Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/direct-io.c
15109 views
1
/*
2
* fs/direct-io.c
3
*
4
* Copyright (C) 2002, Linus Torvalds.
5
*
6
* O_DIRECT
7
*
8
* 04Jul2002 Andrew Morton
9
* Initial version
10
* 11Sep2002 [email protected]
11
* added readv/writev support.
12
* 29Oct2002 Andrew Morton
13
* rewrote bio_add_page() support.
14
* 30Oct2002 [email protected]
15
* added support for non-aligned IO.
16
* 06Nov2002 [email protected]
17
* added asynchronous IO support.
18
* 21Jul2003 [email protected]
19
* added IO completion notifier.
20
*/
21
22
#include <linux/kernel.h>
23
#include <linux/module.h>
24
#include <linux/types.h>
25
#include <linux/fs.h>
26
#include <linux/mm.h>
27
#include <linux/slab.h>
28
#include <linux/highmem.h>
29
#include <linux/pagemap.h>
30
#include <linux/task_io_accounting_ops.h>
31
#include <linux/bio.h>
32
#include <linux/wait.h>
33
#include <linux/err.h>
34
#include <linux/blkdev.h>
35
#include <linux/buffer_head.h>
36
#include <linux/rwsem.h>
37
#include <linux/uio.h>
38
#include <asm/atomic.h>
39
40
/*
41
* How many user pages to map in one call to get_user_pages(). This determines
42
* the size of a structure on the stack.
43
*/
44
#define DIO_PAGES 64
45
46
/*
47
* This code generally works in units of "dio_blocks". A dio_block is
48
* somewhere between the hard sector size and the filesystem block size. it
49
* is determined on a per-invocation basis. When talking to the filesystem
50
* we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51
* down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52
* to bio_block quantities by shifting left by blkfactor.
53
*
54
* If blkfactor is zero then the user's request was aligned to the filesystem's
55
* blocksize.
56
*/
57
58
struct dio {
59
/* BIO submission state */
60
struct bio *bio; /* bio under assembly */
61
struct inode *inode;
62
int rw;
63
loff_t i_size; /* i_size when submitted */
64
int flags; /* doesn't change */
65
unsigned blkbits; /* doesn't change */
66
unsigned blkfactor; /* When we're using an alignment which
67
is finer than the filesystem's soft
68
blocksize, this specifies how much
69
finer. blkfactor=2 means 1/4-block
70
alignment. Does not change */
71
unsigned start_zero_done; /* flag: sub-blocksize zeroing has
72
been performed at the start of a
73
write */
74
int pages_in_io; /* approximate total IO pages */
75
size_t size; /* total request size (doesn't change)*/
76
sector_t block_in_file; /* Current offset into the underlying
77
file in dio_block units. */
78
unsigned blocks_available; /* At block_in_file. changes */
79
sector_t final_block_in_request;/* doesn't change */
80
unsigned first_block_in_page; /* doesn't change, Used only once */
81
int boundary; /* prev block is at a boundary */
82
int reap_counter; /* rate limit reaping */
83
get_block_t *get_block; /* block mapping function */
84
dio_iodone_t *end_io; /* IO completion function */
85
dio_submit_t *submit_io; /* IO submition function */
86
loff_t logical_offset_in_bio; /* current first logical block in bio */
87
sector_t final_block_in_bio; /* current final block in bio + 1 */
88
sector_t next_block_for_io; /* next block to be put under IO,
89
in dio_blocks units */
90
struct buffer_head map_bh; /* last get_block() result */
91
92
/*
93
* Deferred addition of a page to the dio. These variables are
94
* private to dio_send_cur_page(), submit_page_section() and
95
* dio_bio_add_page().
96
*/
97
struct page *cur_page; /* The page */
98
unsigned cur_page_offset; /* Offset into it, in bytes */
99
unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
100
sector_t cur_page_block; /* Where it starts */
101
loff_t cur_page_fs_offset; /* Offset in file */
102
103
/* BIO completion state */
104
spinlock_t bio_lock; /* protects BIO fields below */
105
unsigned long refcount; /* direct_io_worker() and bios */
106
struct bio *bio_list; /* singly linked via bi_private */
107
struct task_struct *waiter; /* waiting task (NULL if none) */
108
109
/* AIO related stuff */
110
struct kiocb *iocb; /* kiocb */
111
int is_async; /* is IO async ? */
112
int io_error; /* IO error in completion path */
113
ssize_t result; /* IO result */
114
115
/*
116
* Page fetching state. These variables belong to dio_refill_pages().
117
*/
118
int curr_page; /* changes */
119
int total_pages; /* doesn't change */
120
unsigned long curr_user_address;/* changes */
121
122
/*
123
* Page queue. These variables belong to dio_refill_pages() and
124
* dio_get_page().
125
*/
126
unsigned head; /* next page to process */
127
unsigned tail; /* last valid page + 1 */
128
int page_errors; /* errno from get_user_pages() */
129
130
/*
131
* pages[] (and any fields placed after it) are not zeroed out at
132
* allocation time. Don't add new fields after pages[] unless you
133
* wish that they not be zeroed.
134
*/
135
struct page *pages[DIO_PAGES]; /* page buffer */
136
};
137
138
/*
139
* How many pages are in the queue?
140
*/
141
static inline unsigned dio_pages_present(struct dio *dio)
142
{
143
return dio->tail - dio->head;
144
}
145
146
/*
147
* Go grab and pin some userspace pages. Typically we'll get 64 at a time.
