Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/cifs/cifsencrypt.c
15111 views
1
/*
2
* fs/cifs/cifsencrypt.c
3
*
4
* Copyright (C) International Business Machines Corp., 2005,2006
5
* Author(s): Steve French ([email protected])
6
*
7
* This library is free software; you can redistribute it and/or modify
8
* it under the terms of the GNU Lesser General Public License as published
9
* by the Free Software Foundation; either version 2.1 of the License, or
10
* (at your option) any later version.
11
*
12
* This library is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
15
* the GNU Lesser General Public License for more details.
16
*
17
* You should have received a copy of the GNU Lesser General Public License
18
* along with this library; if not, write to the Free Software
19
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20
*/
21
22
#include <linux/fs.h>
23
#include <linux/slab.h>
24
#include "cifspdu.h"
25
#include "cifsglob.h"
26
#include "cifs_debug.h"
27
#include "cifs_unicode.h"
28
#include "cifsproto.h"
29
#include "ntlmssp.h"
30
#include <linux/ctype.h>
31
#include <linux/random.h>
32
33
/*
34
* Calculate and return the CIFS signature based on the mac key and SMB PDU.
35
* The 16 byte signature must be allocated by the caller. Note we only use the
36
* 1st eight bytes and that the smb header signature field on input contains
37
* the sequence number before this function is called. Also, this function
38
* should be called with the server->srv_mutex held.
39
*/
40
static int cifs_calculate_signature(const struct smb_hdr *cifs_pdu,
41
struct TCP_Server_Info *server, char *signature)
42
{
43
int rc;
44
45
if (cifs_pdu == NULL || signature == NULL || server == NULL)
46
return -EINVAL;
47
48
if (!server->secmech.sdescmd5) {
49
cERROR(1, "%s: Can't generate signature\n", __func__);
50
return -1;
51
}
52
53
rc = crypto_shash_init(&server->secmech.sdescmd5->shash);
54
if (rc) {
55
cERROR(1, "%s: Oould not init md5\n", __func__);
56
return rc;
57
}
58
59
crypto_shash_update(&server->secmech.sdescmd5->shash,
60
server->session_key.response, server->session_key.len);
61
62
crypto_shash_update(&server->secmech.sdescmd5->shash,
63
cifs_pdu->Protocol, be32_to_cpu(cifs_pdu->smb_buf_length));
64
65
rc = crypto_shash_final(&server->secmech.sdescmd5->shash, signature);
66
67
return 0;
68
}
69
70
/* must be called with server->srv_mutex held */
71
int cifs_sign_smb(struct smb_hdr *cifs_pdu, struct TCP_Server_Info *server,
72
__u32 *pexpected_response_sequence_number)
73
{
74
int rc = 0;
75
char smb_signature[20];
76
77
if ((cifs_pdu == NULL) || (server == NULL))
78
return -EINVAL;
79
80
if ((cifs_pdu->Flags2 & SMBFLG2_SECURITY_SIGNATURE) == 0)
81
return rc;
82
83
cifs_pdu->Signature.Sequence.SequenceNumber =
84
cpu_to_le32(server->sequence_number);
85
cifs_pdu->Signature.Sequence.Reserved = 0;
86
87
*pexpected_response_sequence_number = server->sequence_number++;
88
server->sequence_number++;
89
90
rc = cifs_calculate_signature(cifs_pdu, server, smb_signature);
91
if (rc)
92
memset(cifs_pdu->Signature.SecuritySignature, 0, 8);
93
else
94
memcpy(cifs_pdu->Signature.SecuritySignature, smb_signature, 8);
95
96
return rc;
97
}
98
99
static int cifs_calc_signature2(const struct kvec *iov, int n_vec,
100
struct TCP_Server_Info *server, char *signature)
101
{
102
int i;
103
int rc;
104
105
if (iov == NULL || signature == NULL || server == NULL)
106
return -EINVAL;
107
108
if (!server->secmech.sdescmd5) {
109
cERROR(1, "%s: Can't generate signature\n", __func__);
110
return -1;
111
}
112
113
rc = crypto_shash_init(&server->secmech.sdescmd5->shash);
