
2359
if (!disko)
2360
datao = 0;
2361
2362
btrfs_set_file_extent_offset(leaf, extent,
2363
datao);
2364
btrfs_set_file_extent_num_bytes(leaf, extent,
2365
datal);
2366
if (disko) {
2367
inode_add_bytes(inode, datal);
2368
ret = btrfs_inc_extent_ref(trans, root,
2369
disko, diskl, 0,
2370
root->root_key.objectid,
2371
btrfs_ino(inode),
2372
new_key.offset - datao);
2373
BUG_ON(ret);
2374
}
2375
} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2376
u64 skip = 0;
2377
u64 trim = 0;
2378
if (off > key.offset) {
2379
skip = off - key.offset;
2380
new_key.offset += skip;
2381
}
2382
2383
if (key.offset + datal > off+len)
2384
trim = key.offset + datal - (off+len);
2385
2386
if (comp && (skip || trim)) {
2387
ret = -EINVAL;
2388
btrfs_end_transaction(trans, root);
2389
goto out;
2390
}
2391
size -= skip + trim;
2392
datal -= skip + trim;
2393
2394
ret = btrfs_drop_extents(trans, inode,
2395
new_key.offset,
2396
new_key.offset + datal,
2397
&hint_byte, 1);
2398
BUG_ON(ret);
2399
2400
ret = btrfs_insert_empty_item(trans, root, path,
2401
&new_key, size);
2402
BUG_ON(ret);
2403
2404
if (skip) {
2405
u32 start =
2406
btrfs_file_extent_calc_inline_size(0);
2407
memmove(buf+start, buf+start+skip,
2408
datal);
2409
}
2410
2411
leaf = path->nodes[0];
2412
slot = path->slots[0];
2413
write_extent_buffer(leaf, buf,
2414
btrfs_item_ptr_offset(leaf, slot),
2415
size);
2416
inode_add_bytes(inode, datal);
2417
}
2418
2419
btrfs_mark_buffer_dirty(leaf);
2420
btrfs_release_path(path);
2421
2422
inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2423
2424
/*
2425
* we round up to the block size at eof when
2426
* determining which extents to clone above,
2427
* but shouldn't round up the file size
2428
*/
2429
endoff = new_key.offset + datal;
2430
if (endoff > destoff+olen)
2431
endoff = destoff+olen;
2432
if (endoff > inode->i_size)
2433
btrfs_i_size_write(inode, endoff);
2434
2435
BTRFS_I(inode)->flags = BTRFS_I(src)->flags;
2436
ret = btrfs_update_inode(trans, root, inode);
2437
BUG_ON(ret);
2438
btrfs_end_transaction(trans, root);
2439
}
2440
next:
2441
btrfs_release_path(path);
2442
key.offset++;
2443
}
2444
ret = 0;
2445
out:
2446
btrfs_release_path(path);
2447
unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2448
out_unlock:
2449
mutex_unlock(&src->i_mutex);
2450
mutex_unlock(&inode->i_mutex);
2451
vfree(buf);
2452
btrfs_free_path(path);
2453
out_fput:
2454
fput(src_file);
2455
out_drop_write:
2456
mnt_drop_write(file->f_path.mnt);
2457
return ret;
2458
}
2459
2460
static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2461
{
2462
struct btrfs_ioctl_clone_range_args args;
2463
2464
if (copy_from_user(&args, argp, sizeof(args)))
2465
return -EFAULT;
2466
return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2467
args.src_length, args.dest_offset);
2468
}
2469
2470
/*
2471
* there are many ways the trans_start and trans_end ioctls can lead
2472
* to deadlocks. They should only be used by applications that
2473
* basically own the machine, and have a very in depth understanding
2474
* of all the possible deadlocks and enospc problems.