148
*/
149
static int dio_refill_pages(struct dio *dio)
150
{
151
int ret;
152
int nr_pages;
153
154
nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
155
ret = get_user_pages_fast(
156
dio->curr_user_address, /* Where from? */
157
nr_pages, /* How many pages? */
158
dio->rw == READ, /* Write to memory? */
159
&dio->pages[0]); /* Put results here */
160
161
if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
162
struct page *page = ZERO_PAGE(0);
163
/*
164
* A memory fault, but the filesystem has some outstanding
165
* mapped blocks. We need to use those blocks up to avoid
166
* leaking stale data in the file.
167
*/
168
if (dio->page_errors == 0)
169
dio->page_errors = ret;
170
page_cache_get(page);
171
dio->pages[0] = page;
172
dio->head = 0;
173
dio->tail = 1;
174
ret = 0;
175
goto out;
176
}
177
178
if (ret >= 0) {
179
dio->curr_user_address += ret * PAGE_SIZE;
180
dio->curr_page += ret;
181
dio->head = 0;
182
dio->tail = ret;
183
ret = 0;
184
}
185
out:
186
return ret;
187
}
188
189
/*
190
* Get another userspace page. Returns an ERR_PTR on error. Pages are
191
* buffered inside the dio so that we can call get_user_pages() against a
192
* decent number of pages, less frequently. To provide nicer use of the
193
* L1 cache.
194
*/
195
static struct page *dio_get_page(struct dio *dio)
196
{
197
if (dio_pages_present(dio) == 0) {
198
int ret;
199
200
ret = dio_refill_pages(dio);
201
if (ret)
202
return ERR_PTR(ret);
203
BUG_ON(dio_pages_present(dio) == 0);
204
}
205
return dio->pages[dio->head++];
206
}
207
208
/**
209
* dio_complete() - called when all DIO BIO I/O has been completed
210
* @offset: the byte offset in the file of the completed operation
211
*
212
* This releases locks as dictated by the locking type, lets interested parties
213
* know that a DIO operation has completed, and calculates the resulting return
214
* code for the operation.
215
*
216
* It lets the filesystem know if it registered an interest earlier via
217
* get_block. Pass the private field of the map buffer_head so that
218
* filesystems can use it to hold additional state between get_block calls and
219
* dio_complete.
220
*/
221
static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
222
{
223
ssize_t transferred = 0;
224
225
/*
226
* AIO submission can race with bio completion to get here while
227
* expecting to have the last io completed by bio completion.
228
* In that case -EIOCBQUEUED is in fact not an error we want
229
* to preserve through this call.
230
*/
231
if (ret == -EIOCBQUEUED)
232
ret = 0;
233
234
if (dio->result) {
235
transferred = dio->result;
236
237
/* Check for short read case */
238
if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
239
transferred = dio->i_size - offset;
240
}
241
242
if (ret == 0)
243
ret = dio->page_errors;
244
if (ret == 0)
245
ret = dio->io_error;
246
if (ret == 0)
247
ret = transferred;
248
249
if (dio->end_io && dio->result) {
250
dio->end_io(dio->iocb, offset, transferred,
251
dio->map_bh.b_private, ret, is_async);
252
} else if (is_async) {
253
aio_complete(dio->iocb, ret, 0);
254
}
255
256
if (dio->flags & DIO_LOCKING)
257
/* lockdep: non-owner release */
258
up_read_non_owner(&dio->inode->i_alloc_sem);
259
260
return ret;
261
}
262
263
static int dio_bio_complete(struct dio *dio, struct bio *bio);
264
/*
265
* Asynchronous IO callback.
266
*/
267
static void dio_bio_end_aio(struct bio *bio, int error)
268
{
269
struct dio *dio = bio->bi_private;
270
unsigned long remaining;
271
unsigned long flags;
272
273
/* cleanup the bio */
274
dio_bio_complete(dio, bio);
275
276
spin_lock_irqsave(&dio->bio_lock, flags);
277
remaining = --dio->refcount;
278
if (remaining == 1 && dio->waiter)
279
wake_up_process(dio->waiter);
280
spin_unlock_irqrestore(&dio->bio_lock, flags);
281
282
if (remaining == 0) {
283
dio_complete(dio, dio->iocb->ki_pos, 0, true);
284
kfree(dio);
285
}
286
}
287
288
/*
289
* The BIO completion handler simply queues the BIO up for the process-context
290
* handler.
291
*
292
* During I/O bi_private points at the dio. After I/O, bi_private is used to
293
* implement a singly-linked list of completed BIOs, at dio->bio_list.
294
*/
295
static void dio_bio_end_io(struct bio *bio, int error)
296
{
297
struct dio *dio = bio->bi_private;
298
unsigned long flags;
299
300
spin_lock_irqsave(&dio->bio_lock, flags);
301
bio->bi_private = dio->bio_list;
302
dio->bio_list = bio;
303
if (--dio->refcount == 1 && dio->waiter)
304
wake_up_process(dio->waiter);
305
spin_unlock_irqrestore(&dio->bio_lock, flags);
306
}
307
308
/**
309
* dio_end_io - handle the end io action for the given bio
310
* @bio: The direct io bio thats being completed
311
* @error: Error if there was one
312
*
313
* This is meant to be called by any filesystem that uses their own dio_submit_t
314
* so that the DIO specific endio actions are dealt with after the filesystem
315
* has done it's completion work.