114
if (rc) {
115
cERROR(1, "%s: Oould not init md5\n", __func__);
116
return rc;
117
}
118
119
crypto_shash_update(&server->secmech.sdescmd5->shash,
120
server->session_key.response, server->session_key.len);
121
122
for (i = 0; i < n_vec; i++) {
123
if (iov[i].iov_len == 0)
124
continue;
125
if (iov[i].iov_base == NULL) {
126
cERROR(1, "null iovec entry");
127
return -EIO;
128
}
129
/* The first entry includes a length field (which does not get
130
signed that occupies the first 4 bytes before the header */
131
if (i == 0) {
132
if (iov[0].iov_len <= 8) /* cmd field at offset 9 */
133
break; /* nothing to sign or corrupt header */
134
crypto_shash_update(&server->secmech.sdescmd5->shash,
135
iov[i].iov_base + 4, iov[i].iov_len - 4);
136
} else
137
crypto_shash_update(&server->secmech.sdescmd5->shash,
138
iov[i].iov_base, iov[i].iov_len);
139
}
140
141
rc = crypto_shash_final(&server->secmech.sdescmd5->shash, signature);
142
143
return rc;
144
}
145
146
/* must be called with server->srv_mutex held */
147
int cifs_sign_smb2(struct kvec *iov, int n_vec, struct TCP_Server_Info *server,
148
__u32 *pexpected_response_sequence_number)
149
{
150
int rc = 0;
151
char smb_signature[20];
152
struct smb_hdr *cifs_pdu = iov[0].iov_base;
153
154
if ((cifs_pdu == NULL) || (server == NULL))
155
return -EINVAL;
156
157
if ((cifs_pdu->Flags2 & SMBFLG2_SECURITY_SIGNATURE) == 0)
158
return rc;
159
160
cifs_pdu->Signature.Sequence.SequenceNumber =
161
cpu_to_le32(server->sequence_number);
162
cifs_pdu->Signature.Sequence.Reserved = 0;
163
164
*pexpected_response_sequence_number = server->sequence_number++;
165
server->sequence_number++;
166
167
rc = cifs_calc_signature2(iov, n_vec, server, smb_signature);
168
if (rc)
169
memset(cifs_pdu->Signature.SecuritySignature, 0, 8);
170
else
171
memcpy(cifs_pdu->Signature.SecuritySignature, smb_signature, 8);
172
173
return rc;
174
}
175
176
int cifs_verify_signature(struct smb_hdr *cifs_pdu,
177
struct TCP_Server_Info *server,
178
__u32 expected_sequence_number)
179
{
180
unsigned int rc;
181
char server_response_sig[8];
182
char what_we_think_sig_should_be[20];
183
184
if (cifs_pdu == NULL || server == NULL)
185
return -EINVAL;
186
187
if (!server->session_estab)
188
return 0;
189
190
if (cifs_pdu->Command == SMB_COM_LOCKING_ANDX) {
191
struct smb_com_lock_req *pSMB =
192
(struct smb_com_lock_req *)cifs_pdu;
193
if (pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE)
194
return 0;
195
}
196
197
/* BB what if signatures are supposed to be on for session but
198
server does not send one? BB */
199
200
/* Do not need to verify session setups with signature "BSRSPYL " */
201
if (memcmp(cifs_pdu->Signature.SecuritySignature, "BSRSPYL ", 8) == 0)
202
cFYI(1, "dummy signature received for smb command 0x%x",
203
cifs_pdu->Command);
204
205
/* save off the origiginal signature so we can modify the smb and check
206
its signature against what the server sent */
207
memcpy(server_response_sig, cifs_pdu->Signature.SecuritySignature, 8);
208
209
cifs_pdu->Signature.Sequence.SequenceNumber =
210
cpu_to_le32(expected_sequence_number);
211
cifs_pdu->Signature.Sequence.Reserved = 0;
212
213
mutex_lock(&server->srv_mutex);
214
rc = cifs_calculate_signature(cifs_pdu, server,
215
what_we_think_sig_should_be);
216
mutex_unlock(&server->srv_mutex);
217
218
if (rc)
219
return rc;
220
221
/* cifs_dump_mem("what we think it should be: ",
222
what_we_think_sig_should_be, 16); */
223
224
if (memcmp(server_response_sig, what_we_think_sig_should_be, 8))
225
return -EACCES;
226
else
227
return 0;
228
229