2475
*/
2476
static long btrfs_ioctl_trans_start(struct file *file)
2477
{
2478
struct inode *inode = fdentry(file)->d_inode;
2479
struct btrfs_root *root = BTRFS_I(inode)->root;
2480
struct btrfs_trans_handle *trans;
2481
int ret;
2482
2483
ret = -EPERM;
2484
if (!capable(CAP_SYS_ADMIN))
2485
goto out;
2486
2487
ret = -EINPROGRESS;
2488
if (file->private_data)
2489
goto out;
2490
2491
ret = -EROFS;
2492
if (btrfs_root_readonly(root))
2493
goto out;
2494
2495
ret = mnt_want_write(file->f_path.mnt);
2496
if (ret)
2497
goto out;
2498
2499
atomic_inc(&root->fs_info->open_ioctl_trans);
2500
2501
ret = -ENOMEM;
2502
trans = btrfs_start_ioctl_transaction(root);
2503
if (IS_ERR(trans))
2504
goto out_drop;
2505
2506
file->private_data = trans;
2507
return 0;
2508
2509
out_drop:
2510
atomic_dec(&root->fs_info->open_ioctl_trans);
2511
mnt_drop_write(file->f_path.mnt);
2512
out:
2513
return ret;
2514
}
2515
2516
static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2517
{
2518
struct inode *inode = fdentry(file)->d_inode;
2519
struct btrfs_root *root = BTRFS_I(inode)->root;
2520
struct btrfs_root *new_root;
2521
struct btrfs_dir_item *di;
2522
struct btrfs_trans_handle *trans;
2523
struct btrfs_path *path;
2524
struct btrfs_key location;
2525
struct btrfs_disk_key disk_key;
2526
struct btrfs_super_block *disk_super;
2527
u64 features;
2528
u64 objectid = 0;
2529
u64 dir_id;
2530
2531
if (!capable(CAP_SYS_ADMIN))
2532
return -EPERM;
2533
2534
if (copy_from_user(&objectid, argp, sizeof(objectid)))
2535
return -EFAULT;
2536
2537
if (!objectid)
2538
objectid = root->root_key.objectid;
2539
2540
location.objectid = objectid;
2541
location.type = BTRFS_ROOT_ITEM_KEY;
2542
location.offset = (u64)-1;
2543
2544
new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2545
if (IS_ERR(new_root))
2546
return PTR_ERR(new_root);
2547
2548
if (btrfs_root_refs(&new_root->root_item) == 0)
2549
return -ENOENT;
2550
2551
path = btrfs_alloc_path();
2552
if (!path)
2553
return -ENOMEM;
2554
path->leave_spinning = 1;
2555
2556
trans = btrfs_start_transaction(root, 1);
2557
if (IS_ERR(trans)) {
2558
btrfs_free_path(path);
2559
return PTR_ERR(trans);
2560
}
2561
2562
dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
2563
di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2564
dir_id, "default", 7, 1);
2565
if (IS_ERR_OR_NULL(di)) {
2566
btrfs_free_path(path);
2567
btrfs_end_transaction(trans, root);
2568
printk(KERN_ERR "Umm, you don't have the default dir item, "
2569
"this isn't going to work\n");
2570
return -ENOENT;
2571
}
2572
2573
btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2574
btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2575
btrfs_mark_buffer_dirty(path->nodes[0]);
2576
btrfs_free_path(path);
2577
2578
disk_super = &root->fs_info->super_copy;
2579
features = btrfs_super_incompat_flags(disk_super);
2580
if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2581
features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2582
btrfs_set_super_incompat_flags(disk_super, features);
2583
}
2584
btrfs_end_transaction(trans, root);
2585
2586
return 0;
2587
}
2588
2589
static void get_block_group_info(struct list_head *groups_list,
2590
struct btrfs_ioctl_space_info *space)
2591
{
2592
struct btrfs_block_group_cache *block_group;
2593
2594
space->total_bytes = 0;
2595
space->used_bytes = 0;
2596
space->flags = 0;
2597
list_for_each_entry(block_group, groups_list, list) {
2598
space->flags = block_group->flags;
2599
space->total_bytes += block_group->key.offset;
2600
space->used_bytes +=
2601
btrfs_block_group_used(&block_group->item);
2602
}
2603
}
2604
2605
long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2606
{
2607
struct btrfs_ioctl_space_args space_args;
2608
struct btrfs_ioctl_space_info space;
2609
struct btrfs_ioctl_space_info *dest;
2610
struct btrfs_ioctl_space_info *dest_orig;
2611
struct btrfs_ioctl_space_info __user *user_dest;
2612
struct btrfs_space_info *info;
2613
u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2614
BTRFS_BLOCK_GROUP_SYSTEM,
2615
BTRFS_BLOCK_GROUP_METADATA,
2616
BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2617
int num_types = 4;