316
*/
317
void dio_end_io(struct bio *bio, int error)
318
{
319
struct dio *dio = bio->bi_private;
320
321
if (dio->is_async)
322
dio_bio_end_aio(bio, error);
323
else
324
dio_bio_end_io(bio, error);
325
}
326
EXPORT_SYMBOL_GPL(dio_end_io);
327
328
static void
329
dio_bio_alloc(struct dio *dio, struct block_device *bdev,
330
sector_t first_sector, int nr_vecs)
331
{
332
struct bio *bio;
333
334
/*
335
* bio_alloc() is guaranteed to return a bio when called with
336
* __GFP_WAIT and we request a valid number of vectors.
337
*/
338
bio = bio_alloc(GFP_KERNEL, nr_vecs);
339
340
bio->bi_bdev = bdev;
341
bio->bi_sector = first_sector;
342
if (dio->is_async)
343
bio->bi_end_io = dio_bio_end_aio;
344
else
345
bio->bi_end_io = dio_bio_end_io;
346
347
dio->bio = bio;
348
dio->logical_offset_in_bio = dio->cur_page_fs_offset;
349
}
350
351
/*
352
* In the AIO read case we speculatively dirty the pages before starting IO.
353
* During IO completion, any of these pages which happen to have been written
354
* back will be redirtied by bio_check_pages_dirty().
355
*
356
* bios hold a dio reference between submit_bio and ->end_io.
357
*/
358
static void dio_bio_submit(struct dio *dio)
359
{
360
struct bio *bio = dio->bio;
361
unsigned long flags;
362
363
bio->bi_private = dio;
364
365
spin_lock_irqsave(&dio->bio_lock, flags);
366
dio->refcount++;
367
spin_unlock_irqrestore(&dio->bio_lock, flags);
368
369
if (dio->is_async && dio->rw == READ)
370
bio_set_pages_dirty(bio);
371
372
if (dio->submit_io)
373
dio->submit_io(dio->rw, bio, dio->inode,
374
dio->logical_offset_in_bio);
375
else
376
submit_bio(dio->rw, bio);
377
378
dio->bio = NULL;
379
dio->boundary = 0;
380
dio->logical_offset_in_bio = 0;
381
}
382
383
/*
384
* Release any resources in case of a failure
385
*/
386
static void dio_cleanup(struct dio *dio)
387
{
388
while (dio_pages_present(dio))
389
page_cache_release(dio_get_page(dio));
390
}
391
392
/*
393
* Wait for the next BIO to complete. Remove it and return it. NULL is
394
* returned once all BIOs have been completed. This must only be called once
395
* all bios have been issued so that dio->refcount can only decrease. This
396
* requires that that the caller hold a reference on the dio.
397
*/
398
static struct bio *dio_await_one(struct dio *dio)
399
{
400
unsigned long flags;
401
struct bio *bio = NULL;
402
403
spin_lock_irqsave(&dio->bio_lock, flags);
404
405
/*
406
* Wait as long as the list is empty and there are bios in flight. bio
407
* completion drops the count, maybe adds to the list, and wakes while
408
* holding the bio_lock so we don't need set_current_state()'s barrier
409
* and can call it after testing our condition.
410
*/
411
while (dio->refcount > 1 && dio->bio_list == NULL) {
412
__set_current_state(TASK_UNINTERRUPTIBLE);
413
dio->waiter = current;
414
spin_unlock_irqrestore(&dio->bio_lock, flags);
415
io_schedule();
416
/* wake up sets us TASK_RUNNING */
417
spin_lock_irqsave(&dio->bio_lock, flags);
418
dio->waiter = NULL;
419
}
420
if (dio->bio_list) {
421
bio = dio->bio_list;
422
dio->bio_list = bio->bi_private;
423
}
424
spin_unlock_irqrestore(&dio->bio_lock, flags);
425
return bio;
426
}
427
428
/*
429
* Process one completed BIO. No locks are held.
430
*/
431
static int dio_bio_complete(struct dio *dio, struct bio *bio)
432
{
433
const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
434
struct bio_vec *bvec = bio->bi_io_vec;
435
int page_no;
436
437
if (!uptodate)
438
dio->io_error = -EIO;
439
440
if (dio->is_async && dio->rw == READ) {
441
bio_check_pages_dirty(bio); /* transfers ownership */
442
} else {
443
for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
444
struct page *page = bvec[page_no].bv_page;
445
446
if (dio->rw == READ && !PageCompound(page))
447
set_page_dirty_lock(page);
448
page_cache_release(page);
449
}
450
bio_put(bio);
451
}
452
return uptodate ? 0 : -EIO;
453
}
454
455
/*
456
* Wait on and process all in-flight BIOs. This must only be called once
457
* all bios have been issued so that the refcount can only decrease.
458
* This just waits for all bios to make it through dio_bio_complete. IO
459
* errors are propagated through dio->io_error and should be propagated via
460
* dio_complete().
461
*/
462
static void dio_await_completion(struct dio *dio)
463
{
464
struct bio *bio;
465
do {
466
bio = dio_await_one(dio);
467
if (bio)
468
dio_bio_complete(dio, bio);
469
} while (bio);
470
}
471
472
/*
473
* A really large O_DIRECT read or write can generate a lot of BIOs. So
474
* to keep the memory consumption sane we periodically reap any completed BIOs
475
* during the BIO generation phase.