}
230
231
/* first calculate 24 bytes ntlm response and then 16 byte session key */
232
int setup_ntlm_response(struct cifs_ses *ses)
233
{
234
int rc = 0;
235
unsigned int temp_len = CIFS_SESS_KEY_SIZE + CIFS_AUTH_RESP_SIZE;
236
char temp_key[CIFS_SESS_KEY_SIZE];
237
238
if (!ses)
239
return -EINVAL;
240
241
ses->auth_key.response = kmalloc(temp_len, GFP_KERNEL);
242
if (!ses->auth_key.response) {
243
cERROR(1, "NTLM can't allocate (%u bytes) memory", temp_len);
244
return -ENOMEM;
245
}
246
ses->auth_key.len = temp_len;
247
248
rc = SMBNTencrypt(ses->password, ses->server->cryptkey,
249
ses->auth_key.response + CIFS_SESS_KEY_SIZE);
250
if (rc) {
251
cFYI(1, "%s Can't generate NTLM response, error: %d",
252
__func__, rc);
253
return rc;
254
}
255
256
rc = E_md4hash(ses->password, temp_key);
257
if (rc) {
258
cFYI(1, "%s Can't generate NT hash, error: %d", __func__, rc);
259
return rc;
260
}
261
262
rc = mdfour(ses->auth_key.response, temp_key, CIFS_SESS_KEY_SIZE);
263
if (rc)
264
cFYI(1, "%s Can't generate NTLM session key, error: %d",
265
__func__, rc);
266
267
return rc;
268
}
269
270
#ifdef CONFIG_CIFS_WEAK_PW_HASH
271
int calc_lanman_hash(const char *password, const char *cryptkey, bool encrypt,
272
char *lnm_session_key)
273
{
274
int i;
275
int rc;
276
char password_with_pad[CIFS_ENCPWD_SIZE];
277
278
memset(password_with_pad, 0, CIFS_ENCPWD_SIZE);
279
if (password)
280
strncpy(password_with_pad, password, CIFS_ENCPWD_SIZE);
281
282
if (!encrypt && global_secflags & CIFSSEC_MAY_PLNTXT) {
283
memset(lnm_session_key, 0, CIFS_SESS_KEY_SIZE);
284
memcpy(lnm_session_key, password_with_pad,
285
CIFS_ENCPWD_SIZE);
286
return 0;
287
}
288
289
/* calculate old style session key */
290
/* calling toupper is less broken than repeatedly
291
calling nls_toupper would be since that will never
292
work for UTF8, but neither handles multibyte code pages
293
but the only alternative would be converting to UCS-16 (Unicode)
294
(using a routine something like UniStrupr) then
295
uppercasing and then converting back from Unicode - which
296
would only worth doing it if we knew it were utf8. Basically
297
utf8 and other multibyte codepages each need their own strupper
298
function since a byte at a time will ont work. */
299
300
for (i = 0; i < CIFS_ENCPWD_SIZE; i++)
301
password_with_pad[i] = toupper(password_with_pad[i]);
302
303
rc = SMBencrypt(password_with_pad, cryptkey, lnm_session_key);
304
305
return rc;
306
}
307
#endif /* CIFS_WEAK_PW_HASH */
308
309
/* Build a proper attribute value/target info pairs blob.
310
* Fill in netbios and dns domain name and workstation name
311
* and client time (total five av pairs and + one end of fields indicator.
312
* Allocate domain name which gets freed when session struct is deallocated.
313
*/
314
static int
315
build_avpair_blob(struct cifs_ses *ses, const struct nls_table *nls_cp)
316
{
317
unsigned int dlen;
318
unsigned int wlen;
319
unsigned int size = 6 * sizeof(struct ntlmssp2_name);
320
__le64 curtime;
321
char *defdmname = "WORKGROUP";
322
unsigned char *blobptr;
323
struct ntlmssp2_name *attrptr;
324
325
if (!ses->domainName) {
326
ses->domainName = kstrdup(defdmname, GFP_KERNEL);
327
if (!ses->domainName)
328
return -ENOMEM;
329
}
330
331
dlen = strlen(ses->domainName);
332
wlen = strlen(ses->server->hostname);
333
334
/* The length of this blob is a size which is
335
* six times the size of a structure which holds name/size +
336
* two times the unicode length of a domain name +
337
* two times the unicode length of a server name +
338
* size of a timestamp (which is 8 bytes).