2618
int alloc_size;
2619
int ret = 0;
2620
u64 slot_count = 0;
2621
int i, c;
2622
2623
if (copy_from_user(&space_args,
2624
(struct btrfs_ioctl_space_args __user *)arg,
2625
sizeof(space_args)))
2626
return -EFAULT;
2627
2628
for (i = 0; i < num_types; i++) {
2629
struct btrfs_space_info *tmp;
2630
2631
info = NULL;
2632
rcu_read_lock();
2633
list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2634
list) {
2635
if (tmp->flags == types[i]) {
2636
info = tmp;
2637
break;
2638
}
2639
}
2640
rcu_read_unlock();
2641
2642
if (!info)
2643
continue;
2644
2645
down_read(&info->groups_sem);
2646
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2647
if (!list_empty(&info->block_groups[c]))
2648
slot_count++;
2649
}
2650
up_read(&info->groups_sem);
2651
}
2652
2653
/* space_slots == 0 means they are asking for a count */
2654
if (space_args.space_slots == 0) {
2655
space_args.total_spaces = slot_count;
2656
goto out;
2657
}
2658
2659
slot_count = min_t(u64, space_args.space_slots, slot_count);
2660
2661
alloc_size = sizeof(*dest) * slot_count;
2662
2663
/* we generally have at most 6 or so space infos, one for each raid
2664
* level. So, a whole page should be more than enough for everyone
2665
*/
2666
if (alloc_size > PAGE_CACHE_SIZE)
2667
return -ENOMEM;
2668
2669
space_args.total_spaces = 0;
2670
dest = kmalloc(alloc_size, GFP_NOFS);
2671
if (!dest)
2672
return -ENOMEM;
2673
dest_orig = dest;
2674
2675
/* now we have a buffer to copy into */
2676
for (i = 0; i < num_types; i++) {
2677
struct btrfs_space_info *tmp;
2678
2679
if (!slot_count)
2680
break;
2681
2682
info = NULL;
2683
rcu_read_lock();
2684
list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2685
list) {
2686
if (tmp->flags == types[i]) {
2687
info = tmp;
2688
break;
2689
}
2690
}
2691
rcu_read_unlock();
2692
2693
if (!info)
2694
continue;
2695
down_read(&info->groups_sem);
2696
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2697
if (!list_empty(&info->block_groups[c])) {
2698
get_block_group_info(&info->block_groups[c],
2699
&space);
2700
memcpy(dest, &space, sizeof(space));
2701
dest++;
2702
space_args.total_spaces++;
2703
slot_count--;
2704
}
2705
if (!slot_count)
2706
break;
2707
}
2708
up_read(&info->groups_sem);
2709
}
2710
2711
user_dest = (struct btrfs_ioctl_space_info *)
2712
(arg + sizeof(struct btrfs_ioctl_space_args));
2713
2714
if (copy_to_user(user_dest, dest_orig, alloc_size))
2715
ret = -EFAULT;
2716
2717
kfree(dest_orig);
2718
out:
2719
if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2720
ret = -EFAULT;
2721
2722
return ret;
2723
}
2724
2725
/*
2726
* there are many ways the trans_start and trans_end ioctls can lead
2727
* to deadlocks. They should only be used by applications that
2728
* basically own the machine, and have a very in depth understanding
2729
* of all the possible deadlocks and enospc problems.
2730
*/
2731
long btrfs_ioctl_trans_end(struct file *file)
2732
{
2733
struct inode *inode = fdentry(file)->d_inode;
2734
struct btrfs_root *root = BTRFS_I(inode)->root;
2735
struct btrfs_trans_handle *trans;
2736
2737
trans = file->private_data;
2738
if (!trans)
2739
return -EINVAL;
2740
file->private_data = NULL;
2741
2742
btrfs_end_transaction(trans, root);
2743
2744
atomic_dec(&root->fs_info->open_ioctl_trans);
2745
2746
mnt_drop_write(file->f_path.mnt);
2747
return 0;
2748
}
2749
2750
static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2751
{
2752
struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2753
struct btrfs_trans_handle *trans;
2754
u64 transid;
2755
int ret;
2756
2757
trans = btrfs_start_transaction(root, 0);
2758
if (IS_ERR(trans))
2759
return PTR_ERR(trans);
2760
transid = trans->transid;
2761
ret = btrfs_commit_transaction_async(trans, root, 0);
2762
if (ret) {
2763
btrfs_end_transaction(trans, root);
2764
return ret;
2765
}
2766
2767
if (argp)
2768
if (copy_to_user(argp, &transid, sizeof(transid)))
2769
return -EFAULT;
2770
return 0;
2771
}
2772
2773
static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
2774
{
2775
struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2776
u64 transid;
2777
2778
if (argp) {
2779
if (copy_from_user(&transid, argp, sizeof(transid)))