476
*
477
* This also helps to limit the peak amount of pinned userspace memory.
478
*/
479
static int dio_bio_reap(struct dio *dio)
480
{
481
int ret = 0;
482
483
if (dio->reap_counter++ >= 64) {
484
while (dio->bio_list) {
485
unsigned long flags;
486
struct bio *bio;
487
int ret2;
488
489
spin_lock_irqsave(&dio->bio_lock, flags);
490
bio = dio->bio_list;
491
dio->bio_list = bio->bi_private;
492
spin_unlock_irqrestore(&dio->bio_lock, flags);
493
ret2 = dio_bio_complete(dio, bio);
494
if (ret == 0)
495
ret = ret2;
496
}
497
dio->reap_counter = 0;
498
}
499
return ret;
500
}
501
502
/*
503
* Call into the fs to map some more disk blocks. We record the current number
504
* of available blocks at dio->blocks_available. These are in units of the
505
* fs blocksize, (1 << inode->i_blkbits).
506
*
507
* The fs is allowed to map lots of blocks at once. If it wants to do that,
508
* it uses the passed inode-relative block number as the file offset, as usual.
509
*
510
* get_block() is passed the number of i_blkbits-sized blocks which direct_io
511
* has remaining to do. The fs should not map more than this number of blocks.
512
*
513
* If the fs has mapped a lot of blocks, it should populate bh->b_size to
514
* indicate how much contiguous disk space has been made available at
515
* bh->b_blocknr.
516
*
517
* If *any* of the mapped blocks are new, then the fs must set buffer_new().
518
* This isn't very efficient...
519
*
520
* In the case of filesystem holes: the fs may return an arbitrarily-large
521
* hole by returning an appropriate value in b_size and by clearing
522
* buffer_mapped(). However the direct-io code will only process holes one
523
* block at a time - it will repeatedly call get_block() as it walks the hole.
524
*/
525
static int get_more_blocks(struct dio *dio)
526
{
527
int ret;
528
struct buffer_head *map_bh = &dio->map_bh;
529
sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
530
unsigned long fs_count; /* Number of filesystem-sized blocks */
531
unsigned long dio_count;/* Number of dio_block-sized blocks */
532
unsigned long blkmask;
533
int create;
534
535
/*
536
* If there was a memory error and we've overwritten all the
537
* mapped blocks then we can now return that memory error
538
*/
539
ret = dio->page_errors;
540
if (ret == 0) {
541
BUG_ON(dio->block_in_file >= dio->final_block_in_request);
542
fs_startblk = dio->block_in_file >> dio->blkfactor;
543
dio_count = dio->final_block_in_request - dio->block_in_file;
544
fs_count = dio_count >> dio->blkfactor;
545
blkmask = (1 << dio->blkfactor) - 1;
546
if (dio_count & blkmask)
547
fs_count++;
548
549
map_bh->b_state = 0;
550
map_bh->b_size = fs_count << dio->inode->i_blkbits;
551
552
/*
553
* For writes inside i_size on a DIO_SKIP_HOLES filesystem we
554
* forbid block creations: only overwrites are permitted.
555
* We will return early to the caller once we see an
556
* unmapped buffer head returned, and the caller will fall
557
* back to buffered I/O.
558
*
559
* Otherwise the decision is left to the get_blocks method,
560
* which may decide to handle it or also return an unmapped
561
* buffer head.
562
*/
563
create = dio->rw & WRITE;
564
if (dio->flags & DIO_SKIP_HOLES) {
565
if (dio->block_in_file < (i_size_read(dio->inode) >>
566
dio->blkbits))
567
create = 0;
568
}
569
570
ret = (*dio->get_block)(dio->inode, fs_startblk,
571
map_bh, create);
572
}
573
return ret;
574
}
575
576
/*
577
* There is no bio. Make one now.
578
*/
579
static int dio_new_bio(struct dio *dio, sector_t start_sector)
580
{
581
sector_t sector;
582
int ret, nr_pages;
583
584
ret = dio_bio_reap(dio);
585
if (ret)
586
goto out;
587
sector = start_sector << (dio->blkbits - 9);
588
nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
589
nr_pages = min(nr_pages, BIO_MAX_PAGES);
590
BUG_ON(nr_pages <= 0);
591
dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
592
dio->boundary = 0;
593
out:
594
return ret;
595
}
596
597
/*
598
* Attempt to put the current chunk of 'cur_page' into the current BIO. If
599
* that was successful then update final_block_in_bio and take a ref against
600
* the just-added page.
601
*
602
* Return zero on success. Non-zero means the caller needs to start a new BIO.
603
*/
604
static int dio_bio_add_page(struct dio *dio)
605
{
606
int ret;
607
608
ret = bio_add_page(dio->bio, dio->cur_page,
609
dio->cur_page_len, dio->cur_page_offset);
610
if (ret == dio->cur_page_len) {
611
/*
612
* Decrement count only, if we are done with this page
613
*/
614
if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
615
dio->pages_in_io--;
616
page_cache_get(dio->cur_page);
617
dio->final_block_in_bio = dio->cur_page_block +
618
(dio->cur_page_len >> dio->blkbits);
619
ret = 0;
620
} else {
621
ret = 1;
622
}
623
return ret;
624
}
625
626
/*
627
* Put cur_page under IO. The section of cur_page which is described by
628
* cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
629
* starts on-disk at cur_page_block.