339
*/
340
ses->auth_key.len = size + 2 * (2 * dlen) + 2 * (2 * wlen) + 8;
341
ses->auth_key.response = kzalloc(ses->auth_key.len, GFP_KERNEL);
342
if (!ses->auth_key.response) {
343
ses->auth_key.len = 0;
344
cERROR(1, "Challenge target info allocation failure");
345
return -ENOMEM;
346
}
347
348
blobptr = ses->auth_key.response;
349
attrptr = (struct ntlmssp2_name *) blobptr;
350
351
attrptr->type = cpu_to_le16(NTLMSSP_AV_NB_DOMAIN_NAME);
352
attrptr->length = cpu_to_le16(2 * dlen);
353
blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
354
cifs_strtoUCS((__le16 *)blobptr, ses->domainName, dlen, nls_cp);
355
356
blobptr += 2 * dlen;
357
attrptr = (struct ntlmssp2_name *) blobptr;
358
359
attrptr->type = cpu_to_le16(NTLMSSP_AV_NB_COMPUTER_NAME);
360
attrptr->length = cpu_to_le16(2 * wlen);
361
blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
362
cifs_strtoUCS((__le16 *)blobptr, ses->server->hostname, wlen, nls_cp);
363
364
blobptr += 2 * wlen;
365
attrptr = (struct ntlmssp2_name *) blobptr;
366
367
attrptr->type = cpu_to_le16(NTLMSSP_AV_DNS_DOMAIN_NAME);
368
attrptr->length = cpu_to_le16(2 * dlen);
369
blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
370
cifs_strtoUCS((__le16 *)blobptr, ses->domainName, dlen, nls_cp);
371
372
blobptr += 2 * dlen;
373
attrptr = (struct ntlmssp2_name *) blobptr;
374
375
attrptr->type = cpu_to_le16(NTLMSSP_AV_DNS_COMPUTER_NAME);
376
attrptr->length = cpu_to_le16(2 * wlen);
377
blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
378
cifs_strtoUCS((__le16 *)blobptr, ses->server->hostname, wlen, nls_cp);
379
380
blobptr += 2 * wlen;
381
attrptr = (struct ntlmssp2_name *) blobptr;
382
383
attrptr->type = cpu_to_le16(NTLMSSP_AV_TIMESTAMP);
384
attrptr->length = cpu_to_le16(sizeof(__le64));
385
blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
386
curtime = cpu_to_le64(cifs_UnixTimeToNT(CURRENT_TIME));
387
memcpy(blobptr, &curtime, sizeof(__le64));
388
389
return 0;
390
}
391
392
/* Server has provided av pairs/target info in the type 2 challenge
393
* packet and we have plucked it and stored within smb session.
394
* We parse that blob here to find netbios domain name to be used
395
* as part of ntlmv2 authentication (in Target String), if not already
396
* specified on the command line.
397
* If this function returns without any error but without fetching
398
* domain name, authentication may fail against some server but
399
* may not fail against other (those who are not very particular
400
* about target string i.e. for some, just user name might suffice.
401
*/
402
static int
403
find_domain_name(struct cifs_ses *ses, const struct nls_table *nls_cp)
404
{
405
unsigned int attrsize;
406
unsigned int type;
407
unsigned int onesize = sizeof(struct ntlmssp2_name);
408
unsigned char *blobptr;
409
unsigned char *blobend;
410
struct ntlmssp2_name *attrptr;
411
412
if (!ses->auth_key.len || !ses->auth_key.response)
413
return 0;
414
415
blobptr = ses->auth_key.response;
416
blobend = blobptr + ses->auth_key.len;
417
418
while (blobptr + onesize < blobend) {
419
attrptr = (struct ntlmssp2_name *) blobptr;
420
type = le16_to_cpu(attrptr->type);
421
if (type == NTLMSSP_AV_EOL)
422
break;
423
blobptr += 2; /* advance attr type */
424