2780
return -EFAULT;
2781
} else {
2782
transid = 0; /* current trans */
2783
}
2784
return btrfs_wait_for_commit(root, transid);
2785
}
2786
2787
static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
2788
{
2789
int ret;
2790
struct btrfs_ioctl_scrub_args *sa;
2791
2792
if (!capable(CAP_SYS_ADMIN))
2793
return -EPERM;
2794
2795
sa = memdup_user(arg, sizeof(*sa));
2796
if (IS_ERR(sa))
2797
return PTR_ERR(sa);
2798
2799
ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
2800
&sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
2801
2802
if (copy_to_user(arg, sa, sizeof(*sa)))
2803
ret = -EFAULT;
2804
2805
kfree(sa);
2806
return ret;
2807
}
2808
2809
static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
2810
{
2811
if (!capable(CAP_SYS_ADMIN))
2812
return -EPERM;
2813
2814
return btrfs_scrub_cancel(root);
2815
}
2816
2817
static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
2818
void __user *arg)
2819
{
2820
struct btrfs_ioctl_scrub_args *sa;
2821
int ret;
2822
2823
if (!capable(CAP_SYS_ADMIN))
2824
return -EPERM;
2825
2826
sa = memdup_user(arg, sizeof(*sa));
2827
if (IS_ERR(sa))
2828
return PTR_ERR(sa);
2829
2830
ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
2831
2832
if (copy_to_user(arg, sa, sizeof(*sa)))
2833
ret = -EFAULT;
2834
2835
kfree(sa);
2836
return ret;
2837
}
2838
2839
long btrfs_ioctl(struct file *file, unsigned int
2840
cmd, unsigned long arg)
2841
{
2842
struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
2843
void __user *argp = (void __user *)arg;
2844
2845
switch (cmd) {
2846
case FS_IOC_GETFLAGS:
2847
return btrfs_ioctl_getflags(file, argp);
2848
case FS_IOC_SETFLAGS:
2849
return btrfs_ioctl_setflags(file, argp);
2850
case FS_IOC_GETVERSION:
2851
return btrfs_ioctl_getversion(file, argp);
2852
case FITRIM:
2853
return btrfs_ioctl_fitrim(file, argp);
2854
case BTRFS_IOC_SNAP_CREATE:
2855
return btrfs_ioctl_snap_create(file, argp, 0);
2856
case BTRFS_IOC_SNAP_CREATE_V2:
2857
return btrfs_ioctl_snap_create_v2(file, argp, 0);
2858
case BTRFS_IOC_SUBVOL_CREATE:
2859
return btrfs_ioctl_snap_create(file, argp, 1);
2860
case BTRFS_IOC_SNAP_DESTROY:
2861
return btrfs_ioctl_snap_destroy(file, argp);
2862
case BTRFS_IOC_SUBVOL_GETFLAGS:
2863
return btrfs_ioctl_subvol_getflags(file, argp);
2864
case BTRFS_IOC_SUBVOL_SETFLAGS:
2865
return btrfs_ioctl_subvol_setflags(file, argp);
2866
case BTRFS_IOC_DEFAULT_SUBVOL:
2867
return btrfs_ioctl_default_subvol(file, argp);
2868
case BTRFS_IOC_DEFRAG:
2869
return btrfs_ioctl_defrag(file, NULL);
2870
case BTRFS_IOC_DEFRAG_RANGE:
2871
return btrfs_ioctl_defrag(file, argp);
2872
case BTRFS_IOC_RESIZE:
2873
return btrfs_ioctl_resize(root, argp);
2874
case BTRFS_IOC_ADD_DEV:
2875
return btrfs_ioctl_add_dev(root, argp);
2876
case BTRFS_IOC_RM_DEV:
2877
return btrfs_ioctl_rm_dev(root, argp);
2878
case BTRFS_IOC_FS_INFO:
2879
return btrfs_ioctl_fs_info(root, argp);
2880
case BTRFS_IOC_DEV_INFO:
2881
return btrfs_ioctl_dev_info(root, argp);
2882
case BTRFS_IOC_BALANCE:
2883
return btrfs_balance(root->fs_info->dev_root);
2884
case BTRFS_IOC_CLONE:
2885
return btrfs_ioctl_clone(file, arg, 0, 0, 0);
2886
case BTRFS_IOC_CLONE_RANGE:
2887
return btrfs_ioctl_clone_range(file, argp);
2888
case BTRFS_IOC_TRANS_START:
2889
return btrfs_ioctl_trans_start(file);
2890
case BTRFS_IOC_TRANS_END:
2891
return btrfs_ioctl_trans_end(file);
2892
case BTRFS_IOC_TREE_SEARCH:
2893
return btrfs_ioctl_tree_search(file, argp);
2894
case BTRFS_IOC_INO_LOOKUP:
2895
return btrfs_ioctl_ino_lookup(file, argp);
2896
case BTRFS_IOC_SPACE_INFO:
2897
return btrfs_ioctl_space_info(root, argp);
2898
case BTRFS_IOC_SYNC:
2899
btrfs_sync_fs(file->f_dentry->d_sb, 1);
2900
return 0;
2901
case BTRFS_IOC_START_SYNC:
2902
return btrfs_ioctl_start_sync(file, argp);
2903
case BTRFS_IOC_WAIT_SYNC:
2904
return btrfs_ioctl_wait_sync(file, argp);
2905
case BTRFS_IOC_SCRUB:
2906
return btrfs_ioctl_scrub(root, argp);
2907
case BTRFS_IOC_SCRUB_CANCEL:
2908
return btrfs_ioctl_scrub_cancel(root, argp);
2909
case BTRFS_IOC_SCRUB_PROGRESS:
2910
return btrfs_ioctl_scrub_progress(root, argp);
2911
}
2912
2913
return -ENOTTY;
2914
}
2915
2916