630
*
631
* We take a ref against the page here (on behalf of its presence in the bio).
632
*
633
* The caller of this function is responsible for removing cur_page from the
634
* dio, and for dropping the refcount which came from that presence.
635
*/
636
static int dio_send_cur_page(struct dio *dio)
637
{
638
int ret = 0;
639
640
if (dio->bio) {
641
loff_t cur_offset = dio->cur_page_fs_offset;
642
loff_t bio_next_offset = dio->logical_offset_in_bio +
643
dio->bio->bi_size;
644
645
/*
646
* See whether this new request is contiguous with the old.
647
*
648
* Btrfs cannot handle having logically non-contiguous requests
649
* submitted. For example if you have
650
*
651
* Logical: [0-4095][HOLE][8192-12287]
652
* Physical: [0-4095] [4096-8191]
653
*
654
* We cannot submit those pages together as one BIO. So if our
655
* current logical offset in the file does not equal what would
656
* be the next logical offset in the bio, submit the bio we
657
* have.
658
*/
659
if (dio->final_block_in_bio != dio->cur_page_block ||
660
cur_offset != bio_next_offset)
661
dio_bio_submit(dio);
662
/*
663
* Submit now if the underlying fs is about to perform a
664
* metadata read
665
*/
666
else if (dio->boundary)
667
dio_bio_submit(dio);
668
}
669
670
if (dio->bio == NULL) {
671
ret = dio_new_bio(dio, dio->cur_page_block);
672
if (ret)
673
goto out;
674
}
675
676
if (dio_bio_add_page(dio) != 0) {
677
dio_bio_submit(dio);
678
ret = dio_new_bio(dio, dio->cur_page_block);
679
if (ret == 0) {
680
ret = dio_bio_add_page(dio);
681
BUG_ON(ret != 0);
682
}
683
}
684
out:
685
return ret;
686
}
687
688
/*
689
* An autonomous function to put a chunk of a page under deferred IO.
690
*
691
* The caller doesn't actually know (or care) whether this piece of page is in
692
* a BIO, or is under IO or whatever. We just take care of all possible
693
* situations here. The separation between the logic of do_direct_IO() and
694
* that of submit_page_section() is important for clarity. Please don't break.
695
*
696
* The chunk of page starts on-disk at blocknr.
697
*
698
* We perform deferred IO, by recording the last-submitted page inside our
699
* private part of the dio structure. If possible, we just expand the IO
700
* across that page here.
701
*
702
* If that doesn't work out then we put the old page into the bio and add this
703
* page to the dio instead.
704
*/
705
static int
706
submit_page_section(struct dio *dio, struct page *page,
707
unsigned offset, unsigned len, sector_t blocknr)
708
{
709
int ret = 0;
710
711
if (dio->rw & WRITE) {
712
/*
713
* Read accounting is performed in submit_bio()
714
*/
715
task_io_account_write(len);
716
}
717
718
/*
719
* Can we just grow the current page's presence in the dio?
720
*/
721
if ( (dio->cur_page == page) &&
722
(dio->cur_page_offset + dio->cur_page_len == offset) &&
723
(dio->cur_page_block +
724
(dio->cur_page_len >> dio->blkbits) == blocknr)) {
725
dio->cur_page_len += len;
726
727
/*
728
* If dio->boundary then we want to schedule the IO now to
729
* avoid metadata seeks.
730
*/
731
if (dio->boundary) {
732
ret = dio_send_cur_page(dio);
733
page_cache_release(dio->cur_page);
734
dio->cur_page = NULL;
735
}
736
goto out;
737
}
738
739
/*
740
* If there's a deferred page already there then send it.
741
*/
742
if (dio->cur_page) {
743
ret = dio_send_cur_page(dio);
744
page_cache_release(dio->cur_page);
745
dio->cur_page = NULL;
746
if (ret)
747
goto out;
748
}
749
750
page_cache_get(page); /* It is in dio */
751
dio->cur_page = page;
752
dio->cur_page_offset = offset;
753
dio->cur_page_len = len;
754
dio->cur_page_block = blocknr;
755
dio->cur_page_fs_offset = dio->block_in_file << dio->blkbits;
756
out:
757
return ret;
758
}
759
760
/*
761
* Clean any dirty buffers in the blockdev mapping which alias newly-created
762
* file blocks. Only called for S_ISREG files - blockdevs do not set
763
* buffer_new
764
*/
765
static void clean_blockdev_aliases(struct dio *dio)
766
{
767
unsigned i;
768
unsigned nblocks;
769
770
nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
771
772
for (i = 0; i < nblocks; i++) {
773
unmap_underlying_metadata(dio->map_bh.b_bdev,
774
dio->map_bh.b_blocknr + i);
775
}
776
}
777
778
/*
779
* If we are not writing the entire block and get_block() allocated
780
* the block for us, we need to fill-in the unused portion of the
781
* block with zeros. This happens only if user-buffer, fileoffset or
782
* io length is not filesystem block-size multiple.
783
*
784
* `end' is zero if we're doing the start of the IO, 1 at the end of the
785
* IO.