attrsize = le16_to_cpu(attrptr->length);
425
blobptr += 2; /* advance attr size */
426
if (blobptr + attrsize > blobend)
427
break;
428
if (type == NTLMSSP_AV_NB_DOMAIN_NAME) {
429
if (!attrsize)
430
break;
431
if (!ses->domainName) {
432
ses->domainName =
433
kmalloc(attrsize + 1, GFP_KERNEL);
434
if (!ses->domainName)
435
return -ENOMEM;
436
cifs_from_ucs2(ses->domainName,
437
(__le16 *)blobptr, attrsize, attrsize,
438
nls_cp, false);
439
break;
440
}
441
}
442
blobptr += attrsize; /* advance attr value */
443
}
444
445
return 0;
446
}
447
448
static int calc_ntlmv2_hash(struct cifs_ses *ses, char *ntlmv2_hash,
449
const struct nls_table *nls_cp)
450
{
451
int rc = 0;
452
int len;
453
char nt_hash[CIFS_NTHASH_SIZE];
454
wchar_t *user;
455
wchar_t *domain;
456
wchar_t *server;
457
458
if (!ses->server->secmech.sdeschmacmd5) {
459
cERROR(1, "calc_ntlmv2_hash: can't generate ntlmv2 hash\n");
460
return -1;
461
}
462
463
/* calculate md4 hash of password */
464
E_md4hash(ses->password, nt_hash);
465
466
crypto_shash_setkey(ses->server->secmech.hmacmd5, nt_hash,
467
CIFS_NTHASH_SIZE);
468
469
rc = crypto_shash_init(&ses->server->secmech.sdeschmacmd5->shash);
470
if (rc) {
471
cERROR(1, "calc_ntlmv2_hash: could not init hmacmd5\n");
472
return rc;
473
}
474
475
/* convert ses->user_name to unicode and uppercase */
476
len = strlen(ses->user_name);
477
user = kmalloc(2 + (len * 2), GFP_KERNEL);
478
if (user == NULL) {
479
cERROR(1, "calc_ntlmv2_hash: user mem alloc failure\n");
480
rc = -ENOMEM;
481
goto calc_exit_2;
482
}
483
len = cifs_strtoUCS((__le16 *)user, ses->user_name, len, nls_cp);
484
UniStrupr(user);
485
486
crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
487
(char *)user, 2 * len);
488
489
/* convert ses->domainName to unicode and uppercase */
490
if (ses->domainName) {
491
len = strlen(ses->domainName);
492
493
domain = kmalloc(2 + (len * 2), GFP_KERNEL);
494
if (domain == NULL) {
495
cERROR(1, "calc_ntlmv2_hash: domain mem alloc failure");
496
rc = -ENOMEM;
497
goto calc_exit_1;
498
}
499
len = cifs_strtoUCS((__le16 *)domain, ses->domainName, len,
500
nls_cp);
501
crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
502
(char *)domain, 2 * len);
503
kfree(domain);
504
} else if (ses->serverName) {
505
len = strlen(ses->serverName);
506
507
server = kmalloc(2 + (len * 2), GFP_KERNEL);
508
if (server == NULL) {
509
cERROR(1, "calc_ntlmv2_hash: server mem alloc failure");
510
rc = -ENOMEM;
511
goto calc_exit_1;
512
}
513
len = cifs_strtoUCS((__le16 *)server, ses->serverName, len,
514
nls_cp);
515
crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
516
(char *)server, 2 * len);
517
kfree(server);
518
}
519
520
rc = crypto_shash_final(&ses->server->secmech.sdeschmacmd5->shash,
521
ntlmv2_hash);
522
523
calc_exit_1:
524
kfree(user);
525
calc_exit_2:
526
return rc;
527
}
528
529
static int
530
CalcNTLMv2_response(const struct cifs_ses *ses, char *ntlmv2_hash)
531
{
532
int rc;
533
unsigned int offset = CIFS_SESS_KEY_SIZE + 8;
534
535
if (!ses->server->secmech.sdeschmacmd5) {
536
cERROR(1, "calc_ntlmv2_hash: can't generate ntlmv2 hash\n");
537
return -1;
538
}
539
540
crypto_shash_setkey(ses->server->secmech.hmacmd5,
541
ntlmv2_hash, CIFS_HMAC_MD5_HASH_SIZE);
542
543