786
*/
787
static void dio_zero_block(struct dio *dio, int end)
788
{
789
unsigned dio_blocks_per_fs_block;
790
unsigned this_chunk_blocks; /* In dio_blocks */
791
unsigned this_chunk_bytes;
792
struct page *page;
793
794
dio->start_zero_done = 1;
795
if (!dio->blkfactor || !buffer_new(&dio->map_bh))
796
return;
797
798
dio_blocks_per_fs_block = 1 << dio->blkfactor;
799
this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
800
801
if (!this_chunk_blocks)
802
return;
803
804
/*
805
* We need to zero out part of an fs block. It is either at the
806
* beginning or the end of the fs block.
807
*/
808
if (end)
809
this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
810
811
this_chunk_bytes = this_chunk_blocks << dio->blkbits;
812
813
page = ZERO_PAGE(0);
814
if (submit_page_section(dio, page, 0, this_chunk_bytes,
815
dio->next_block_for_io))
816
return;
817
818
dio->next_block_for_io += this_chunk_blocks;
819
}
820
821
/*
822
* Walk the user pages, and the file, mapping blocks to disk and generating
823
* a sequence of (page,offset,len,block) mappings. These mappings are injected
824
* into submit_page_section(), which takes care of the next stage of submission
825
*
826
* Direct IO against a blockdev is different from a file. Because we can
827
* happily perform page-sized but 512-byte aligned IOs. It is important that
828
* blockdev IO be able to have fine alignment and large sizes.
829
*
830
* So what we do is to permit the ->get_block function to populate bh.b_size
831
* with the size of IO which is permitted at this offset and this i_blkbits.
832
*
833
* For best results, the blockdev should be set up with 512-byte i_blkbits and
834
* it should set b_size to PAGE_SIZE or more inside get_block(). This gives
835
* fine alignment but still allows this function to work in PAGE_SIZE units.
836
*/
837
static int do_direct_IO(struct dio *dio)
838
{
839
const unsigned blkbits = dio->blkbits;
840
const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
841
struct page *page;
842
unsigned block_in_page;
843
struct buffer_head *map_bh = &dio->map_bh;
844
int ret = 0;
845
846
/* The I/O can start at any block offset within the first page */
847
block_in_page = dio->first_block_in_page;
848
849
while (dio->block_in_file < dio->final_block_in_request) {
850
page = dio_get_page(dio);
851
if (IS_ERR(page)) {
852
ret = PTR_ERR(page);
853
goto out;
854
}
855
856
while (block_in_page < blocks_per_page) {
857
unsigned offset_in_page = block_in_page << blkbits;
858
unsigned this_chunk_bytes; /* # of bytes mapped */
859
unsigned this_chunk_blocks; /* # of blocks */
860
unsigned u;
861
862
if (dio->blocks_available == 0) {
863
/*
864
* Need to go and map some more disk
865
*/
866
unsigned long blkmask;
867
unsigned long dio_remainder;
868
869
ret = get_more_blocks(dio);
870
if (ret) {
871
page_cache_release(page);
872
goto out;
873
}
874
if (!buffer_mapped(map_bh))
875
goto do_holes;
876
877
dio->blocks_available =
878
map_bh->b_size >> dio->blkbits;
879
dio->next_block_for_io =
880
map_bh->b_blocknr << dio->blkfactor;
881
if (buffer_new(map_bh))
882
clean_blockdev_aliases(dio);
883
884
if (!dio->blkfactor)
885
goto do_holes;
886
887
blkmask = (1 << dio->blkfactor) - 1;
888
dio_remainder = (dio->block_in_file & blkmask);
889
890
/*
891
* If we are at the start of IO and that IO
892
* starts partway into a fs-block,
893
* dio_remainder will be non-zero. If the IO
894
* is a read then we can simply advance the IO
895
* cursor to the first block which is to be
896
* read. But if the IO is a write and the
897
* block was newly allocated we cannot do that;
898
* the start of the fs block must be zeroed out
899
* on-disk
900
*/
901
if (!buffer_new(map_bh))
902
dio->next_block_for_io += dio_remainder;
903
dio->blocks_available -= dio_remainder;
904
}
905
do_holes:
906
/* Handle holes */
907
if (!buffer_mapped(map_bh)) {
908
loff_t i_size_aligned;
909
910
/* AKPM: eargh, -ENOTBLK is a hack */
911
if (dio->rw & WRITE) {
912
page_cache_release(page);
913
return -ENOTBLK;
914
}
915
916
/*
917
* Be sure to account for a partial block as the
918
* last block in the file
919
*/
920
i_size_aligned = ALIGN(i_size_read(dio->inode),
921
1 << blkbits);
922
if (dio->block_in_file >=
923
i_size_aligned >> blkbits) {
924
/* We hit eof */
925
page_cache_release(page);
926
goto out;
927
}
928
zero_user(page, block_in_page << blkbits,
929
1 << blkbits);
930
dio->block_in_file++;
931
block_in_page++;
932
goto next_block;
933
}
934
935
/*
936
* If we're performing IO which has an alignment which
937
* is finer than the underlying fs, go check to see if
938
* we must zero out the start of this block.