rc = crypto_shash_init(&ses->server->secmech.sdeschmacmd5->shash);
544
if (rc) {
545
cERROR(1, "CalcNTLMv2_response: could not init hmacmd5");
546
return rc;
547
}
548
549
if (ses->server->secType == RawNTLMSSP)
550
memcpy(ses->auth_key.response + offset,
551
ses->ntlmssp->cryptkey, CIFS_SERVER_CHALLENGE_SIZE);
552
else
553
memcpy(ses->auth_key.response + offset,
554
ses->server->cryptkey, CIFS_SERVER_CHALLENGE_SIZE);
555
crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
556
ses->auth_key.response + offset, ses->auth_key.len - offset);
557
558
rc = crypto_shash_final(&ses->server->secmech.sdeschmacmd5->shash,
559
ses->auth_key.response + CIFS_SESS_KEY_SIZE);
560
561
return rc;
562
}
563
564
565
int
566
setup_ntlmv2_rsp(struct cifs_ses *ses, const struct nls_table *nls_cp)
567
{
568
int rc;
569
int baselen;
570
unsigned int tilen;
571
struct ntlmv2_resp *buf;
572
char ntlmv2_hash[16];
573
unsigned char *tiblob = NULL; /* target info blob */
574
575
if (ses->server->secType == RawNTLMSSP) {
576
if (!ses->domainName) {
577
rc = find_domain_name(ses, nls_cp);
578
if (rc) {
579
cERROR(1, "error %d finding domain name", rc);
580
goto setup_ntlmv2_rsp_ret;
581
}
582
}
583
} else {
584
rc = build_avpair_blob(ses, nls_cp);
585
if (rc) {
586
cERROR(1, "error %d building av pair blob", rc);
587
goto setup_ntlmv2_rsp_ret;
588
}
589
}
590
591
baselen = CIFS_SESS_KEY_SIZE + sizeof(struct ntlmv2_resp);
592
tilen = ses->auth_key.len;
593
tiblob = ses->auth_key.response;
594
595
ses->auth_key.response = kmalloc(baselen + tilen, GFP_KERNEL);
596
if (!ses->auth_key.response) {
597
rc = ENOMEM;
598
ses->auth_key.len = 0;
599
cERROR(1, "%s: Can't allocate auth blob", __func__);
600
goto setup_ntlmv2_rsp_ret;
601
}
602
ses->auth_key.len += baselen;
603
604
buf = (struct ntlmv2_resp *)
605
(ses->auth_key.response + CIFS_SESS_KEY_SIZE);
606
buf->blob_signature = cpu_to_le32(0x00000101);
607
buf->reserved = 0;
608
buf->time = cpu_to_le64(cifs_UnixTimeToNT(CURRENT_TIME));
609
get_random_bytes(&buf->client_chal, sizeof(buf->client_chal));
610
buf->reserved2 = 0;
611
612
memcpy(ses->auth_key.response + baselen, tiblob, tilen);
613
614
/* calculate ntlmv2_hash */
615
rc = calc_ntlmv2_hash(ses, ntlmv2_hash, nls_cp);
616
if (rc) {
617
cERROR(1, "could not get v2 hash rc %d", rc);
618
goto setup_ntlmv2_rsp_ret;
619
}
620
621
/* calculate first part of the client response (CR1) */
622
rc = CalcNTLMv2_response(ses, ntlmv2_hash);
623
if (rc) {
624
cERROR(1, "Could not calculate CR1 rc: %d", rc);
625
goto setup_ntlmv2_rsp_ret;
626
}
627
628
/* now calculate the session key for NTLMv2 */
629
crypto_shash_setkey(ses->server->secmech.hmacmd5,
630
ntlmv2_hash, CIFS_HMAC_MD5_HASH_SIZE);
631
632
rc = crypto_shash_init(&ses->server->secmech.sdeschmacmd5->shash);
633
if (rc) {
634
cERROR(1, "%s: Could not init hmacmd5\n", __func__);
635
goto setup_ntlmv2_rsp_ret;
636
}
637
638
crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
639
ses->auth_key.response + CIFS_SESS_KEY_SIZE,
640
CIFS_HMAC_MD5_HASH_SIZE);
641
642
rc = crypto_shash_final(&ses->server->secmech.sdeschmacmd5->shash,
643
ses->auth_key.response);
644
645
setup_ntlmv2_rsp_ret:
646
kfree(tiblob);
647
648
return rc;
649
}
650
651
int
652
calc_seckey(struct cifs_ses *ses)
653
{
654
int rc;
655