939
*/
940
if (unlikely(dio->blkfactor && !dio->start_zero_done))
941
dio_zero_block(dio, 0);
942
943
/*
944
* Work out, in this_chunk_blocks, how much disk we
945
* can add to this page
946
*/
947
this_chunk_blocks = dio->blocks_available;
948
u = (PAGE_SIZE - offset_in_page) >> blkbits;
949
if (this_chunk_blocks > u)
950
this_chunk_blocks = u;
951
u = dio->final_block_in_request - dio->block_in_file;
952
if (this_chunk_blocks > u)
953
this_chunk_blocks = u;
954
this_chunk_bytes = this_chunk_blocks << blkbits;
955
BUG_ON(this_chunk_bytes == 0);
956
957
dio->boundary = buffer_boundary(map_bh);
958
ret = submit_page_section(dio, page, offset_in_page,
959
this_chunk_bytes, dio->next_block_for_io);
960
if (ret) {
961
page_cache_release(page);
962
goto out;
963
}
964
dio->next_block_for_io += this_chunk_blocks;
965
966
dio->block_in_file += this_chunk_blocks;
967
block_in_page += this_chunk_blocks;
968
dio->blocks_available -= this_chunk_blocks;
969
next_block:
970
BUG_ON(dio->block_in_file > dio->final_block_in_request);
971
if (dio->block_in_file == dio->final_block_in_request)
972
break;
973
}
974
975
/* Drop the ref which was taken in get_user_pages() */
976
page_cache_release(page);
977
block_in_page = 0;
978
}
979
out:
980
return ret;
981
}
982
983
/*
984
* Releases both i_mutex and i_alloc_sem
985
*/
986
static ssize_t
987
direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
988
const struct iovec *iov, loff_t offset, unsigned long nr_segs,
989
unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
990
dio_submit_t submit_io, struct dio *dio)
991
{
992
unsigned long user_addr;
993
unsigned long flags;
994
int seg;
995
ssize_t ret = 0;
996
ssize_t ret2;
997
size_t bytes;
998
999
dio->inode = inode;
1000
dio->rw = rw;
1001
dio->blkbits = blkbits;
1002
dio->blkfactor = inode->i_blkbits - blkbits;
1003
dio->block_in_file = offset >> blkbits;
1004
1005
dio->get_block = get_block;
1006
dio->end_io = end_io;
1007
dio->submit_io = submit_io;
1008
dio->final_block_in_bio = -1;
1009
dio->next_block_for_io = -1;
1010
1011
dio->iocb = iocb;
1012
dio->i_size = i_size_read(inode);
1013
1014
spin_lock_init(&dio->bio_lock);
1015
dio->refcount = 1;
1016
1017
/*
1018
* In case of non-aligned buffers, we may need 2 more
1019
* pages since we need to zero out first and last block.
1020
*/
1021
if (unlikely(dio->blkfactor))
1022
dio->pages_in_io = 2;
1023
1024
for (seg = 0; seg < nr_segs; seg++) {
1025
user_addr = (unsigned long)iov[seg].iov_base;
1026
dio->pages_in_io +=
1027
((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1028
- user_addr/PAGE_SIZE);
1029
}
1030
1031
for (seg = 0; seg < nr_segs; seg++) {
1032
user_addr = (unsigned long)iov[seg].iov_base;
1033
dio->size += bytes = iov[seg].iov_len;
1034
1035
/* Index into the first page of the first block */
1036
dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1037
dio->final_block_in_request = dio->block_in_file +
1038
(bytes >> blkbits);
1039
/* Page fetching state */
1040
dio->head = 0;
1041
dio->tail = 0;
1042
dio->curr_page = 0;
1043
1044
dio->total_pages = 0;
1045
if (user_addr & (PAGE_SIZE-1)) {
1046
dio->total_pages++;
1047
bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1048
}
1049
dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1050
dio->curr_user_address = user_addr;
1051
1052
ret = do_direct_IO(dio);
1053
1054
dio->result += iov[seg].iov_len -
1055
((dio->final_block_in_request - dio->block_in_file) <<
1056
blkbits);
1057
1058
if (ret) {
1059
dio_cleanup(dio);
1060
break;
1061
}
1062
} /* end iovec loop */
1063
1064
if (ret == -ENOTBLK) {
1065
/*
1066
* The remaining part of the request will be
1067
* be handled by buffered I/O when we return
1068
*/
1069
ret = 0;
1070
}
1071
/*
1072
* There may be some unwritten disk at the end of a part-written
1073
* fs-block-sized block. Go zero that now.
1074
*/
1075
dio_zero_block(dio, 1);
1076
1077
if (dio->cur_page) {
1078
ret2 = dio_send_cur_page(dio);
1079
if (ret == 0)
1080
ret = ret2;
1081
page_cache_release(dio->cur_page);
1082
dio->cur_page = NULL;
1083
}
1084
if (dio->bio)
1085
dio_bio_submit(dio);
1086
1087
/*
1088
* It is possible that, we return short IO due to end of file.
1089
* In that case, we need to release all the pages we got hold on.
1090
*/
1091
dio_cleanup(dio);
1092
1093
/*
1094
* All block lookups have been performed. For READ requests
1095
* we can let i_mutex go now that its achieved its purpose
1096
* of protecting us from looking up uninitialized blocks.
1097
*/
1098
if (rw == READ && (dio->flags & DIO_LOCKING))
1099
mutex_unlock(&dio->inode->i_mutex);
1100
1101
/*
1102
* The only time we want to leave bios in flight is when a successful
1103
* partial aio read or full aio write have been setup. In that case
1104
* bio completion will call aio_complete. The only time it's safe to
1105
* call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1106
* This had *better* be the only place that raises -EIOCBQUEUED.
1107
*/
1108
BUG_ON(ret == -EIOCBQUEUED);
1109
if (dio->is_async && ret == 0 && dio->result &&
1110
((rw & READ) || (dio->result == dio->size)))
1111
ret = -EIOCBQUEUED;
1112
1113
if (ret != -EIOCBQUEUED)
1114
dio_await_completion(dio);
1115
1116
/*
1117
* Sync will always be dropping the final ref and completing the
1118
* operation. AIO can if it was a broken operation described above or
1119
* in fact if all the bios race to complete before we get here. In
1120
* that case dio_complete() translates the EIOCBQUEUED into the proper
1121
* return code that the caller will hand to aio_complete().
1122
*
1123
* This is managed by the bio_lock instead of being an atomic_t so that
1124
* completion paths can drop their ref and use the remaining count to
1125
* decide to wake the submission path atomically.
1126
*/
1127
spin_lock_irqsave(&dio->bio_lock, flags);
1128
ret2 = --dio->refcount;
1129
spin_unlock_irqrestore(&dio->bio_lock, flags);
1130
1131
if (ret2 == 0) {
1132
ret = dio_complete(dio, offset, ret, false);
1133
kfree(dio);
1134
} else
1135
BUG_ON(ret != -EIOCBQUEUED);
1136
1137
return ret;
1138
}
1139
1140
/*
1141
* This is a library function for use by filesystem drivers.
1142
*
1143
* The locking rules are governed by the flags parameter:
1144
* - if the flags value contains DIO_LOCKING we use a fancy locking
1145
* scheme for dumb filesystems.
1146
* For writes this function is called under i_mutex and returns with
1147
* i_mutex held, for reads, i_mutex is not held on entry, but it is
1148
* taken and dropped again before returning.
1149
* For reads and writes i_alloc_sem is taken in shared mode and released
1150
* on I/O completion (which may happen asynchronously after returning to
1151
* the caller).
1152
*
1153
* - if the flags value does NOT contain DIO_LOCKING we don't use any
1154
* internal locking but rather rely on the filesystem to synchronize
1155
* direct I/O reads/writes versus each other and truncate.
1156
* For reads and writes both i_mutex and i_alloc_sem are not held on
1157
* entry and are never taken.
1158
*/
1159
ssize_t
1160
__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1161
struct block_device *bdev, const struct iovec *iov, loff_t offset,
1162
unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1163
dio_submit_t submit_io, int flags)
1164
{
1165
int seg;
1166
size_t size;
1167
unsigned long addr;
1168
unsigned blkbits = inode->i_blkbits;
1169
unsigned bdev_blkbits = 0;
1170
unsigned blocksize_mask = (1 << blkbits) - 1;
1171
ssize_t retval = -EINVAL;
1172
loff_t end = offset;
1173
struct dio *dio;
1174
1175
if (rw & WRITE)
1176
rw = WRITE_ODIRECT;
1177
1178
if (bdev)
1179
bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1180
1181
if (offset & blocksize_mask) {
1182
if (bdev)
1183
blkbits = bdev_blkbits;
1184
blocksize_mask = (1 << blkbits) - 1;
1185
if (offset & blocksize_mask)
1186
goto out;
1187
}
1188
1189
/* Check the memory alignment. Blocks cannot straddle pages */
1190
for (seg = 0; seg < nr_segs; seg++) {
1191
addr = (unsigned long)iov[seg].iov_base;
1192
size = iov[seg].iov_len;
1193
end += size;
1194
if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1195
if (bdev)
1196
blkbits = bdev_blkbits;
1197
blocksize_mask = (1 << blkbits) - 1;
1198
if ((addr & blocksize_mask) || (size & blocksize_mask))
1199
goto out;
1200
}
1201
}
1202
1203
dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1204
retval = -ENOMEM;
1205
if (!dio)
1206
goto out;
1207
/*
1208
* Believe it or not, zeroing out the page array caused a .5%
1209
* performance regression in a database benchmark. So, we take
1210
* care to only zero out what's needed.
1211
*/
1212
memset(dio, 0, offsetof(struct dio, pages));
1213
1214
dio->flags = flags;
1215
if (dio->flags & DIO_LOCKING) {
1216
/* watch out for a 0 len io from a tricksy fs */
1217
if (rw == READ && end > offset) {
1218
struct address_space *mapping =
1219
iocb->ki_filp->f_mapping;
1220
1221
/* will be released by direct_io_worker */
1222
mutex_lock(&inode->i_mutex);
1223
1224
retval = filemap_write_and_wait_range(mapping, offset,
1225
end - 1);
1226
if (retval) {
1227
mutex_unlock(&inode->i_mutex);
1228
kfree(dio);
1229
goto out;
1230
}
1231
}
1232
1233
/*
1234
* Will be released at I/O completion, possibly in a
1235
* different thread.
1236
*/
1237
down_read_non_owner(&inode->i_alloc_sem);
1238
}
1239
1240
/*
1241
* For file extending writes updating i_size before data
1242
* writeouts complete can expose uninitialized blocks. So
1243
* even for AIO, we need to wait for i/o to complete before
1244
* returning in this case.
1245
*/
1246
dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1247
(end > i_size_read(inode)));
1248
1249
retval = direct_io_worker(rw, iocb, inode, iov, offset,
1250
nr_segs, blkbits, get_block, end_io,
1251
submit_io, dio);
1252
1253
out:
1254
return retval;
1255
}
1256
EXPORT_SYMBOL(__blockdev_direct_IO);
1257
1258