struct crypto_blkcipher *tfm_arc4;
656
struct scatterlist sgin, sgout;
657
struct blkcipher_desc desc;
658
unsigned char sec_key[CIFS_SESS_KEY_SIZE]; /* a nonce */
659
660
get_random_bytes(sec_key, CIFS_SESS_KEY_SIZE);
661
662
tfm_arc4 = crypto_alloc_blkcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC);
663
if (IS_ERR(tfm_arc4)) {
664
rc = PTR_ERR(tfm_arc4);
665
cERROR(1, "could not allocate crypto API arc4\n");
666
return rc;
667
}
668
669
desc.tfm = tfm_arc4;
670
671
crypto_blkcipher_setkey(tfm_arc4, ses->auth_key.response,
672
CIFS_SESS_KEY_SIZE);
673
674
sg_init_one(&sgin, sec_key, CIFS_SESS_KEY_SIZE);
675
sg_init_one(&sgout, ses->ntlmssp->ciphertext, CIFS_CPHTXT_SIZE);
676
677
rc = crypto_blkcipher_encrypt(&desc, &sgout, &sgin, CIFS_CPHTXT_SIZE);
678
if (rc) {
679
cERROR(1, "could not encrypt session key rc: %d\n", rc);
680
crypto_free_blkcipher(tfm_arc4);
681
return rc;
682
}
683
684
/* make secondary_key/nonce as session key */
685
memcpy(ses->auth_key.response, sec_key, CIFS_SESS_KEY_SIZE);
686
/* and make len as that of session key only */
687
ses->auth_key.len = CIFS_SESS_KEY_SIZE;
688
689
crypto_free_blkcipher(tfm_arc4);
690
691
return 0;
692
}
693
694
void
695
cifs_crypto_shash_release(struct TCP_Server_Info *server)
696
{
697
if (server->secmech.md5)
698
crypto_free_shash(server->secmech.md5);
699
700
if (server->secmech.hmacmd5)
701
crypto_free_shash(server->secmech.hmacmd5);
702
703
kfree(server->secmech.sdeschmacmd5);
704
705
kfree(server->secmech.sdescmd5);
706
}
707
708
int
709
cifs_crypto_shash_allocate(struct TCP_Server_Info *server)
710
{
711
int rc;
712
unsigned int size;
713
714
server->secmech.hmacmd5 = crypto_alloc_shash("hmac(md5)", 0, 0);
715
if (IS_ERR(server->secmech.hmacmd5)) {
716
cERROR(1, "could not allocate crypto hmacmd5\n");
717
return PTR_ERR(server->secmech.hmacmd5);
718
}
719
720
server->secmech.md5 = crypto_alloc_shash("md5", 0, 0);
721
if (IS_ERR(server->secmech.md5)) {
722
cERROR(1, "could not allocate crypto md5\n");
723
rc = PTR_ERR(server->secmech.md5);
724
goto crypto_allocate_md5_fail;
725
}
726
727
size = sizeof(struct shash_desc) +
728
crypto_shash_descsize(server->secmech.hmacmd5);
729
server->secmech.sdeschmacmd5 = kmalloc(size, GFP_KERNEL);
730
if (!server->secmech.sdeschmacmd5) {
731
cERROR(1, "cifs_crypto_shash_allocate: can't alloc hmacmd5\n");
732
rc = -ENOMEM;
733
goto crypto_allocate_hmacmd5_sdesc_fail;
734
}
735
server->secmech.sdeschmacmd5->shash.tfm = server->secmech.hmacmd5;
736
server->secmech.sdeschmacmd5->shash.flags = 0x0;
737
738
739
size = sizeof(struct shash_desc) +
740
crypto_shash_descsize(server->secmech.md5);
741
server->secmech.sdescmd5 = kmalloc(size, GFP_KERNEL);
742
if (!server->secmech.sdescmd5) {
743
cERROR(1, "cifs_crypto_shash_allocate: can't alloc md5\n");
744
rc = -ENOMEM;
745
goto crypto_allocate_md5_sdesc_fail;
746
}
747
server->secmech.sdescmd5->shash.tfm = server->secmech.md5;
748
server->secmech.sdescmd5->shash.flags = 0x0;
749
750
return 0;
751
752
crypto_allocate_md5_sdesc_fail:
753
kfree(server->secmech.sdeschmacmd5);
754
755
crypto_allocate_hmacmd5_sdesc_fail:
756
crypto_free_shash(server->secmech.md5);
757
758
crypto_allocate_md5_fail:
759
crypto_free_shash(server->secmech.hmacmd5);
760
761
return rc;
762
}
763
764